(完整版)平行四边形知识点复习总结
平行四边形的判定知识点小结
平行四边形的判定知识点小结一、平行四边形的判定方法。
1. 定义判定。
- 两组对边分别平行的四边形是平行四边形。
- 用符号语言表示:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形。
这是平行四边形最基本的判定方法,它是从平行四边形的定义直接得出的。
2. 边的判定。
- 两组对边分别相等的四边形是平行四边形。
- 符号语言:若AB = CD,AD = BC,则四边形ABCD是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 符号语言:若AB∥CD且AB = CD(或者AD∥BC且AD = BC),则四边形ABCD 是平行四边形。
3. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 符号语言:若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。
4. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
- 符号语言:若OA = OC,OB = OD(其中O为对角线AC、BD的交点),则四边形ABCD是平行四边形。
二、平行四边形判定方法的证明思路。
1. 定义法证明。
- 一般通过已知条件中的平行关系,如角相等推出直线平行(同位角、内错角相等,两直线平行)等方法来证明两组对边分别平行。
- 例如:已知∠1 = ∠2,∠3 = ∠4,可推出AD∥BC,AB∥CD,从而证明四边形ABCD是平行四边形。
2. 边的判定证明。
- 对于两组对边分别相等的判定方法,通常利用三角形全等的知识来证明。
- 例如:连接AC,在△ABC和△CDA中,已知AB = CD,BC = DA,AC = CA(公共边),通过SSS(边 - 边 - 边)全等判定定理证明△ABC≌△CDA,进而得出∠1 = ∠2,∠3 = ∠4,所以AD∥BC,AB∥CD,四边形ABCD是平行四边形。
- 对于一组对边平行且相等的判定方法,可通过平移线段构造平行四边形或者利用三角形全等和平行线的判定来证明。
- 例如:已知AB∥CD且AB = CD,延长AB到E,使BE = CD,连接CE,可证明四边形BECD是平行四边形,从而得出BD∥CE,再结合已知条件证明四边形ABCD是平行四边形。
平行四边形知识点总结
平行四边形知识点总结一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
需要注意的是,平行四边形的定义既是它的一个性质,即两组对边分别平行;也是判定一个四边形是否为平行四边形的依据之一。
二、平行四边形的性质1、边的性质(1)平行四边形的两组对边分别平行且相等。
(2)平行四边形的邻边之和等于周长的一半。
2、角的性质(1)平行四边形的两组对角分别相等。
(2)平行四边形的邻角互补,即相邻的两个角之和为 180 度。
3、对角线的性质(1)平行四边形的对角线互相平分。
(2)两条对角线把平行四边形分成的四个三角形的面积相等。
4、对称性平行四边形是中心对称图形,对称中心是两条对角线的交点。
三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形。
这是根据平行四边形的定义直接得出的判定方法。
2、两组对边分别相等的四边形是平行四边形。
如果一个四边形的两组对边分别相等,那么可以通过平移其中一组对边,使其与另一组对边重合,从而证明该四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
先证明一组对边平行,如果再能证明这组对边相等,就可以判定为平行四边形。
4、两组对角分别相等的四边形是平行四边形。
因为平行四边形的两组对角分别相等,所以如果一个四边形的两组对角分别相等,那么它就是平行四边形。
5、对角线互相平分的四边形是平行四边形。
通过证明对角线互相平分,可以得出四边形的两组对边分别平行,从而判定为平行四边形。
四、平行四边形面积的计算平行四边形的面积=底×高需要注意的是,底和高必须是相对应的,即底边上对应的高。
五、平行四边形中的常见题型1、利用性质求边长、角度或对角线的长度已知平行四边形的一些边、角或对角线的关系,通过性质列方程求解。
2、证明一个四边形是平行四边形根据给定的条件,选择合适的判定方法进行证明。
3、求平行四边形的面积给出底和高的长度,或者通过其他条件求出底和高,进而计算面积。
4、与三角形结合的问题例如,平行四边形的对角线把平行四边形分成两个全等的三角形,或者通过三角形的全等或相似来解决平行四边形中的问题。
(完整版)平行四边形基本知识点总结
(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
平行四边形全章知识点总结
平行四边形全章知识点总结平行四边形是初中数学中常见的一个概念,它具有多项重要的性质和特点。
本文将对平行四边形的定义、性质以及相关定理进行全面总结。
一、定义平行四边形是指具有两对对边相互平行的四边形。
其中,对边是指相对的两条边,平行是指两条直线在平面上不相交,且永远保持相同的距离。
二、性质1. 对角线性质:平行四边形的对角线互相平分,并且彼此相等。
2. 内角和性质:平行四边形的内角和为180度。
3. 对边性质:平行四边形的对边相等。
三、定理1. 平行四边形的基本性质定理:如果一个四边形的对边互相平行,那么它就是一个平行四边形。
2. 平行四边形的性质定理:一个四边形是平行四边形的充要条件是它的对边相等。
3. 平行四边形的对角线性质定理:如果一个四边形的对角线互相垂直,那么它就是一个平行四边形。
4. 平行四边形的角平分线性质定理:如果一个四边形的对角线互相平分,则它是一个平行四边形。
四、拓展1. 矩形:矩形是一种特殊的平行四边形,它的四个内角都是直角。
2. 正方形:正方形是一种特殊的矩形,它的四条边相等且都垂直。
3. 菱形:菱形是一种特殊的平行四边形,它的四个边都相等,对边互相垂直。
4. 平行四边形的面积计算公式:平行四边形的面积等于底边乘以高。
五、解题技巧1. 判断平行四边形的方法:观察图形中是否存在两对平行的边。
2. 判断平行四边形的性质:使用已知条件推导,例如通过对边相等或对角线垂直等特点判断。
3. 计算平行四边形的面积:根据所给的边长和高的信息,使用面积计算公式进行计算。
总结:平行四边形是一个重要的数学概念,掌握了平行四边形的定义、性质以及相关定理,能够更好地理解和解决与平行四边形相关的问题。
同时,通过解题技巧的运用,能够更加灵活地应用这些知识点。
在学习过程中,多进行练习和思考,不断提高对平行四边形的理解和运用能力。
平行四边形知识点归纳和题型归类
平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。
2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。
3.面积:S = 底 ×高。
4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。
角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。
对角线:有一组对边相等,且互相平分的四边形是平行四边形。
要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。
要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 长 ×宽。
4.判定:有四个角都是直角的平行四边形是矩形。
要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。
要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 对角线之积的一半。
4.判定:有一组对边平行且相等的四边形是菱形。
要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。
3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。
4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。
平行四边形知识点总结
平行四边形知识点总结平行四边形是一种特殊的四边形,它具有一些特殊的性质和定理。
在我们学习平行四边形的知识点时,需要了解一些基本定义和性质,并学习如何应用这些知识解决问题。
下面是对平行四边形知识点的总结:一、基本定义和性质:1. 平行四边形定义:具有两对边分别平行的四边形称为平行四边形。
平行四边形的对角线互相平分,即对角线等分或平分对角线。
2. 平行四边形的边相等:具有对应边相等的四边形是平行四边形。
3. 平行四边形的角相等:具有对应角相等的四边形是平行四边形。
4. 平行四边形的相邻内角互补:平行四边形的相邻内角互补,即两个相邻内角的和为180度。
5. 平行四边形的对边互补:平行四边形的对边互补,即对边的和为180度。
6. 平行四边形的对边平行:平行四边形的对边互相平行,且等长。
二、平行四边形的性质:1. 平行四边形的内角和为360度:平行四边形的四个内角和为360度。
2. 两组对角线等分的性质:平行四边形的两组对角线互相等分或平分。
3. 平行四边形的对边等长:平行四边形的对边等长,并且对边平分。
如果平行四边形的对边等长,则其为矩形。
4. 平行四边形的对角线相等:平行四边形的两条对角线相等,且中点互相连接成一条线段,构成一个平行四边形的对角线的中点连线互相垂直,且互相垂直的两条线段互相平分对角线。
5. 平行四边形的边平行:平行四边形的对边平行,且平行四边形的对边与对角线之间成等角关系。
三、平行四边形的判定方法:1. 利用对边平行定理:如果一个四边形的对边互相平行,则该四边形是平行四边形。
2. 利用对角线等分定理:如果一个四边形的对角线互相等分,则该四边形是平行四边形。
3. 利用边相等和角相等定理:如果一个四边形的对边和对应角相等,则该四边形是平行四边形。
四、平行四边形的应用:1. 计算平行四边形的面积:平行四边形的面积可以通过底边乘以高来计算,也可以通过对角线的长度乘积的一半来计算。
2. 解决问题时可以利用平行四边形的性质,如利用平行四边形的对边平行性质推导出其余角相等,或者利用平行四边形的对边等长性质求解未知边长。
小学数学点知识归纳平行四边形的概念与性质
小学数学点知识归纳平行四边形的概念与性质平行四边形是小学数学中的一个重要概念,下面对平行四边形的概念与性质进行归纳。
一、平行四边形的概念平行四边形是指四边形的对边两两平行的四边形。
即四边形的两对对边分别平行。
二、平行四边形的性质1. 对角线性质:平行四边形的对角线互相平分,即对角线的交点将对角线分成两等分。
2. 对边性质:平行四边形的对边相等。
即对边AB ≌ CD,AD ≌BC。
3. 内角性质:平行四边形的内角和为180度。
即∠A + ∠B + ∠C + ∠D = 180度。
4. 对顶角性质:平行四边形的对顶角相等。
即∠A ≌∠C,∠B ≌∠D。
5. 邻补角性质:平行四边形的邻补角互为补角。
即∠A与∠D是邻补角,∠B与∠C是邻补角。
三、平行四边形的判定方法1. 对边判定法:如果一个四边形的对边两两相等,则该四边形是平行四边形。
2. 对角线判定法:如果一个四边形的对角线互相平分,则该四边形是平行四边形。
四、平行四边形的特殊情况1. 矩形:矩形是一种特殊的平行四边形,其所有内角都是直角,即90度。
2. 正方形:正方形是一种特殊的矩形,其所有边长相等,所有内角都是直角。
五、平行四边形的应用平行四边形的概念和性质在数学中有广泛的应用。
例如在解题中,可以利用平行四边形的性质进行推理和计算。
另外,在几何图形的构造和分析中,平行四边形也是一个常见的构造要素。
六、例题解析【例题1】如图所示,ABCD是一个平行四边形,AC为一条对角线,且∠ACB=60度,求∠BAD的度数。
解析:由平行四边形的性质可知,∠C = ∠A。
又∠ACB = 60度,因此∠ABC = ∠A = 60度。
又由平行四边形的内角性质可知,∠A + ∠B + ∠C + ∠D = 180度。
将已知条件代入可得,60度 + ∠B + 60度+ ∠D = 180度。
化简得,∠B + ∠D = 60度。
由对顶角性质可知,∠B = ∠D,所以∠B = ∠D = 30度。
初二数学平行四边形知识点归纳
初二数学平行四边形知识点归纳一、平行四边形的定义与性质。
1. 定义。
- 两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“▱”表示,例如平行四边形ABCD记作“▱ABCD”。
2. 性质。
- 边的性质。
- 平行四边形的两组对边分别平行且相等。
即AB∥CD,AD∥BC,AB = CD,AD = BC。
- 角的性质。
- 平行四边形的两组对角分别相等,邻角互补。
即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即若AC、BD是▱ABCD的对角线,则AO = CO,BO = DO(O为AC、BD交点)。
二、平行四边形的判定。
1. 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
即若AB = CD,AD = BC,则四边形ABCD是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
例如AB∥CD且AB = CD,则四边形ABCD是平行四边形。
2. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
即若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。
3. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
若AO = CO,BO = DO,则四边形ABCD 是平行四边形。
三、平行四边形的面积。
1. 面积公式。
- 平行四边形的面积 = 底×高,即S = ah(a为底边长,h为这条底边对应的高)。
例如在▱ABCD中,若以AB为底,AB边上的高为h,则S▱ABCD=AB×h。
2. 等底等高的平行四边形面积关系。
- 等底等高的平行四边形面积相等。
如果有▱ABCD和▱EFGH,AB = EF,且它们对应的高相等,那么S▱ABCD = S▱EFGH。
四、特殊的平行四边形(矩形、菱形、正方形)与平行四边形的关系。
平行四边形知识点复习总结
平行四边形知识点复习总结平行四边形定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□”来表示。
平行四边形性质:平行四边形对边相等且平行;平行四边形对角相等;平行四边形对角线互相平分。
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。
平行四边形的判定:(5种,3边1角1对角线)从边看:有两组对边分别平行的四边形是平行四边形。
两组对边分别平行的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
特殊的平行四边形矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。
矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半矩形具有平行四边形的一切性质矩形的判定方法(3种)有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。
菱形:有一组邻边相等的平行四边形叫做菱形。
性质:菱形的四条边都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形的判定方法: (3种)一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形。
菱形的面积等于其对角线乘积的一半,也可用平行四边形的面积方法计算,即底和高的积。
正方形:定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
性质:正方形的四边相等,对边平行,邻边垂直;正方形的对角线互相垂直平分且相等,每条对角线平分每一组对角;正方形的四个角都是直角。
平行四边形全章复习
D C B A O D C B A DC B A OD C B A 平行四边形全章复习【基础知识回顾】一、平行四边形1、平行四边形的定义:两组对边分别 的四边形是平行四边形,平行四边形ABCD 可写成 。
2、平行四边形的特质:⑴平行四边形的两组对边分别 ;如图几何语言为: ∵ ∴ 。
⑵平行四边形的两组对角分别;如图几何语言为:∵ ∴ 。
⑶平行四边形的对角线 ;如图几何语言为:∵ ∴ 。
3、平行四边形的判定:⑴用定义判定:两组对边分别平行的四边形是平行四边形。
⑵两组对边分别 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
⑶一组对它 的四边形是平行四边形。
如图几何语言为: ∵ ∴ 。
⑷两组对角分别 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
⑸对角线 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
注:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形的两个命题都不被保证是平行四边形。
4、平行四边形的面积如图:计算公式S □ = × = × 。
注:1、夹在两平行线间的平行线段 ,两平行线之间的距离处处 。
二、矩形1、定义:有一个角是 角的平行四边形叫做矩形。
2、矩形的性质:⑴矩形的四个角都 ;⑵矩形的对角线 。
3、矩形的判定:⑴用定义判定;⑵有三个角是直角的 是矩形;⑶对角线相等的 是矩形。
注:1、矩形是 对称图形对称轴有 条。
2、矩形被它的对角线分成两对全等的 三角形。
二、菱形1、定义:有一组邻边 的平行四边形叫做菱形。
2、菱形的性质:⑴菱形的四条边都 。
⑵菱形的对角线 且每条对角线 。
3、菱形的判定:⑴用定义判定;⑵对角线互相垂直的 是菱形;⑶四条边都相等的 是菱形。
注1、菱形是 对称图形,它有 条对称轴,分别是 。
2、菱形被对角线分成四个全等的 三角形和两对全等的 三角形。
3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线乘积的 来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形知识点的的题目。
(完整版)第十八章平行四边形知识点总结
第1页 共4页 ◎ 第2页 共4页}第十八章 平行四边形知识点总结考点题型分析:证明线段相等:①证明线段所在的两个三角形全等;②在同一个三角形中,利用等角对等边;一.平行四边形1.(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示方法:,平行四边形ABCD 记作,读作“平行四边形ABCD ”.2.性质:(1)角:平行四边形的邻角互补,对角相等;(2)边:两组对边分别平行且相等;(3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②对角线将四边形分成4个面积相等的三角形. 3.平行四边形的判别及证明四边形是平行四边形:方法有(5种)①定义:两组对边分别平行 ②方法1:两组对角分别相等③方法2:两组对边分别相等 的四边形是平行四边形 ④方法3:对角线互相平分⑤方法4:一组对边平行且相等二、矩形:(1)定义:有一个角是直角 的平行四边形 是矩形。
注意条件:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)矩形性质:①边:对边平行且相等; ②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). (3)矩形的判定及证明四边形是矩形:方法有(3种)①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③四个角都相等三、菱形:(1)菱形的定义:有一组邻边相等 的平行四边形 是菱形。
注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可. (2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).(2)(2)菱形的判定及证明四边形是菱形:方法有(3种)①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.四、正方形:(1)定义:有一组邻边相等且有一个直角 的平行四边形 叫做正方形。
它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(2)正方形性质:①边:四条边都相等; ②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).(3)正方形的判定及证明四边形是正方形:方法有(5种)① 有一组邻边相等 且有一个直角 的平行四边形 ② 有一组邻边相等 的矩形;③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;2.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h +. 五、梯形:(选学)(1)定义:一组对边平行而另一组对边不平行的四边形叫做梯形。
中心对称图形—平行四边形知识点复习
平行四边形知识点复习:一、旋转1、图形旋转的概念:在平面内,将一个图形绕一个转动一定的,这样的图形运动称为,这个定点称为,旋转的角度称为 .2、图形旋转的性质:(1)旋转前后的图形 .(2)对应点到旋转中心的距离 .(3)每一对对应点与旋转中心的连线所成的角 .3、中心对称:概念:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么称这两个图形关于这点,也称这两个图形成.这个点叫做.性质:成中心对称的两个图形中,对应点的连线经过,且被对称中心.4、中心对称图形:定义:把一个图形绕旋转,如果旋转后的图形能够与,那么这个图形叫做,这个点就是 .二、平行四边形:1、平四边形的概念:2、平行四边形的性质:边:角:对角线:对称性:平行四边形的面积:3、平四边形的判定方法:(1)(2)(3)(4)三、矩形:1、矩形的概念:2、矩形的性质:矩形具有的所有性质,也有平行四边形没有的性质.边:角:对角线:对称性:3、直角三角形斜边上的等于斜边的一半.直角三角形中30°角所对的等于斜边的一半.4、矩形的判定:(1)(2)(3)四、菱形:1、菱形的概念:2、菱形的性质:菱形具有的所有性质,也有平行四边形没有的性质.边:角:对角线:对称性:菱形的面积= =四、正方形:1、正方形的概念:2、正方形的性质:正方形具有、、的所有性质.边:角:对角线:对称性:正方形的面积= =3、正方形的判定:(1)(2)六、中位线:1、中位线的概念:2、中位线的性质:。
五年级数学知识点平行四边形知识点知识点总结
五年级数学知识点平行四边形知识点知识点总结五年级数学知识点——平行四边形知识点总结平行四边形是小学数学中的重要概念之一,它在几何图形的学习中扮演着重要的角色。
本文将对五年级学生需要了解的平行四边形知识点进行总结和归纳。
我们将从定义、特性、性质和计算等角度全面介绍平行四边形,帮助学生更好地理解和掌握这一知识点。
1. 平行四边形的定义平行四边形是指四边形的对边两两平行。
也就是说,四边形的对边之间不存在交点。
在平行四边形中,对边分别相等且平行。
2. 平行四边形的特性(1)对边性质:平行四边形的对边长度相等。
(2)对角线性质:平行四边形的对角线互相平分,即将平行四边形的两个对角线相交的交点即为对角线的中点。
(3)内角性质:平行四边形的两组内角互补,即相邻内角之和为180度。
3. 平行四边形的性质(1)边性质:平行四边形的相邻边相等。
(2)角性质:平行四边形的相邻内角相等,对角也相等。
(3)对边性质:平行四边形的对边平行且相等。
(4)对角线性质:平行四边形的对角线互相平分,对角线长相等,且对角线相交的交点为对角线的中点。
4. 平行四边形的计算(1)周长计算:计算平行四边形的周长,只需要将四条边长相加即可。
(2)面积计算:计算平行四边形的面积,可以通过底边长度与高的乘积来计算,即S=底边长度 ×高。
5. 平行四边形的应用(1)建筑领域:平行四边形的特性被广泛应用在建筑工程中,如墙壁、窗户和地板等。
(2)地图绘制:地图绘制中需要运用到平行四边形的性质,使得地图的比例尺和方位准确。
通过对平行四边形的定义、特性、性质和计算进行了解和掌握,可以帮助五年级学生更好地理解和应用这一知识点。
同时,平行四边形也是许多后续几何知识的基础,如平行线、三角形和多边形等,因此掌握好平行四边形知识对于学生进一步学习数学具有重要的意义。
总结:通过本文的介绍,我们详细了解了平行四边形的定义、特性、性质和计算等方面的知识。
平行四边形是小学数学中的重要内容,对于理解几何图形和后续几何知识具有重要的作用。
(完整版)平行四边形全章知识点总结
平行四边形【知识脉络】【基础知识】Ⅰ. 平行四边形(1)平行四边形性质1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2)平行四边形的性质(包括边、角、对角线三方面) : AB DO C边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;角:③平行四边形的两组对角分别相等;对角线:④平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定1)平行四边形的判定(包括边、角、对角线三方面):A B DO CA CB D边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;角:④两组对角分别相等的四边形是平行四边形;对角线:⑤对角线互相平分的四边形是平行四边形.2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4)平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
两条平行线间的距离处处相等。
Ⅱ. 矩形(1)矩形的性质1)矩形的定义:有一个角是直角的平行四边形叫做矩形.2)矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.(2)矩形的判定1)矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角.3)直角三角形斜边中线定理:(如右图)直角三角形斜边上的中线等于斜边的一半.Ⅲ. 菱形(1)菱形的性质1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.2)菱形的性质:①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式: 菱形的两条对角线的长分别为b a ,,则ab S 21菱形 (2)菱形的判定1)菱形的判定:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.Ⅳ. 正方形(1)正方形的性质1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.2)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定1)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②有一组邻边相等的矩形是正方形;③对角线互相垂直的矩形是正方形;④有一个角是直角的菱形是正方形;⑤对角线相等的菱形是正方形;⑥对角线互相垂直平分且相等的四边形是正方形.。
(完整版)平行四边形全章知识点总结
平行四边形【知识脉络】【基础知识】Ⅰ. 平行四边形(1)平行四边形性质1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2)平行四边形的性质(包括边、角、对角线三方面) : AB DO C边:①平行四边形的两组对边分别平行; ②平行四边形的两组对边分别相等;角:③平行四边形的两组对角分别相等;对角线:④平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定1)平行四边形的判定(包括边、角、对角线三方面):A B DO CD 边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形.2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.4)平行线间的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
两条平行线间的距离处处相等。
Ⅱ. 矩形(1)矩形的性质1)矩形的定义:有一个角是直角的平行四边形叫做矩形.2)矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.(2)矩形的判定1)矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角. 3)直角三角形斜边中线定理:(如右图)直角三角形斜边上的中线等于斜边的一半.Ⅲ. 菱形(1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质: ①菱形具有平行四边形的所有性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式:菱形的两条对角线的长分别为b a ,,则ab S 21菱形 (2)菱形的判定1)菱形的判定:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.Ⅳ. 正方形(1)正方形的性质1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.2)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定1)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②有一组邻边相等的矩形是正方形;③对角线互相垂直的矩形是正方形;④有一个角是直角的菱形是正方形;⑤对角线相等的菱形是正方形;⑥对角线互相垂直平分且相等的四边形是正方形.中点四边形1、顺次连接四边形各边中点所围成四边形是平行四边形2、顺次连接菱形各边中点所围成四边形是矩形3、顺次连接矩形各边中点所围成四边形是菱形4、顺次连接等腰梯形各边中点所围成四边形是菱形5、顺次连接正方形各边中点所围成四边形是正方形例:如果顺次连接一个四边形各边中点所得新的四边形是菱形,那么对这个四边形的形状描述最准确的是()A.矩形B.等腰梯形C.菱形D.对角线相等的四边形解:矩形,等腰梯形均能得到菱形但不够全面,菱形无法得到菱形,即只要对角线相等不管是什么形状均可,故选D.。
初中数学—平行四边形—史上最全
.初中数学—平行四边形一、【知识点汇总】1.平行四边形的判定和性质:性质①平行四边形对边平行;②平行四边形对边相等;③平行四边形对角相等;④平行四边形邻角互补;⑤平行四边形对角线互相平分.①行四边形的面积S a h( h 是 a边上的高)a a②行四边形是中心对称图形,其对称中心是对角线交点注意:判定①两组对边分别平行的四边形;②两组对边分别相等的四边形;③一组对边平行且相等的四边形;④两组对角分别相等的四边形;⑤对角线互相平分的四边形.1 .平行四边形的面积:平行四边形的面积等于它的底和该底上的高的积.如图 1 ,2.拓展:同底 (等底 )同高 (等高 ) 的平行四边形面积相等.如图2,3.平行四边对角线分得的四个三角形面积相等。
2.矩形的判定和性质判定性质①矩形具备平行四边形的性质.①有一个角是直角的平行四边形是矩②矩形四个角都是直角.形.③矩形两条对角线相等.②有三个角是直角的四边形是矩形.④矩形是中心对称图形,又是轴对称图形,它有③对角线相等的平行四边形是矩形.两条对称轴.⑤矩形面积 S= ab(a 、b 分别表示矩形的长和宽 ) .3.菱形的判定和性质判定性质①菱形具备平行四边形的性质.②菱形四边都相等.①一组邻边相等的平行四边形是菱③菱形两条对角线互相垂直且每条对角线平分一形.组对角.②四条边都相等的四边形是菱形.④菱形既是中心对称图形,又是轴对称图形,它③对角线互相垂直的平行四边形是菱有两条对称轴.形.⑤菱形面积 S a h a 1l1 l 2( l1、l 2分别表示菱24.正方形的判定和性质判定①有一个角是直角且一组邻边相等的平行四边形是正方形.②一组邻边相等的矩形是正方形.形两对角线的长).性质② 方形具备平行四边形性质.②正方形既具备矩形特殊性质,又具备菱形特殊.①个角是直角的菱形是正方形.②角线相等且互相垂直的平行四边形是正方形.5.梯形的判定和性质类别判定一组对边平行而另一组对边不平行梯形的四边形是梯形对角线互相垂直平分且相等,每条对角线平分一组对角;既是中心对称图形,又是轴对称图形,它有 4 条对称轴.③面积 S= a2( a 表示正方形的边长).性质①梯形一组对边平行而另一组对边不平行.②梯形中位线平行于两底且等于两底和的一半.梯形面积 S1(a+b)h mh(a、b ③2是梯形的上下底, h 是高,m是中位线).①两腰相等的梯形是等腰梯形.等腰②同一底上两角相等的梯形是等腰梯形梯形.③对角线相等的梯形是等腰梯形.①等腰梯形具有一般梯形的性质.②等腰梯形两腰相等.③等腰梯形同一底上两角相等.④ 腰梯形对角线相等.⑤腰梯形是轴对称图形.直角有一个角是直角的梯形是直角梯② 角梯形具有一般梯形的性质.梯形形.②直角梯形的一腰垂直于底边.6.梯形中的常用辅助线:7. 平行线等分线段定理( 1)如果一组平行线在一条直线上截得的线段相等,那么在其它直线上所截得的线段也相等.(2)经过三角形一边中点且与另一边平行的直线必平分第三边.(3)经过梯形一腰中点且与底边平行的直线必平分另一腰.8.三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半.梯形的中位线平行于两底且等于两底和的一半..初二考法平行四边形【题型一】边长,面积,周长1、如图, E 、 F 分别是ABCD 的边 AB 、 CD 上的点, AF 与 DE 相交于点 P , BF 与 CE 相交于 AE B点 Q ,若 S △ APD 15 cm 2 , S △BQCcm 2 ,PQ则阴影部分的面积为。
平行四边形初步知识点总结归纳
平行四边形初步知识点总结归纳
概述
平行四边形是一个特殊的四边形,其特点是所有的边两两平行。
本文将对平行四边形的性质、构造、特殊情况以及解题方法进行总
结归纳。
性质
1. 对角线互相平分,并且长度相等。
2. 相邻角互补(和为180度)。
3. 对角线分割平行四边形成的小三角形,面积相等。
4. 对角线对平行四边形进行分割,得到的四个三角形面积之和
等于平行四边形的面积。
构造
1. 已知一边和一个角度:可以利用平行四边形的相邻角互补性质,在该边的一侧构造一个与给定边平行的线段,然后利用已知角
度构造出相应的角度来确定平行四边形的形状。
2. 已知两边:可以利用平行四边形的对角线互相平分性质,在一个边的一侧构造一个与给定边平行的线段,然后利用已知两边的长度构造出相应的线段来确定平行四边形的形状。
特殊情况
1. 矩形:矩形是一种具有特殊性质的平行四边形,其特点是所有的角都是直角(90度)。
2. 正方形:正方形是一种具有特殊性质的平行四边形,其特点是所有的边都相等且所有的角都是直角(90度)。
解题方法
1. 利用平行四边形的性质进行推导和证明。
2. 利用已知条件构造辅助线或辅助平行四边形,然后利用性质或相似三角形来解决问题。
以上是对平行四边形初步知识点的总结归纳,希望对研究和理解平行四边形有所帮助。
平行四边形全章知识点总结
平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。
(2)相对角相等:平行四边形的相对角度相等。
(3)对角线互相平分:平行四边形的对角线互相平分。
(4)内角和为180度:平行四边形的所有内角的和等于180度。
3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。
(2)内错角定理:平行线与直线相交时,内错角是相等的。
(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。
(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。
4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。
(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。
(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。
(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。
5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。
(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。
(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。
通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。
掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。
因此,对平行四边形的学习和理解是我们几何学习的重要一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形知识点复习总结
平行四边形
定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□”来表示。
平行四边形性质:
平行四边形对边相等且平行;平行四边形对角相等;平行四边形对角线互相平分。
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a 边到其对边的距离,即对应的高。
平行四边形的判定:(5种,3边1角1对角线)
从边看:有两组对边分别平行的四边形是平行四边形。
两组对边分别平行的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
从对角线看:对角钱互相平分的四边形是平行四边形
从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线
三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
特殊的平行四边形
矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。
矩形的性质:
矩形的四个角都是直角;矩形的对角线相等;矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半
矩形具有平行四边形的一切性质
矩形的判定方法(3种)
有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。
菱形:有一组邻边相等的平行四边形叫做菱形。
性质:菱形的四条边都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形的判定方法: (3种)
一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形。
菱形的面积等于其对角线乘积的一半,也可用平行四边形的面积方法计算,即底和高的积。
正方形:
定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
性质:正方形的四边相等,对边平行,邻边垂直;正方形的对角线互相垂直平分且相等,每条对角线平分每一组对角;正方形的四个角都是直角。
判定:有一组邻边相等且有一个角是直角的平行四边形是正方形。
一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形。
矩形、菱形、正方形都是轴对称图形。
矩形的对称轴为其对边中点所在的直线;菱形的对称轴是其对角线所在的直线;正方形的对称轴为其对边中点所在的直线或对角线所在的直线。
2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法
名称 平行四边形 矩形
菱形
正方形
定 义
的四边形是平行四边形
的平行四边形是矩形
的平行四边形是菱形
的平行四边形是正方形
性 质 边 角 对角线
对称性
判定
边 角 对角线
面 积 周 长
平行四边形解答题
1.平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,且AF=CE ,,求证:四边形AECF 是平行四边形.
2.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE
是平行四边形.
3.已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于E 、F 、G 、H ,求证:四边形 EFGH 为矩形.
F
B C E
4.已知:如图,D 是△ABC 的边AB 上一点,CN∥AB,DN 交AC 于点M ,MA=MC . ①求证:CD=AN ;
②若∠AMD=2∠MCD,求证:四边形ADCN 是矩形.
5.已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F . 求证:四边形DECF 是菱形
.
6.如图,在正方形ABCD 中,E 、F 、G 、H 分别为正方形边上的点,而且AE=BF=CG=DH ,求证:四边形EFGH 为正方形.
7.如图,以△ABC 的三边为边在BC 的同侧分别作三个等边三角形,即△ABD、 △BCE、△ACF,请回答下列问题:
(1)四边形ADEF 是什么四边形?并.说明理由.... (2)当△ABC 满足什么条件时,四边形ADEF 是菱形?
E H
G
F
D
C
B
A
(3)当△ABC 满足什么条件时,以A 、D 、E 、F 为顶点的四边形不存在.
8.(1)如图8(1),正方形ABCD ,E 、F 分别为BC 、CD 边上一点. ①若∠EAF=45º.求证:EF=BE+DF .
②若⊿AEF 绕A 点旋转,保持∠EAF=45º,问⊿CEF 的周长是否随⊿AEF 位置的变化而变化?
(2)如图8(2),已知正方形ABCD 的边长为1,BC 、CD 上各有一点E 、F ,如果⊿CEF 的周长为2.求∠EAF 的度数.
(3)如图8(3),已知正方形ABCD ,F 为BC 中点E 为CD 边上一点,且满足∠BAF=∠FAE .求证:AE=BC+CE .
作业天天练(二):
1.如图,在平行四边形ABCD 中,E 、F 分别是直线AB 、CD 的中点,AF 、DE
H .求证:四边形GEHF 是平行四边形.
F E
D C B
A F
E
D C
B
A F E D C B
A B
2.如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。
3.已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.
求证:四边形AEDF是菱形;
4.四边形ABCD、DEFG都是正方形,连接AE、CG.
(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,
第4题图。