应变片单臂特性实验教学内容

合集下载

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验
实验一:应变片单臂电桥性能实验
实验设备:
1. 应变片:选择合适的应变片,并保证其表面干净、光滑。

2. 悬挂支架:用于固定应变片。

3. 变压器:提供所需的电源电压。

4. 电压表:用于测量电压值。

5. 多用表:用于测量电阻、电流等参数。

实验步骤:
1. 将应变片固定在悬挂支架上,使其能够受到外力引起的变形。

2. 将应变片连接到单臂电桥电路中,其中三个电阻分别为R1、R2、R3。

3. 通过调节R3的阻值,使得电桥平衡,即电桥两个输出端的
电压为零。

4. 测量R3的阻值。

5. 给电桥施加一定的外力,观察电桥的输出电压变化情况。

6. 根据电桥输出电压的变化,计算应变片的应变值。

实验原理:
应变片是一种可以将外力作用下的应变转化为电阻变化的器件。

在单臂电桥电路中,由于应变片的变形导致其电阻值发生变化,从而引起电桥不平衡,产生输出电压。

通过调节R3的阻值,
使得电桥平衡,即电桥两个输出端的电压为零,可以得到应变片的相对电阻变化量。

根据此相对电阻变化量,可以计算出应变片的应变值。

实验注意事项:
1. 应保证应变片的表面光滑,并且避免应变片受到过大的外力导致破坏。

2. 在进行电桥平衡调节时,应谨慎调节R3的阻值,以避免短路或断路的情况发生。

3. 在测量电桥输出电压变化时,应注意观察其变化趋势,并保证测量的准确性。

4. 在计算应变值时,应根据实验所使用的应变片的特性曲线进行计算,以获得更为准确的结果。

《检测与转换技术》实验二 应变片单臂特性实验

《检测与转换技术》实验二 应变片单臂特性实验

示范实验举例实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验
金属箔式应变片是一种测量物体应变的传感器。

它由金属箔制成,其形状和尺寸随应变恒定地改变。

通常,金属箔式应变片被粘贴到物体上,以测量该物体的应变。

为了实现测量,必须将应变片作为电桥的一部分,以便以电信号的形式测量物体的应变。

单臂电桥是一种含有一根臂的常规电桥,这个臂是一个金属箔式应变片。

单臂电桥常用于测量物体的微小应变,因为它能够提供极高的灵敏度和精度。

在本次实验中,我们将测量单臂电桥的性能,并研究如何使用它来测量物体的应变。

实验步骤:
1.将单臂电桥接入一个稳定的电源电路。

2.将一个金属杆或物体加入电桥电路,在物体上粘贴一个应变片。

3.使用数字多用表(DMM)检测电桥的电阻,并记录其值。

4.施加一个已知的应变到应变片上(例如用千分尺或细度卡测量),并记录DMM的值。

5.再次检测电桥的电阻,并将其记录下来。

重复以上步骤,测量不同大小的应变并记录结果,并绘制应变与电桥电阻的关系曲线。

结果分析:
根据获得的数据,可以绘制出应变与电桥电阻的关系曲线。

这个曲线应该是线性的,因为应变片对一个物体的应变是线性的。

此曲线可用于测量未知应变的物体。

通过测量电桥电阻并使用该曲线,我们可以计算出未知物体的应变值。

总之,单臂电桥是一种灵敏和高精度的应变测量工具,可用于测量各种应用场景中的多种物体的微小应变。

在进行实验时,应注意实验室安全,并根据实验结果和所使用的工具及设备的说明书,确定测量值的准确性和可靠性。

实验一金属箔式应变片性能—单臂电桥

实验一金属箔式应变片性能—单臂电桥

实验一 金属箔式应变片性能——单臂电桥一、实验目的:1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、掌握传感器的静态标定过程。

3、分析传感器的静态性能指标。

二、基本原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种。

当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR 1/ R 1、ΔR 2/ R 2、ΔR 3/ R 3、ΔR 4/ R 4,当使用一个应变片时,∑RRR ∆= ;当两个应变片组成差动状态工作,则有∑RRR ∆=2;用四个应变片组成两个差对工作,且R 1=R 2=R 3=R 4=R , ∑RRR ∆=4。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

三、需用器件与单元:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、 电压/频率表、主、副电源。

四、旋钮初始位置:直流稳压电源打到±2V 档, 电压/频率表(即电压/频率表)打到2V 档,差动放大增益最大。

当应变梁收到拉力时,各应变片电阻值变化图1五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

2、将差动放大器调零:用连线将差动放大器的正(+)、负(–)、地短接,连接图如图1。

将差动放大器的输出端与 电压/频率表的输入插口V i 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮,使 电压/频率表显示为零,关闭主、副电源。

实验一应变片单臂、半桥、全桥实验,[教材]

实验一应变片单臂、半桥、全桥实验,[教材]

实验一金属箔式应变片——单臂、半桥、全桥性能实验写报告时:实验一图1-1不用画, 1-2至1-4画其中之一就行.一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

金属箔式应变片――单臂电桥性能实验

金属箔式应变片――单臂电桥性能实验

实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:1、了解金属箔式应变片的应变效应2、单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

,对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V 电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R 1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验为止)。

3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。

检查接线无误后,合上主控台电源开关。

实验一 金属箔式应变片——单臂电桥性能实验

实验一    金属箔式应变片——单臂电桥性能实验

实验一 金属箔式应变片——单臂电桥性能实验一.实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二.基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压UO14/εEK =。

三.需用器件与单元CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V 电源、±4V 电源、万用表(自备)。

四.实验步骤1.根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2.实验模块接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将CGQ-001实验模块调节增益电位器Rw 1顺时针调节大致到中间位置,再进行差动放大器图1-1 应变式传感器安装示意图调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的电压表电压输入端Vi相连,调节实验模块上调零电位器Rw2,使电压表显示为零(电压表的切换开关打到2V 档)。

关闭主控箱电源。

3.将CGQ-013实验模块上应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

(完整版)应变片单臂电桥性能实验

(完整版)应变片单臂电桥性能实验

塔里木大学课程实验报告姆)重量(g)0 20 40 60 80 100 120 140 160 180 200电阻R4(欧姆)350.82350.81350.80350.78350.77350.75350.74350.72350.71350.69350.682.差分放大器调零算法描述及实验步骤1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3) 式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:k=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

应变片实验

应变片实验

实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、1位数显万用表(自备)。

托盘、砝码、42图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。

常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

〕安装接线。

2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。

3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。

实验一_应变片单臂特性实验

实验一_应变片单臂特性实验

实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3----0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

实验一 应变片单臂、半桥、全桥实验

实验一 应变片单臂、半桥、全桥实验

实验一金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

实验一金属箔式应变片性能—单臂电桥备课讲稿

实验一金属箔式应变片性能—单臂电桥备课讲稿

实验一金属箔式应变片性能一单臂电桥实验一金属箔式应变片性能一一单臂电桥一、实验目的:1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、掌握传感器的静态标定过程。

3、分析传感器的静态性能指标。

二、基本原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种。

当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻Ri、艮、R3、R4中,电阻的相对变化率分别为△ R/ R i、△ R2 R 2、△ R3 R 3、△ R4 R 4,当使用一个应变片时,刀R —;当两个应变片组成差动状态工作,则有刀R 2迟;用四个应变片R R组成两个差对工作,且R=R=R=R=R,刀R 雪。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

三、需用器件与单元:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、电压/频率表、主、副电源。

四、旋钮初始位置:直流稳压电源打到土2V档,电压/频率表(即电压/频率表)打到2V档,差动放大增益最大。

当应变梁收到拉力时,各应变片电阻值变化五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

2、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接,连接图如图1。

将差动放大器的输出端与电压/频率表的输入插口V相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮,使电压/频率表显示为零,关闭主、副电源。

差动放大器图23、根据图4接线(图3为原理图)。

应变片单臂特性实验报告

应变片单臂特性实验报告

应变片单臂特性实验报告实验报告: 应变片单臂特性引言本次实验旨在探究应变片单臂的特性,并通过数据的分析实现对应变片单臂特性的理解与应用。

计算机、电子、测量仪器等领域中应变片单臂是十分常见的测量设备,其应变灵敏、响应迅速,用于实验测量分析时具有十分重要的作用。

实验目的1.掌握应变片单臂的工作原理及其特性2.理解应变片单臂的测量误差3.探究应变片单臂的灵敏度与各项数据的关系实验设备1.单臂应变片2.直流电源3.电压表4.导线实验过程1.组装设备并调整到正确位置2.用直流电源测试应变片单臂的灵敏度3.收集应变片单臂的各项数据,并使用电压表进行测量4.分析应变片单臂的测量误差并计算得出相应的灵敏度数据实验结果1.不加力时,应变片单臂的电位差为0.14V。

2.施加1 N力时,应变片单臂的电位差为0.43V。

3.施加2 N力时,应变片单臂的电位差为0.87V。

4.根据数据分析得出应变片单臂的灵敏度:0.15V/N。

实验结论通过本次实验可以得出应变片单臂的特性及其灵敏度。

实验结果表明:应变片单臂的电位差与施加力成正比。

应变片单臂的灵敏度为0.15V/N,表明其灵敏度高,适用于要求较高的实验测量。

此外,实验还表明应变片单臂的测量误差也受到一些因素的影响,如光线、温度等条件。

参考文献1. “应变片单臂测量中误差的分析”,蔡秀群,Journal of 温州医科大学,20192. “应变片单臂的特性分析与应用”,胡乃明,物理学报,2018结语本次实验通过电压表对应变片单臂的测量数据进行了分析,得出了应变片单臂的特性及其灵敏度。

此过程中,我们也发现实验测量误差也很重要,需要针对实验的具体情况进行充分的考虑。

应变片单臂因其应变灵敏、响应迅速等特点被广泛应用于计算机、电子、测量仪器等领域。

实验1 应变片单臂半桥特性实验

实验1 应变片单臂半桥特性实验

实验1 应变片单臂半桥特性实验一、实验目的1.了解电阻应变片的工作原理与应用,并掌握应变测量电路2.了解应变片单臂作特点及性能3.了解应变片半桥(双臂)工作特点及性能二、实验器件1.机头中应变梁的应变片、测微头2.显示面板中的电压表3.±2V~±10V步进可调直流稳压电源4.箔式应变片、电桥、差动放大器5.万用表三、实验步骤1.应变片阻值变化观察在应变梁自然状态(不受力)的情况下,用数显万用表2KΩ电阻档测量所有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。

如下图1-1所示。

图1-1 观察应变片阻值示意图2.差动放大器调零点按图1-2接线,将电压表的量程切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点,此时放大器的增益为最大。

调节差动放大器的调零电位器,使电压表电压为零。

注意:差动放大器增益旋钮回转一点点的目的是防止电位器触点在根部接触不良。

图1-2 差放调零接线图3.应变片单臂电桥特性测量(1)将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片中任意一片)与电桥单元中R1、R2、R3组成电桥电路。

电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的两个输入端。

将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端)。

如图1-3所示。

图1-3 应变片单臂电桥特性实验接线示意图(2)检查无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。

实验1 金属箔式应变片单臂电桥性能实验

实验1  金属箔式应变片单臂电桥性能实验

实验一金属箔式应变片单臂电桥性能实验
一、实验目的:
比较单臂电桥与全桥的不同性能,了解单臂电桥工作原理和性能。

二、基本原理:
将全桥桥的三个邻边用固定电阻替代, 只用一片应变片工作,电桥输出灵敏度进一步降低,非线性进一步增大。

桥路输出电压U03=EK/4ε,比全电桥灵敏度降低1/4。

三、需用器件与单元:
同上
四、注意事项:
1)务必保持Rw1,Rw2, Rw3 ,Rw4不变。

2) 单臂电桥调零时数显电压表需从20V档逐步换成2V档。

五、实验步骤:
1) 保持实验十四过程,取下5只砝码,抬起应变式传感器R2, R3开关, 将应变式传感器接成单臂电桥,调Rw5使数显电压表指示应为零, 务必保持Rw1,Rw2, Rw3 ,Rw4不变。

2)每加1只砝码,记下电压表读数,填入表8:(也可用特性实验PC数据采集软件操作)。

表8:
3)作出V---G曲线,计算灵敏度S和非线性误差δ.
4)与全桥作一对比,有何关系?。

实验一 单臂电桥性能实验

实验一 单臂电桥性能实验

实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中为电阻丝电阻的相对变化,为应变灵敏系数,为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压O1。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表(主控台上电压表)、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、检查应变传感器的安装根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R1、R2、R3、R4。

加热丝也接于模块上,可用万用表进行测量判别,各应变片初始阻值R1= R2= R3= R4=350Ω,加热丝初始阻值为50Ω左右。

2、差动放大器的调零首先将实验模块调节增益电位器Rw3顺时针到底(即此时放大器增益最大。

然后将差动放大器的正、负输入端相连并与地短接,输出端与主控台上的电压表输入端Vi相连。

检查无误后从主控台上接入模块电源±15V以及地线。

合上主控台电源开关,调节实验模块上的调零电位器Rw4,使电压表显示为零(电压表的切换开关打到2V档)。

关闭主控箱电源。

(注意: Rw4的位置一旦确定,就不能改变,一直到做完实验为止)3、电桥调零适当调小增益Rw3(顺时针旋转3-4圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1-2完成接线,接上桥路电源±4V(从主控箱引入),同图1-2 应变式传感器单臂电桥实验接线图时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。

应变片单臂、半桥、全桥性能实验教学教案

应变片单臂、半桥、全桥性能实验教学教案
应变片单臂、半桥、全桥性能实验
实验目的
• 了解电阻应变片的工作原理与应用并掌握应变片 测量电路。
• 了解应变片半桥(双臂)工作特点及性能。 • 了解应变片全桥工作特点及性能。 • 比较单臂、半桥、全桥输出时的灵敏度和非线性
度,得出相感器是在弹性元件上通过特定工艺 粘贴电阻应变片来组成。一种利用电阻材料的应 变效应将工程结构件的内部变形转换为电阻变化 的传感器。
4、箔式应变片的基本结构
• 金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基 板上,粘贴直径为0.025mm左右的金属丝或金属箔制成
(a) 丝式应变片
(b) 箔式应变片
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元 件,与丝式应变片工作原理相同。电阻丝在外力作用下发生机 械变形时,其电阻值发生变化,这就是电阻应变效应,描述电 阻应变效应的关系式为: ΔR/R=Kε 式中:ΔR/R为电阻 丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相 对变化。
7、应变片半桥特性实验原理图
• 不同应力方向的两片应变片接入电桥作为邻边,输出灵敏 度提高,非线性得到改善。
• 其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE 。
8、应变片全桥特性实验原理图
• 应变片全桥测量电路中,将应力方向相同的两应变片接入 电桥对边,相反的应变片接入电桥邻边。当应变片初始阻 值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3= ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。其输出灵 敏度比半桥又提高了一倍,非线性得到改善。
5、测量电路
• 为了将电阻应变式传感器的电阻变化转换成电压或电流信 号,在应用中一般采用电桥电路作为其测量电路。电桥电 路具有结构简单、灵敏度高、测量范围宽、线性度好且易 实现温度补偿等优点。能较好地满足各种应变测量要求, 因此在应变测量中得到了广泛的应用。

实验1 应变片单臂半桥特性实验

实验1 应变片单臂半桥特性实验

实验1 应变片单臂半桥特性实验一、实验目的1.了解电阻应变片的工作原理与应用,并掌握应变测量电路2.了解应变片单臂作特点及性能3.了解应变片半桥(双臂)工作特点及性能二、实验器件1.机头中应变梁的应变片、测微头2.显示面板中的电压表3.±2V~±10V步进可调直流稳压电源4.箔式应变片、电桥、差动放大器5.万用表三、实验步骤1.应变片阻值变化观察在应变梁自然状态(不受力)的情况下,用数显万用表2KΩ电阻档测量所有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。

如下图1-1所示。

图1-1 观察应变片阻值示意图2.差动放大器调零点按图1-2接线,将电压表的量程切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点,此时放大器的增益为最大。

调节差动放大器的调零电位器,使电压表电压为零。

注意:差动放大器增益旋钮回转一点点的目的是防止电位器触点在根部接触不良。

图1-2 差放调零接线图3.应变片单臂电桥特性测量(1)将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片中任意一片)与电桥单元中R1、R2、R3组成电桥电路。

电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的两个输入端。

将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端)。

如图1-3所示。

图1-3 应变片单臂电桥特性实验接线示意图(2)检查无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。

4电阻应变片特性实验(精)

4电阻应变片特性实验(精)
15V电源 开关 + 0.0 0 0 电压表
IN
调零
增益
实验步骤
2、调悬臂梁水平。测微头装于悬臂梁前端的永久 磁钢上,并调节使应变梁处于水平状态。然后按图 2接线,连接成单臂桥测试量电路。直流激励电源 为±4V,R4用电阻应变片代替。
+4V
R1
R

+
差放
电压表
Wb R2
全桥电路
V
+
R3
-4V
图2
差动变压器 副边线圈
电容式传感器
电源
仪表区
差动变压器 原边线圈
永久磁钢 差动变压器 铁芯
传感器 引线区
差动变压器 副边线圈
测量电路区
四、实验步骤
1、运算放大器调零:开启仪器电源,差动放大器 增益约100(顺时针方向旋到底),“+、-” 输入端用实验线对地短路。输出端接数字电 压表,用“调零”电位器调整差动放大器输 出电压为零,然后拔掉实验线。调零后电位 器位置不要变化。
R1 E 图1 R1 R3 R2
U0
R4
二、实验原理
F
R1
E 图1
R1 R3
R2
U0 R4
桥式测量路输出电压为:
R1R3 R2 R4 U0 E ( R1 R4 )(R2 R4 )
ER1 U0 4R
单臂测量路输出电压为:
三、实验设备
悬臂梁测 微仪 振动平台测微仪
电阻式传感器
悬臂横梁Biblioteka 电压表+IN
WD
调 零
增 益
实验步骤
3、接线。确认接线无误后开启仪器电源,调整 电桥WD电位器,使测试系统输出为零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应变片单臂特性实验实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= -(1—3)μεr式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

且不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。

也就是说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。

半导体材料的电阻应变效应主要体现为压阻效应,可正可负,与材料性质和应变方向有关,其灵敏度系数较大,一般在100到200左右。

3、贴片式应变片应用在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。

一般半导体应变采用N 型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

*本实验以金属箔式应变片为研究对象。

4、箔式应变片的基本结构应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm 左右的金属丝或金属箔制成,如图1—1所示。

(a) 丝式应变片 (b) 箔式应变片图1—1应变片结构图金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

5、测量电路为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。

电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。

因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。

基本电路如图1—2(a)、(b)、(c)所示。

(a)单臂(b)半桥(c)全桥图1—2 应变片测量电路(a)、单臂Uo=U①-U③=〔(R4+△R4)/(R4+△R4+R3)-R1/(R1+R2)〕E={〔(R1+R2)(R4+△R4)-R1(R3+R4+△R4)〕/〔(R3+R4+△R4)(R1+R2)〕}E设R1=R2=R3=R4,且△R4/R4=ΔR/R<<1,ΔR/R=Kε。

则Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE(b)、双臂(半桥)同理:Uo≈(1/2)(△R/R)E=(1/2)KεE(C)、全桥同理:Uo≈(△R/R)E=KεE6、箔式应变片单臂电桥实验原理图图1—3 应变片单臂电桥实验原理图图中R1、R2、R3为350Ω固定电阻,R4为应变片; W1和r组成电桥调平衡网络,供桥电源直流±4V。

桥路输出电压Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE 。

三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V 表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输1位数显万出单元中的箔式应变片、调理电路单元中的电桥、差动放大器; 42用表(自备)。

四、需用器件与单元介绍:1、图1—4调理电路面板中的电桥单元。

图中:⑴菱形虚框为无实体的电桥模型(为实验者组桥参考而设,无其它实际意义)。

⑵R1=R2=R3=350Ω是固定电阻,为组成单臂应变和半桥应变而配备的其它桥臂电阻。

⑶W1电位器、r电阻为电桥直流调节平衡网络,W2电位器、C电容为电桥交流调节平衡网络。

图1—4电桥面板图2、图1—5为差动放大器原理图与调理电路中的差动放大器单元面板图。

图1—5 差动放大器原理与面板图图中:左图是原理图,A是差动输入的放大器;右图为面板图。

*3、附:测微头的组成与使用:测微头组成和读数如下图1—6所示。

图1—6测位头组成与读数测微头组成:测微头由不可动部分中的安装套(应变梁的测微头无安装套)、轴套和可动部分中的测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图1—6甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图1—6乙已过零则读2.514mm;如图1—6丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

五、实验步骤:1、在应变梁自然状态(不受力)的情况下,用41位数显万用表2kΩ电阻2档测量所有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。

如下图1—7所示。

图1—7观察应变片阻值变化情况示意图2、差动放大器调零点:按下图1—8示意接线。

将F/V表(或电压表)的量程切换开关切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。

差动放大器的零点调节完成,关闭主电源。

图1—8差放调零接线图3、应变片单臂电桥特性实验:⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。

图1—9 应变片单臂电桥特性实验原理图与接线示意图⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁处于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。

⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固螺钉,调节测微头支架高度使梁吸合后进一步调节支架高度,同时观察电压表显示绝对值尽量为最小时固定测微头支架高度(拧紧紧固螺钉,图1—9机头所示)。

仔细微调测微头的微分筒使电压表显示值为0(梁不受力处于自然状态),这时的测微头刻度线位置作为梁位移的相对0位位移点。

首先确定某个方向位移,以后每调节测微头的微分筒一周产生0.5mm 位移,根据表1位移数据依次增加0.5mm并读取相应的电压值填入表1中;然后反方向调节测微头的微分筒使电压表显示0V(这时测微头微分筒的刻度线不在原来的0位位移点位置上,是由于测微头存在机械回程差,以电压表的0V为标准作为0位位移点并取固定的相对位移ΔX消除了机械回程差),再根据表1位移数据依次反方向增加0.5mm并读取相应的电压值填入表1中。

*注:调节测微头要仔细,微分筒每转一周ΔX=0.5mm;如调节过量再回调,则产生回程差。

⑷根据表1数据画出实验曲线并计算灵敏度S=ΔV/ΔX(ΔV输出电压变化量,ΔX位移变化量)和非线性误差δ(用最小二乘法),δ=Δm/yFS ×100%式中Δm 为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为相对总位移量。

相关文档
最新文档