八年级数学下册 18.2.1《矩形》矩形的性质和判定练习2(无答案)(新版)新人教版

合集下载

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。

人教版八年级数学下册专题复习18

人教版八年级数学下册专题复习18
又∵AE⊥BD,∴AO=AB,∴AO=AB=BO,∴△ABO是等边三角形,
∴∠ABO=60°,∴∠BAE=30°,∴AE BE=3cm,∴BE cm,
故答案为: .
15、如图,已知▱ABCD,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明▱ABCD是矩形的有①④(填写序号).
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=40°,即∠E=20°.
故选:A.
6、如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是( )
18、如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若BE=1,
AE=2,则AC=.
19、如图,点E,F,G,H分别是BD,BC,AC,AD的中点:下列结论:①EH=EF;②当AB=CD,EG平分∠HGF;③当AB⊥CD时,四边形EFGH是矩形;其中正确的结论序号是.
∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,
∵AC=4,BC=3,∴AB=5,∴PC的最小值为: =2.4.
∴线段EF长的最小值为2.4.故选:B.
10、如图,在矩形ABCD中,点A的坐标是(1,0),点C的坐标是(﹣2,4),则BD的长是( )
A. B.5C.3 D.4
C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;
D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;
故选:B.
7、如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为(D)

初二矩形性质及判定练习题

初二矩形性质及判定练习题

初二矩形性质及判定练习题
1. 矩形的定义
矩形是一个拥有四个直角的四边形。

它的特点是相邻的边相互垂直,所有的内角都是直角。

2. 矩形的性质
- 对角线相等:矩形的两条对角线相等,即AC = BD。

- 边相等:矩形的相对边相等,即AB = CD,BC = AD。

- 对角线互相平分:矩形的两条对角线都是互相平分对方的。

换句话说,AC平分BD,BD平分AC。

- 对角线垂直:矩形的两条对角线互相垂直,即∠ACD =
∠BAC = 90°,∠BCD = ∠ABD = 90°。

3. 判定矩形的条件
要判定一个四边形是否是矩形,需要满足以下条件之一:
- 四个内角都是直角。

- 对角线相等且互相平分对方。

- 两对相对边相等且平行。

4. 练题
1. 判断下列四边形是否是矩形:
- 一个有两对相对边分别相等且平行的四边形。

对角线不相等。

- 一个拥有四个直角的四边形。

对角线相等。

- 一个有两个内角不是直角的四边形。

对角线垂直且互相平分。

答案:
- 不是矩形。

- 是矩形。

- 不是矩形。

2. 画出一个矩形,标出其对角线和内角。

答案:
请自行练画图,标出对角线(AC和BD)和内角(如∠BAC
和∠BCD等)。

5. 总结
矩形是一个拥有四个直角的四边形,具有对角线相等且互相平
分对方、边相等和对角线垂直等性质。

要判定一个四边形是否是矩
形,可以根据四个内角是否都是直角、对角线的情况以及边的情况进行判断。

2020--2021学年人教版八年级数学下册 18.2.1《矩形》课时同步练习(无答案)

2020--2021学年人教版八年级数学下册 18.2.1《矩形》课时同步练习(无答案)

八年级数学18.2.1《矩形》课时同步练习一、选择题:1、对角线相等且互相平分的四边形是()A.任意四边形B.平行四边形C.矩形D.菱形2、如图,在矩形ABCD中,AF⊥BD于E,AF交BC于点F,连接DF,则图中面积相等但不全等的三角形共有()A.2对B.3对C.4对D.5对3、如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=().A.22.5°B.30°C.45°D.15°4、如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=AD/2C.AB=AFD.BE=AD﹣DF5、如图,已知矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm26、如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2√3).将矩形OABC 绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为().A.(-2√3,6)B.(2√3,6)C.(-6,-2√3)D.(6,-2√3)7、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.1.8B.2.4C.3.2D.3.68、如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°二、填空题:9、已知长和宽分别为a,b的矩形,其面积等于15,周长等于16,则2a2b+2ab2=______.10、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.11、如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为。

八年级数学下册 18.2.1《矩形》矩形的性质导学案2(无答案)(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案2(无答案)(新版)新人教版

18.2.1《矩形》矩形的性质1.已知菱形的周长为16cm,则菱形的边长为_____cm.2.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,•菱形的边长是________cm.3.已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为______cm.4.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.5 .若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为6.菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.7.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.12.在菱形ABCD中,AC=6,DB=8,则菱形的面积为:13.菱形的周长是9.6,两个邻角之比为1:2,则这个菱形较短的对角线长为:14.菱形的一边与两条对角线所构成的两角比5:4,则它的各内角度数为:15.菱形的两条对角线长之比是5:3,它们的差是4厘米,则这个菱形的面积是16.菱形ABCD的对角线AC=16厘米,BD=16厘米,BC=10厘米,DE⊥BC,垂足为点E,则DE的长是17.菱形的一个内角为120度度,较短的对角线长为15,则该菱形的周长为4、菱形ABCD中∠A=120°,周长为14.4,则较短对角线的长度为。

5、菱形的面积为50平方厘米,一个角为30°,则它的周长为。

2、棱形的周长为8.4cm,相邻两角之比为5:1,那么菱形一组对边之间的距离为()A、1.05cmB、0.525cmC、4.2cmD、2.1cm11.如图,在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积.12. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E . (1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.8.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF .求证:∠AEF=∠AFE .12、如图,菱形ABCD 中,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,请你猜想CE 与CF 的大小关系?并说明理由。

人教版数学八年级下《18.2.1矩形》课时练习含答案

人教版数学八年级下《18.2.1矩形》课时练习含答案

八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C. D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE 的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。

2021年人教版数学八年级下册18.2.1---18.2.3能力测试题含答案不全

2021年人教版数学八年级下册18.2.1---18.2.3能力测试题含答案不全

18.2.1《矩形》一、选择题1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cmB.8cmC.6cmD.5cm3.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)4.如图,将矩形纸片ABCD沿对角线BD折叠一次,则图中全等三角形有()A.2对B. 3对C. 4对D.5对5.下列关于矩形的说法,正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分6.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.57.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形8.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.1.8B.2.4C.3.2D.3.610.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( )A.2 B.4 C.3 D.2二、填空题11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.12.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1= °.13.如图,将矩形纸片ABCD沿BE、DF折叠后,顶点A、C恰好都落在对角线BD的中点O 处.若BD=6 cm,则四边形B EDF的周长是cm.15.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.三、解答题16.如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.17.如图,已知在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.参考答案1.C.2.D3.B4.C5.D6.B7.C .8.C9.D 10.C.11.答案为:AC ⊥BD 12.答案为:62 13.答案为:14.答案为:6; 15.答案为:DE=5. 16.解: (1)如图所示:(2)∵四边形ABCD 是矩形,EF 是线段AC 的垂直平分线,∴AE=EC ,∠CAB=∠ACE=30°,∴∠ECB=60°,∴∠ECB=30°,∵BC=4,∴BE=.17.提示:证明△BFE ≌△CED ,从而BE=DC=AB ,∴∠BAE=45°,可得AE 平分∠BAD18.2.2 菱形一、选择题(本大题共5道小题)1. 如图,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .82. 如图,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒3. 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA4. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒5. 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm二、填空题(本大题共6道小题)6. 如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH的长等于 .7. 菱形的两条对角线将菱形分成全等三角形的对数为8. 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.9. 如图,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA10. 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是 E F DBCA11. 如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为DB三、解答题(本大题共5道小题)12. 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA13. 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA14. 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB15. 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA16. 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分ABEFGH GF EDCBA人教版 八年级数学下册 18.2.2 菱形 巩固练习-答案一、选择题(本大题共5道小题) 1. 【答案】A【解析】由菱形的对角线互相垂直平分及勾股数可知选A 2. 【答案】D 3. 【答案】C【解析】连结AR ,利用三角形的中位线可得12EF AR =与点P 无关. 4. 【答案】D 5. 【答案】A二、填空题(本大题共6道小题) 6. 【答案】3 7. 【答案】8【解析】根据菱形的性质可知:共有8对 8. 【答案】4 9. 【答案】120︒【解析】由题意可知:构成三角形为等边三角形 10. 【答案】150︒【解析】如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒ EDCBA11.【答案】30AE BC BAE PE PC AE ⊥∠=︒+===,,为最小值三、解答题(本大题共5道小题)12. 【答案】∵EF 是BD 的中垂线 ∴BE DE BF DF ==,,∴DBE BDE ∠=∠ ∵EBD DBF ∠=∠∴DBF EDB ∠=∠,所以BC DE ∥ 同理AB DF ∥所以四边形BEDF 是菱形13. 【答案】18︒【解析】连接AC ,∵四边形ABCD 为菱形ABCDEF∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒14. 【答案】∵EF 垂直平分AC , ∴,EF AC AO CO ⊥=.∴90AOE COF ∠=∠=. 又∵ABCD 平行四边形, ∴EAO FCO ∠=∠. ∴AOE ∆≌COF ∆. ∴OE OF =.∴四边形AECF 是平行四边形.又由AC EF ⊥可知,四边形AECF 是菱形.15. 【答案】100︒同理D AFD ∠=∠∵四边形ABCD 是菱形∴AD BC B D BAD C ∠=∠∠=∠∥,,,∴AEB AFD ∠=∠∵B D ∠=∠ ∴BAE DAF ∠=∠∵DE EF AF ==,∴AEF △是等边三角形,∴60EAF ∠=︒设BAE x ∠=,则602BAD x ∠=︒+∵180ABE ABE BAE ∠+∠+∠=︒,∴902x ABE ∠=︒-∵AD BC ∥,∴180B BAD ∠+∠=︒,∴906021802x x ︒-+︒+=︒ ∴20x =︒ ∴602100C BAD x ∠=∠=︒+=︒16. 【答案】A B CD EF GH连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以EG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直18.2.3正方形1.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③2.平行四边形,菱形,矩形,正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等3.正方形面积为36,则对角线的长为( )A .6B .C .9D .4.正方形的一条对角线长为4,则这个正方形的面积是( ) A .8 B .4 C .8 D .165.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP=BC ,则∠ACP 度数是( )A .45°B .22.5°C .67.5°D .75°6.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,A.75°B.60°C.55°D.45°7.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.8.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.69.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.10.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为()A.3 B.4C.D.11.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.12.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.13.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE的最小值是.14.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.15.如图,将边长都为2cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则2019个这样的正方形重叠部分的面积和为.考点二:正方形的判定16.小明在学习了正方形之后,给同桌小文出了题目,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使□ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①②B.①③C.②③D.②④17.(2015•黑龙江)如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).考点三:正方形的性质与判定18.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.19.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.20.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.21.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.22.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.23.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.。

18.2.1矩形的性质与判定练习题(修订版)

18.2.1矩形的性质与判定练习题(修订版)

18.2.1矩形的性质与判定练习题(修订版)矩形的性质与判定练习题2一、选择题1、下面的图形中,既是轴对称图形,又是中心对称图形的是()A.角B.任意三角形C.矩形D.等腰三角形2、矩形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分3、能够判断一个四边形是矩形的条件是()A.对角线相等 B •对角线垂直 C .对角线互相平分且相等D •对角线垂直且相等.4、四边形ABCD勺对角线交于点0,在下列条件中,不能说明它是矩形的是()A. AB=CD, AD=BCZ BAI=90°B. Z BAD艺ABC =90° , Z BADZ ADC=18°C Z BAD=Z BCD, Z ABC+Z ADC=10° D. AO=CO,BO=DO,AC=BD5、若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是()A. —般平行四边形 B •对角线互相垂直的四边形C对角线相等的四边形D•矩形6、两条平行线被第三条直线所截,两组内错角的交所成的四边形是()A. 一般平行四边形B.菱形C. 矩形D.正方形7、若矩形的一条角平分线分一边为则矩形的周长为()cm.A • 22B • 26C 3cm和5cm两部分, 第13题22 或26D . 28由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1: 3两部分,则该垂线与另一条对角线的夹角为(A 22.5 °、45° C 、30°609、如图,在矩形ABCD中, DEI AC,/ADE=| / CDE 那么/勺BDC等于( )A . 60 °B . 45 °C . 30D. 22.5 °二、填空题第16题1、矩形是轴对称图形,它有 _____ 条对称轴.2、已知矩形的一条对角线长是8cm两条对角线的一个交角为60°,则矩形的周长为 ___________ .3、矩形的两条对角线夹角为60°,一条对角线与短边的和为15,则短边的长是—,对角线长是—.4、矩形ABCD勺对角线相交于点O AC=2AB则厶COD为三角形.5、矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm对角线是13cm那么矩形的周长是6、已知直角三角形的周长为14,斜边上的中线长为3•则直角三角形的面积为.7、一个矩形周长是12cm,对角线长是5cm,那么它的面积为____________ .&直角三角形斜边上的高与中线分别是5cm和6cm则它的面积为.9、如果一个矩形较短的边长为5cm两条对角线所夹的角为60°,则这个矩形的面积是_______ 亦.10、矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为11、如图,在矩形ABCD中,已知AB=8crp BC=10crp折叠矩形的一边AD,使点D落在BC边的点F处,折痕为AE 则CE的长为________________ .12、已知:如图,矩形ABCD中, E在DC上, AB=AE=2BC贝0Z EBC= .13、如图,两张宽为1cm的矩形纸条交叉叠放,其中重叠部分部分是四边形ABCD, 已知/ BAD=60则重叠部分的面积是2cm.三、解答题1、已知,如图,E、F分别是矩形ABCD的对角线AC和BD 上的点,且AE=BF.求证:DE=CF.知,如图,矩形ABCD 勺对角线AG BD 相交于点Q E 、 GH 分别是QA QB QC QD 的中点,顺次连结E 、 G H 所得的四边形EFGH 是矩形吗?说明理由.4、已 EQ 交 求证:四边形AECF 是矩形.5、已知,如图,△ ABC 中,/ C=90°, AC=BC ADpDB PE 丄AC PF 丄 BC.求证:DE=DF3、如 中占 I图, 矩形 ABCD 中, AB=2 cmD 点到AM 的距离.知,AD 于如图,□ ABCD 中, AG BD 交于 Q A B6、已知,如图,矩形ABCD中, BE平分/ ABC交DC于E, EF±AE交BC于F.求证:AE=EF7、已知,如图,矩形ABC冲,F在CB延长线上,AE=EF CF=CA 求证:BE丄DE8、矩形ABC[中, AE!BD于E, BE: ED=:3,求证:AC=2AB.9、如图,将矩形纸片折叠,先折出折痕(对角线)BD,使AD边与对角线BD重合,A点落到A'处,得折痕DG 若AB=2 BC=1求AG的长.再折10、已知,如图,矩形ABC冲,E是BC上一点,于F.若AE=BC 求证:CE=FE11、已知,如图,等边△ ABC中, AD=DC BF=FC △ BDE是等边三角形•求证:四边形AEBF是矩形.12、如图,矩形ABCD勺两边AB=3 BC=4 P是AD上任点,PE!AC于点E, PF丄BD于点F。

人教版八年级数学下册18.2.1--1矩形的判定和性质(基础训练) (无答案)

人教版八年级数学下册18.2.1--1矩形的判定和性质(基础训练) (无答案)

18.2.1矩形的判定和性质基础训练知一知识要点:1.矩形定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:(1)矩形的对边平行且相等;(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分(4)矩形是轴对称图形,有两条对称轴,对称轴分别是对边中点所在的直线。

矩形还是中心对称图形,对称中心是矩形对角线的交点。

(5)直角三角形的性质:直角三角形斜边上的中线等于斜边的一半3.矩形的判定:(1)有一个角是直角的平行四边形是矩形。

(2)有三个角是直角的四边形是矩形。

(3)对角线相等的平行四边形是矩形。

二例题教学:题型一矩形的性质:例1 如图,在矩形 ABCD 中,AE⊥BD,垂足为 E,∠DAE = 2∠BAE,求证:DE = 3BE .题型二直角三角形斜边上的中线等于斜边的一半例2 如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点求证:MN⊥DEAENDC题型三矩形的判定:(有一个角是直角的平行四边形是矩形)例3:已知如图,在 ABCD中,E,F分别是AB,CD边上的点,且AE=CF.(1)求证:△ADE≌△CBF.(2)若∠DEB=900,求证:四边形DEBF是矩形。

例4 已知如图,在 ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.题型四矩形的判定:(对角线相等的平行四边形是矩形)例5 已知如图,在 ABCD中,对角线AC,BD相交于点O,点E,F在AC上,且AE=CF.(1)求证:△BOF≌△DOE.(2)若DB=EF,连BE,DF,判断四边形EBFD的形形状,并说明理由。

题型五矩形的判定:(有三个角是直角的四边形是矩形)例6如图,平行四边形 ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形;OFE DC BA题型六 矩形中的折叠与勾股定理:例7 如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AD =10cm ,AB=8cm ,求折痕AE 的长.三 巩固练习:一)填空题1. 在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______________.2. 一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为____________.3. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_______________.4. 如图, 矩形ABCD 对角线交于O 点, EF 经过O 点,那么图中全等三角形共有_____________________对.5. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.ODC B AON MD C BA E DCBAOEDC BA6. 在矩形ABCD 内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD 的长为___________________.7. 如图, 矩形ABCD 的对角线交于O 点, 若OA=1,, 那么∠BDC 的大小为________________.8. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN,给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMD ONC S S =V V . 其中正确的是______________.9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是________________.10. 如图, 在矩形ABCD 中, AE 平分∠BAD,∠CAE=15︒,那么∠BOE 的度数为__________________.11. 在矩形ABCD 中,∠A 和∠B 的平分线交边CD 于点M 和N ,若M 、N 是CD 的三等分点,那么AB :BC 的值为___________________.12. 如图, 在矩形ABCD 中,DE ⊥AC 于点E, BC=CD=2, 那么BE=_______________________. 二)1.矩形具有一般平行四边形不具有的性质是( )A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等 2.矩形具备而平行四边形不具有的性质是( )A .对角线互相平分B .邻角互补C .对角相等D .对角线相等 3.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .是轴对称图形D .对角线互相垂直平分BA4. 在四边形 ABCD 中,AC ,BD 交于点 O . 在下列各组条件中,不能判定四边形 ABCD 为矩形的是( ).A.AB = CD ,AD = BC ,AC = BDB.AO = CO ,BO = DO , ∠A = 90°C. ∠A =∠C ,∠B +∠C = 180° ,AC ⊥BDD. ∠A =∠B = 90° ,AC = BD三)简答题:1.如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证:四边形EFGH 是矩形.2. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.3. 如图,矩形ABCD 中,CE BD ⊥于E ,AF 平分BAD ∠交EC 于F , 求证:CF BD =.4.如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PBHG OFEDCB AABCE FDDABCEFFED CB A平分∠CBH.5.如图, 在矩形ABCD 中, AD=14, AB=8, DF 平分∠ADC, AF ⊥EF, (1)求EF 长;(2)在平面上是否存在点Q, 使得QA=QD=QE=QF? 若存在, 求出QA 的长; 若不存在, 说明理由.6.已知矩形ABCD ,试问:当边AB 和BC 满足什么条件时, 在边CD 上一定存在点P, 使得PA ⊥PB?7.如图,在矩形 ABCD 中,点 M 是边 AD 的中点,点 P 是边 BC 上的动点,PE⊥MC ,PF ⊥BM ,垂足分别为点 E ,F .当矩形 ABCD 的长与宽满足什么条件时,四边形PEMF 为矩形?证明你的结论8.如图,在△ABC 中,O 是 AC 边上一点,过点 O 作 BC 的平行线,交∠BCA 的平分线于点 E,交外角∠ACD 的平分线于点 F.()求证:EO = OF;(2)连接 AE,AF,当点 O 沿 AC 移动时,四边形AECF 是否能成为一个矩形?此时,点 O 在什么位置?说明理由.9如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.求证:(1)BF DF.(2)AE BD∥.10.如图,将矩形ABCD沿AE折叠,使点D落在BC边上的F点处。

矩形的性质(分层作业)-八年级数学下册(人教版)(解析版)

 矩形的性质(分层作业)-八年级数学下册(人教版)(解析版)

人教版初中数学八年级下册18.2.1矩形的性质同步练习夯实基础篇一、单选题:1.矩形具有而平行四边形不具有的性质是()A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等【答案】C【分析】由矩形的性质和平行四边形的性质即可得出结论.【详解】解:∵矩形的对角线互相平分且相等,平行四边形的对角线互相平分;它们的对边都具有平行且相等的性质,∴矩形具有而平行四边形不具有的性质是对角线相等;故选:C .【点睛】本题考查了矩形的性质和平行四边形的性质,熟练掌握矩形的性质和平行四边形的性质是本题的关键.2.如图,在ABC 中,13,AB CB BD AC 于点D 且12,BD AE BC 于点E ,连接DE ,则DE 的长为()A .52B .72C .5D .6【答案】C是直角三角形,3.如图,在矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN,若AE BC ,则图中阴影部分图形的面积和为()B C.D.A.【答案】C【分析】根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.的中点,4.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE AC 于点E ,124AOD ,则CDE 的度数为()A .62B .56C .28D .30【答案】C 【分析】由矩形的性质得出OC OD ,得出62ODC OCD ,由直角三角形的性质求出28CDE 即可.【详解】解:∵四边形ABCD 是矩形,∴90ADC ,AC BD ,OA OC ,OB OD ,∴OC OD ,∴ODC OCD ,∵124AOD ODC OCD ,5.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若EF=6cm,则AC的长是()A.6cm B.12cm C.24cm D.48cm故选:C .【点睛】此题主要考查了矩形的性质,关键是掌握矩形的对角线互相平分且相等.6.如图,在长方形ABCD 中,10cm AD ,6cm AB .将C 沿BE 折叠,使点C 的对应点C 落在AD 上,则DE 的长度为()A .2cmB .2.5cmC .4cm 3D .8cm 3【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.7.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD 交BC 于E ,若30DAO ,则BEO 的度数为()A .45B .60C .65D .75二、填空题:8.如图,延长矩形ABCD 的边BC 至点E ,使CE BD ,若34ADB ,则E ________.【答案】17 ##17度【分析】连接AC ,交BD 于点O ,先根据矩形的性质可得,,AC BD OA OD AD BC ,再根据等腰三角形的性质、平行线的性质可得34CAD ADB ACB ,又根据等腰三角形的性质可得CAE E ,从而可得17DAE CAE ,由此即可得出答案.【详解】解:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是矩形,,,AC BD OA OD AD BC ,34CAD ADB ACB ,CE BD ∵,9.如图,矩形OABC的顶点B的坐标为(4,3),则对角线AC的长等于____.【点睛】此题主要考查求矩形对角线的长,解题的关键是熟知矩形对角线相等.10.如图,矩形ABCD中,AB=6,BC=8,E在BC上且BE=2,P是CD边上的一动点,M,N分别是AE,PE的中点,则随着点P的运动,线段MN长的取值范围为__________.∴45MN ;故答案为:45MN .【点睛】本题考查三角形中位线,解题的关键是确定动点P 的两个边界点.11.如图,在ABC 中,AD 是高,E ,F 分别是AB AC ,的中点.若四边形AEDF 的周长为24,15AB =,则AC _____.∴24AB AC ,∵15AB ,∴24159AC ,故答案为:9.【点睛】本题考查的是直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12.如图,在矩形ABCD 中,AB =4,BC =3,点P 为边AB 上任意一点,过点P 作PE ⊥AC ,PF ⊥BD ,垂足分别为E 、F ,则PE +PF =________.∵矩形ABCD 的两边AB =3,BC =4∴S ABCD =AB •BC =12,OA =OC13.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ,交AB 于点G ,连接CG ,若15BOG ,则BCG 的度数是_________.14.如图,在矩形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC,AB=CD=12.若点E在线段BC上,BE=5,EF⊥AE交CD于点F,△CEF沿EF折叠C落在C 处,当AEC为等腰三角形时,BC=________.【答案】18或15或21.9时,即可求解.AF综上所述,BC=18或15或21.9.故答案为:18或15或21.9【点睛】本题主要考查了矩形的性质和判定,勾股定理,全等三角形的判定和性质,等腰三角形的性质,利用分类讨论思想解答是解题的关键.三、解答题:BC .对角线AC的垂直平分线分别交AB、CD于点E、15.已知:如图,在矩形ABCD中,4AB ,2F.求线段CF的长.∵四边形ABCD是矩形,16.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD,垂足为E,BE=2,DE=6,求AD的长.∴OB=OD,OA=OC,AC=BD∴OA=OB,17.已知:如图,90ACB ADB M N ,、分别是、AB CD 的中点,求证:MD MC MN CD ,.【答案】见解析【分析】根据直角三角形斜边上的中线等于斜边的一半可以证明DM CM ,再利用等腰三角形的性质可证明MN CD ;【详解】证明:如图所示,连接MC MD ,,,18.如图,矩形ABCD 中,BAD 的平分线交BC 于点E ,O 为对角线AC 和BD 交点,且15CAE .(1)证明AOB 为等边三角形;(2)求AOE 的度数.【答案】(1)见解析;(2)135°.【分析】(1)先根据矩形的性质得到AO BO 、90BAD ,再证明60BAO 即可证明结论;(2)先说明BO BE ,再求得75BOE ,最后根据角的和差解答即可.【详解】(1)证明:∵AE 平分∠BAD∴∠BAE =45°∵∠CAE =15°∴∠BAC =60°∵AO =BO∴△AOB 是等边三角形(2)解:∵△AOB 是等边三角形∴AB =BO∵AB =BE∴BE =BO∴∠BOE =∠BEO∵∠OBE =90°-60°=30°∴∠BOE =∠BEO =(180°-30°)÷2=75°∴∠AOE =∠AOB +∠BOE =60°+75°=135°【点睛】本题主要考查了矩形的性质、等边三角形的判定与性质、等腰三角形的判定与性质等知识点,灵活运用相关知识点成为解答本题的关键.能力提升篇一、单选题:1.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠,折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为 10,8,则点E 的坐标为()A .10,3B . 10,5C . 6,3D .4,32.如图,在矩形ABCD 中,3AB ,4BC ,过对角线交点O 作EF AC 交AD 于点E ,交BC 于点F ,则DE 的长是()A .78B .65C .1D .12【答案】A【分析】首先连接CE ,根据矩形的性质,得出90ADC ,3CD AB ,4AD BC ,OA OC ,再根据EF AC ,得出线段EF 是线段AC 的垂直平分线,再根据线段的垂直平分线定理,可得AE CE ,然后设DE x ,则4CE AE x ,根据勾股定理,得出 2294x x ,解出即可得出DE 的长.【详解】解:如图,连接CE ,∵四边形ABCD 是矩形,∴90ADC ,3CD AB ,4AD BC ,OA OC ,又∵EF AC ,∴线段EF 是线段AC 的垂直平分线,∴AE CE ,设DE x ,则4CE AE x ,3.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以1AB AO 、为两邻边作平行四边形11ABC O ,平行四边形11ABC O 的对角线交于点2O ,同样以2AB AO 、为两邻边作平行四边形22ABC O ,…,依此类推,则平行四边形n n ABC O 的面积为()A .152nB .52n C .152n D .252n二、填空题:4.如图,在ABC 中,3AB ,4AC ,5BC ,P 为边BC 上一动点,PE AB 于E ,PF AC 于F ,M 为EF 中点,则AM 的最小值为__.5.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(5,0),(0,3),点P在BC边上运动,当 OAP是等腰三角形时,点P的坐标为_____.6.如图,在矩形ABCD 中,AD ,BAD 的平分线交BC 于点E ,DH AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED CED ;②OE OD =;③BH HF ;④AB HF ;其中正确结论的序号是______.在△BEH 和△HDF 中,EBH OHD BE DH AEB HDF,∴△BEH ≌△HDF (ASA ),∴BH =HF ,故③正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴AB ≠HF ,故④错误.∴其中正确的有①②③.故答案为:①②③.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,三角形内角和定理,角平分线的定义,等腰三角形的判定与性质,等边三角形的判定;熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键.三、解答题:7.如图,折叠矩形ABCD 的顶点D 所在角,使点D 落在BC 边上的点F 处,折痕为AE .(1)若∠DAE =26°,求∠EFC 的大小;(2)若AB =8,BC =10,求EC 的长.8.如图,等腰RtΔEOF 的直角顶点O 是矩形ABCD 对角线的交点,OF 与BC 边交于点M .(1)如图1,当OE 与AC 在同一条直线上时,求证:222CM CD BM .(2)如图2,当OE 与BD 在同一条直线上时,若=3AB ,=5BC ,求BM 的长..【答案】(1)见解析;(2)3.4【分析】(1)连接AM ,根据矩形的性质可知=AO CO ,=AB CD ,90ABC ,因为EOF 是直角三角形,所以OF 是AC 的垂直平分线,故AM CM ,在RtΔABM 中,222AB BM AM ,定理代换即可证得结论;(2)连接DM ,由(1)可知,=DM BM ,设BM x =,则=5CM x ,利用勾股定理求出x 的值即可.【详解】(1)证明:连接AM ,∵四边形ABCD 是矩形,AO CO ,=AB CD ,90ABC ,ΔEOF ∵是直角三角形,MO AC ,OF 是AC 的垂直平分线,=AM CM ,在RtΔABM 中,222AB BM AM ,222=+CM CD BM ;(2)解:连接DM ,由(1)可知,=DM BM ,设==BM DM x ,则=5CM x ,在菱形ABCD 中,90BCD ,3AB CD ,在RtΔMCD 中,根据勾股定理得,222+=CM CD DM ,即222(5)+3=x x ,解得=3.4x ,=3.4BM .【点睛】本题考查了矩形的性质以及勾股定理,熟记矩形的性质并灵活运用是解题的关键.矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等.。

人教版八年级数学下册18.2.1《矩形(2)》习题含答案

人教版八年级数学下册18.2.1《矩形(2)》习题含答案

《矩形的判定》测试题含答案1.如图,添加下列条件不能判定平行四边形ABCD是矩形的是( )A.∠BAD=90°B.∠BAD=∠BC.AB2+BC2=AC2D.∠B=60°2.如图,四边形ABCD的对角线互相平分,要使它变成矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC3.数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的几位同学拟订的方案,其中正确的是( )A.测量对角线是否互相平分B.测量两组对边是否都分别相等C.测量一组对角是否都为直角D.测量其中三个内角是否都为直角4.如图,在四边形ABCD中,AB∥DC,∠C=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是______.(写出一种情况即可)5.如图,在平行四边形ABCD中,M为AD的中点,且BM=CM.求证:四边形ABCD 是矩形.6.如图,AD是等腰三角形的底边BC上的高,0是AC的中点,延长DO到点E,使OE=0D,连接AE,CE.(1)求证:四边形ADCE是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.7.如图,矩形ABCD的对角线,AC,BD相交于点0,E,F,G,H分别是0A,0B,0C,0D的中点.求证:四边形EFGH是矩形.第1题图第4题图第2题图第5题图第6题图第7题图8.如图,四边形ABCD的对角线AC,BD交于点0,已知0是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若0D=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.9.如图,在△ABC中,AB=AC,AD,AE分别是∠BAC和∠BAF的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)判断AB与DE是否相等,并说明理由.10.的四个内角的平分线分别交于点E,F,G,H.求证:四边形EFGH是矩形.第8题图第10题图第9题图参考答案1.D【解析】有一个角是直角的平行四边形是矩形.在A项中,∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形;在B项中,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠B=180°,又∠BAD=90°,∴四边形ABCD 是矩形;在C项中,∵AB2+BC2=AC2,∴∠B=90°,又四边形ABCD是平行四边形,∴四边形ABCD是矩形.故选D.2.C【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD是平行四边形,当AC=BD时,平行四边形ABCD是矩形.故选C.3.D【解析】A项,对角线互相平分的四边形是平行四边形;B项,两组对边分别相等的四边形是平行四边形;C项,无法判断一组对角为直角的四边形的形状.故选D.4.∠A=9O°(或∠D=9O°或AB=CD或AD∥BC)(答案不唯一)【解析】∵AB∥DC,∠C=90°,∴∠B=90°.根据有三个角是直角的四边形是矩形,可知只需添加条件∠A=90°或∠D=90°即可;根据有一个角是直角的平行四边形是矩形,可知只需添加条件AB=CD或AD∥BC即可.5.【答案】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,AB=DC,∵M为AD的中点,∴AM=DM.又BM=CM,∴△ABM≌△DCM,∴∠A=∠D=90°.∴四边形ABC D是矩形.6.【答案】(1)∵0是AC的中点,∴AO=OC,又0E=0D,∴四边形ADCE是平行四边形.∵AD是等腰三角形ABC的底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形.(2)∵AD是等腰三角形ABC的底边BC上的高,BC=16,AB=17,∴BD=CD=8,AC=AB=17,∠ADC=900,由勾股定理,得2217-8=15,∴四边形ADCE的面积是AD·DC=15×8=120.7.【答案】∵四边形ABCD是矩形,∴OA=0B=OC=0D.∵E,F,G,H分别是OA,0B,0C,OD的中点,∴0E=0F=0G=OH,∴四边形EFGH是平行四边形,EG=FH.∴四边形EFGH是矩形.8.【答案】(1)∵0是AC的中点,∴A0=C0,又AE=CF,∴0E=0F.∵DF∥BE,∴∠OEB=∠OFD,又∠EOB=∠FOD,∴△BOE≌△DOF.(2)四边形ABCD是矩形.证明如下:由(1)知△BOE≌△DOF,∴OB=OD,又AO=CO,∴四边形ABCD是平行四边形,∴OD=12BD,又OD=12AC,∴AC=BD,∴四边形ABCD是矩形.9.【答案】(1)∵AD平分∠BAC,AE平分∠BAF,∴∠BAD=12∠BAC,∠BAE=12∠BAF.∴∠DAE=∠BAD+∠BAE=12∠BAC+12∠BAF=12(∠BAC+∠BAF)=90°,∴DA⊥AE.(2)AB=DE.理由如下:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADB=90°.∵BE⊥AE,DA⊥AE,∴∠AEB=∠DAE=90o.∴四边形AEBD是矩形,∴AB=0E.10.【答案】∴四边形ABCD是平行四边形,∵BC∥AD,AB∥CD,∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°,的四个内角的平分线分别交于点E,F,G,H,∴∠BAH+∠ABH=90°,∠GBC+∠GCB=90°,∴∠H=90°,∠BGC=90°,∴∠FGH=90°.同理可证∠FEH=90°.∴四边形EFGH是矩形.。

人教版数学八年级下册 18.2.1节 矩形 同步练习(无答案)

人教版数学八年级下册 18.2.1节 矩形 同步练习(无答案)

第18.2.1节矩形矩形的性质题型一:矩形的定义及性质定义:有一个角是直角的平行四边形是矩形。

性质1:矩形的四个角都是直角;、性质2:矩形的对角线长度相等。

1.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角相等C.对角线互相平分D.对角线相等2.矩形ABCD 对角线AC、BD交于点O,以下结论不一定成立的是()A.∠BCD=90°B. AC=BDC. OA=OBD.OC=CD3.若矩形对角线的长是10cm,一边长是6cm,则其周长是,面积是。

4.如下图,矩形ABCD的对角线交于点O,AC=10,P、Q分别是AO、AD的中点,则PQ的长度是5.如下图,在矩形ABCD中,AB=2,∠AOB=60°,则OB的长为6.如下图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=6,BC=16,则FC长为7.如下图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为第4题图第5题图第6题图第7题图8.如图,矩形ABCD,对角线交于点O,CE∥BD,交AB的延长线于点E,求证:AC=CE。

9.如图,矩形ABCD,延长AB至F,连接CF,且CF=AF,过点A作AE⊥FC于点E。

(1)求证:AD=AE;(2)连接CA,若∠DCA=70°,求∠CAE的度数。

题型二:直角三角形斜边上的中线直角三角形的一个性质:在Rt△中,斜边上的中线等于斜边的一半。

变形1:如下图,已知∠ACB=90°,CD=BD,求证:CD=AD;变形2:如下图,已知AD=CD=BD,求证:∠ACB=90°。

1.若直角三角形两条直角边的长分别为18,24,则斜边上的中线长为2.如下图,在△ABC中,AB=10,BC=8,AD垂直平分BC,垂足为D,点E是AC的中点,连接DE,则△CDE的周长为3.如下图,∠ACB=90°,AB=6,D是AB的中点,则CD=4.如下图,在矩形ABCD中,对角线交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有条。

人教版数学八年级下册18.2.1 第2课时 矩形的判定2课时练习及答案.doc

人教版数学八年级下册18.2.1 第2课时 矩形的判定2课时练习及答案.doc

D ACFOEB18.2 特殊的平行四边形18.2.1 矩形第2课时 矩形的判定1.矩形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是( )①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.下列命题中,正确的是( )A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,则矩形的对角线的长为_____.图1 图25.若四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,则四边形ABCD•是_____形,若∠AOB=60°,那么AB :AC=______.6.如图2所示,已知矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,则AB=______,BC=______.7.如图所示,□ABCD 的四个内角的平分线分别相交于E ,F ,G ,H ,试说明四边形EFGH 是矩形.DACFPEB8.如图所示,△ABC中,CE,CF分别平分∠ACB和它的邻补角∠ACD.AE ⊥CE于E,AF⊥CF于F,直线EF分别交AB,AC于M,N两点,则四边形AECF是矩形吗?为什么?9.(一题多解题)如图所示,△AB C为等腰三角形,AB=AC,CD⊥AB于D,P•为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?10.如图所示,△ABC中,AB=AC,AD是BC边上的高,AE•是∠CAF的平分线且∠CAF是△ABC的一个外角,且DE∥BA,四边形ADCE是矩形吗?为什么?11.如图所示是一个书架,•你能用一根绳子检查一下书架的侧边是否和上下底垂直吗?为什么?12.已知AC为矩形ABCD的对角线,则下图中∠1与∠2一定不相等的是()13.正方形通过剪切可以拼成三角形.方法如图1所示,仿照图1上用图示的方法,解答下面问题:如图2,对直角三角形,设计一种方案,将它分成若干块,•再拼成一个与原三角形等面积的矩形.图1 图214.(展开与折叠题)已知如图所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再过点D折叠,使AD落在折痕BD上,得另一折痕DG,若AB=2,BC=1,求AG的长度.参考答案1.C 2.B 3.D 4.8cm 5.矩;1:2 6.8cm;4cm 7.解:∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.8.解:四边形AECF是矩形.∠ECF=12(∠ACB+∠ACD)=90°.∠AEC=∠AFC=90°,点拨:•本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.9.解法一:能.如图1所示,过P点作PH⊥DC,垂足为H.四边形PHDE是矩形.所以PE=DH,PH∥BD.所以∠HPC=∠B.图1又因为AB=AC,所以∠B=∠ACB.所以∠HPC=∠FCP.又因为PC=CP,∠PHC=∠CFP=90°,所以△PHC≌△CFP.所以PF=HC所以DH+HC=PE+PF,即DC=PE+PF.图2.解法二:能.延长EP,过C点作CH⊥EP,垂足为H,如图2所示,四边形HEDC是矩形.所以EH=•PE+PH=DC,CH∥AB.所以∠HCP=∠B.△PHC≌△PFC,所以PH=PF,所以PE+PF=DC.10.解:是矩形;理由:∠CAE=∠ACB,所以AE∥BC.又DE∥BA,所以四边形ABDE是平行四边形,•所以AE=BD,所以AE=DC.又因为A E∥DC,所以四边形ADCE是平行四边形.又因为∠ADC=90°,所以四边形ADCE是矩形.11.解:能;首先用绳子量一下书架的两组对边,再用绳子量一下书架的对角线,若对角线相等,则书架的侧边和上下底垂直,否则不垂直.12.D13.解:本题有多种拼法,下面提供几种供参考:方法一:如图(1),方法二:如图(2)14.解:如图所示,过点G作GE⊥BD于点E,则AG=EG,AD=ED.在Rt△ABD中,由勾股定理,得5所以5-1,BG=•AB-AG=2-AG,设AG=EG=x,则BG=2-x.在Rt△BEG中,由勾股定理,得BG2=EG2+BE2,即(2-x)2=5)2+x2,解得51-,即51-中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

(完整版)矩形的性质和判定练习题

(完整版)矩形的性质和判定练习题

(完整版)矩形的性质和判定练习题1. 矩形的定义及性质矩形是一种具有特定性质的四边形。

下面是矩形的定义和一些重要性质:- 一对相对的边长度相等,这意味着矩形的对边平行。

- 所有四个角都是直角,即角度为90度,这意味着矩形的内角和为360度。

- 对角线相等且相交于其中点。

2. 矩形的判定方法在实际问题中,我们需要判定一个给定的四边形是否为矩形。

以下是常用的判定方法:方法一:检查边长矩形的特点之一是对边相等。

因此,我们可以通过测量四条边的长度来判定一个四边形是否为矩形。

如果四边的长度相等两两相等,则该四边形是矩形。

方法二:检查角度我们可以通过测量四个角的度数来判定一个四边形是否为矩形。

如果四个角的度数都是90度,则该四边形是矩形。

方法三:检查对角线矩形的对角线相等并且相交于中点,因此我们可以通过测量对角线的长度和判断其交点是否在中点来判定一个四边形是否为矩形。

3. 矩形判定练题题目一:给定一个四边形ABCD,已知边长AB = 5cm,BC = 3cm,CD = 5cm,DA = 3cm。

请判定该四边形是否为矩形。

题目二:给定一个四边形EFGH,已知内角∠E = 40°,∠F = 140°,∠G = 40°,∠H = 140°。

请判定该四边形是否为矩形。

题目三:给定一个四边形IJKL,已知对角线IK = 7cm,JL = 7cm,并且IK和JL交于M点,求M点距离对角线的距离。

答案与解析题目一:该四边形ABCD满足AB = CD = 5cm,BC = DA = 3cm。

因此,该四边形是矩形。

题目二:该四边形EFGH满足∠E = ∠G = 40°,∠F = ∠H = 140°。

因此,该四边形是矩形。

题目三:对角线IK = JL = 7cm,说明该四边形IJKL是矩形。

由矩形的性质,对角线交于中点M。

因此,M点距离对角线的距离为0。

总结通过上述练题,我们巩固了矩形的定义及其判定方法。

人教版2019-2020学年八年级数学下册18.2.1.2 矩形的判定(word无答案)

人教版2019-2020学年八年级数学下册18.2.1.2 矩形的判定(word无答案)

人教版2019-2020学年八年级数学下册18.2.1.2 矩形的判定(word无答案)一、单选题(★) 1 . 如图,下列条件不能判定四边形 ABCD是矩形的是()A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥ADC.AO=BO,CO=DO D.AO=BO=CO=DO(★★) 2 . 四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD二、填空题(★★) 3 . 如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____ ,使四边形ABCD为矩形.(★) 4 . 如图,在四边形中,,点从点出发沿边以每秒1cm的速度向点运动,_______秒后四边形是矩形.三、解答题(★★) 5 . 如图,DB∥AC,且DB= AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?(★★) 6 . 如图,在四边形 ABCD中,对角线 AC, BD相交于点 O, AO= CO, BO= DO,且∠ ABC+∠ ADC=180°.(1)求证:四边形 ABCD是矩形;(2)若∠ ADF:∠ FDC=3:2,DF⊥ AC,求∠ BDF的度数.四、单选题(★★) 7 . 已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC(★★) 8 . 检查一个门框是否为矩形,下列方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.测量门框的三个角,是否都是直角D.测量两条对角线,是否互相垂直(★★) 9 . 如图,在△ ABC中, AB=3, AC=4, BC=5, P为边 BC上一动点,PE⊥ AB于 E,PF⊥ AC于 F, M为 EF中点,则 AM的最小值为( )A.B.C.D.五、填空题(★) 10 . 如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD是矩形.(★★) 11 . 如图,在矩形 ABCD中, BC=20 cm,点 P和点 Q分别从点 B和点 D出发,按逆时针方向沿矩形 ABCD的边运动,点 P和点 Q的速度分别为3 cm/ s和2 cm/ s,则最快 ___ s后,四边形 ABPQ成为矩形.(★★) 12 . 如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当 ______ 时,四边形ABEC是矩形.六、解答题(★★) 13 . 如图,在▱ ABCD中,各内角的平分线相交于点 E, F, G, H.(1)求证:四边形 EFGH是矩形;(2)若 AB=6, BC=4,∠ DAB=60°,求四边形 EFGH的面积.(★★) 14 . 已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FA.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.(★★) 15 . 如图,在中,于点 E点,延长 BC至 F点使,连接 AF,DE, DF.(1)求证:四边形 AEFD是矩形;(2)若,,,求 AE的长.。

人教版数学八年级下册18.2.1 第1课时 矩形的性质2课时练习及答案.doc

人教版数学八年级下册18.2.1 第1课时 矩形的性质2课时练习及答案.doc

ODC B AONM DCBA E DCBAO EDCB A18.2 特殊的平行四边形18.2.1 矩形第1课时 矩形的性质1. 矩形具有而一般平行四边形不具有的性质是( )A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等 2. 在下列图形性质中,矩形不一定具有的是( ) A .对角线互相平分且相等 B .四个角相等 C .是轴对称图形 D .对角线互相垂直3. 在矩形ABCD 中, 对角线交于O 点,AB=6, BC=8, 那么△AOB 的面积为_______________; 周长为_______________.4. 一个矩形周长是16cm, 对角线长是7cm, 那么它的面积为__________________.5. 如图, 矩形ABCD 的对角线交于O 点, 若OA=1, 3, 那么∠BDC 的大小为________________.6. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMDONCS S=. 其中正确的是______________.7. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.8. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.9. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_______. 10. 如图, 在矩形ABCD 中,DE ⊥AC 于点E,BC=23, CD=2, 那么CE=________;BE=_________11. 如图, 在矩形ABCD 中, AP=DC, PH=PC,PH DCBA FED C B AFED CB A(1)求证:△ABH ≌△PAD ; (2)求证: PB 平分∠CBH.12. 如图, 在矩形ABCD 中, △CEF 为等腰直角三角形, (1)求证:AE=AB ;(2)若矩形ABCD 的周长为16cm, DE=2cm,求△CEF 的面积.13. 如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求证:AF=EF ; (2)求EF 长;14. 如图,在矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 重叠,(1)求证:△ABE ≌△C 1DEC(2)求图中阴影部分的面积.★15.如图矩形ABCD中,延长CB到E,使CE AC=,F是AE中点.求证:BF DF⊥.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《矩形》矩形的性质和判定
学习目标:1.复习矩形的性质和判定.
2.能熟练应用矩形的性质、判定等知识进行有关证明和计算.
重点:掌握矩形的性质和判定定理
难点:会运用矩形的性质和判定方法解决相关问题。

一、基础应用
4、在矩形ABCD内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD的长为____________________.
5、在矩形ABCD中, AB=3, BC=4, P为形内一点, 那么PA+PB+PC+PD的最小值为__________________.
二. 能力提升
8.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE =20°,求∠EFC′的度数.
11.在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边与AB、BC分别相交于点M,N时,观察或测量BM 与CN的长度,你能得到什么结论?并证明你的结论。

12.已知矩形A BCD 和点P ,当点P 在BC 上任一位置时,易证得结论:2222PD PB PC PA +=+.请你探究:当点P 分别在图(2),图(3)中的位置时,2PA 、2PB 、2PC 、2
PD 又有怎样的数量关系?请写出对上述两种情况的探究结论,并利用图(2)证明你的结论。

相关文档
最新文档