现代化学化工进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学化工进展燃料电池

化学化工与材料学院2008级化学实验班

邓晓然

(20080168)

现代化学化工进展

燃料电池

化学化工与材料学院2008级化学实验班邓晓然(20080168)

引言

21世纪,是能源开发、资源利用与环境保护互相协调发展的时代。能源的优化利用与清洁能源的开发,是能源、资源与环境可持续发展战略的重要组成部分。在21世纪,化石能源(如煤炭、石油、天然气)逐渐被消耗殆尽,传统的能源利用方式的弊病日益显现——一是储存于燃料中的化学能必须首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在极端所获得的效率只有33%~35%,一半以上的能量都白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。这些都迫使人类一直在找寻既有高的能源利用效率又不污染环境的能源利用方式。氢能源及再生能源进入了人类视野,其必将会逐步取代化石能源而成为人类使用的主体能源,而这种能源的变迁也将迫使发电与供电方式发生重大变革。燃料电池(Fuel Cell,FC)作为一种新兴的化学电源,最大限度的解决了传统能源利用方式的弊病,因此,燃料电池的开发及研究也成为了热点话题。

历史沿革

1839 年,英国科学家Grove 首先介绍了燃料电池的原理性实验,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦演讲厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。

由于发电机和电极过程动力学的研究未能跟上研究步伐,直到约100 年后,英国剑桥的Bacon 采用多孔气体扩散电极制备了培根型碱性燃料电池(AFC)。

20 世纪60 年代,燃料电池首次应用在美国航空航天管理局(NASA)的阿波罗登月飞船上作为辅助电源,为人类登月球做出了积极贡献,燃料电池的研究进入了快速发展阶段. 后来称这一时期为燃料电池开发的空间时代(space era)。

1973 年,在全球能源危机的刺激下,为了提高能源利用率,研究重点从航天转向地面发电装置,磷酸燃料电池(PAFC)、熔融碳酸盐电池(MCFC)以及直接采用天然气、煤气和碳氢化合物作燃料的固体氧化物燃料电池(SOFC)作为电

站或分散式电站相继问世,燃料电池的研究与开发掀起了新高潮,这一时期称为燃料电池开发的能源时代(energy era)。

其后,随着能源危机的缓解,燃料电池的研究也随之冷淡下来。80 年代末期,环境污染问题逐步恶化,1987 年美国公布了来自发电站和交通运输方面的废气,如CO、No x、So x、粉尘等的污染物几乎相等,且总量超过大气中污染物的90%以上,以提高能源利用率,减少环境污染为目标的燃料电池研究开发工作引起了各国政府及科学家的重视,促进了燃料电池开发的环境时代(environmental era)的到来。1993 年,加拿大Ballard 电力公司展示了一辆零排放、最高时速为72km/ h,以质子交换膜燃料电池(PEMFC)为动力的公交车,引发了全球性燃料电池电动车的研究开发热潮。许多发达国家相继投入了大量人力、财力开展以PEMFC 为动力电源的电动车、舰船、潜艇、水下机器人等研究与开发工作,并取得了长足进展。

近些年来,由于直接醇类燃料电池(DAFC)的结构简单,燃料存储携带方便等特点,在移动电源、微型电源以及传感器件等方面具有广阔的应用前景,作为一支新秀已成为燃料电池研究与开发的新的热点之一。

工作原理

燃料电池是一种按电化学原理,即原电池的工作原理,等温地把储存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置,其工作原理是水的合成反应,即燃料和氧化剂通过电极实现向电、水和热量的转化。FC单电池的基本原件有:燃料电极(阴极),氧化剂电极(阳极)和电解质。当燃料电池工作时,向阴极通燃料,燃料(以氢气为主)在阴极上放出电子,电子经外部电路传到阳极;向阳极通氧化剂,氧化剂在阳极与从外部电路流进的电子发生还原反应。通过两极之间电解质的离子导体,完成电池内部的电荷传递。这样,内外电路构成闭合回路,生成电流,实现化学能向电能的直接转化。

电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂,用来加速电极上发生的电化学反应。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体

混合导致电池内短路,电解质通常为致密结构。

图1 燃料电池工作原理

Fig. 1 Working principle of fuel cell 以磷酸型燃料电池为例,其阴、阳极及电池总反应方程式如下:燃料极(阳极): H

2

﹦2H++2e-

空气极(阴极):1/2O

2+2H++2e-﹦H

2

O

总反应式:H

2+1/2O

2

﹦H

2

O

以上反应式表示:燃料电池工作时向阳极供给燃料(氢),向阴极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与阴极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到阴极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程。

FC单电池的输出电压约为0.5~1.3V左右,但在实际应用中,FC并不是以单电池的形式存在,而是组成电池堆(stack)。在电池堆中联接各单电池的元件称为联接器(inter-connector)或两极分离器(bipolar separator),其作用是将一个单电池的阳极和与之相邻的另一个单电池的阴极联接起来。按照实际需要,电池堆可为串联、并联和串并联混合。

燃料电池的优点

1.发电效率高

燃料电池按电化学原理等温地直接将化学能转化为电能,它不像常规电厂那样通过锅炉、汽轮机、发电机三级能量转换才能得到电能,因此既没有中间环节的转换损失,也不受热力学卡诺循环理论的限制,理论上它的发电效率可达85%

相关文档
最新文档