中考数学10大经典解题方法汇总

合集下载

九年级数学解题方法十技巧

九年级数学解题方法十技巧

九年级数学解题方法十技巧
1. 理解问题:在解决数学问题之前,要先读懂题目,理解问题所要求的内容和解决的方法。

2. 给出有序的步骤:将问题分解为一系列有序的步骤,然后逐步解决。

这样可以避免混淆,更容易找到正确的答案。

3. 画图解决问题:有些问题用图形表示会更直观,可以画图帮助理解和解决问题。

4. 列方程求解:将问题用代数方程表示,然后通过求解方程来解决问题。

5. 利用类比和模型:将问题与已知或熟悉的问题进行类比,然后利用类似的模型或方法来解决新问题。

6. 运用逻辑推理:在问题中运用逻辑思考和推理,根据已知条件和问题要求,得出解决问题的方法或结论。

7. 刻意练习:通过大量练习不同类型的题目,提高解题的技巧和能力。

8. 问题分析与求关键:将问题分解为更小的子问题,然后关注问题中最关键的部分来解决。

9. 反向思考:尝试从问题的解决方法中逆向思考或反向推导,找到解决问题的不同方法。

10. 注重检查和复查:在解题过程中要反复检查和复查答案,确保结果的准确性,特别是在多步骤解题中更为重要。

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

例题:用配方法解方程x2+4x+1=0,经过配方,得到( )A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。

【解】将方程x2+4x+1=0,移向得:x2+4x=-1,配方得:x2+4x+4=-1+4,即(x+2) 2=3;因此选D。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例题:若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3),即x2+mx-3=(x-1)(x+3),∴x2+mx-3=(x-1)(x+3)=x2+2x-3,∴m=2;因此选B。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。

刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。

首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。

摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。

对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。

2、答卷顺序“三先三后”。

在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。

我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。

在做题的时候我们要遵循“三先三后”的原则。

首先是“先易后难”。

这点很容易理解,就是我们要先做简单题,然后再做复杂题。

当全部题目做完之后,如果还有时间,就再回来研究那些难题。

当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。

也就违背了我们的原意。

其次是“先高后低”。

这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。

这样能够拿到更多的总得分。

并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。

最后是“先同后异”。

这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。

3、做题原则“一快一慢”。

这里所谓的“一快一慢”指的是审题要慢,做题要快。

题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。

中考数学里常用的几种经典解题方法

中考数学里常用的几种经典解题方法

中考数学里常用的几种经典解题方法 1、配方法所谓配方,就是把一个【解析】式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和【解析】式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

中考数学常考题型解题方法总结(超详细)

中考数学常考题型解题方法总结(超详细)

中考常考题型解题方法一、科学计数法亿位后面有8位数,万位后面有4位数,先判断亿位和万位,再判断次数。

比如:1、110亿的亿位是“0”,所以“0”后面有8位,8+2=10,所以10110 1.110=⨯亿;2、1234.56亿的亿位是“4”,所以“4”后面有8位,8+3=11,所以111234.56 1.2345610=⨯亿;3、51.2万的万位是“1”,所以“1”后面有4位,4+1=5,所以551.2 5.1210=⨯万;二、无理数判断无理数是指无限不循环小数,有以下几种:1.π2.不能完全开方的数(例如等)3.直接看出无限不循环的数,例如“1.2345678..........”4.Sin45°、Sin60°、cos45°、cos30°、tan60°、tan30°三、中心对称、轴对称注意审题,题目有可能是:1、“以下既是中心对称又是轴对称的图形”2、“以下是中心对称但不是轴对称的图形”3、“以下不是中心对称但是轴对称的图形”4、“以下既不是中心对称也不是轴对称的图形”判断中心对称的方法,看每个点与中心的延长线有无经过对应的点不是中心对称是中心对称四、求多边形边数1.已知多边形内角和,求多边形边数?用内角和公式“(n-2)x180°=内角和”求n,n是指边数;2.已知正多边形(每个内角都相等)的一个内角度数,求多边形边数?先用180°-一个内角度数=一个外角度数,再用外角和360°÷一个外角度数=外角个数(边数);3.已知正多边形(每个内角都相等)的一个外角度数,求多边形边数?用外角和360°÷一个外角度数=外角个数(边数);例如:若一个多边形的每一个外角都等于,那么它是()A.四边形B.五边形C.六边形D.八边形360°÷=6*注意:填空题填“边形”时,要填中文“四、五、六、七等”,问边数时可以填数字“4、5、6等”,比如“边数为”五、二次函数多结论1.判断a、b、c 大小a:看抛物线开口方向,开口向上(a>0),开口向下(a<0);b:看对称轴在y 轴左边还是右边,结合a 一起判断,对称轴在y 轴左边时,a和b 同号,对称轴在y 轴右边时,a 和b 异号(“左同右异”);“左同右异”的原理是对称轴公式“2a b x =-”,当对称轴在左边时2ab x =-是负数,则a 和b 同号,当对称轴在右边时2a b x =-是正数,则a 和b 异号;c:看抛物线与y 轴的交点,因为抛物线2y ax bx c =++与y 轴相交时,交点坐标为(0,c),所以交于y 轴正半轴时c 为正,交于y 轴负半轴时c 为负;2.已知抛物线与x 轴的一个交点(1,0x )和对称轴,求另一个交点(2,0x )?用中点公式“122x x +=对称轴”求另一个交点坐标;例:已知抛物线与x 轴的一个交点(-1,0)和对称轴x=1,求抛物线与x 轴的另一个交点,21=12x -+ ,解得2x =3,则与x 轴的另一个交点为(3,0)*注:只要12x x 、是两个关于对称轴对称的点,就可以用中点公式,比如:A(3,4)和B(7,4)在抛物线上,求对称轴,因为纵坐标相等,所以A 和B 一定关于对称轴对称,对称轴37==52+3.判断“a+b+c>0”、“4a-2b+c>0”是否正确?①该题型先观察解析式2y ax bx c =++与“a+b+c”、“4a-2b+c”的联系,可以看出当x=1时,ya b c =++,当x=-2时,y 42a b c =-+;②再看图像x=1、x=-2时所对应的y 的大小(从图像判断x 所对应的y 是关键)由上图可看出当x=1时,y<0,所以y=a+b+c<0当x=-2时,y>0,所以y=4a-2b+c>04.判断“0a c -+>”、“-4b+c>0”是否正确。

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

史上最全的初中数学解题方法大全

史上最全的初中数学解题方法大全

一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。

2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

中考数学答题技巧通用13篇

中考数学答题技巧通用13篇

中考数学答题技巧通用13篇数学中考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”,踩上知识点就得分,踩得多就多得分。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。

这一点。

对于解答题尤为重要。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。

特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在其中一过渡环节上是常见的。

这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实步之后,继续有……”一直做到底。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。

若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。

如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。

总之,退到一个你能够解决的问题。

为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。

这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。

实质性的步骤未找到之前,找辅助性的步骤是明智之举。

如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。

数学最经典的九大解题方法

数学最经典的九大解题方法

数学最经典的九大解题方法数学最经典的九大解题方法初中数学不难学,但是要掌握一定的方法,下面9个方法贯穿了整个初中乃至高中数学,同学们务必要掌握哦!1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的'判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

中考数学试题解题技巧归纳

中考数学试题解题技巧归纳

中考数学试题解题技巧归纳很多初中生在学习数学时感到非常的困难,而且数学成绩也一直不好,其实数学的解题是有技巧的。

下面是小编为大家整理的关于中考数学试题解题技巧,希望对您有所帮助!中考数学解答难题技巧方法方法一:一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

方法二:确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。

所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法三:调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法四:“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

初中数学解题思想及十大解题方法

初中数学解题思想及十大解题方法

建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题⽬加以划分,以便在考试中游刃有余。

解题⽅法01配⽅法通过把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式解决数学问题的⽅法,叫配⽅法。

配⽅法⽤得最多的是配成完全平⽅式,它是数学中⼀种重要的恒等变形的⽅法,它的应⽤⼗分⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。

02因式分解法因式分解,就是把⼀个多项式化成⼏个整式乘积的形式,是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法,在代数、⼏何、三⾓等的解题中起着重要的作⽤。

因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有利⽤拆项添项、求根分解、换元、待定系数等等。

03 换元法通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。

04判别式法与韦达定理⼀元⼆次⽅程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄⼏何、三⾓运算中都有⾮常⼴泛的应⽤。

韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等。

05待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。

06构造法在解题时,我们常常会采⽤这样的⽅法,通过对条件和结论的分析,构造辅助元素,它可以是⼀个图形、⼀个⽅程(组)、⼀个等式、⼀个函数、⼀个等价命题等,架起⼀座连接条件和结论的桥梁,从⽽使问题得以解决,这种解题的数学⽅法,我们称为构造法。

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。

解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。

1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。

解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。

解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。

要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。

2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。

化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。

3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。

4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。

①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。

二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。

解答时必须计算准备,才不至于影响下一步的解答。

中考数学八大常见解题方法

中考数学八大常见解题方法

中考数学八大常见解题方法常见解题方法一:因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

常见解题方法二:换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

常见解题三:方法判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

常见解题方法四:待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

常见解题方法五:构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

中考数学备考技巧

中考数学备考技巧

中考数学备考技巧中考数学备考技巧(10篇)中考数学备考技巧1【一、概念理解】老师们发现,新初一出现的最严重的问题之一,是概念理解。

很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。

比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。

比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。

比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。

那么概念理解出问题该如何加强呢?首先,要帮助孩子建立起重视概念理解的意识。

因为很多问题的产生,都是理解不到位引起的。

其次,注意孩子理解的情况,是与哪一种他以前学习的概念或者相似概念混淆的,比如把乘法和乘方弄混,要仔细讲解这二者从形式上到计算结构上的差别。

帮助孩子建立,看到什么形式要用什么样处理方法的“条件反射”。

比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。

比如,初中引入了负数,也有绝对值和相反数的概念,但是有的孩子分不清绝对值和相反数的概念,如果不能理解题目的要求,就会写错结果。

比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。

再者,因为这个时候孩子还不能很好地自己做总结,所以我们要帮着孩子总结课本上的重要概念,及概念运用的经典案例,发现错误及时纠正,引导孩子及时复习,直到最终在脑海中建立正确的概念。

因为刚上初中,新的概念还不多,所以一开始家长能盯得紧一点,孩子进入正轨之后,就能够比较好了。

【二、习惯】老师们发现,新初一出现的最严重的问题之一,是概念理解。

很多新初一的孩子喜欢用以前的概念理解数学问题,对新概念有一些排斥,对绕一点弯的概念理解起来有一定困难。

中考数学十大解题方法大盘点

中考数学十大解题方法大盘点

中考数学十大解题方法大盘点1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

这是中考数学的复习方法之一。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是常用的中考数学的复习方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

中考数学试题解题技巧

中考数学试题解题技巧

中考数学试题解题技能很多初中生在学习数学时感到非常的困难,而且数学成绩也一直不好,其实数学的解题是有技能的。

下面是作者为大家整理的关于中考数学试题解题技能,期望对您有所帮助!中考数学解答困难技能方法方法一:一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应当说,审题要慢,解答要快。

审题是全部解题进程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的根据。

而思路一旦形成,则可尽量快速完成。

方法二:确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不答应做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。

所以,在以快为上的条件下,要稳扎稳打,层层有据,步步准确,不能为寻求速度而丢掉准确度,乃至丢掉重要的得分步骤,假设速度与准确不可兼得的说,就只好舍快求对了,由于解答不对,再快也无意义。

方法三:调理大脑思绪,提早进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提早进入“角色”,通过盘点用具、暗示重要知识和方法、提示常见解题误区和自己易显现的毛病等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳固情绪、增强信心,使思维单一化、数学化、以安稳自信、积极主动的心态准备应考。

方法四:“内紧外松”,集中注意,排除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维非常积极,这叫内紧,但紧张程度太重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要苏醒愉快,放得开,这叫外松。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:初三的学生们现已进入了中考第一轮复习,怎样复习数学中等偏上的考生才能有提高呢?数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。

经常出现一些经典而实用的解题方法和思路,这里总结10大解题方法的汇总。

天津中考网:初三的学生们现已进入了中考第一轮复习,怎样复习数学中等偏上的考生才能有提高呢?数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。

经常出现一些经典而实用的解题方法和思路,这里总结10大解题方法的汇总。

1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组,解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的重要方法之一。

6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种与穷举反证法(结论的反面不只一种。

用反证法证明一个命题的步骤,大体上分为:(1反设;(2归谬;(3结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/
不等于;大(小于/不大(小于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n 一1个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、等(面或体积法:平面(立体几何中讲的面积(体积公式以及由面积(体积公式推出的与面积(体积计算有关的性质定理,不仅可用于计算面积(体积,而且用它来证明(计算几何题有时会收到事半功倍的效果。

运用面积(体积关系来证明或计算几何题的方法,称为等(面或体积法,它是几何中的一种常用方法。

用归纳法或分析法证明几何题,其困难在添置辅助线。

等(面或体积法的特点是把已知和未知各量用面积(体积公式联系起来,通过运算达到求证的结果。

所以用等(面或体积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1平移;(2旋转;(3对称。

10.客观性题的解题方法:选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。

选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

相关文档
最新文档