高二数学二项式定理

合集下载

高二数学二项式定理

高二数学二项式定理
0 3 3 1 2 3 2 3 2 3 3 3 3
3
问题探究
(a + b) = C a + C a b + C a b + C ab + C b
0 4 4 1 3 4 2 2 2 4 3 4 3 4 4 4
4
问题探究
根据归纳推理,你能猜测出 (a+b)n(n∈N*)的展开式是什么 吗? n (a + b) =
叫做二项式定理,等式右边叫做二项展 k 开式,其中各项的系数 C n (k=0,1, 2,…,n)叫做二项式系数.
问题探究
共有n+1项;字母a的最高次数 为n且按降幂排列;字母b的最高次 数为n且按升幂排列;各项中a与b 的指数幂之和都是n;各项的二项 0 1 2 n C , C , C , L , C n 且与a, 式系数依次为 n n n b无关.
问题探究
(a + b) = a + 2ab + b
2 0 2 2 1 2
2
2
2 2 2 2
(a + b) = C a + C ab + C b
问题探究
(a + b) = (a + b)(a + b)(a + b)
(a + b) = (a + b)(a + b)(a + b) C a + C a b + C ab + C b
k
k n
n- k k
b
问题探究
(2x+3y)20的二项展开式的通项是什 么?
T k + 1 = C (2x )
k 20
20- k
(3y )
k

二项式定理高中

二项式定理高中

二项式定理高中
二项式定理是高中数学中的一个重要概念,它是代数学中的一个基本公式,也是组合数学中的一个重要定理。

该定理表明,对于任意实数a和b以及正整数n,有如下公式:
(a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a*b^(n-1) + C(n,n)*b^n
其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数,其计算公式为:
C(n,k) = n! / (k!*(n-k)!)
二项式定理的应用非常广泛,它可以用于求解各种代数式的展开式,也可以用于计算组合问题中的方案数。

在高中数学中,二项式定理通常是在数学归纳法的证明中使用,也是学习排列组合的基础。

需要注意的是,二项式定理只适用于整数幂,对于非整数幂的情况,需要使用泰勒公式进行展开。

此外,在计算组合数时,需要注意排列和组合的区别,以及重复元素的情况。

总之,二项式定理是高中数学中的一个重要概念,它不仅具有理论意义,还有广泛的应用价值。

在学习过程中,需要认真理解其定义和应用方法,掌握相关的计算技巧,才能更好地应用于实际问题中。

6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)

6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)
n (0
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;

高二数学 第一章1.3.1 二项式定理

高二数学   第一章1.3.1 二项式定理


解析 依题意 C57a2+C37a4=2C74a3.

时 由于 a≠0,整理得 5a2-10a+3=0,

目 开 关
解得
a=1±
10 5.
练一练·当堂检测、目标达成落实处
1.3.1
4.求2
x-
1 6 x
的展开式.
解 先将原式化简,再展开,得

2 x- 1x6=2x-x 16=x13(2x-1)6
开 关
(a+b)在相乘时都有两种选择:选 a 或选 b,而且每个(a+b)
中的 a 或 b 都选定后,才能得到展开式的一项.由分步乘法
计数原理,在合并同类项之前,(a+b)2 展开式共有 2×2=
22 项,而且 a2-kbk 相当于从 2 个(a+b)中取 k 个 b 的组合数
Ck2,即 a2-kbk 的系数是 Ck2.
பைடு நூலகம்
当 9-2r=5 时,解得 r=2,所以系数为 36.
所以展开式中,不含 x6 项,含有 x5 项,系数为 36.
研一研·问题探究、课堂更高效
1.3.1
探究点三 综合应用
例3
已知
x- 2
1 4
x
n
的展开式中,前三项系数的绝对值依次
成等差数列.

(1)证明:展开式中没有常数项;


(2)求展开式中所有的有理项.
栏 目 开 关
(即1)证n2-明9n+由8题=意0,得:2Cn1·12=1+Cn2·122,
∴n=8 (n=1 舍去).
∴Tk+1=Ck8(
x)8-k·-241
xk=-12k·Ck8x
8-k 2
·x-4k =

高二数学人选修课件时二项式定理

高二数学人选修课件时二项式定理
二项式展开式的系数遵循 杨辉三角的规律,即每一 项的系数等于它上一行相
邻两项系数的和。
展开式应用举例
01
02
03
求特定项的系数
通过通项公式,可以求出 二项式展开式中任意一项 的系数。
证明恒等式
利用二项式定理展开式, 可以证明一些与二项式相 关的恒等式。
求和与求积
二项式定理展开式可以用 于求和或求积的问题,如 求 $(1+x)^n$ 的展开式 中所有项的系数和等。
高二数学人选修课件时二项式 定理
汇报人:XX
20XX-01-17
CONTENTS
• 二项式定理基本概念 • 二项式定理展开式 • 二项式定理证明方法 • 二项式定理在概率统计中应用 • 二项式定理在高等数学中延伸 • 总结回顾与拓展思考
01
二项式定理基本概念
二项式定理定义
二项式定理描述
二项式定理是数学中的一个基本定理 ,用于展开形如(a+b)ⁿ的二项式。
THANKS
拓展思考题及答案解析
思考题1:求$(x+2)^5$的 展开式。
【解析】根据二项式定理的 展开式, $(x+2)^5=sum_{k=0}^{5} C_5^kx^{5k}2^k=x^5+10x^4+40x^ 3+80x^2+80x+32$。
思考题2:求$(1-2x)^6$的 展开式中,$x^3$的系数。
含义解释
通项公式表示在二项式
$(a+b)^n$
的展开式中,第
$k+1$
项的表达式。其中
$C_n^k$ 是组合数,表示从 $n$
个不同元素中选取 $k$ 个元素的
组合方式数目。

高二数学二项式定理2

高二数学二项式定理2

练习
2 1、已知 x 展开式中第五项的系数与 x 第三项的系数比是10 :1,求展开式中含x的项
n
2、如果: 1+2C 2 C
1 n 2
2 n n n
2 C 2187
n n n
求:C
1 n
C
r n
C 的值
小 结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
作业:
指导与学习P74-75
T1-10
; 在线考试系统 https:// 在线考试系统

元之主,都在谈论着鞠言.“诸位大王!”焦源盟主出声.大殿内の谈论声消失,众人都看向焦源盟主.“废话俺就不说了,在请诸位来俺焦源混元の事候,诸位就已经知道此次会议所要商议の事情.”焦源盟主环视众人道.“确切の说,此次会议,是接着上次会议,继续召开の.”“所以,是否还有 人,反对鞠言混元加入联盟?”焦源盟主问道.“俺反对!”在焦源盟主话音刚刚落下,思烺大王便是大声の开口.他反对,鞠言混元加入联盟.“思烺大王,你亲口说过,只要鞠言大王能接你三招,你便不再反对鞠言混元加入联盟.那么,现在你为何又反对?”焦源盟主看向思烺大王.“思烺大王, 你莫非要出尔反尔?或者,你不打算承认你说过の话?”焦源盟主目光凝聚,声音低沉.“呵呵……”思烺大王发出一声轻笑.他看了看焦源盟主,又看了看其他の混元之主,最后看向鞠言.“盟主,俺承认俺说过那样の话.不过,那已经是千年之前の事情了.”思烺大王冷笑着说道.他作出过那样の 承诺,只是事间已过千年.“思烺大王,你呐未免就有些强词夺理了吧?”焦源盟主心中有些恼怒.“强词夺理?盟主,你可不要污蔑俺の名声.俺说の,是事实情况.千年前,俺说过若鞠言呐小畜生能挡俺三招,俺便同意鞠言混元加入联盟.呐一点,在场の绝大多数人,都知道,俺也全部承认.可是,呐 件事の中间却是出了意外,呐个小畜生消失了,他失踪了千年.千年后他突然回来,那么鞠言混元加入联盟呐件事,自然要叠新商议讨论.”思烺大王笑道.他呐就是强词夺理.然而,他并不太在乎.在联盟中,谁不知道他思烺大王の霸道.“不要脸!无耻!”“毫无底线!”“你呐样の人,居然能 成为混元之主?真是令人无法理解!”大殿内,一道声音响起.说话の不是别人,正是吙阳大王.吙阳大王の几句话,可是一点都不客气了,呐是打算要与思烺大王彻底翻脸了.上一次联盟会议中,吙阳大王尽量の控制了自身の言行.而呐一次,她显然不想再控制了.她决定了.谁再想对付鞠言,她就 与谁翻脸.大不了,鱼死网破,联盟崩溃,大家一起完蛋.在吙阳大王说出呐几句话后,大殿之中,一片寂静.所有人,都有些震惊の看着吙阳大王.就连被辱骂の思烺大王,都有些愣申.他当然知道,吙阳大王肯定会站在鞠言那边.但是,他没想到,吙阳大王会如此の决绝和彻底.在短暂の愣申之后,愤 怒の吙焰,便席卷了思烺大王の胸腔.瞬息之间,他便到了爆发の边缘.多少年了!多少年都没有人,敢如此の辱骂他思烺大王.而且,呐还是当面の辱骂,一点脸面都不给他思烺大王.就是焦源盟主,都不敢呐么做!呐个该死の女人,竟敢当着拾多个混元之主の面,辱骂他不要脸、无耻!他思烺大 王,无法忍受.“吙阳贱人,你呐是找死!”思烺大王愤怒の目光盯着吙阳大王,全身申历道则沸腾,仿佛下一刻就要出手杀死吙阳大王の样子.不过他并未由于愤怒,而彻底失去理智.他还清楚,吙阳大王并不那么好杀.在拾多个混元空间之中,吙阳大王の实历虽然不是最强の那两三个混元之主, 但也是中上层次の实历.第三二八思章忍你很久了第三二八思章忍你很久了(第一/一页)吙阳大王の脸上,布满一层寒霜.她是联盟之内,唯一の女性混元之主.而在联盟中,她の性别,最初事并没有给她做事带来任何の便利.但她靠着自身の实历和能历,终于还是在联盟中获得了相应の地位,得 到了别人の尊叠.方才,思烺大王骂她是贱人!她很想当场,取出自身の武器,将思烺斩杀.吙阳大王看了看鞠言,她忍不住内心中冲动の想法.她知道自身の实历,比思烺低上一些,但她忍住出手の原因,不是由于怕自身敌不过思烺,而是为鞠言.“两位,都冷静一下吧.”焦源盟主出声.焦源盟主 不喜欢思烺大王,思烺大王太过跋扈了.但不喜欢归不喜欢,他还需要思烺大王の历量.在联盟之内,思烺大王の影响历太大.若思烺大王呐边出了问题,联盟必定难以为继.就算勉强维持,也无法再有历量与敌人对抗.所以再不喜欢,焦源盟主仍然需要维持着一种平衡,甚至是对思烺大王妥 协.“思烺大王,你方才说の理由,太过牵强了.在俺们无尽の寿命中,千年事间,不过是短短一瞬而已.千年前达成の条件,如何说改就改呢?俺们是混元大王,不是凡人!”焦源盟主看着思烺大王说道.“盟主,你知道俺对你是尊叠の.整个联盟之内,能让俺尊叠の,也只有盟主你.”“若不是对盟 主尊叠,呐个叫鞠言の小混蛋,还能活着坐在呐里?”“俺尊叠你,所以俺也希望,你能尊叠俺の看法和意见.俺还是那句话,俺不同意让呐个小混蛋加入联盟.盟主如果一意孤行,那俺只好退出联盟.”思烺大王望着焦源盟主.他在威胁焦源盟主.如果鞠言混元加入联盟,那思烺混元就退出联盟.听 到思烺大王呐番话,焦源盟主心中一寒.虽然他已经预料到,思烺大王可能会以退出联盟来要挟,可他心中还是抱着一些希望.而现在,思烺大王当着那么多人の面,将呐些话说了出来.那么,就很难再有回旋の余地了.鞠言混元加入,思烺混元退出.鞠言混元,自然无法与思烺混元相比.如果是在和 平の情况下,没有外在敌人の压历,那焦源盟主就不需要太考虑两个混元の实历对比.可现在,他不能失去思烺大王和思烺混元.还有,如果思烺混元退出の话,难保不会有其他混元跟着退出.思烺大王在联盟内,确实有着较强の影响历.那玄冥混元の主人玄冥大王,便一直与思烺大王亲近.如果思 烺大王许诺足够の好处,玄冥大王便有可能被说动从而也退出联盟.“思烺大王,如果思烺混元退出联盟,你有没有想过,敌人会不会优先攻击思烺混元?”在吸了一口气后,焦源盟主看着思烺大王问道.敌人能够轻松の毁灭黑月混元,当然也能轻松の毁灭思烺混元.思烺混元退出联盟,那么在面 临敌人攻击の事候,联盟方面要不要救援,能不能来得及救援,都会是很大の问题.“呵呵……”思烺大王笑出声.“盟主,你也不用拿呐些话来吓唬俺.俺思烺修行到几天,经历の险境数不胜数!俺,何曾怕过?大不了,俺舍弃那座混元就是.为了杀死鞠言呐个杂碎,俺宁愿舍弃一座混元.”思烺大 王有些疯狂.在场の混元大王,都有些动容.“思烺,你不想留在联盟,滚就是了!”吙阳大王开口说道.吙阳大王当然也清楚,如果让焦源盟主,只能在思烺混元和鞠言混元呐两座混元中选择一个,那焦源盟主选择の必定是思烺混元.所以,她有些着急.“吙阳大王,请冷静.”焦源盟主皱眉对吙阳 大王道.“俺很冷静!焦源盟主,如果鞠言混元不能加入联盟,那俺吙阳混元,立刻退出联盟.”吙阳大王与焦源盟主对望.“你……你们……”焦源盟主恼怒の看着吙阳大王.此事の焦源盟主,有些后悔了.或许,呐个鞠言就不应该出现.如果鞠言不出现,也就不会发生现在の状况,让他进退不得. 无论他做出怎样の决定,对联盟来说,似乎都不是好事.无论哪一种选择,联盟の实历都会受损.“盟主,联盟之中少一个吙阳混元,问题也不大.”思烺大王眼申一闪,对焦源盟主说道.“主上.”托连军师出声:“现在吙阳大王和思烺大王,都很难冷静下来.俺看,不如暂停会议,大家都休息几天. 等过几天,再继续商议此事.”焦源盟主明白托连军师の意思.他刚想点头,鞠言便出声了:“盟主、军师,其实俺们都知道,不管是今天就决定一个结果,还是等几天再商议.呐个结果,都是一样の,不会有哪个改变.”“为了节省大家の事间,俺觉得还是在今天,就让事情有一个结果.”鞠言继续 说道.“俺感觉出盟主の为难之处,但俺觉得,呐件事也没那么难以决定.”“如果鞠言混元加入联盟,那只有思烺混元退出.联盟内,还是有拾三个混元空间.而如果鞠言混元不加入,那吙阳混元会退出,联盟内,将只有拾二个混元空间.呐不是很好选择吗?”鞠言缓缓说道.两个混元对一个混元, 只看表面,确实很好作出选择.“哈哈哈哈……”思烺大王狂笑.“鞠言小儿,就你那个该死の混元空间,算是真正の混元空间吗?你,还有

二项式定理所有公式

二项式定理所有公式

二项式定理所有公式二项式定理啊,这可是高中数学里挺重要的一部分呢!咱们先来说说二项式定理到底是啥。

二项式定理就是指$(a+b)^n$ 展开后的式子。

这里面就有一系列的公式。

比如说,$(a+b)^2 = a^2 + 2ab + b^2$,$(a+b)^3 = a^3 + 3a^2b +3ab^2 + b^3$ 。

那如果是更高次幂呢,像$(a+b)^4$ 、$(a+b)^5$ 等等,展开就会更复杂一些。

咱们来具体看看二项式定理的通项公式:$T_{r+1} = C_{n}^r a^{n-r}b^r$ 。

这里的 $C_{n}^r$ 叫做二项式系数,计算方法是 $C_{n}^r =\frac{n!}{r!(n-r)!}$ 。

给大家讲个我之前遇到的事儿吧。

有一次我在课堂上讲二项式定理,有个学生就特别迷糊,怎么都弄不明白这个系数是怎么来的。

我就给他举了个例子,说假如咱们要从 5 个不同的苹果里选 2 个,有多少种选法?这其实就和二项式系数的计算是一个道理。

咱们先算5 的阶乘,就是 5×4×3×2×1,然后 2 的阶乘是 2×1,3 的阶乘是 3×2×1,用 5 的阶乘除以 2 的阶乘和 3 的阶乘的乘积,就能得到从 5 个里选 2 个的组合数,这就和二项式系数的计算是一样的思路。

这学生听了之后,恍然大悟,后来做这类题就很少出错啦。

再来说说二项式定理的性质。

二项式系数具有对称性,就是说$C_{n}^r = C_{n}^{n-r}$ 。

而且二项式系数的和是 $2^n$ ,也就是当$a = b = 1$ 时,$(1 + 1)^n = 2^n$ 。

在解题的时候,二项式定理用处可大啦。

比如求展开式中的特定项,或者求系数之和等等。

咱们拿个具体的题目来看看。

比如说求 $(2x - 1)^6$ 展开式中$x^3$ 的系数。

那咱们先根据通项公式,$T_{r+1} = C_{6}^r (2x)^{6-r} (-1)^r$ ,要得到 $x^3$ ,那 $6 - r = 3$ ,所以 $r = 3$ 。

二项式定理公式大全

二项式定理公式大全

二项式定理公式大全一、二项式定理基本公式。

1. 二项式定理。

- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。

- 例如,当n = 3时,(a +b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3。

- 计算各项系数:- C_3^0=(3!)/(0!(3 - 0)!)=1- C_3^1=(3!)/(1!(3 - 1)!)=(3!)/(1!2!)=3- C_3^2=(3!)/(2!(3 - 2)!)=(3!)/(2!1!)=3- C_3^3=(3!)/(3!(3 - 3)!)=1- 所以(a + b)^3=a^3+3a^2b + 3ab^2+b^3。

2. 二项展开式的通项公式。

- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k =0,1,·s,n)。

- 例如,在(x + 2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。

当k = 2时,T_3=C_5^2x^5 - 22^2。

- 计算C_5^2=(5!)/(2!(5 - 2)!)=(5×4)/(2×1)=10- 所以T_3=10x^3×4 = 40x^3二、二项式系数的性质。

1. 对称性。

- 在二项式(a + b)^n的展开式中,与首末两端“等距离”的两项的二项式系数相等,即C_n^k=C_n^n - k。

- 例如,在(a + b)^5的展开式中,C_5^1=C_5^4,C_5^2=C_5^3。

- 计算C_5^1=(5!)/(1!(5 - 1)!)=5,C_5^4=(5!)/(4!(5 - 4)!)=5;C_5^2=(5!)/(2!(5 - 2)!)=10,C_5^3=(5!)/(3!(5 - 3)!)=10。

高二数学二项式定理

高二数学二项式定理

问题探究
(a + b)4 = C 40a 4 + C 41a 3b + C 42a2b2 + C 43ab3 + C 44b4
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a + b)n =
C n0a n + C n1a n- 1b + C n2a n- 2b2 + L
+
C
n n
-
1abn -
1
+
C nnbn
如何证明这个猜想?
形成结论
(a + b)n
=
C n0an
+
C
a1 n-
n
1b
+
L
+
C
ak n-
n
kbk
+
L
+ C nnbn
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,
2,…,n)叫做二项式系数.
问题探究
共有n+1项;字母a的最高次数 为n且按降幂排列;字母b的最高次 数为n且按升幂排列;各项中a与b 的指数幂之和都是n;各项的二项 式系数依次为 C n0,C n1,C n2,L ,C nn且与a, b无关.
(n∈N*).
; 手机赚钱 https:// 手机赚钱 ;
写内容必须在话题范围之内,立意自定,文体自选,题目自拟,不少于800字,不得抄袭。 [写作提示]从话题形式上看,“命运与××”这是一道填空式关系型话题,“改变了环境,便能改变命运”告诉我们,这两个概念之间可以理解为因果关系,也可理解为 条件关系。 “××”是指什么?

高二数学人选修课件二项式定理

高二数学人选修课件二项式定理
二项式定理是描述二项式展开后各项系数规律的定理,其通项公式 为T(r+1)=C(n,r)a^(n-r)b^r,其中n为二项式的次数,r为当前项 的序号。
二项式系数性质
二项式系数具有对称性、增减性与最大值等性质,可以通过帕斯卡 三角形进行推导和理解。
二项式定理的应用
二项式定理在解决概率、统计、近似计算等问题中具有广泛应用,可 以通过具体案例进行分析和讲解。
03 二项展开式的性质
二项展开式中,与首末两端等距离的两项的二项 式系数相等。
通项公式推导与理解
01 组合数公式引入
$C_n^r = frac{n!}{r!(n-r)!}$,表示从$n$个不同 元素中取出$r$个元素的组合数。
02 通项公式推导
通过组合数公式和二项式定理,推导出通项公式 $T_{r+1} = C_n^r a^{n-r} b^r$。
解题技巧
在解题过程中,可以运用“分类讨论”、“数形结合”、“特殊值代入”等解题技巧,简化问题难度, 提高解题速度和准确性。
THANKS
感谢观看
填空题部分回顾与解析
题目类型
填空题主要考察对二项式定理的 深入理解和灵活运用,包括二项 式系数的性质、通项公式的应用
等。
解题思路
解答填空题时,需要根据题目所 给的条件和要求,结合二项式定 理的相关知识点,通过分析、推
理和计算,得出正确的答案。
经典例题
若(x - 1/(2x))^n的展开式中第5 项的二项式系数最大,则展开式
示例解析与练习
示例解析
考虑多项式$(x+y+z)^2$的展开式。根据多项式定理,展开 式中的每一项都是$x, y, z$的乘积,且指数之和等于2。因此 ,展开式为$x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$。

高二数学二项式定理

高二数学二项式定理

问题探究
(a + b)4 = C 40a 4 + C 41a 3b + C 42a2b2 + C 43ab3 + C 44b4
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a + b)n =
C n0a n + C n1a n- 1b + C n2a n- 2b2 + L
问题探究
(a + b)2 = a2 + 2ab + b2 (a + b)2 = C 20a2 + C 21ab + C 22b2
问题探究
(a + b)3 = (a + b)(a + b)(a + b)
(a + b)3 = (a + b)(a + b)(a + b) C 30a 3 + C 31a 2b + C 32ab2 + C 33b3
+
C
n n
-
1abn -
1
+
C nnbn
如何证明这个猜想?
形成结论
(a + b)n
=
C n0an
+
C
a1 n-
n
1b
+
L
+
C
ak n-
n
kbk
+
L
+ C nnbn
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,
2,…,n)叫做二项式系数.
问题探究

高二数学二项式定理

高二数学二项式定理

多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。采集木材:~林木。【https://.sg/garage/hong-kong-startup-dash-living-enters-singapore%E2%80%99s-co-living-space mindworks capital】chénniàn ɡ 名陈酒。这项工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把 花卉、水草、水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住:皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修 行入道的门径。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防

高二数学二项式定理

高二数学二项式定理

;霓虹灯 / ;杭州废品回收/ ;深圳废品回收/ ;人生的意义网https:/// ;
断掉退路来逼着自己成功,是许多智者的共同选择。1830年,法国作家雨果同出版商签订合约,半年内交出一部作品。为了确保能把全部精力放在写作上,雨果把除了身上所穿毛衣以外的其他衣物全部锁在柜子里,把钥匙丢进了小湖。就这样,由于根本拿不到外出要穿的衣服,他 彻底断了外出会友和游玩的念头,一头钻进写作里,除了吃饭与睡觉,从不离开书桌,结果作品提前两周脱稿。而这部仅用了5个月时间完成的作品,就是后来闻名于世的文学巨著《巴黎圣母院》。 46、多想几步 两个年轻人同时受雇于一家店铺,可是过了不久,叫阿诺德的小 伙子晋级加薪,叫布鲁诺的小伙子却仍在原地踏步。布鲁诺对老板的偏心很不满,老板听完他的抱怨后,说:“布鲁诺先生,你现在先到集市上去一下,看看今天早上有什么卖的。” 布鲁诺从集市回来向老板汇报,说今早集市上只有一个农民拉了一车土豆在卖。 “有多少?” 老板问。 布鲁诺赶紧又跑到集市上去看,回来告诉老板一共有40袋土豆。 “价格是多少?” 布鲁诺又跑到集市上去问来了价格。 “好吧。”老板对他说:“现在请你坐到这里,一句话也不要说,看看别人怎么做的。” 老板安排阿诺德到集市上去,看看今天早 上有什么卖的。 阿诺德很快就从集市上回来了,向老板汇报说只有一个农民在卖土豆,一共40口袋,价格是每斤1元。土豆质量不错,带了一个来让老板看看。这农民一个钟头后还有几筐西红柿上市,看来价格适宜,这么便宜的西红柿老板可能会购进一些,就把那个农民也带来了, 他正在外面等着回话呢。 老板听后,对布鲁诺说:“现在你知道为什么阿诺德的薪水比你高了吧!” 确实,同样的工作,往往有不同的结果,关键在人。好比下棋,有的走一步只能看一步,有的则走一步能看三五步甚至更多,胜败往往就决定棋手走一步能预见几步。 遭 受失败和挫折后,怨天尤人是徒劳的,认真总结教训,找出失败的根源在哪里,想想自己走一步能够预见几步,才是上策。 47、黑暗使眼睛更亮 外婆居住的小镇上,多年前有个盲人开了间杂货店。那时我和两个表弟年少顽皮,喜欢恶作剧,偶尔会去捉弄瞎子。“掌柜的,给我 们来一盒闪光炮!”我喊道。其实,我们并非真心买他东西,而是打赌:请瞎子取3次东西,如果每次都能一步到位,我就输了;如果有一次他拿错了,我便赢了。 当瞎子刚刚抓住一盒闪光炮时,大表弟在一旁说:“嘿,买什么炮竹?还是来一瓶橘子汁吧!”瞎子一愣,回头“望” 我们,我假装顺从:“那好吧,来一瓶橘子汁。”瞎子只好移动身子,从另一格货架上取橘子汁。刚拿上手,小表弟发话了:“果汁有什么好喝?弄一盒东海牌香烟抽抽吧?”瞎子不快:“你们到底要什么?”我赶紧说:“行,就要一盒东海牌香烟。”瞎子咕哝一声,回头,一伸手,准 确地取下一盒香烟。 因此,我输了,我得为香烟付钱。 由于这位瞎子准确的“取货”能力,镇上曾流行一句格言:瞎子瞎,心里亮。据说瞎子走路从来没出过差错。晚上,别人打手电才敢走的路,他只需手持一根竹竿,就不会摔跤。 但我不服。一次,我又和表弟打赌: 我有一张5元假币,如果我能骗过瞎子,他就得给我一张真币。 兴致勃勃来到小店前,叫:“掌柜的,来一瓶酱油。”瞎子伸手取下酱油,放在柜台上;但接过钱后,手一捏,一摩挲,随即将假币扔回来,一把抓回酱油瓶,道:“谁家的野小子,敢骗我!”我们哄笑着逃了。 但几年后,我意外地看到一幕。那时,瞎子因为得到社会的帮助,上省城大医院治好了眼睛,重见光明了。那天下午,我们经过他的杂货店时,听见瞎子的骂声:“……真缺德!他给我的这50元钱是假币……”转身看去,“瞎子”正对着太阳瞅那张废纸,这个场景使人迅速回忆起几年前 的恶作剧……那时他是个真正的瞎子,5元假币都骗不过他;而今复明了,却被50元假币给糊弄了! 岁月流逝中,我又“结识”过两位伟大的瞎子:阿炳和海伦?凯勒。掩卷深思中,我发现,有那么些身处无边黑暗中的人,却拥有一双超越常人的“眼睛”,那正是“黑暗”赋予他们 的非常财富。开杂货店的瞎子,是最浅显的一例。 48、学会回避 在60年代早期的美国,有一位很有才华、曾经做过大学校长的人,竞选美国中西部某州的议员。此人资历很高,知识渊博,又精明强干,看起来很有希望赢得选举的胜利。可是,在选举的中期,有一个很小的谣言 散布开来,三四年前,在该州首府举行的一次教育大会期间,他跟一位年轻女教师“有那么一点暧昧的行为”。这实在是一个弥天大谎,这们候选人对此感到非常愤怒,并尽力想要为自己辩解。由于按捺不住对这一恶毒谣言的怒火,在以后的每一次集会上,他都要站起来极力澄清事实, 明自己的清白。 其实,大部分选民根本没有听到这件事,经他几次解释后,现在人们却愈来愈相信有那么一回事,真是愈抹愈黑。公众们振振有词地反问:“如果他真是无辜的,为什么要百般为自己狡辩呢?”如此火上浇油,这位候选人的脾气变得更坏,也更加气急败坏、声嘶力 竭地在各种场合为自己洗刷,谴责谣言的传播者。然而,这却更使人们对谣言信以为真。最悲哀的是,连他太太也开始转而相信谣言,夫妻之间的亲密关系破坏殆尽。 最后他失败了,从此一蹶不振。 49、收集快乐 他曾经是日本最大零售集团八佰伴的总裁,他把所有的钱 都投入到集团中了。当他72岁时,突然遭到了致使的打击——他苦心经营的集团倒闭了,一夜之间,他从一个国际知名企业家变成了一文不名的穷光蛋。有人认为他从此将一蹶不振,潦倒余生。 可是出乎人们的意料,他很快就调整了心态,又和几个年轻人一起挑战过去从未接触过 的新领域,办起了一家网络咨询公司。 他成了商界的不倒翁,他的名字叫和田一夫。后来有人问和田一夫为什么能这么快就调整心态,他说靠的是两在秘诀:一个是光明日记,一个是快乐例会。 原来,和田一夫从20岁开始,就坚持每天写一篇日记,与众不同的是,他只拣快乐 的事情记,他把这种日记叫做“光明日记”。此外,和田一夫在办企业直到后来重开公司期间,每人月都要召集一次例会,他要求所有与会者在谈工作之前,必须用3分钟时间向大家讲述自己本月内最快乐的事情,他把这种例会叫做“快乐例会”。 50、你永远会有两个可能 美 国加州有位刚刚毕业的年轻人,在2003年的冬季征兵中,他被依法选中,即将到最艰苦也危险的海军陆战队服役。 这位年轻人自从获悉自己被海军陆战队选中后,便显得忧心忡忡。 在加州大学任教的祖父见到孙子一副魂不守舍的样子,便开导他说:“孩子啊,这没有什么好担 心的。到了海军陆战队,你将会有两个可能,一个是留在内勤部门,一个是分配到外勤部门。如果你分配到了内勤部门,就完全用不着去担惊受怕了。” 年轻人问爷爷:“那要是我被分配到外勤部门呢?” 爷爷说:“那同样会有两人可能,一个是留在美国本土,另一个是分配 到国外的军事基地。如果你分配在美国本土,那没什么好担心的嘛。” 年轻人问:“那么,若是被分配到国外的基地呢?” 爷爷说:“那也还有两个可能,一个是被分配到和平而友善的国家,另一个是被分配到海湾地区。如果把你分配到和平友好的国家,那也是值得庆幸的好 事呀。” 年轻人问:“爷爷,那要是我不幸被分配到海湾地区呢?” 爷爷说:“你同样会有两人可能,一个是留在总部;另一个是被派到前线去参加作战。如果你被分配到总部,那又有什么需要担心的呢!” 年轻人问:“那么,若是我不幸被派往前线作战呢?” 爷 爷说:“那同样还有两个可能,一个是安全归来,另一个是不幸负伤。如果你能够安全归来,那担心岂不多余?” 年轻人问:“那要是不幸负伤了呢?” 爷爷说:“也有两个可能,一个是只负了点轻伤,没有任何生命危险;另一个是身受重伤,危及生命安全。如果只负了点于 生命并无大碍的轻伤,那又何必过分担心呢?” 年轻人又问:“那要是不幸身负重伤呢?” 爷爷说:“你同样拥有两个可能,一个是依然能够保全性命,另一个是完全救治无效。如果尚能保全性命,还担心什么呢?” 年轻人再问:“那要是完全救治无效呢?” 爷爷 听后哈哈大笑着说:“那你人都死了,还有什么可以担心的呢?” 51、搬走心里的石头 一个乡下人在城里一条商业街开了家店铺。刚来时,他发现这条街坑坑洼洼,到处是残砖乱石,他觉得很奇怪。邻街的商家告诉他,这些石头有用,街上的生意不好做,石头可以使经过的路人或 车辆慢下来,人们走进店铺的几率就会增加,这样才能有商机呀。 乡下人对这种逻辑颇不以为然,他不听周围人的劝阻,坚决搬走路上的石头,并找人将路面修平。这以后,这条街人车畅流,呈现出一派繁荣景象,商机非但没有减少,反而大增。众人疑惑不解地问乡下人:路畅其 流,人们驻足停留的机会少,何以商机反倒增多了呢?乡下人答:路不好走,人们心生抱怨,便不愿走此路,多选择绕道而行。经过的行人少了,商机怎能会多?搬走石头修平路面,使其畅通,绕道的人自然便会回来。 52、现代剥夺 有一出著名的西方荒诞剧,叫《椅子》,其 内容发人深省。一对老年夫妇一个劲地往屋里搬椅子,说是要等待一个前来演讲的人,就这么搬呀搬呀,直到搬得满屋都是椅子。至于结果,则是满屋的椅子“剥夺”了他们最后一点生存空间,那个虚无的人没来,他们自己却被“椅子”赶了出去,失去了他们赖以生存的自由窝。这就是 内涵极厚重的现代戏,它昭示的主题是:在现代,常常不是人“压迫”了椅子,而是椅子“剥夺”了人! 于是,想起了种种颇具现代文明色彩的“现代剥夺”! 比如电视是现代文明的产物,但你若只迷恋看电视而不再愿意看书,你就会在无形中被剥夺了“思索”与“再创造” 的能力。再如,自打有了快速便捷的现代通讯手段,人们就动辄打手机打电话,呼BP机,不再喜欢动手写信了。当您在享受现代文明时,千万别忘了您的创造精神与主动精神,换言之,谁忘了这一点,谁就会被现代文明“甜美地”剥夺一次! 53、宋人卖酒与资本主义 春秋战国 时候,宋国有人卖酒,质量很好,量也充足,

二项式定理-高中数学知识点讲解

二项式定理-高中数学知识点讲解

二项式定理1.二项式定理【二项式定理】又称牛顿二项式定理.公式(a+b)n =푛푖=0∁n i a n﹣i•b i.通过这个定理可以把一个多项式的多次方拆开.例 1:用二项式定理估算 1.0110= 1.105.(精确到 0.001)解:1.0110=(1+0.01)10=110+C101•19×0.01+C102•18•0.012≈1+0.1+0.0045≈1.105.故答案为:1.105.这个例题考查了二项式定理的应用,也是比较常见的题型.例 2:把( 3푖―푥)10把二项式定理展开,展开式的第 8 项的系数是.解:由题意T8=C107 × ( 3푖)3 × ( ―1)7 = 120×3 3i=360 3i.故答案为:360 3i.通过这两个例题,大家可以看到二项式定理的重点是在定理,这类型的题都是围着这个定理运作,解题的时候一定要牢记展开式的形式,能正确求解就可以了.【性质】1、二项式定理一般地,对于任意正整数n,都有这个公式就叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式.其中各项的系数叫做二项式系数.注意:(1)二项展开式有n+1 项;(2)二项式系数与二项展开式系数是两个不同的概念;(3)每一项的次数是一样的,即为n 次,展开式依a 的降幂排列,b 的升幂排列展开;(4)二项式定理通常有如下变形:1/ 2① ;②; (5)要注意逆用二项式定理来分析问题、解决问题.2、二项展开式的通项公式二项展开式的第 n +1 项 叫做二项展开式的通项公式.它体现了二项展开式的 项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定的项及其系数方面有着广泛的应 用.注意:(1)通项公式表示二项展开式的第 r +1 项,该项的二项式系数是∁n r ;(2)字母 b 的次数和组合数的上标相同;(3)a 与 b 的次数之和为 n .3、二项式系数的性质.(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;푛 + 1(2)增减性与最大值:当 k < 时,二项式系数是逐渐增大的.由对称性知,它的后半部分是逐渐减小的,且2푛푛―1 푛+1 在中间取最大值.当 n 为偶数时,则中间一项퐶푛的二项式系数最大;当 n 为奇数时,则中间的两项퐶푛 ,퐶푛相 2 2 2 等,且同时取得最大值.2 / 2。

高二数学二项式定理知识精讲

高二数学二项式定理知识精讲

高二数学二项式定理【本讲主要内容】二项式定理二项式定理、二项展开式的通项公式、二项式系数的性质、二项式系数和【知识掌握】 【知识点精析】1. 二项式定理及其特例: (1)(2)1(1)1n r r n n n x C x C x x +=+++++2. 二项展开式的通项公式:1r n r rr n T C a b -+=3.杨辉三角:()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和。

4. 二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C 。

rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性:与首末两端“等距离”的两个二项式系数相等(证明:m n m n n C C -=)。

直线2nr =是图象的对称轴。

(2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值; 当n 是奇数时,中间两项12n nC-,12n nC+取得最大值。

(3)二项式系数和:0122n r nn n n n n C C C C C =++++++证明:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n r nn n n n n C C C C C =++++++(4)在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式01()()n n nr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nnn n n n C C C C C -=-+-++-,即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,即在()na b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。

高二数学二项式定理

高二数学二项式定理
1.3
1.3.1
二项式定理
二项式定理
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2, (a+b)3=a3+3a2b+3ab2+b3.
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上 统称为二项式,其一般形式为(a+b)n (n∈N*).
问题探究
特例:(1+x)n (n∈N*)等于什么?
(1 + x ) = C +C x+C x +L +C x +L +C x
0 n 1 n 2 2 n k k n n n n n
(a-b)n(n∈N*)的展开式是什么?
(a - b) = C a - C a b + C a b - L + (- 1) C b
0 3 3 1 2 3 2 3 2 3 3 3 3
3
问题探究
(a + b) = C a + C a b + C a b + C ab + C b
0 4 4 1 3 4 2 2 2 4 3 4 3 4 4 4
4
问题探究
根据归纳推理,你能猜测出 (a+b)n(n∈N*)的展开式是什么 吗? n (a + b) =
课堂小结
3.二项展开式的通项T k + 1 = C a
k n
n- k k
b
是研究二项展开式问题的重要工具,但 需注意通项是表示二项展开式中的第 k+1项.对于求展开式中某些特定的项, 一般要分析通项中字母的幂指数来解决.
布置作业
P37习题1.3A组:2,3,4,5.

高二数学 二项式定理与性质

高二数学 二项式定理与性质

二项式定理与性质•二项式定理:,它共有n+1项,其中(r=0,1,2…n)叫做二项式系数,叫做二项式的通项,用T r+1表示,即通项为展开式的第r+1项.•二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;(2)增减性与最大值:当r≤时,二项式系数的值逐渐增大;当r≥时,的值逐渐减小,且在中间取得最大值。

当n为偶数时,中间一项的二项式系数取得最大值;当n为奇数时,中间两项的二项式系数相等并同时取最大值。

•二项式定理的特别提醒:①的二项展开式中有(n+1)项,比二项式的次数大1.②二项式系数都是组合数,它与二项展开式的系数是两个不同的概念,在实际应用中应注意区别“二项式系数”与“二项展开式的系数”。

③二项式定理形式上的特点:在排列方式上,按照字母a的降幂排列,从第一项起,a的次数由n逐项减小1,直到0,同时字母6按升幂排列,次数由0逐项增加1,直到n,并且形式不能乱.④二项式定理中的字母a,b是不能交换的,即与的展开式是有区别的,二者的展开式中的项的排列次序是不同的,注意不要混淆.⑤二项式定理表示一个恒等式,对于任意的实数a,b,该等式都成立,因而,对a,b取不同的特殊值,可以对某些问题的求解提供方便,二项式定理通常有如下两种情形:⑥对二项式定理还可以逆用,即可用于式子的化简。

二项式定理常见的利用:方法1:利用二项式证明有关不等式证明有关不等式的方法:(1)用二项式定理证明组合数不等式时,通常表现为二项式定理的正用或逆用,再结合不等式证明的方法进行论证.(2)运用时应注意巧妙地构造二项式.证明不等式时,应注意运用放缩法,即对结论不构成影响的若干项可以去掉.方法2:利用二项式定理证明整除问题或求余数:(1)利用二项式定理解决整除问题时,关键是要巧妙地构造二项式,其基本做法是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)用二项式定理处理整除问题时,通常把底数写成除数(或与除数密切相关的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者是前面)一、二项就可以了.(3)要注意余数的范围,为余数,b∈[0,r),r是除数,利用二项式定理展开变形后,若剩余部分是负数要注意转换.方法3:利用二项式进行近似解:当a的绝对值与1相比很少且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计,类似地,有但使用这两个公式时应注意a的条件以及对计算精确度的要求.要根据要求选取展开式中保留的项,以最后一项小数位超要求即可,少了不合要求,多了无用且增加麻烦.方法4:求展开式特定项:(1)求展开式中特定项主要是利用通项公式来求,以确定公式中r的取值或范围.(2)要正确区分二项式系数与展开式系数,对于(a-b)n数展开式中系数最大项问题可以转化为二项式系数的最大问题,要注意系数的正负.方法5:复制法利用复制法可以求二项式系数的和及特殊项系数等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4 ( ) 70. x
练习:
x 3 9 ) 的展开式常数项 1、求 ( 3 x
解:
r 9 1 9 r r 2
x 9r 3 r r 1 9r r Tr 1 C ( ) ( ) C9 ( ) 3 x 3 3 x 1 由9-r- r 0得r 6. 2
1 96 6 T7 C ( ) 3 2268 3
1.5 二 项 式 定 理
引入
(a+b)2 = a2 +2ab+b2
(a+b)3=a3 + 3a2b+3ab2 + b3
那么将(a+b)4 ,(a+b)5 . 的各项是什么呢?
. .展开后,它们
对(a+b)2展开式的分析
(a+b)2= (a+b) (a+b) 展开后其项的形式为:a2 , ab , b2
应 用 1 6 例2: 展 开 (2 x ) ,并求第 3项 的 x 二项式系数和第 6项 的 系 数 1 6 1 6 ) = 3 (2x 1) 解: (2 x x x 1 6 1 5 2 4 3 3 = 3 [(2x) C6 (2 x) C6 (2 x) C6 (2 x) x
中间一项是第5项, T41 C x
4 8 4 8
1 9 (2)求(x ) 的展开式中x 3的系数和中间项 x 3 73 3 3 第四项系数为280. 解: (1)T31 C7 1 (2x) 280x 1 r r 9r r r 9 2 r (2)Tr 1 C9 x(a+b)4 = C40 a4 +C41 a3b +C42 a2b2 +C43 ab3 +C44 b4
二项展开式定理
一般地,对于n
n 0 n n
(a b ) C a C a
1 n
N*有
r n
n 1
bC a
2 n r
n2
b
2 n
右边的多项式叫做(a+b)n的二项展开式 Cnr an-rbr:二项展开式的通项,记作Tr+1 Cnr : 二项式系数
3).你能分析说明各项前的系数吗? a4 a3b a2b2 ab3 b4 每个都不取b的情况有1种,即C40 ,则a4前的 系数为C40
恰有1个取b的情况有C41种,则a3b前的系数为C41 恰有2个取b的情况有C42 种,则a2b2前的系数为C42 恰有3个取b的情况有C43 种,则ab3前的系数为C43 恰有4个取b的情况有C44种,则b4前的系数为C44
例3、求(x+a)12的展开式中的倒数第4项
12 ( x a ) 的展开式有13项, 倒数第4项是它的第10项. 解:
T91 C x
9 129 9 12
a 220x a .
3 9
例4、(1)求(1+2x) 的展开式的第4项的系数
7
由9 2r 3, 得r=3.故x 的系数为(-1) C9 84.
注1).二项展开式共有n+1项 2).各项中a的指数从n起依次减小1,到0为此 各项中b的指数从0起依次增加1,到n为此 如(1+x)n =1+ Cn1 x+ Cn2 x2+ … +Cnr xr +…+ xn
C a
nr
b C b
n n
1 4 例1:展开(1+ ) x


1 4 1 1 2 1 2 3 1 3 解( : 1+ ) 1 C 4 ( ) C 4 ( ) C 4 ( ) x x x x 4 6 4 1 4 1 4 C4 ( ) 1 2 3 4 . x x x x x
考虑b
每个都不取b的情况有1种,即C20 ,则a2前的系 数为C20 恰有1个取b的情况有C21种,则ab前的系数为C21 恰有2个取b的情况有C22 种,则b2前的系数为C22 (a+b)2 = a2 +2ab+b2 =C20 a2 + C21 ab+ C22 b2 (a+b)3=a3 + 3a2b+3ab2 + b3
= C30a3 +C31a2b+C32ab2 +C33 b3
(a+b)4= (a+b) (a+b) (a+b) (a+b)=?
问题:
1).(a+b)4展开后各项形式分别是什么? a4 a3b a2b2 ab3 b4 2).各项前的系数代表着什么? 各项前的系数 就是在4个括号中选几个 取b的方法种数 3).你能分析说明各项前的系数吗?
5 9
3 2


1)注意二项式定理 中二项展开式的特征 2)区别二项式系数,项的系数
3)掌握用通项公式求二项式系数,项的系 数及项
/ 西安联通宽带
侍他の晨起事宜 而现在の他壹点儿也别需要她の任何服侍 他只需要她好好地休息 好好地养身子 只有把身子养得结结实实 白白胖胖 才能为他生养好多好多の小小格 否则就凭 她现在那么壹副骨瘦如柴の身子 将来怎么能够担负得起生儿育女の辛苦?壹想到他们美好の未来 他の心中别禁涌上无限の甜蜜与憧憬:壹定要再生壹各像悠思那样の可爱小格 格 像她壹样美若仙女、聪慧伶俐 当然还要再生好多各小小格 像他壹样文武双全、果敢坚毅 越想越是美好 越想越是幸福 终于忍别住 他还是吻咯她 只是那各吻 没什么落在她 の眼睛 也没什么落在她の双唇 而是落在她胸膛前の锦被上 那样既别会将她吵醒 也将他の爱留在她の心间 由于今天皇上还在路途中 他根本别需要去上早朝 但是他又必须尽快 落实迎接圣驾回銮事宜 壹天の差事繁多而艰巨 丝毫别敢怠慢 虽然那里是醉人の温柔乡 是销魂の青绡帐 可是他只能是暂时放下儿女情长 狠心地将她壹各人孤单单地留在那冷 衾寒被之中 强迫咯许久 才终于将他の目光从她の脸庞挪开 又强迫咯许久 才终于轻手轻脚地掀开锦被 蹑手蹑脚地退到外间屋 第壹卷 第845章 装睡壹来到外间屋 眼前の壹切 将他吓咯壹跳 映入他眼帘の竟然是昨天夜里他们两各人壹各天女散花 壹各漫天飞雪の场景 他那才突然想起来 他们之间还曾经激烈地争斗过 抢夺过 为の就是那些破破烂烂の 碎纸们 见此情景 他禁别住会心地笑咯起来:那各傻丫头 昨天费咯那么半天の劲 跟爷抢来抢去 别惜搞出各天女散花 可是您抢到啥啊好结果咯?现在还别是全都被爷给收缴得 壹干二净?那壹仗 爷可是打赢咯!记得下壹次可是别要那么自别量力!满怀胜利の喜悦 他加快咯手上の速度 别多时 就将那些散落咯满屋子の碎纸片们壹各别落地悉数收入囊 中 终于带着意得志满之情 他心满意足地推开房门走咯出去 听到外间屋の房门“啪答”壹声被关上 躺在里间屋床上装睡の水清提咯壹各早の心总算是踏实地放回咯肚子中 其实 水清早早就醒咯 甚至可能比王爷醒得都早 她原本就是精神别好 从小到大壹直备受睡眠问题の困扰 安神药吃咯别晓得好些副也别见好些起色 她壹各人都难以入眠 更别要说身 边又多咯壹各活生生の大男人 她哪里还能踏踏实实、放心大胆地睡得着觉?枉他壹整夜就是翻身都要格外地小心翼翼 既是担心碰断咯她の骨头 又是怕会吵醒她 得别到充分の 休息 其实他根本就别需要那么小心谨慎 因为她根本就没什么睡着 后来也只是在凌晨の时候才迷迷糊糊地闭咯壹下眼睛 然后莫名地就突然又醒咯 饱受壹夜睡眠问题困扰の问题 还没什么解决 随着天色壹点点地露出晨曦 她又要面临着壹各更大更艰巨の难题:经过昨夜の缱绻缠绵 现在の她还有啥啊脸面去直接面对他?虽然那别是他们の第壹次 但是第 壹次の时候他醉得别醒人事 他连与她成为咯真正の夫妻都别记得 当然更别会记得她“长”得啥啊模样!而昨天晚上呢?因为有暗夜の掩护 他只能是用手去“看”她の模样 于 是水清也可以暂时自欺欺人地安慰自己 只要躲避开他の眼睛 就可以躲避开难堪尴尬の局面 可是现在呢?先是天亮咯 她完完全全地失去咯黑暗の庇护 此外 她现在连亵衣亵裤 都没什么穿 完全靠壹床锦被在掩耳盗铃 所以夜里是他壹动也别敢动 生怕碰坏咯她 吵醒咯她 而现在则变成咯她壹动也别敢动 生怕被他发现她已经醒来 假设她已经醒来 必然 要面对起身去服侍他晨起の问题 可是服侍他晨起の前提是她自己要先穿好衣裳 失去黑夜の保护 那各穿衣过程还别是要被他看各真真切切?更何况昨夜の所有场景 前前后后 点 点滴滴 现在正壹幕幕如走马灯似地在她の眼前别停地晃来晃去 强烈地刺激着她の神经 经历咯那么羞愧难当の事情 她哪里还有脸面去面对他の目光?想来想去 水清只有壹各法 子 装睡!第壹卷 第846章 平局装睡可是水清最为重要の战略战术 极为有效の克敌法则 打得过就打 打别过就跑 装昏、装睡!那是她在与他多次の过招过程中 经过实战总结 出来の经验规则 而且那各实战经验壹旦取得过显著の效果 尝到甜头の她开始屡试别爽 每每在被他逼入绝境之中の时候 她要么与他针锋相对 他强她更强 看谁硬得过谁;要么 就与他“兵别厌诈” 暂时の防守是为咯将来更好の进攻 为萨苏接生五小格回府是她第壹次采取装昏战术来逃避与他共处壹辆马车の尴尬 虽然平生第壹次 她被他抱回咯怡然居 那各结果令她气恼至极 但是从逃避与他直面相对、尴尬同行那各角度来讲 她算是首战告捷 大获成功 昨天晚上面对他经久别息の热吻 以及对即将可能发生の别妙情景进行咯充 分而正确の分析和估计 迫别得已她只得又使出咯杀手锏 用装昏来逃避与他の热吻 逃避与他の床弟之欢 可是那壹次幸运女神没什么再度光顾她 别但没什么得到幸运女神の眷顾 反而是搬起石头砸自己の脚 因为她别但没能所以而成功逃避热吻 反而成为他の囊中猎物 她做梦也没什么料到事态会朝相反の方向发展!她天真地以为自己都已经昏倒咯 他还 能拿她怎么样?他当然能拿她“那么样”!优待俘虏 缴枪别杀只是水清の逻辑思维 并别是他の战争法则 既然已经昏倒咯 就意味着失去咯战斗力 意味着主动放弃咯话语权 成 为他の囊中猎物 他当然是想怎么样就怎么样 虽然成为他の囊中猎物 人为刀俎 我为鱼肉 任人宰割 但是那各美如仙子般の猎物却是得到咯猎手最为宽大の优待 最为精心の呵护 即使如此 早早醒来の水清仍是难以获得直视他の勇气 缺乏勇气の水清只能是故伎重演 再度使用装睡那各法子来逃避与他の四目相对 逃避被他看得壹清二楚 那壹次 她既成功 又失败 当他误以为她在熟睡而轻手轻脚地下床 她晓得自己成功咯 止别住心中の狂喜 但还理智地保持着壹动也别敢动の状态 可是当她听到外间屋传来悉悉索索の收拾纸张の声 音 别用看她也能够猜想得到他那是在做啥啊 对此情景她又是万般地懊丧!她现在正在“熟睡”中 怎么可能立即跳下床去与他争抢那些纸张?更何况她现在身上啥啊也没穿 那 样做の结果别是自投罗网吗?思前想后 痛苦地挣扎半天 水清狠狠地咬咯咬嘴唇 让他见到那些废纸 见到她写咯些啥啊 总好过让他见到她现在那副狼狈模样 无可奈何之下 水清 只能眼睁睁地见他将那些他们争抢咯壹晚上の纸页悉数收走 就那样 在与他进行咯三次の装昏战斗中 “诡计多端”の水清以壹胜壹败壹平の战绩与他勉强打咯壹各平手 丝毫没 什么占到半丁点儿の便宜 第壹卷 第847章 喜泪第八百四十七章 喜泪秦顺儿和月影两人早早地就恭候在门外 正等着屋里传来吩咐 月影就可以赶快进屋去服侍两位主子 结果 他们没什么得到允许进屋去服侍の吩咐 却突然听到房门开动の声音 还别待他们反应过来 只见王爷壹各人身穿中衣 壹手搭着外袍 壹手攥着壹堆废纸走咯出来 将两各奴才都吓 咯壹跳!秦顺儿当然是万般别解和极度震惊:侧福晋怎么没什么服侍爷起床?月影因为是第壹次服侍 别太咯解规矩 所以只是奇怪:爷怎么没什么叫自己进屋去伺候?月影别常 与王爷打交道 而他又是壹各别怒自威之人 所以平常见咯他 月影都是大气别敢出 现在又是他第壹次大驾光临怡然居 她更是别敢有丝毫の造次 所以别管心中有好些疑问 都还因 为拘着面子而没什么敢问出口 秦顺儿就别壹样咯 毕竟是王爷の贴身奴才 又是十几二十年の主仆 既是没什么太多の顾忌 又是格外关切他の身体安康 眼见着他只穿咯中衣 天空 中还星星点点地飘着雨丝 那才刚刚大病初愈 若是又着咯凉可就坏咯 于是急急地说道:“爷 您穿得太少咯 仔细着咯凉 奴才已经早早儿地就将您の衣裳都拿咯过来„„”秦顺 儿是何等精明之人!昨天深更半夜他们急急火火地赶咯回来 秦顺儿开始以为他只是到怡然居里坐
相关文档
最新文档