北师版八年级下数学第一章随堂练习75
1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册
【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1
欘
,
∴∠A
= 90°,
∠
B
=
1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.
北师大版八年级下册数学同步课时练习题(全册分章节课时,含答案)
北师⼤版⼋年级下册数学同步课时练习题(全册分章节课时,含答案)北师⼤版⼋年级下册数学同步课时练习题第⼀章三⾓形的证明第⼆章1.1等腰三⾓形第1课时全等三⾓形和等腰三⾓形的性质01基础题知识点1全等三⾓形的性质与判定1.如图,△ABC≌△BAD.若AB=6,AC=4,BC=5,则AD的长为(B)A.4 B.5C.6 D.以上都不对2.如图,若能⽤AAS来判定△ACD≌△ABE,则需要添加的条件是(B)A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B3.(2016·成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.4.(2017·怀化)如图,AC=DC,BC=EC,请你添加⼀个适当的条件:AB=DE(答案不唯⼀),使得△ABC≌△DEC.5.如图,点B,E,C,F在同⼀条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.6.(2016·宜宾)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.证明:∵∠CAB=∠DBA,∠DAC=∠CBD,∴∠DAB=∠CBA.在△ADB和△BCA中,∠DBA =∠CAB ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴AD =BC.7.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM ,∴∠BAD =∠NAM.在△BAD 和△NAM 中,AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS).∴∠B =∠ANM.知识点2 等腰三⾓形的性质8.若等腰三⾓形的顶⾓为50°,则它的底⾓度数为(D)A .40°B .50°C .60°D .65° 9.(2017·平顶⼭市宝丰县期末)等腰三⾓形的⼀边长为4,另⼀边长为5,则此三⾓形的周长为(D)A .13B .14C .15D .13或14 10.(2017·江西)如图1是⼀把园林剪⼑,把它抽象为图2,其中OA =OB.若剪⼑张开的⾓为30°,则∠A =75度.11.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D.若AB =6,CD =4,则△ABC 的周长是20.02 中档题12.如图,在△ABC 中,AD ⊥BC ,垂⾜为D ,AD =BD =CD ,则下列结论错误的是(C)A .AB =AC B .AD 平分∠BAC C .AB =BC D .∠BAC =90°13.(2017·朝阳市建平县期末)若等腰三⾓形的⼀个内⾓等于15°,则这个三⾓形为(D)A .钝⾓等腰三⾓形B .直⾓等腰三⾓形C .锐⾓等腰三⾓形D .钝⾓等腰三⾓形或锐⾓等腰三⾓形 14.(2016·泰安)如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =44°,则∠P 的度数为(D)A .44°B .66°C .88°D .92°15.如图,已知点A ,F ,E ,C 在同⼀直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE. (1)从图中任找两组全等三⾓形; (2)从(1)中任选⼀组进⾏证明.解:(1)答案不唯⼀,如:△ABE ≌△CDF ,△ABC ≌△CDA. (2)答案不唯⼀,如选择证明△ABE ≌△CDF ,证明如下:∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF. ⼜∵∠ABE =∠CDF ,∴△ABE ≌△CDF(AAS).16.如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE.求证:(1)△AEF ≌△CEB ; (2)AF =2CD.证明:(1)∵AD ⊥BC ,CE ⊥AB ,∴∠AEF =∠CEB =∠ADC =90°.∴∠AFE +∠EAF =∠CFD +∠ECB =90°. ⼜∵∠AFE =∠CFD ,∴∠EAF =∠ECB.在△AEF 和△CEB 中,∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,∴△AEF ≌△CEB(ASA). (2)∵△AEF ≌△CEB ,∴AF =BC.在△ABC 中,AB =AC ,AD ⊥BC ,∴CD =BD ,BC =2CD.∴AF =2CD.03 综合题17.(1)如图1,在Rt △ABC 中,∠ACB =90°,点D ,E 在边AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数; (2)如图2,在△ABC 中,∠ACB =40°,点D ,E 在直线AB 上,且AD =AC ,BE =BC ,则∠DCE =110°; (3)在△ABC 中,∠ACB =n °(0<n <180),点D ,E 在直线AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数(直接写出答案,⽤含n 的式⼦表⽰).解:(1)∵AD =AC ,BC =BE ,∴∠ACD =∠ADC ,∠BCE =∠BEC. ∴∠ACD =(180°-∠A)÷2,∠BCE =(180°-∠B)÷2. ∵∠A +∠B =90°,∴∠ACD +∠BCE =180°-(∠A +∠B)÷2=180°-45°=135°. ∴∠DCE =∠ACD +∠BCE -∠ACB =135°-90°=45°. (3)①如图1,∠DCE =90°-12n °;②如图2,∠DCE =90°+12n °;③如图3,∠DCE =12n °;④如图4,∠DCE =12n °.第2课时等边三⾓形的性质01 基础题知识点1 等腰三⾓形相关线段的性质1.在△ABC 中,AB =AC ,BD ,CE 分别为边AC ,AB 上的中线.若BD =5,则CE =5. 2.证明:等腰三⾓形两腰上的⾼相等.解:已知:如图,在△ABC 中,AB =AC ,CE ⊥AB 于点E ,BD ⊥AC 于点D.求证:BD =CE.证明:∵CE ⊥AB 于点E ,BD ⊥AC 于点D ,∴∠AEC =∠ADB =90°. ⼜∵AC =AB ,∠A =∠A ,∴△ACE ≌△ABD(AAS).∴CE =BD.知识点2等边三⾓形的性质3.如图,△ABC是等边三⾓形,则∠1+∠2=(C)A.60°B.90°C.120°D.180°4.(2017·南充)如图,等边△OAB的边长为2,则点B的坐标为(D)A.(1,1) B.(3,1)C.(3,3) D.(1,3)5.如图,△ABC为等边三⾓形,AC∥BD,则∠CBD=120°.6.如图,等边△ABC中,AD为⾼,若AB=6,则CD的长度为3.7.等边△ABC的边长如图所⽰,则y=3.8.如图,l∥m,等边△ABC的顶点B在直线m上,延长AC,交直线m于点D.若∠1=20°,求∠2的度数.解:∵△ABC是等边三⾓形,∴∠ACB=60°.∴在△BCD中,∠CDB=∠ACB-∠1=60°-20°=40°.∵l∥m,∴∠2=∠CDB=40°.9.如图,△ABC和△ADE是等边三⾓形,AD是BC边上的中线.求证:BE=BD.证明:∵△ABC 和△ADE 是等边三⾓形,AD 为BC 边上的中线,∴AE =AD ,AD 为∠BAC 的平分线.∴∠CAD =∠BAD =30°. ∴∠BAE =∠BAD =30°. 在△ABE 和△ABD 中,AE =AD ,∠BAE =∠BAD ,AB =AB ,∴△ABE ≌△ABD(SAS).∴BE =BD.02 中档题10.下列说法:①等边三⾓形的每⼀个内⾓都等于60°;②等边三⾓形三条边上的⾼都相等;③等腰三⾓形两底⾓的平分线相等;④等边三⾓形任意⼀边上的⾼与这条边上的中线互相重合;⑤等腰三⾓形⼀腰上的⾼与这条腰上的中线互相重合.其中正确的有(D)A .1个B .2个C .3个D .4个11.如图,△ABC 是等边三⾓形,AD ⊥BC ,垂⾜为D ,点E 是AC 上⼀点,且AD =AE ,则∠CDE 等于(C)A .30°B .20°C .15°D .10°12.如图,已知△ABC 是等边三⾓形,点B ,C ,D ,E 在同⼀直线上,且CG =CD ,DF =DE ,则∠E =15度.13.如图,在等边△ABC 中,点D ,E 分别是边AB ,AC 的中点,CD ,BE 交于点O ,则∠BOC 的度数是120°.14.如图,已知等边△ABC 纸⽚,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则∠EFD =45°.解:∵△ABC 是等边三⾓形,BF 是△ABC 的⾼,∴∠ABO =12∠ABC =30°,AB =AC.∵AE =AC ,∴AB =AE. ∵AO 为∠BAE 的平分线,∴∠BAO =∠EAO.在△ABO 和△AEO 中,AB =AE ,∠BAO =∠EAO ,AO =AO ,∴△ABO ≌△AEO(SAS).∴∠E =∠ABO =30°.16.如图,△ABC 为等边三⾓形,点M 是线段BC 上任意⼀点,点N 是线段CA 上任意⼀点,且BM =CN ,BN 与AM 相交于点Q. (1)求证:AM =BN ; (2)求∠BQM 的度数.解:(1)证明:∵△ABC 为等边三⾓形,∴∠ABC =∠C =∠BAC =60°,AB =BC. 在△AMB 和△BNC 中,AB =BC ,∠ABM =∠C ,BM =CN ,∴△AMB ≌△BNC(SAS).∴AM =BN. (2)∵△AMB ≌△BNC ,∴∠MAB =∠NBC.∴∠BQM =∠MAB +∠ABQ =∠NBC +∠ABQ =∠ABC =60°.03 综合题17.已知,如图所⽰,P 为等边△ABC 内的⼀点,它到三边AB ,AC ,BC 的距离分别为h 1,h 2,h 3,△ABC 的⾼AM =h ,则h 与h 1,h 2,h 3有何数量关系?写出你的猜想并加以证明.解:猜想:h 1+h 2+h 3=h. 证明如下:连接PA ,PB ,PC. ∵S △PAB =12AB·h 1,S △PAC =12AC·h 2,S △PBC =12BC·h 3,S △ABC =12BC·h ,S △PAB +S △PAC +S △PBC =S △ABC ,∴12AB·h 1+12AC·h 2+12BC·h 3=12BC·h. ∵△ABC 是等边三⾓形,∴AB =AC =BC. ∴h 1+h 2+h 3=h.第3课时等腰三⾓形的判定与反证法01 基础题知识点1 等腰三⾓形的判定1.在△ABC 中,已知∠B =∠C ,则(B)A .AB =BC B .AB =AC C .BC =ACD .∠A =60°2.如图,在△ABC 中,AD 平分外⾓∠EAC ,且AD ∥BC ,则△ABC ⼀定是(C)A .任意三⾓形B .等边三⾓形C .等腰三⾓形D .直⾓三⾓形3.如图,AC ,BD 相交于点O ,∠A =∠D ,如果请你再补充⼀个条件,使得△BOC 是等腰三⾓形,那么你补充的条件不能是(C)A .OA =ODB .AB =CDC .∠ABO =∠DCOD .∠ABC =∠DCB4.(易错题)下列能判定△ABC为等腰三⾓形的是(B)A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为105.如图,已知OC平分∠AOB,CD∥OB.若OD=3 cm,则CD=3cm.6.如图,在△ABC中,AD⊥BC于D,若添加下列条件中的⼀个:①BD=CD;②AD平分∠BAC;③AD=BD.其中能使△ABC成为等腰三⾓形的有①②.7.已知:如图,AB=BC,DE∥AC,求证:△DBE是等腰三⾓形.证明:∵AB=BC,∴∠A=∠C.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C.∴∠BDE=∠BED.∴BD=BE.∴△DBE是等腰三⾓形.知识点2反证法8.(2017·西安期中)⽤反证法证明命题“⼀个三⾓形中不能有两个⾓是直⾓”第⼀步应假设⼀个三⾓形中有两个⾓是直⾓.9.⽤反证法证明:等腰三⾓形的底⾓必定是锐⾓.已知:等腰△ABC,AB=AC.求证:∠B,∠C必定是锐⾓.证明:①假设等腰三⾓形的底⾓∠B,∠C都是直⾓,即∠B+∠C=180°,则∠A+∠B+∠C=180°+∠A>180°,这与三⾓形内⾓和等于180°⽭盾;②假设等腰三⾓形的底⾓∠B,∠C都是钝⾓,即∠B+∠C>180°,则∠A+∠B+∠C>180°,这与三⾓形内⾓和等于180°⽭盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐⾓.故等腰三⾓形的底⾓必定为锐⾓.10.⽤反证法证明:已知直线a∥c,b∥c,求证:a∥b.证明:假设a与b相交于点M,则过M点有两条直线平⾏于直线c,这与“过直线外⼀点平⾏于已知直线的直线有且只有⼀条”相⽭盾,所以假设不成⽴,即a∥b.02中档题11.(2017·郑州⽉考)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB,AC于点D,E.若BD+CE=5,则线段DE的长为(A)A.5 B.6 C.7 D.812.已知△ABC中,AB=AC,求证:∠B<90°.若⽤反证法证这个结论,应⾸先假设∠B≥90°.13.如图,在⼀张长⽅形纸条上任意画⼀条截线AB,将纸条沿截线AB折叠,所得到△ABC的形状⼀定是等腰三⾓形.14.某轮船由西向东航⾏,在A处测得⼩岛P的⽅位是北偏东70°,⼜继续航⾏7海⾥后,在B处测得⼩岛P的⽅位是北偏东50°,则此时轮船与⼩岛P的距离BP=7海⾥.15.(2017·内江)如图,AD平分∠BAC,AD⊥BD,垂⾜为点D,DE∥AC.求证:△BDE是等腰三⾓形.证明:∵DE∥AC,∴∠DAC=∠EDA.∵AD平分∠BAC,∴∠DAC=∠EAD.∴∠EAD=∠EDA.∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°.∴∠B=∠BDE.∴△BDE是等腰三⾓形.16.如图,在等边△ABC 中,BD 平分∠ABC ,延长BC 到E ,使CE =CD ,连接DE. (1)成逸同学说:BD =DE ,她说得对吗?请你说明理由;(2)⼩敏同学说:把“BD 平分∠ABC ”改成其他条件,也能得到同样的结论,你认为应该如何改呢?解:(1)BD =DE 是正确的.理由:∵△ABC 为等边三⾓形,BD 平分∠ABC ,∴∠DBC =12∠ABC =30°,∠ACB =60°.∴∠DCE =180°-∠ACB =120°. ⼜∵CE =CD ,∴∠E =30°. ∴∠DBC =∠E. ∴BD =DE.(2)可改为:BD ⊥AC(或点D 为AC 中点).理由:∵BD ⊥AC ,∴∠BDC =90°. ∴∠DBC =30°.由(1)可知∠E =30°,∴∠DBC =∠E. ∴BD =DE.03 综合题17.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E. (1)当∠BDA =115°时,∠EDC =25°,∠DEC =115°;点D 从B 向C 运动时,∠BDA 逐渐变⼩(填“⼤”或“⼩”); (2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 可以是等腰三⾓形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.解:(2)当DC =2时,△ABD ≌△DCE. 理由:∵∠C =40°,∴∠DEC +∠EDC =140°. ⼜∵∠ADE =40°,∴∠ADB +∠EDC =140°. ∴∠ADB =∠DEC. ⼜∵AB =DC =2,∴△ABD ≌△DCE(AAS).(3)可以,∠BDA 的度数为110°或80°. 理由:当∠BDA =110°时,∠ADC =70°. ∵∠C =40°,∴∠DAC =180°-∠ADC -∠C =180°-70°-40°=70°. ∴∠AED =180°-∠DAC -∠ADE =180°-70°-40°=70°. ∴∠AED =∠DAE.∴AD=ED.∴△ADE是等腰三⾓形.当∠BDA=80°时,∠ADC=100°.∴∠DAC=180°-∠ADC-∠C=180°-100°-40°=40°.∴∠DAE=∠ADE.∴AE=DE.∴△ADE是等腰三⾓形.第4课时等边三⾓形的判定01基础题知识点1等边三⾓形的判定1.△ABC中,AB=AC,∠A=∠C,则△ABC是(B)A.等腰三⾓形B.等边三⾓形C.不等边三⾓形D.不能确定2.下列说法不正确的是(D)A.有两个⾓分别为60°的三⾓形是等边三⾓形B.顶⾓为60°的等腰三⾓形是等边三⾓形C.底⾓为60°的等腰三⾓形是等边三⾓形D.有⼀个⾓为60°的三⾓形是等边三⾓形3.如图,在△ABC中,AB=BC=6,∠B=60°,则AC等于(B)A.4 B.6 C.8 D.104.如图,将两个完全相同的含有30°⾓的三⾓板拼接在⼀起,则拼接后的△ABD的形状是等边三⾓形.5.如图,已知OA=a,P是射线ON上⼀动点,∠AON=60°,当OP=a时,△AOP为等边三⾓形.6.如图,点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE为等边三⾓形.证明:∵∠B=∠C,∴AB=AC.⼜∵BD=CE,∴△ABD≌△ACE(SAS).∴AD=AE.⼜∵∠ADB=120°,∴∠ADE=60°.∴△ADE为等边三⾓形.知识点2 含30°⾓的直⾓三⾓形的性质 7.(2017·平顶⼭市宝丰县期中)在Rt △ABC 中,∠C =90°,∠A =30°,BC =9,则AB =18. 8.(2017·郑州⽉考)如图,∠C =90°,∠ABC =75°,∠CDB =30°.若BC =3 cm ,则AD =6cm.9.如图,这是某超市⾃动扶梯的⽰意图,⼤厅两层之间的距离h =6.5⽶,⾃动扶梯的倾⾓为30°,若⾃动扶梯运⾏速度为v =0.5⽶/秒,则顾客乘⾃动扶梯上⼀层楼的时间为26秒.10.如图,铁路AC 与铁路AD 相交于车站A ,B 区在∠CAD 的平分线上,且距车站A 为20千⽶,∠DAC =60°,则B 区距铁路AC 的距离为10千⽶.11.如图,在△ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D ,BC =8 cm ,求AD 的长.解:∵∠ACB =90°,∠A =30°,BC =8 cm ,∴∠B =60°,AB =2BC =16 cm. ⼜∵CD ⊥AB 于D ,∴∠BDC =90°. ∴∠DCB =30°. ∴DB =12BC =4 cm.∴AD =AB -DB =12 cm.02 中档题12.在下列三⾓形中:①三边都相等的三⾓形;②有⼀个⾓是60°且是轴对称图形的三⾓形;③三个外⾓(每个顶点处各取1个外⾓)都相等的三⾓形;④⼀腰上的中线也是这条腰上的⾼的等腰三⾓形.其中是等边三⾓形的有(D)A .①②③B .①②④C .①③D .①②③④13.如图,折叠直⾓三⾓形纸⽚的直⾓,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则BD 的长是(B)A .1B .2 C. 3 D .2 314.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三⾓形是(D)A .直⾓三⾓形B .钝⾓三⾓形C .等腰三⾓形D .等边三⾓形15.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN.若MN =2,则OM =(C)A .3B .4C .5D .616.如图,△ABC 是等边三⾓形,D ,E ,F 分别是AB ,BC ,CA 边上⼀点,且AD =BE =CF ,则△DEF 的形状是等边三⾓形.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边的中线,点E ,F 分别是AB ,AC 的中点,连接DE ,DF.(1)求证:△AED 是等边三⾓形;(2)若AB =2,则四边形AEDF 的周长是4.证明:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°. ∵AD 是BC 边的中线,∴AD ⊥BC.∴∠BAD =60°. ∴AD =12AB.∵点E 为AB 的中点,∴AE =12AB.∴AE =AD.∴△ADE 是等边三⾓形.03 综合题18.在四边形ABCD 中,AB =BC =CD =DA ,∠B =∠D =60°,连接AC.(1)如图1,点E ,F 分别在边BC ,CD 上,且BE =CF.求证:①△ABE ≌△ACF ;②△AEF 是等边三⾓形;(2)若点E 在BC 的延长线上,则在直线CD 上是否存在点F ,使△AEF 是等边三⾓形?请证明你的结论(图2备⽤).解:(1)证明:①∵AB =BC ,∠B =60°,∴△ABC 是等边三⾓形.∴AB =AC. 同理,△ADC 也是等边三⾓形,∴∠B =∠ACF =60°.⼜∵BE =CF ,∴△ABE ≌△ACF(SAS).②∵△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF. ∵∠BAE +∠CAE =60°,∴∠CAF +∠CAE =60°,即∠EAF =60°.∴△AEF 是等边三⾓形. (2)存在.证明:在CD 延长线上取点F ,在BC 延长线上取点E ,使CF =BE ,连接AE ,EF ,AF. 与(1)①同理,可证△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF.∴∠BAE -∠CAE =∠CAF -∠CAE. ∴∠BAC =∠EAF =60°. ∴△AEF 是等边三⾓形.(注:若在CD 延长线上取点F ,使CE =DF 也可)⼩专题(⼀) 等腰三⾓形中常见的数学思想类型1 ⽅程思想1.如图,在△ABC 中,AB =AC ,BC =BD =ED =EA ,求∠A 的度数.解:设∠A =x °,∵BC =BD =ED =EA ,∴∠ADE =∠A =x °. ∴∠DEA =∠DBE =2x °. ∴∠BDC =∠C =3x °. ∵AB =AC ,∴∠C =∠ABC =3x °.在△ABC 中,∠A +∠C +∠ABC =180°,即x +3x +3x =180. ∴x =1807.∴∠A 为180°7.类型2 分类讨论思想2.如图,在Rt △ABC 中,∠ACB =90°,AB =2BC ,在直线BC 或AC 上取⼀点P ,使得△PAB 为等腰三⾓形,则符合条件在点P 共有(B)A .7个B .6个C .5个D .4个。
北师大版数学八年级下册 第一章 精选练习题含答案
第一章三角形的证明1.1 全等三角形和等腰三角形的性质1.如图所示,BA⊥CA,AB∥CD,AB=CE,AC=CD,则△ABC≌,理由是,所以∠ABC=,∠ACB=,由此可知BC与DE的位置关系为.2.如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF= .3. 如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为 .4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为 .5.如图,AD、CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°则∠ACE的度数是 .6. 如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7. 如图所示为农村居民住宅侧面截面图,屋坡AF、AG分别架在墙体的点B、点C处,且AB=AC,侧面四边形BDEC为长方形.若测得∠FAG=110°,则∠FBD等于( )A.35° B.40° C.55° D.70°8.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC9.若实数m、n满足等式|m-2|+n-4=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.12 B.10 C.8 D.610. 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD11. 如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是( )A.70° B.55° C.50° D.40°12. 已知等腰三角形的一个外角等于100°,则等腰三角形的顶角为( ) A.80°或20° B.70°或55° C.60°或50° D.50°或40°13. 如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为( )A.70° B.72° C.80° D.85°12.在△ABC中,AB=AC,且BC=8 cm,BD是腰AC的中线,△ABC的周长分为两部分,已知它们的差为2 cm,则等腰三角形的腰长为( )A. 15cm或3cmB. 12cm或5cmC. 12cm或6cmD. 10cm或6cm15. 如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.16. 如图,点D、E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.17. 如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE.求∠A的度数.18. 如图,点D、E在△ABC的边BC上,连接AD、AE.①AB=AC;②AD=AE;③BD=CE.以这三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后再证明).答案;1. △CED SAS ∠CED ∠CDE2. 互相垂直3. 40°4. 40°5. 35°6. D7. C8. C9. D 10. D 11. D 12. A 13. B 14. D15. 解:∵AB =AC ,∠A =40°,∴∠ABC =∠C =180°-∠A2=70°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =35°,∴∠BDC =180°-∠DBC -∠C =75°.16. 证明:∵AB =AC ,∴∠C =∠B(等边对等角),在△ABD 和△ACE 中,AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE(SAS),∴AD =AE(全等三角形的对应边相等).17. 解:设∠A =x°,∵AD =BE =DE ,∴∠EDB =12x°,∵AC =AB ,∴∠C =90°-12x°,∵BC =BD ,∴∠CDB =90°-12x°,∴∠EDC =12x°+90°-12x°=90°,∴∠A =45°.18. (1) ①②⇒③;①③⇒②;②③⇒①(2) 解:选择①③⇒②,证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE ,∴AD =AE.1.2直角三角形一.选择题1.下列可使两个直角三角形全等的条件是( ) A .一条边对应相等 B .两条直角边对应相等 C .一个锐角对应相等 D .两个锐角对应相等2.已知直角三角形ABC ,有一个锐角等于50°,则另一个锐角的度数是( ). A . 30° B . 40° C . 45° D . 50°3.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是( ) A .1 B .2 C .3 D .44.如图,AB ⊥BC 于点B ,AD ⊥DC 于点D ,若CB =CD ,且∠1=30°,则∠BAD 的度数是( )A .90°B .60°C .30°D .15° 5.下列命题中,逆命题不正确的是( )A . 两直线平行,同旁内角互补B . 直角三角形的两个锐角互余C . 全等三角形对应角相等D . 直角三角形斜边上的中线等于斜边的一半 6.下列性质中,等腰三角形具有而直角三角形不一定具有的是( ) A .任意两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C.至少有两个角是锐角D.内角和等于180°7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2 km,则M,C两点间的距离为( )A.0.5 km B.0.6 km C.0.9 km D.1.2 km8.直角三角形两个锐角平分线相交所成的钝角的度数为( )A.120°B.135°C.150°D.120°或135°9.如图,AD是Rt△ABC斜边BC上的高,将△ACD沿AD所在的直线折叠,点C恰好落在BC的中点E处,则∠B等于()A. 25° B. 30° C. 45° D. 60°10.下列命题为假命题的是()A.若a=b,则a﹣2019=b﹣2019 B.若a=b,则C.若a>b,则a2>ab D.若a<b,则a﹣2c<b﹣2c二.填空题11.命题“在同一个三角形中,等角对等边”的逆命题是________.12.如图,D为Rt△ABC斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC 于点E,若AE=12 cm,则DE=_________cm.13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)14.用直尺和圆规作△ABC,使BC=a,AC=b(a>b),∠B=30°,若这样的三角形能作两个,则a,b间满足的关系式是________.15.命题“两直线平行,同旁内角相等”是命题(填“真”或“假”).16.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=__________时,△ABC与△QPA全等.17.举一个能证明命题“若x,y都是实数,则+≠”是假命题的反例:.18.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是________(不包括5).三.解答题19.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F,那么CE=DF吗?请说明理由.20.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?21.如图,在△ABC中,AC>AB,AD平分∠BAC,点D到点B与点C的距离相等,过点D作DE⊥BC于点E.(1)求证:BE=CE;(2)请直接写出∠ABC,∠ACB,∠ADE三者之间的数量关系;(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度数.22.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.23.边长为6的等边△ABC中,点P从点A出发沿射线AB方向移动,同时点Q从点B出发,以相同的速度沿射线BC方向移动,连接AQ、CP,直线AQ、CP相交于点D.(1)如图①,当点P、Q分别在边AB、BC上时,①连接PQ,当△BPQ是直角三角形时,AP等于________;②∠CDQ的大小是否随P,Q的运动而变化?如果不会,请求出∠CDQ的度数;如果会,请说明理由;________(2)当P、Q分别在边AB、BC的延长线上时,在图②中画出点D,并直接写出∠CDQ的度数.24.按要求完成下列各小题.(1)将命题“两个钝角的和一定大于180°”写成“如果…那么…”的形式,并判断该命题是真命题还是假命题;(2)判断命题“若a2>b2,则a>b”是真命题还是假命题,若是真命题,则举一个满足命题的例子;若是假命题,则举一个反例.25.如图,在Rt △ABC 中,∠ACB =90°,M 是边AB 的中点,CH ⊥AB 于点H ,CD 平分∠ACB .(1)求证:∠1=∠2.(2)过点M 作AB 的垂线交CD 的延长线于点E ,连结AE ,BE .求证:CM =EM .答案提示1.B. 2.B. 3.A .②正确.4.B. 5.C . 6.B .7.D.8.B.9.B. 10.C .11.在同一个三角形中,等边对等角. 12.12.13.AB =DC (答案不唯一).14.a <b <a . 15.假. 16.5或10.17.x =1,y =﹣4(答案不唯一).18.9或13或4919. 解:CE =DF .理由如下:在Rt △ABC 和Rt △BAD 中,⎩⎨⎧BC =AD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL),∴AC =BD ,∠CAB =∠DBA .在△ACE 和△BDF 中,⎩⎨⎧∠CAB =∠DBA ,∠AEC =∠BFD =90°,AC =BD ,∴△ACE ≌△BDF(AAS),∴CE =DF .20.解:连接BD在Rt△ABD中,BD2=AB2+AD2=32+42=52 ,在△CBD中,CD2=132 ,BC2=122 ,而122+52=132 ,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC= AD·AB+ DB· BC= ×4×3+ ×5×12=36所以需费用36×200=7200(元)21.解:(1)证明:∵DB=DC,DE⊥BC,∴CE=BE(三线合一).(2)结论:∠ABC-∠ACB=2∠ADE.点拨:作BF⊥AD于点F,交AC于点G,求出∠ABG=∠BGA,∠ADE=∠CBG.(3)作DM⊥AC于点M,DN⊥AB的延长线于点N,图略.∵∠DAN=∠DAM,DM⊥AC,DN⊥AB,∴DM=DN,∵DB=DC,∴Rt△DBN≌Rt△DCM(HL),∴∠BDN=∠CDM,∴∠CDB=∠MDN,∵∠CAB+∠MDN=180°,∴∠CDB+∠CAB=180°,∵∠ACB=40°,∠ADE=20°,∠ABC-∠ACB=2∠ADE,∴∠ABC=80°.∴∠CAB=180°-80°-40°=60°,∴∠CDB=120°,∴∠EDB=∠EDC=60°,∴∠DCB=90°-∠EDC=30°.22.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.23.(1)2或4;解:∠CDQ的大小不变∵P、Q用时出发,速度相同,所以AP=BQ,∵△ABC是等边三角形,∴BA=AC,∠B=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠B=∠APC,BQ=AP,∴△ABQ≌△CAP,∴∠BAQ=∠ACP,∴∠CDQ=∠DAC+∠ACP=∠DAC+∠BAQ=∠CAB=60°;(2)解:如图4,∠CDQ=120°,理由如下:∵△ABC是等边三角形,∴BA=AC,∠ABC=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠ABQ=∠CAP,BQ=AP,∴△ABQ≌△CAP,∴∠Q=∠P,∵∠P+∠BCP=60°,∴∠Q+∠DCQ=60°,∴∠CDQ=120°.24.解:(1)如果两个角是钝角,那么这两个角的和一定大于180°,真命题;(2)假命题,反例:a=﹣2,b=﹣1.25.解:(1)∵∠ACB=90°,∴∠BCH+∠ACH=90°.∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠CAH=∠BCH.∵M是斜边AB的中点,∴CM=AM=BM,∴∠CAM=∠ACM.∴∠BCH=∠ACM.∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCD-∠BCH=∠ACD-∠ACM,即∠1=∠2.(2)∵CH⊥AB,ME⊥AB,∴ME∥CH,∴∠1=∠MED.∵∠1=∠2,∴∠2=∠MED,∴CM=EM.1.3线段的垂直平分线一.选择题1.如图,∠B=35°,CD为AB的垂直平分线,则∠ACE=()A.55°B.60°C.70°D.80°2.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC =2,则BC的长为()A.4B.6C.8D.103.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm4.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处5.如图,已知△ABC的三条内角平分线相交于点I,三边的垂直平分线相交于点O.若∠BOC=148°,则∠BIC=()A.120°B.125°C.127°D.132°6.如图,在△ABC中,∠A=30°,∠C=110°,AB的垂直平分线交AB于点D,交边AC于点E,则∠EBC的度数是()A.10°B.15°C.20°D.25°7.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°8.如图,△ABC中,∠B=90°,边AC的垂直平分ED,交AC于点D,交BC于点E,已知∠C=36°,则∠BAE的度数为()A.16°B.17°C.18°D.19°9.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小4,则△ADE的面积为()A.4B.3C.2D.110.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)11.如图,在△ABC中,点O是BC、AC的垂直平分线的交点,OB=5cm,AB=8cm,则△AOB的周长是cm.12.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.13.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD,若AC=9,BC=5,则△BDC的周长是.14.如图,△ABC中,∠A=68°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则∠EDF=度.15.如图,在锐角△ABC中、∠A=80°,DE和DF分别垂直平分边AB、AC,则∠DBC的度数为°.三.解答题16.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为14cm,AC=6cm,求DC长.17.如图,在Rt△ABC中,∠A=90°,DE是BC的垂直平分线,交AC于点E,连接BE,∠CBE=2∠ABE,求∠C的度数.18.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAD+∠CAE=60°,求∠BAC的度数.参考答案一.选择题1.解:∵CD为AB的垂直平分线,∴AC=BC,∴∠B=∠A=35°∴∠ACE=∠B+∠A=70°.故选:C.2.解:∵DE是线段AB的垂直平分线,∴DA=DB,∵△ADC的周长为10,∴AC+DC+AD=10,∴AC+CD+BD=AC+BC=10,∵BC﹣AC=2,∴BC=6,故选:B.3.解:∵BC的垂直平分线交AC于D,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=8+10=18(cm),故选:A.4.解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.5.解:连接OA,∵∠BOC=148°,∴∠OBC+∠OCB=180°﹣∠BOC=32°,∵O是三边的垂直平分线的交点,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBA+∠OCA=(180°﹣32°)÷2=74°,∴∠ABC+∠ACB=74°+32°=106°,∵△ABC的三条内角平分线相交于点I,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠BIC=180°﹣∠IBC﹣∠ICB=180°﹣(∠ABC+∠ACB)=127°,故选:C.6.解:∵AB的垂直平分线交AB于点D,交边AC于点E,∴∠ABE=∠A=30°,∵∠A=30°,∠C=110°,∴∠ABC=180°﹣30°﹣110°=40°,∴∠EBC=40°﹣30°=10°,故选:A.7.解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.8.解:在Rt△ABC中,∠B=90°,∠C=36°,∴∠BAC=90°﹣36°=54°,∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C=36°,∴∠BAE=∠BAC﹣∠CAE=18°,故选:C.9.解:由尺规作图可知,MN是线段AB的垂直平分线,∴点D是AB的中点,∴S△ADC=S△BDC,∵S△BDC﹣S△CDE=4,∴S△ADC﹣S△CDE=4,即△ADE的面积为4,故选:A.10.解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,故选:B.二.填空题(共5小题)11.解:∵点O是BC、AC的垂直平分线的交点,∴OA=OB=5cm,∴△AOB的周长=OA+OB+AB=18(cm),故答案为:18.12.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.13.解:∵MN是线段AB的垂直平分线,∴△BDC的周长=BC+CD+DB=BC+CD+DA=BC+AC=14,故答案为:14.14.解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°﹣(∠EDB+∠FDC),∠A=180°﹣(∠B+∠C),∴∠EDF=∠A=68°.故答案为68.15.解:连接DA、DC,∵∠BAC=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵DE和DF分别垂直平分边AB、AC,∴DA=DB,DA=DC,∴DB=DC,∠DBA=∠DAB,∠DAC=∠DCA,∴∠DBA+∠DCA=∠DAB+∠DAC=80°,∴∠DBC=∠DBC=×(100°﹣80°)=10°,故答案为:10.三.解答题16.(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为14cm,∴AB+BC+AC=14(cm),∴AB+BC=8(cm),∵AB=EC,BD=DE,∴DC=DE+EC=(AB+BC)=4(cm).17.解:∵DE是BC的垂直平分线,∴EB=EC,∴∠CBE=∠C,∵∠CBE=2∠ABE,∴∠ABE=∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C+∠C+∠C=90°,∴∠C=36°.18.解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠B+∠C=∠DAB+∠EAC=60°,∴∠BAC=120°.。
北师版八年级数学下册作业课件(BS) 第一章 三角形的证明 专题课堂 三角形的证明
3.(嘉兴中考)如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB, DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.
证明:∵DE⊥AB,DF⊥BC,垂足分别为点 E,F, ∴∠AED=∠CFD=90°,∵D 为 AC 的中点,∴AD=CD, 在 Rt△ADE 和 Rt△CDF 中,ADDE==DCFD,,∴Rt△ADE≌Rt△CDF(HL), ∴∠A=∠C,∴BA=BC,∵AB=AC, ∴AB=BC=AC,∴△ABC 是等边三角形
6.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E, 交AC于点D,若AB=6,AC=9,则△ABD的周长是_____1.5
7.如图所示,D为锐角∠ABC内一点,点M在边BA上,点N在边BC上, 且DM=DN,∠BMD+∠BND=180°. 求证:BD平分∠ABC.
证明:作DE⊥AB,DF⊥BC,E,F为垂足,可证△DEM≌△DFN, 则∴DE=DF,∴BD平分∠ABC
证明:∵AB=AC,D是BC的中点,∴∠BAD=∠CAD, ∵∠EAB=∠BAD,∴∠EAB=∠CAD,在△AEB和△AFC中, AE=AF,∠EAB=∠FAC,AB=AC, ∴△AEB≌△AFC(SAS),∴BE=CF
例2 如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分 ∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,求BC的长.
1.如图,在等腰 Rt△ABC 中,∠ABC=90°,AB=CB=2, 点 D 为 AC 的中点,点 E,F 分别是线段 AB,CB 上的动点, 且∠EDF=90°,若 ED 的长为 m, 则△BEF 的周长是(__2_m__+__2_) (用含 m 的代数式表示).
2.如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD, AE交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF. 求证:BE=CF.
北师大版八年级数学下册第一章有理数1.4-1.6练习题及答案
北八(下)第一章1.4-1.6章节水平测试题一、填空题:(每题3分,共24分)1.已知不等式7)1(68)2(5+-<+-x x 的最小整数解为方程42=-ax x 解,则a 值是 .2.已知)1(645)25(3+-<++x x x ,化简xx --+11= .3.a 取正整数 时,方程73-=a x 的解是负整数.4.k 为整数 时,方程425+-=-x k x 的解在1和3之间.7.如果三角形的三边长分别是 3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.8.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.二、选择题:(每题3分,共24分)9.不等式3(x -2)≤x +4的非负整数解有几个( ) A .4 B .5 C .6D .无数个10.不等式4x -41141+<x 的最大的整数解为( ) A .1B .0C .-1D .不存在A .5B .4C .3D .无数个A .a =3 b =5B .a =-3 b =-5C .a =-3 b =5D .a =3 b =-513.若方程4152435-=-m m x 的解是非正数,则m 的取值范围是( ). A 3m ≤ B 2m ≤ C 3m ≥ D 2m ≥14.七年级(3)班同学假日外出游玩,要拍合影留念,若一张彩色底片要0.57,冲印一张要0.35元,每人预定要一张,花钱不超过0.45元,则参加合影的同学至少有( )个人?A 5 B.6 C.7 D.815.如果关于x 、y 的方程组⎩⎨⎧=+=-a y x y x 53102的解满足x >0且y <0,则实数a 的取值范围是( ).A2<a<3 B-3<a<2 C-2<a <3 D-3<a<-216.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y 1元,国营出租车公司收费为y 2元,观察下列图象可知,当x( )时,选用个体车较合算.A. x<1500B. x=1500C. x>1200D. x >1500 三、解答题:(共30分)17(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)612312531+-≥--x x (2)18.(10分)已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.19.(10分)如果方程组,⎩⎨⎧-=++=+m y x m y x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上. 是多少?四、综合探究题:(22分)20.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需调往A 县10辆,调至B 县8辆,已知从甲仓库调往A 县和B 县的费用分别40元和80元;从乙仓库调往A 县和B 县的费用分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆.求总运费y 与x 的函数关系式. (2)若要求总运费不超过900元.问共有几种调配方案? (3)求出总运费最低的调运方案,最低运费是多少?。
八年级数学下册第一章三角形的证明1.2教材习题课件新版北师大版
又∵AB=AD,∴AE=AF.
A
在△AEC和△AFC中,
E
F
∵AE=AF,∠EAC=∠FAC,AC=AC, B
D
∴△AEC≌△AFC(SAS),
∴EC =FC.
∴这两根彩线的长度相等.
C
(2) 如果AE=1 AB,AF= 1 AD,那么彩线的长度相等吗?
如果AE=
1
3
AB,AF=
1
3
AD呢?由此你能得到什么结论?
(1) 分别在AB,AD的中点E,F处拉两根彩线EC,FC,
证明:这两根彩线的长度相等; (1)证明:如图,连接AC. 在△ABC和△ADC中,
A E B
F D
∵AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC.
C
∵E,F分别为AB,AD的中点,
∴AB=2AE,AD=2AF.
∵∠BDC=∠ABD+∠A,
A
∴∠A=∠BDC-∠ABD=2x°-x°=x°.
∵∠A+∠ABC+∠C=180°,
D
∴x+2x+2x=180.解得x=36 ∴∠A=36°.
B
C
2. 已知:如图,在△ABC中,AB=AC,D为BC的中点,
点E,F分别在AB和AC上,并且AE=AF.
求证:DE=DF.
A
八(下)数学教材习题
习题 1.2
1. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC
于点D. 若BD=BC,则∠A等于多少度?
解:设∠ABD=x°,
A
∵BD平分∠ABC,
∴∠ABC=2∠ABD=2x°. ∵AB=AC, ∴∠C=∠ABC=2x°.
八年级数学下册 第一章 三角形的证明1.4 角平分线第2课时 三角形的内角平分线习题课件北师大版
在等腰直角三角形BDE中,
BD 2DE2 4 2 cm.
C
E
D
B
AC BC CD BD (4 4 2) cm.
课程讲授
2 角平分线的性质和判定的实际应用
例 如图,在△ABC中,AC=BC, ∠C=90°, AD是△ABC
的角平分线,DE⊥AB,垂足为E.
(2)求证:AB=AC+CD. A
的距离_相__等___. 即PD=_P_E__=__P_F__.
A
D
NP
F M
B
C
E
课程讲授
1 三角形的三条内角平分线相交于一点
练一练:如图,在△ABC中,∠ABC,∠ACB的平分 线相交于点O,下面结论中正确的是( B )
A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.不能确定
课程讲授
2 角平分线的性质和判定的实际应用
(2)证明:由(1)的求解过程易知,
Rt△ACD≌Rt△AED(HL).
∴AC=AE(全等三角形的对应边相等).
E
∵BE=DE=CD,
∴AB=AE+BE=AC+CD.
C
D
B
课程讲授
2 角平分线的性质和判定的实际应用
练一练:如图,铁路OA和铁路
OB交于O处,河道AB与铁路分别
交于A处和B处,试在河岸上建一 M
一点到角两边的距离相等.
A
已知:如图,在△ABC中,角平分线 BM与角平分线CN相交于点P,过点P 分别作AB,BC,AC的垂线,垂足分
别为D,E,F. 求证:∠A的平分线经过点P,且 B
PD=PE=PF.
D
N
PMFE来自C课程讲授1 三角形的三条内角平分线相交于一点
北师大版八年级数学下册第一章测试卷及答案
北师大版八年级数学下册第一章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3. 已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,45.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠C C.BD=DC D.AB=CD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )A.40° B.50° C.60° D.75°7.如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为( )A.3 B.3 2 C.2 3 D.48.为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A.仅有一处B.有四处 C.有七处D.有无数处9.如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为( )A .3 2B .4C .2 5D .4.510. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离都相等;④设OD =m ,AE +AF =n ,则S △AEF =mn ;⑤S △EOB =S FOC .其中,正确的有( )A .2个B .3个C .4个D .5个二.填空题(共8小题,每小题3分,共24分)11.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =________.12. 如图,在△ABC 中,AB =AC =BC =4,AD 平分∠BAC ,点E 是AC 的中点,则DE 的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题. 14.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个. ①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13. 16.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB .若AC =2,DE =1,则S △ACD =________.17.如图,E是等边三角形ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE是________三角形.18.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.三.解答题(共7小题, 66分)19.(8分) 如图,△ABC,△CDE均为等边三角形,连接BE,AD交于点O,BE与AC交于点P.求证:∠AOB =60°.20.(8分) 如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.21.(8分) 如图,四边形ABCD是长方形,用尺规作∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连接QD,在新图形中,你发现了什么?请写出一条.22.(8分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.23.(10分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于点F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12 cm,AB=6 cm,PA=5 cm,求BP的长.24.(10分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.(14分) 如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q 两点都停止运动,设运动时间为ts,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.参考答案1-5DDCBA 6-10BBABB 11. 110° 12. 213. 如果两个三角形的面积相等,那么这两个三角形全等;假 14. 20° 15. 3 16.1 17. 等边 18. 108°19. 证明:∵△ABC 和△ECD 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS),∴∠CAD=∠CBE ,∵∠APO =∠BPC ,∴∠AOP =∠BCP =60°,即∠AOB =60°.20.证明:∵AB =AC ,∴∠ABC =∠ACB.∵BD ⊥AC ,CE ⊥AB ,∴∠BDC =∠CEB =90°,在△BCE 和△CBD 中,⎩⎪⎨⎪⎧∠ABC =∠ACB ,∠CEB =∠BDC =90°,BC =CB ,∴△BCE ≌△CBD(AAS),∴∠BCE =∠CBD ,∴BO =CO. 21. 解:如图所示.发现:QD =AQ 或∠QAD =∠QDA 等22. 解:(1)∠ABE =∠ACD.理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD(2)连接AF.∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A ,F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC23.解:(1)证明:过点P 作PE ⊥AB 于点E ,∵∠1=∠2,PF ⊥BC ,PE ⊥AB ,∴PE =PF.在△APE 和△CPF 中,⎩⎪⎨⎪⎧PA =PC ,PE =PF ,∴△APE ≌△CPF(HL),∴∠PAE =∠PCB.∵∠PAE +∠PAB =180°,∴∠PCB +∠BAP =180°. (2)∵△APE ≌△CPF ,∴AE =FC ,∵BC =12 cm ,AB =6 cm ,∴AE =12×(12-6)=3 (cm),BE =AB +AE =6+3=9 (cm),在Rt △PAE 中,PE =52-32=4 (cm),在Rt △PBE 中,PB =92+42=97 (cm).24. 证明:连接PA ,PB ,PC ,如图.∵AD ⊥BC 于点D ,PE ⊥AB 于点E ,PF ⊥AC 于点F ,PG ⊥BC 于点G ,∴S △ABC =12×BC ×AD ,S △PAB =12×AB ×PE ,S △PAC =12×AC ×PF ,S △PBC =12×BC ×PG . ∵S △ABC =S △PAB +S △PAC +S △PBC ,∴12×BC ×AD =12(AB ×PE +AC ×PF +BC ×PG ).∵△ABC 是等边三角形,∴AB =BC =AC ,∴BC ×AD =BC ×(PE +PF +PG ),∴AD =PE +PF +PG .25. 解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由:∵点Q 到达点C 时,BQ =BC =6 cm ,∴t =62=3.∴AP =3 cm.∴BP =AB -AP =3 cm =AP .∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.。
(完整版)北师大版八年级下册数学第一章测试题
2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。
2.请将密封线内的项目填写清楚。
3.请在密封线外答题。
题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。
北师大版八年级数学下《第一章三角形的证明》单元测试题(有答案)
北师大版八年级数学下册第一章三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②2.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥C D,△AB D、△B CE都是等腰三角形,如果C D=8cm,BE=3c m,那么A C长为().A.4c m B.5c m C.8c m D.34c m4.如图3,在等边ABC 的度数是().,中,D E分别是B C A C上的点,且,B D CE,A D与BE相交于点P,则12450B.55C.60D.75A.0005.如图4,在ABC中,A B=A C,A 36ABC ACB,B D和CE分别是和的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A.9个B.8个C.7个D.6个,l,l6.如图5,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可123供选择的地址有().A.1处B.2处C.3处D.4处7.如图 6,A 、C 、E 三点在同一条直线上,△D A C 和△EB C 都是等边三角形,AE 、B D 分别与 C D 、CE 交于点 M 、N ,有如下结论:①△AC E ≌△D C B ;② C M =C N ;③ A C =D N. 其中,正确结论的个数是().A .3 个B .2 个C . 1 个D .0 个8.要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 C D=B C ,再作出 BFABC ED C ≌ ,得 ED =A B. 因此,的垂线 DE ,使 A ,C ,E 在同一条直线上(如图 7),可以证明 ABC ED C ≌测得 DE 的长就是 A B 的长,在这里判定 的条件是( ). A .AS AB .S ASC .SSSD .H L9.如图 8,将长方形 A B C D 沿对角线 B D 翻折,点 C 落在点 E 的位置,BE 交 A D 于点 F. BDF 求证:重叠部分(即 )是等腰三角形. 证明:∵四边形 A B C D 是长方形,∴A D ∥B CBDE 又∵ 与 BD C 关于 B D 对称, 2 3. ∴ B D F 是等腰三角形.∴ 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().1 2 ;②1 3;③3 4;④BDC BDE ① A .①③B .②③C .②①D .③④10.如图9,已知线段a,h作等腰△AB C,使AB=A C,且BC=a,B C边上的高A D=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线M N,M N与BC相交于点D;(3)在直线M N上截取线段h;(4)连结AB,AC,则△AB C为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A.(1)B.(2)C.(3)D.(4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△A B C和△D C B中,A C=D B,若不增加任何字母与辅助线,要使△A B C≌△D C B,则还需增加一个条件是____________.2.如图11,在Rt AB C中,BA C90,,AB A C,分别过点B C作经过点A的直线的垂线段B D,C E,若B D=3厘米,CE=4厘米,则DE的长为_______.3.如图12,P,Q是△A B C的边B C上的两点,且BP=P Q=Q C=A P=A Q,则∠A B C等于_________度.4.如图13,在等腰ABC中,A B=27,A B的垂直平分线交A B于点D,交AC于点E ,若BCE的周长为50,则底边BC的长为_________.ABC中,A B=A C,A B的垂直平分线与A C所在的直线相交所得的锐角为50,则0 5.在底角B的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边A C=5c m,B C=10c m,将△A B C 折叠,点B 与点A 重合,折痕为DE,则C D 的长为________.8.如图15,在ABC中,A B=A C ,A 120 ,D 是BC 上任意一点,分别做D E⊥A B 于E,DF⊥A C于F,如果BC=20cm,那么DE+D F= _______cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,D E是AB的中垂线,垂足为D,交BCE于点,若BE 4,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)ABC 中,ACB 90,C D 是A B 边上的高,A 301.(7 分)如图18,在.求证:A B= 4BD.0 02.(7分)如图19,在ABC900中,C ,A C=B C,A D平分CAB交B C于点D,DE⊥A B于点E,若A B=6c m.你能否求出BDE的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D、E分别为△AB C的边AB、AC上的点,BE与C D相交于O点.现有四个条件:①AB=AC;②OB=O C;③∠ABE=∠ACD;④BE=C D.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:..命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC中,A 900,AB=A C,AB C的平分线B D交A C于D,CE⊥B D的延1BD2长线于点E.求证:CE.ABC中,C 900.5.(8分)如图22,在(1)用圆规和直尺在A C上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到A B、B C的距离相等时,求∠A的度数.6.(8分)如图23,AOB90,O M平分A O B,将直角三角板的顶点P在射线O M上移动,两直角边分别与O A、O B相交于点C、D,问PC与P D相等吗?试说明理由.四、拓广探索(本大题12分)ABC如图24,在中,A B=A C,A B的垂直平分线交A B于点N,交B C的延长线于点M,若A400.(1)求N M B 的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求N M B的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C;2.B;3.D.点拨:B C=BE=3c m,A B=B D=5c m;ABD≌BCE;4.C.点拨:利用5.B;6.D.点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B.点拨:①②正确;8.A;9.C;10.C.点拨:在直线M N上截取线段h,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC;ABD≌CAE;2.7厘米.点拨:利用3.30;BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.EBF F 90,ACF F 900 ,∴ EBFACF .∵ 0 在 RtABD Rt ACF 中,∵DBA ACF和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。
2022-2023学年北师大版八年级数学下册第一章三角形的证明测试卷含答案
北师大版八年级数学下册第一章《三角形的证明》测试卷(含答案)一、选择题(共10小题,3*10=30)1.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角 D .至多有两个内角是直角2.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°3.在△ABC 中,已知∠A =∠B =45°,BC =2,则AB 的长为( ) A .1 B. 2 C .2 D .44.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或105.如图,四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =1,BC =2,则四边形ABCD 的面积是( )A.332B .3C .2 3D .46. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE.若AC =5,BC =3,则BD 的长为( )A .2.5B .1.5C .2D .17. 如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,且AD 交BC 于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A.∠CAD=30° B.AD=BDC.BE=2CD D.CD=ED8.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个9.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.110.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32 B.25 3 C.33 D.34二.填空题(共8小题,3*8=24)11.命题“两条直线相交只有一个交点”的逆命题是____________________________________,它是________________命题.12. 如图,将长为8 cm的橡皮筋放置在直线l上,固定两端A和B,然后把中点C向上拉升3 cm到D点,则橡皮筋被拉长了________.13. 如图,AB ∥CD ,O 为∠BAC ,∠ACD 的平分线的交点,OE ⊥AC 于点E ,且OE =1,则AB 与CD 之间的距离等于_______.14.如图,△ABC 的周长为32,且AB =AC ,AD ⊥BC 于点D ,△ACD 的周长为24,那么AD 的长为________.15. 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__________.16.如图,在等边三角形ABC 中,AD 是BC 边上的高,且AD =4,E 是AB 边的中点,点P 在AD 上运动,则PB +PE 的最小值是________.17.等腰三角形ABC 中,BD ⊥AC ,垂足为点D ,且BD =12AC ,则等腰三角形ABC 底角的度数为________.18. AB 与CD 相交于点O ,AB =CD ,∠AOC =60°,∠ACD +∠ABD =210°,则线段AB ,AC ,BD 之间的等量关系式为_________________.三.解答题(7小题,共66分)19.(8分) 如图,点D ,E 在△ABC 的BC 边上,AB =AC ,AD =AE.求证:BD =CE.20.(8分) 如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.21.(8分) 如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.22.(10分) 用一条长为18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4 cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.23.(10分) 如图,在等边△ABC中,AO是∠BAC的平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至点Q,P为BQ上一点,连接CP,CQ,使CP=CQ=5,若BC=8,求PQ的长.24.(10分) 在△ABC中,∠B=22.5°,边AB的垂直平分线DP交AB于点P,交BC于点D,且AE ⊥BC于点E,DF⊥AC于点F,DF与AE交于点G,求证:EG=EC.25.(12分) 在△ABC中,AB=AC,∠BAC=90°.点D是CA延长线上一点,连接BD,点E是BD 上一点,连接CE交AB于点F,BD=CF.(1)如图①,当点E是BD的中点时,若BC=4,求AF的长;(2)在(1)的条件下,如图②,连接AE,求证:DE+EF=2AE.图①图②参考答案1-5BBCCA 6-10DCDBC11. 只有一个交点的两条直线一定相交;真 12. 2cm 13. 2 14. 8 15. 5 16.417.45°或15°或75° 18. AB 2=AC 2+BD 219. 证明:过点A 作AP ⊥BC 于P.∵AB =AC ,∴BP =PC ,∴AD =AE ,∴DP =PE ,∴BP -DP =PC -PE ,∴BD =CE20. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,即∠CAB =∠EAD. 又∵AB =AD ,AC =AE , ∴△ABC ≌△ADE(SAS). ∴∠C =∠E.21. 解:(1)证明:∵∠A =∠ABE ,∴EA =EB.∵AD =DB ,∴DF 是线段AB 的垂直平分线. (2)∵∠A =46°,∴∠ABE =∠A =46°.∵AB =AC ,∴∠ABC =∠ACB =67°,∴∠EBC =∠ABC -∠ABE =21°,∠F =90°-∠ABC =23°.22. 解:(1)设底边长为x cm ,则腰长为2x cm.依题意,得2x +2x +x =18,解得x =185,∴2x =365.∴三角形三边的长为185 cm ,365 cm ,365cm(2)若腰长为4 cm ,则底边长为18-4-4=10 cm.而4+4<10,所以不能围成腰长为4 cm 的等腰三角形.若底边长为4 cm ,则腰长为12(18-4)=7 cm.此时能围成等腰三角形,三边长分别为4 cm ,7 cm ,7 cm23. 解:(1)证明:∵△ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE ,且∠ACB =∠DCE =60°,即∠ACD +∠DCB =∠DCB +∠BCE =60°,∴∠ACD =∠BCE ,∴△ACD ≌△BCE(SAS).(2)作CH ⊥BQ 于点H ,图略.则PQ =2HQ.在Rt △BHC 中,由(1)得∠CBH =∠CAO =30°,∴CH =12BC=4,在Rt △CHQ 中,HQ =CQ 2-CH 2=52-42=3,∴PQ =2HQ =6. 24. 解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS),∴EG =EC25. 解:(1)∵AB =AC ,∠BAC =90°,BC =4,∴AB =AC =2 2. ∵BD =CF ,AB =AC ,∴Rt △BAD ≌Rt △CAF(HL),∴∠DBA =∠ACF. ∵∠EFB =∠AFC ,∴∠BEF =∠FAC =90°,∴CE ⊥BD.∵BE =DE ,∴CB =CD =4, ∴AF =AD =CD -AC =4-2 2.(2)作AM ⊥BD 于点M ,AN ⊥EC 于点N.∵△BAD ≌△CAF ,∴AM =AN ,∴∠AEM =∠AEN =45°,∴AM =EM =EN =AN.∵AD =AF ,AM =AN ,∴Rt △AMD ≌Rt △ANF(HL),∴DM =FN ,∴DE +EF =EM +DM +EN -FN =2EM ,∵AE =2EM.∴DE +EF =2AE.。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
北师大版数学八年级下册第一章三角形的证明第4节角平分线课堂练习
第一章三角形的证明第4节角平分线课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.在Rt ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE∠AC,垂足为点E,若BD=3,则DE的长为()A.3B.32C.2D.62.如图,Rt∠ABC中,∠C=90°,BG平分∠ABC,交AC于点G,若CG=1,P为AB 上一动点,则GP的最小值为()A.1B.12C.2D.无法确定3.作∠AOB的角平分线的作图过程如下,作法:(1)在OA和OB上分别截取OD,OE,使OD=OE;(2)分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠AOB内交于点C;(3)作射线OC,OC就是∠AOB的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是()A.SAS B.SSS C.AAS D.ASA4.如图,ABC中,BAC∠的平分线AD与边BC的垂直平分线GD相交于点D,DE AB⊥交AB的延长线于点E,DF AC⊥于F,现有下列结论:∠DE DF=;∠BE CF=;∠DG平分EDF∠;∠2AB AC AF+=;其中,正确的结论的个数是______A.4B.3C.2D.15.如图,在∠ABC中,AC=BC=8,∠ACB=120°,BD平分∠ABC交AC于点D,点E、F分别是线段BD,BC上的动点,则CE+EF的最小值是()A.2B.4C.5D.6评卷人得分二、填空题6.如图,点O在直线AB上,OD OE⊥,垂足为O,OC是DOB∠的平分线,若70AOD∠=°,则COE∠=________度.7.如图,点C在AOB∠的平分线上,CD OA⊥于点D,且1CD=,如果E是射线OB 上一点,那么CE长度的最小值是______.8.如图,在ABC中,90ACB∠=︒,O为三条角平分线的交点,OD BC,OE AC⊥,OF AB⊥,若5AB=,4BC=,则OD的长为_______________________.9.如图,在∠ABC中,按以下步骤作图:∠以B为圆心,任意长为半径作弧,交AB于D,交BC于E;∠分别以D,E为圆心,以大于12DE的同样长为半径作弧,两弧交于点F;∠作射线BF交AC于G.如果AB=9,BC=12,∠ABG的面积为18,则∠CBG的面积为_____.10.如图,在∠ABC中,AD是中线,AE是高,AB=BC,过点D作DF∠AC于点F,交AE于点K,∠BAD=∠DAE,∠ABD的面积是15,DE=3,则KE的长为__.11.如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=28°,∠EBD=25°,则∠AED =_____°.评卷人得分三、解答题12.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,∠ACF=24°,∠DAC=4∠5,求证:(1)CE平分∠BCF(2)则∠5=__________°(直接写出答案即可)13.已知直线//AB CD,直线EF分别交AB、CD于点A、C,CM是ACD∠的平分线,CM交AB于点H,过点A作AG AC⊥交CM于点G.(1)如图1,点G在CH的延长线上时,若36GAB∠=︒,求MCD∠的度数;(2)如图2,点G在CH上时,试说明:290MCD GAB∠+∠=︒.14.阅读并完成下列推理过程,在括号内填写理由.已知:如图,点D ,E 分别在线段,AB BC 上,//,AC DE AE 平分BAC ∠交BC 于点E ,DF 平分BDE ∠交BC 于F .试说明//DF AE .解:因为AE 平分BAC ∠(已知),所以1122∠=∠=_________(________). 因为DF 平分BDE ∠(已知),所以1342∠=∠=__________(角平分线的定义). 因为//AC DE (已知),所以BDE BAC ∠=∠(______________),所以___________________________.(等量代换),所以//DF AE (____________).15.如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .16.已知如图,在ABC中,AD是它的角平分线,且BD CD=,DE AB⊥,DF AC⊥,垂足分别是E、F.求证:EB FC=.17.如图,BD平分ABC∠,ADB ABD∠=∠.证明:MAD ABC∠=∠.18.如图,已知ABC,用尺规作图法作ABC∠的平分线BD,交AC于点D.(保留作图痕迹,不写作法)19.(1)【提出问题】在一次思维训练营上老师给同学们出了这样一个问题:如图∠在ABC中,AD为BC边上的中线,延长AD与AC的平行线BE交于点E.如果5AD=,那么AE长为多少?小凯同学立刻利用全等三角形解决了老师的问题.请你直接写出AE的长.解:∠AD是BC边上的中线,∠BD CD=,又∠//AC BE,∠CAD E∠=∠在ADC和EDB△中CAD EADC EDBBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC EDB≌(AAS)∠AD DE=又∠5AD=∠AE=______(2)【猜想证明】如图∠,在四边形ABCD中,//AB CD,点E是BC的中点,若AE 是BAD∠的平分线,试猜想线段AB,AD,DC之间的数量关系,并证明你的猜想.(3)【拓展延伸】如图∠,已知某学校内有一块梯形空地,//AB CD,生物小组把它改造成了花圃,内部正好有两条小路BC,AE,经过测量发现50AB BC==米,16CD=米,ABE△和ACE正好面积相等,分别种上了玫瑰和郁金香,在BCD△内种了向日葵.现在准备在地下建一条水管DF,且已知30DFE BAE∠=∠=︒,但由于不便于测量DF的长,请你用所学几何知识求出DF的长,并说明理由.20.如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)求证:AD∠EF;(2)求证:AD是∠BAC的平分线.参考答案:1.A【解析】【分析】根据角平分线的性质即可求得.【详解】解:∠∠B=90°,∠DB∠AB,又∠AD平分∠BAC,DE∠AC,∠DE=BD=3,故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题关键.2.A【解析】【分析】如图,过点G作GH∠AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH∠AB于H.∠GB平分∠ABC,∠C=90°,即GC∠BC,∠GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:A.【点睛】本题考查垂线段最短的知识点,作好辅助线求解是关键.3.B【解析】【分析】利用基本作图得到OD =OE ,DC =EC ,然后根据全等三角形的判定得到进行判断.【详解】解:如图,连接EC ,DC .在∠EOC 和∠DOC 中,OE OD OC OC EC DC =⎧⎪=⎨⎪=⎩ ,∠∠EOC ∠∠DOC (SSS ),∠∠EOC =∠DOC ,∠OC 平分∠BOA .故选:B .【点睛】本题考查了作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4.B【解析】【分析】角平分线的性质可知∠正确;先证明BED CFD ≌,从而可证明∠正确;先证明DAE DAF ≌,从而得∠ADE =∠ADF ,即:AD 平分EDF ∠,故∠错误;∠连接BD 、DC ,然后证明∠EBD ∠∠DFC ,DAE DAF ≌,从而得到BE =FC ,AE =AF ,从而可证明∠.【详解】解:如图所示:连接BD 、DC .∠AD平分∠BAC,DE∠AB,DF∠AC,∠ED=DF.故∠正确.∠BAC∠的平分线AD与边BC的垂直平分线GD相交于点D,∠BD=CD,∠DE∠AB,DF∠AC,∠∠BED=∠CFD=90°,又∠ED=DF,≌,∠BED CFD=,故∠正确;∠BE CF∠∠AED=∠AFD=90°,AD=AD,∠DAE=∠DAF,∠DAE DAF≌,∠∠ADE=∠ADF,即:AD平分EDF∠∠不能判定GD平分∠EDF.故∠错误.∠∠∠BED∠∠CFD.∠BE=FC,∠DAE DAF≌,∠AE=AF,∠AB+AC=AE−BE+AF+FC,又∠AE=AF,BE=FC,∠AB+AC=2AE.故∠正确.故选B.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【解析】【分析】从已知条件结合图形,利用对称性和三角形的三边关系确定线段和的最小值.【详解】解:作C点关于BD 的对称点C ',过C '作C 'F ∠BC 交BD 于点E ,交BC 于点F ,∠CE +EF =C 'E +EF ≥C 'F ,∠CE +EF 的最小值C 'F 的长,∠CC '∠BD ,∠BD 平分∠ABC ,∠∠C 'BG =∠GBC ,在∠C 'BG 和∠CBG 中,''C BG GBC BG BGBGC BGC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠C 'BG ∠∠CBG (ASA ),∠BC =BC ',∠AC =BC =8,∠ACB =120°,∠∠ABC =30°,BC '=8,在Rt∠BCC '中,C 'F =12BC '=812⨯=4, ∠CE +EF 的最小值为4,故选:B .【点睛】本题考查的是轴对称-最短路线的问题,角平分线的性质,解题关键是学会添加常用的辅助线,利用角平分线的性质解决问题.【解析】【分析】根据点O 在直线AB 上,得到180AOD DOB ∠+∠=︒,110DOB ∠=︒,再根据OD OE ⊥,垂足为O ,OC 是DOB ∠的平分线得到90∠+∠=︒DOC COE ,1552DOC COB DOB ∠=∠=∠=︒ ,最后得出答案. 【详解】解:∠点O 在直线AB 上,∠180AOD DOB ∠+∠=︒,∠70AOD ∠=°,∠180********DOB AOD ∠=︒-∠=︒-︒=︒,∠OD OE ⊥,∠90∠+∠=︒DOC COE ,∠OC 是DOB ∠的平分线,∠1552DOC COB DOB ∠=∠=∠=︒, ∠90905535COE DOE ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】 本题主要考查了补角、余角、角平线的性质,关键在于熟练运用角平分线的性质进行求解.7.1【解析】【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C在∠AOB的平分线上,CD∠OA于点D,且CD=1,∠CE=CD=1,即CE长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.1【解析】【分析】根据勾股定理求得AC=3,根据角平分线的性质得到OE=OF=OD,设OD=x,然后根据S△ABC=S△OAB+S△OAC+S△OCB可得到关于x的方程,从而可得到OD的长度.【详解】解:∠在∠ABC中,∠ACB=90°,AB=5,BC=4,∠AC=2222543AB BC-=-=,∠点O为∠ABC的三条角平分线的交点,OD BC,OE AC⊥,OF AB⊥,∠OE=OF=OD,设OE=OF=OD=x,∠S△ABC=S△OAB+S△OAC+S△OCB,∠12AC·BC=12AB·OF +12AC·OE+12BC·OD,∠12×3×4=12×5x+12×3x +12×4x,解得:x=1,∠OD=1,故答案为:1.【点睛】本题考查了勾股定理和角平分线的性质,角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键.9.24【解析】【分析】如图,过点G作GM AB⊥于M,GN BC⊥于N.证明GM GN=,求出GM,即可解决问题.【详解】解:如图,过点G作GM AB⊥于M,GN BC⊥于N.由作图可知,GB平分ABC∠,GM AB⊥,GN BC⊥,GM GN∴=,1182ABGS AB GM∆=⨯⨯=,4GM∴=,4GN GM∴==,111242422CBGS BC GN∆∴==⨯⨯=,故答案为24.【点睛】本题考查作图-基本作图,角平分线的性质定理,三角形的面积等知识,学会添加常用辅助线,利用角平分线的性质定理解决问题是解题的关键.10.1【解析】【分析】先作DG ∠AB 于点G ,根据角平分线的性质和∠ABD 的面积可以求出AB ,进而求出BC ,BD ,EC ,然后根据计算结果证明AF DF =,再证明C AFK DF ≌,推出CF FK =,即可求得KE 的值.【详解】解:作DG ∠AB 于点G ,∠∠BAD =∠DAE ,AE ∠BC∠DG =DE =3,∠∠ABD 的面积为15,∠AB •DG =30,∠AB =10,∠BC =10,BD =DC =5,∠BE =DB +DE =8,∠AE =6,EC =BC ﹣BE =2,∠222262210AC AE EC =+=+=,∠1122AE DC DF AC =, ∠3102DF =, ∠22102CF CD DF =-=, ∠3102AF AC CF =-=, ∠AF DF =, ∠90,90C CDF C CAE ∠+∠=︒∠+∠=︒,∠CDF KAF ∠=∠,∠90AFK DFC ∠=∠=︒,()AFK DFC ASA ∴≌,∠102CF FK ==, ∠10DK DF FK =-=,∠221EK DK DE =-=,故答案为:1.【点睛】本题主要考查角平分线的性质和全等三角形的判定与性质以及勾股定理,根据全等三角形性质求出CF FK =是解题的关键.11.37【解析】【分析】连接CE ,过E 作ER ∠AC 于R ,CD 交ER 于Q ,AE 交BC 于O ,根据角平分线性质和线段垂直平分线的性质得出CE =BE ,ER =EF ,根据全等求出∠RCE =∠EBF ,求出∠ACB =∠QED =28°,求出∠BED =∠CED =65°,求出∠REF 的度数,再求出∠CAB ,求出∠CAE ,根据三角形的外角性质求出∠DOE ,再求出答案即可. 【详解】解:连接CE ,过E 作ER ∠AC 于R ,CD 交ER 于Q ,AE 交BC 于O ,∠DE 是线段BC 的中垂线,∠∠EDC =90°,CE =BE ,∠∠ECB =∠EBD ,∠∠EBD =25°,∠∠ECB =25°,∠∠DEB =∠CED =90°﹣25°=65°,∠ER ∠AC ,ED ∠BC ,∠∠QRC =∠QDE =90°,∠∠ACB +∠CQR =90°,∠EQD +∠QED =90°,∠∠CQR =∠EQD ,∠∠ACB =∠QED ,∠∠ACB =28°,∠∠QED =28°,∠AE 平分∠CAM ,ER ∠AC ,EF ∠AM ,∠ER =EF ,在Rt∠ERC 和Rt∠EFB 中,CE BE ER EF=⎧⎨=⎩, ∠Rt∠ERC ∠Rt∠EFB (HL ),∠∠EBF =∠ACE =∠ACB +∠ECD =28°+25°=53°,∠∠EFB =90°,∠∠BEF =90°﹣∠EBF =90°﹣53°=37°,∠∠REF =∠RED +∠BED +∠BEF =28°+65°+37°=130°,∠∠ARE =∠AFE =90°,∠∠CAM =360°﹣90°﹣90°﹣130°=50°,∠AE 平分∠CAM ,∠∠CAE =12∠CAM =25°, ∠∠DOE =∠CAE +∠ACB =25°+28°=53°,∠ED ∠BC ,∠∠EDB =90°,∠∠AED =90°﹣∠DOE =90°﹣53°=37°,故答案为:37.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,等腰三角形的性质,三角形的外角性质,全等三角形的性质和判定,三角形的内角和定理等知识点,能综合运用知识点进行推理和计算是解此题的关键,注意:∠线段垂直平分线上的点到线段两个端点的距离相等,∠角平分线上的点到这个角的两边的距离相等.12.(1)见解析;(2)26°【解析】【分析】(1)根据平行线的判定方法证明DA ∠BC ∠EF ,然后根据平行线的性质即可证明. (2)根据平行线的性质求解即可.【详解】(1)∠∠DAC +∠ACB =180°,∠DA ∠BC ,又∠∠1=∠2,∠DA ∠EF ,∠DA ∠BC ∠EF ,∠∠3=∠5,∠∠3=∠4,∠∠4=∠5,∠CE 平分∠BCF . (2)∠∠DAC +∠ACB =180°,∠DAC =4∠5,∠4∠5+∠5+∠5+24°=180°,解得:∠5=26°.【点睛】此题考查了平行线的性质和判定,角平分线的概念和判定,解题的关键是根据题意找出题目中各角之间的关系.13.(1)63°;(2)见解析【解析】【分析】(1)依据AG AC ⊥,36GAB ∠=︒可得CAH ∠的度数,依据角平分线的定义以及平行线的性质即可得到MCD ∠的度数;(2)结合(1)得180ACD CAH ︒∠+∠=,再依据角平分线的定义,即可得290MCD GAB ∠+∠=︒.【详解】解:(1)AG AC ⊥,36GAB ∠=︒,903654CAH ∴∠=︒-︒=︒,//AB CD ,180ACD CAH ∴∠+∠=︒,126ACD ∴∠=︒,CM 是ACD ∠的平分线,63ACH DCM ∴∠=∠=︒;(2)ACH DCM ∠=∠,2ACD MCD ∴∠=∠,由(1)得180ACD CAH ︒∠+∠=,AG AC ⊥,90CAG ∴∠=︒,290180MCD GAB ∴∠+︒+∠=︒,290MCD GAB ∴∠+∠=︒.【点睛】本题主要考查了平行线的性质,角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.BAC ∠;角平分线的定义;BDE ∠;两直线平行,同位角相等;23∠∠=;同位角相等,两直线平行【解析】【分析】根据角平分线的性质和平行线的性质与判定即可证明.【详解】解:因为AE 平分BAC ∠(已知),所以1122BAC ∠=∠=∠(角平分线的定义). 因为DF 平分BDE ∠(已知),所以1342BDE ∠=∠=∠(角平分线的定义). 因为//AC DE (已知),所以BDE BAC ∠=∠(两直线平行,同位角相等),所以∠2=∠3.(等量代换),所以//DF AE(同位角相等,两直线平行).【点睛】本题主要考查了角平分线的性质,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.15.证明见解析【解析】【分析】过M作ME∠AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM =90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得∠MCD∠∠MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME∠AD于E,∠∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∠∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∠CDM EDMC DEMCM EM∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠MCD∠∠MED(AAS),∠CD=DE,∠BAM EAMB AEMBM EM∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABM∠∠AEM(AAS),∠AE=AB,∠AD =AE +DE =CD +AB .【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.16.见解析【解析】【分析】首先由角平分线的性质可得DE =DF ,又有BD =CD ,可证Rt∠BED ∠Rt∠DFC (HL ),即可得出EB =FC .【详解】证明:∠AD 是∠ABC 的角平分线,DE ∠AB 、DF ∠AC ,∠DE =DF ,∠BED =∠CFD =90°,在Rt∠BED 和Rt∠DFC 中,BD CD DE DF=⎧⎨=⎩, ∠Rt∠BED ∠Rt∠CFD (HL ),∠EB =FC .【点睛】此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.17.见解析【解析】【分析】由角平分线定义得ABD DBC ∠=∠,等量代换得DBC ADB ∠=∠,由内错角相等两直线平行得到//AD BC ,再由两直线平行同位角相等即可得证.【详解】证明:∠BD 平分ABC ∠∠ABD DBC ∠=∠∠ADB ABD ∠=∠∠DBC ADB ∠=∠∠//AD BC∠MAD ABC ∠=∠【点睛】此题考查平行线的判定与性质及角平分线的定义,掌握相应的性质定理是解答此题的关键. 18.见解析【解析】【分析】利用基本作图作∠ABC 的平分线即可.【详解】解:如图,BD 即为所求.【点睛】考查了作图-基本作图,熟练掌握基本作图(作已知角的角平分线)是解决问题的关键. 19.(1)10;(2)AB DC AD +=,证明见解析;(3)34cm ,理由见解析【解析】【分析】(1)根据AD DE =,可以得到210AE AD ==即可求解;(2)延长AE ,DC 相交于点A ',然后证明ABE A CE '△≌△即可得到答案;(3)延长AE ,DC 相交于点A ',根据ABE ACE S S =得到BE CE =,然后证明ABE A CE '△≌△即可求解.【详解】解:(1)∠AD DE =∠210AE AD ==(2)结论:AB DC AD +=.证明:延长AE ,DC 相交于点A '.∠//AB CD ,∠B A CE '∠=∠在ABE △和A CE '△中B A CEBE CEAEB A EC∠=∠⎧⎪=⎨⎪∠=∠'⎩'∠ABE A CE'△≌△(ASA)∠AB A C'=,BAE A'∠=∠∠AB A C'=,BAE A'∠=∠∠AD A D'=∠AD A D A C CD AB CD''==+=+(3)解:延长AE,DC相交于点A'.∠ABE ACES S=∠BE CE=.∠//AB CD∠ABE BCA'∠=∠在ABE△和A CE'△中,ABE BCABE CEAEB CEA∠=∠⎧⎪=⎨⎪∠'=∠⎩'∠ABE A CE'△≌△(ASA)∠()50mAB A C'==,30BAE A'∠=∠=︒∠A AFE'∠=∠∠A D DF'=∠()501634m A D A C CD ''=-=-=∠()34m DF =.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,等腰三角形的判定等,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见详解;(2)见详解【解析】【分析】 (1)由领补角可得∠ADB +∠ADC =180°,然后可得∠ADC =∠CEG ,进而问题可求证; (2)由(1)及题意易得∠F =∠BAD ,DH ∠AC ,则有∠H =∠EGC =∠DAC ,然后问题可求证.【详解】证明:(1)∠∠BDA +∠CEG =180°,∠ADB +∠ADC =180°,∠∠ADC =∠CEG ,∠AD ∠EF ;(2)∠∠EDH =∠C ,∠DH ∠AC ,∠∠H =∠EGC ,∠AD ∠EF ,∠∠F =∠BAD ,∠DAC =∠EGC ,∠∠H =∠EGC =∠DAC ,∠∠F =∠H ,∠∠BAD=∠DAC,∠AD是∠BAC的平分线.【点睛】本题主要考查角平分线的判定及平行线的性质与判定,熟练掌握角平分线的判定及平行线的性质与判定是解题的关键.。
北师大版八年级下学期数学第一章三角形的证明同步练习题
新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。
第一章 三角形的证明 课后单元强化练习试题 2022-2023学年北师大版八年级数学下册
第一章 三角形的证明 课后单元强化练习试题 2022-2023学年北师大版八年级数学下册一、单选题(共 10 小题,共30分)1、若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的底角为( )A.32.5°B.57.5C.65°或57.5°D.32.5°或57.5°2、如图所示,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )A . AD =AEB . ∠AEB =∠ADC C . BE =CD D . AB =AC3、若∠AOB=44°,P 为∠AOB 内一定点,点M 在OA 上,点N 在OB 上,当△PMN 的周长取最小值时,∠MPN 的度数为( )A .82°B .84°C .88°D .92°4、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个5、如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E ∠=,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm6、下列说法正确的是( )A .三角形内部到三边距离相等的点是三边垂直平分线的交点B .三条线段a 、b 、c ,如果a b c +>,则以这三条线段为边能够组成三角形C .如果两个三角形有两边和其中一边上高分别相等,那么这两个三角形全等D .若两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等7、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .308、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°9、如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30︒B .25︒C .35︒D .65︒10、如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④二、填空题(共 6小题,共18分)11、已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.12、在△ABC 中,AC =BC =5,AB =8,点D 在AB 边上,连接CD ,若CD =√13,则线段AD 的长为 .13、如图,△ABC 中,AB AC ⊥,AD BC ⊥于D ,30B ∠=︒,则:ADC BDA S S =△△__________________;14、如图,B BDE ∠=∠,点G 分别为AD 与CF 的中点,若3,5CE EF ==,则AC =______.15、如图,四边形ABCD中,AD BC∠,E是直线AD上∥,连接BD,BD平分ABC一点,8AB=,2DE=,则AE的长为________.16、如图,四边形ABCD中, AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD=a,则∠ACB的度数为____________.(用含a的代数式表示)三、解答题(共 9小题)17、(6分)图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18、(6分)如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21 cm,△ABD的周长为13 cm,求AE的长.19、(6分)已知90=,求证:点E在∠=∠=︒,BC与AD交于点E,AC BDACB BDA线段CD的垂直平分线上.20、(6分)在△ABC中,∠ACB=90°.现给出以下3个关系:①CD垂直于AB,②BE平分∠ABC,③∠CFE=∠CEF,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.21、(8分)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.22、(8分)如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.23、(10分)如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q 同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为Qts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?24、(10分)如图,等边ABC的角平分线,D为AO上一点,△中,AO是BAC以CD为一边且在CD下方作等边CDE△,连结BE.(1)求证:ACD BCE △≌△;(2)延长BE 至Q , P 为BQ 上一点,连结CP 、QC 使5CP CQ ==, 若8BC =时,求PQ 的长.25、(12分)(1)模型:如图1,在ABC 中,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,求证:::ADB ADC S S AB AC =△△.(2)模型应用:如图2,AD 平分EAC ∠交BC 的延长线于点D ,求证:::AB AC BD CD =.(3)类比应用:如图3,AB 平分DAE ∠,AE AD =,180D E ∠+∠=︒,求证:::BE CD AB AC =.。
八年级数学下册第一章三角形的证明全章热门考点整合专训作业pptx课件新版北师大版
③同位角相等,两直线平行.
A.0个
B.1个
C.2个
D.3个
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
六个性质
等腰三角形的性质
4.【2022·梧州】如图,在△ABC中,AB=AC,AD是△ABC
的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别
是点E,F.则下列结论错
∴AC=
− =
∴点A的坐标为
1
2
3
4
,
5
6
7
−
= ,
.
8
9
10
11
12
13
14
15
16
17
18
19
含30°角的直角三角形的性质
8.【教材P34复习题T11变式】如图,在△ABC中,∠C=90°,
∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,
∴∠CED=∠CDB.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
又∵∠CDB=∠CDE+∠EDB,∠CED=∠B+∠EDB,
∴∠CDE=∠B=45°.
∴∠ADC+∠EDB=180°-∠CDE=135°.
又∵∠ADC+∠ACD=180°-∠A=135°,
2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专题训练试题(含详解)
北师大版八年级数学下册第一章三角形的证明专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.10 B.15 C.17 D.192、如图,在△AAA中,AC的垂直平分线交BC于点D,交AC于点E,连接AD,△AAA的周长△的周长为16,则AE的长为().为26,ABDA.10 B.8 C.6 D.53、下列各组线段中,能构成直角三角形的一组是()A.5,9,12 B.7,12,13 C.30,40,50 D.3,4,64、如图,在△AAA 中,AB AC =,120A ∠=︒,6BC =cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm5、如图,在△AAA 中,DE 是AB 的垂直平分线,△AAA 的周长为24cm ,BCD △的周长为16cm ,则BE 的长为( )A .3cmB .4cmC .5cmD .6cm6、如图,在△AAA 中,∠AAA =90°,∠AAA =2∠A ,BE 平分∠AAA ,交AA 于点A ,AD BE ⊥于点A ,有下列结论:①AC BE AE -=;②点A 在线段AA 的垂直平分线上;③DAE C ∠=∠;④4BC AD =.其中,正确的结论有( ).A .1个B .2个C .3个D .4个7、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.A .1B .2C .3D .48、如图,在△AAA 中,105A ∠=︒,AC 的垂直平分线MN 交BC 于点N ,且AB BN BC +=,则B 的度数是( )A .45°B .50°C .55°D .60°9、有两边相等的三角形的两边长为4cm ,5cm ,则它的周长为( )A .8cmB .14cmC .13cmD .14cm 或13cm10、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB ≌△PAC ,则∠APB 的度数为___.2、如图,△AAA 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为______度.3、如图:△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为_____.4、同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt△ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为 _____.5、在等腰△ABC 中,∠A =40°,则∠B =_____°.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形A 1上各点的最短距离为A 1,点P 到图形A 2上各点的最短距离为A 2,若12d d =,就称点P 是图形A 1和图形A 2的一个“等距点”. 已知点A (6,0),A (0,6).(1)在点A (−6,0),A (3,0),A (0,3)中,______是点A 和点O 的“等距点”;(2)在点A (−2,−1),A (2,2),A (3,6)中,______是线段OA 和OB 的“等距点”;(3)点A (A ,0)为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在△AAA 内,请直接写出满足条件的m 的取值范围.2、如图所示,直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a 、b 满足√A +A +(A −4)2=0,C 的坐标为(﹣1,0),且AH ⊥BC 于点H ,AH 交OB 于点P . (1)如图1,写出a 、b 的值,证明△AOP ≌△BOC ;(2)如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN ⊥DM 交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,求证:S △BDM ﹣S △ADN =4.3、如图,在Rt △AAA 中,∠A =90°,AA =4,AA =2.(1)△AAA 的面积等于_______;(2)A 为线段AA 上一点,过点A 作AA ⊥AA ,垂足为A .当AA =AA 时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PQ ,并简要说明点A 和点A 的位置是如何找到的(保留作图痕迹,不要求证明).4、如图,△AAA 和△AAA 是顶角相等的等腰三角形,BC ,DE 分别是这两个等腰三角形的底边.求证AA =AA .5、设两个点A 、B 的坐标分别为()11,A x y ,()22,B x y ,则线段AB 的长度为:AB =A 、B 两点的坐标是()0,3-,()1,4-,则A 、B 两点之间的距离AB =(1)若()1,2A ,(),6B x ,且5AB =,求x 的值;(2)已知△ABC ,点A 为()1,5-、点B 为()5,2-、点C 为()3,1-,求△ABC 的面积;(3+-参考答案-一、单选题1、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.2、D【分析】根据线段垂直平分线的性质可得即可得到结论.【详解】解:∵AC的垂直平分线交BC于点D,交AC于点E,∴AD=CD,12 AE AC∴△ABD的周长=AB+AD+BD=AB+BC=16,∵△ABC的周长=AC+BC+AB=26,∴AC=△ABC的周长-△ACE的周长=26-16=10,∴152AE AC==,故答案为:D.【点睛】本题主要考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.3、C【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【详解】解:A、∵52+92≠122,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;B、∵72+122≠132,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;C、∵302+402=502,∴该组线段符合勾股定理的逆定理,故是直角三角形,故符合题意;D、∵32+42≠62,∴该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN 为等边三角形即可.【详解】解:连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为2cm.故选:C.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.5、B【分析】由题意易得BD =AD ,12BE AE AB ==,然后根据三角形周长可得8cm AB =,进而问题可求解. 【详解】 解:∵DE 是AB 的垂直平分线,∴BD =AD ,12BE AE AB ==, ∵ABC 的周长为24cm ,BCD △的周长为16cm ,∴24cm,16cm ABC BDCC AB AC BC C BD DC BC AD DC BC AC BC =++==++=++=+=, ∴24168cm AB =-=,∴4cm BE =;故选B .【点睛】本题主要考查线段垂直平分线的性质定理,熟练掌握线段垂直平分线的性质定理是解题的关键.6、D【分析】首先求出∠C =30°,∠ABC =60°,再根据角平分线的定义,直角三角形30°角的性质,线段的垂直平分线的定义一一判断即可.【详解】解:∵在△ABC 中,∠BAC =90°,∠ABC =2∠C ,∴∠C =30°,∠ABC =60°,∵BE 平分∠ABC ,∴∠ABE =∠EBC =30°,∴∠EBC =∠C ,∴EB=EC,∴AC-BE=AC-EC=AE,故①正确,∵EB=EC,∴点E在线段BC的垂直平分线上,故②正确,∵AD⊥BE,∴∠BAD=60°,∵∠BAE=90°,∴∠EAD=30°,∴∠EAD=∠C,故④正确,∵∠ABD=30°,∠ADB=90°,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB=4AD,故③正确,故选:D.【点睛】本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.【详解】解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;③等腰三角形的顶角平分线在它的对称轴上,原说法错误;④等腰三角形两腰上的中线相等,说法正确.综上,正确的有①④,共2个,故选:B.【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.8、B【分析】连接AN,根据线段垂直平分线的性质得到NA=NC,得到∠NAC=∠C,根据三角形内角和定理列式计算,得到答案.【详解】解:连接AN,∵NM是AC的垂直平分线,∴NA=NC,∴∠NAC=∠C,∴∠ANB=2∠C,∵AB+BN=BC,NC+BN=BC,∴AB=NC,∴AB=AN,∴∠B=∠ANB=2∠C,由三角形内角和定理得,∠B+∠C+∠BAC=180°,即2∠C+∠C+105°=180°,解得,∠C=25°,∴∠B=50°故选:B.【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.综上所述,该等腰三角形的周长是13cm或14cm.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO +∠DCO =30°,∴∠OPC +∠OCP =120°,∴∠POC =180°﹣(∠OPC +∠OCP )=60°,∵OP =OC ,∴△OPC 是等边三角形,故③正确;④如图2,在AC 上截取AE =PA ,∵∠PAE =180°﹣∠BAC =60°,∴△APE 是等边三角形,∴∠PEA =∠APE =60°,PE =PA ,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO=CE,∴AC=AE+CE=AO+AP,∴AB=AO+AP,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题1、150°【分析】如图:连接PP′,由△PAC≌△P′AB可得PA=P′A、∠P′AB=∠PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且∠BPP′=90°,最后根据角的和差即可解答.【详解】解:连接PP′,∵△PAC≌△P′AB,∴PA=P′A,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6;∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB =90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.2、75【分析】由题意,ACD △是等腰三角形,然后求出CAE ∠的度数,再根据三角形的外角性质,即可求出BED ∠的度数.【详解】解:∵ABC 是等腰直角三角形,∴AC =BC ,∠ABC =∠BAC =45°,∠ACB =90°,∵△BCD 是等边三角形,∴BC =CD ,∠BCD =60°,∴AC =CD ,∠ACD =90°+60°=150°,∴ACD △是等腰三角形, ∴1(180150)152CAE CDE ∠=∠=⨯︒-︒=︒,∴451530BAE ∠=︒-︒=︒,∴304575BED BAE ABE ∠=∠+∠=︒+︒=︒;故答案为:75.【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出15CAE CDE ∠=∠=︒.3、19cm【分析】根据线段垂直平分线的性质可得AD =CD ,AC =2AE =6cm ,由△ABD 的周长=AB +BD +AD =13cm ,得到AB +BC =13cm ,由此即可得到答案.【详解】解:∵DE 是AC 的垂直平分线,∴AD =CD ,AC =2AE =6cm ,又∵△ABD 的周长=AB +BD +AD =13cm ,∴AB +BD +CD =13cm ,即AB +BC =13cm ,∴△ABC 的周长=AB +BC +AC =13+6=19cm .故答案为:19cm .【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线的性质是解题的关键.4 【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,BG ==1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=。
北师版八年级下数学第一章随堂练习67
北师版八年级下数学第一章随堂练习67一、选择题(共5小题;共25分)1. 下列命题中,逆命题正确的是A. 对顶角相等B. 直角相等C. 同旁内角互补,两直线平行D. 等边三角形是等腰三角形2. 若实数,满足等式,且,恰好是等腰的两条边的边长,则的周长是A. B. C. D.3. 有下列条件:①;②;③;④.其中能确定是直角三角形的有A. 个B. 个C. 个D. 个4. 反证法证明“三角形中至少有一个角不小于”先应假设这个三角形中A. 有一个内角小于B. 每个内角都小于C. 有一个内角大于D. 每个内角都大于5. 如图,,的角平分线与的角平分线相交于点,作,垂足为.若,则两平行线与间的距离为A. B. C. D. 不能确定二、填空题(共4小题;共20分)6. 已知射线.以为圆心,任意长为半径画弧,与射线交于点,再以点为圆心,长为半径画弧,两弧交于点,画射线,如图所示,则.7. 如图,中,边上的垂直平分线交于,交于,,的周长为,则的长为.8. 命题“菱形的四条边相等”的逆命题是.9. 如图,在中,,,在上,且,,则三、解答题(共4小题;共52分)10. 已知:如图,在中,为与角平分线的交点.求证:点在的角平分线上.11. 写出下列命题的逆命题,并判断每对互逆命题的真假.(1)如果,那么.(2)如果,那么.12. 如图,已知四边形中,,点是中点,点是中点.(1)求证:;(2)过点作于点,如果平分,求证:.13. 如图,是的角平分线,,,垂足分别为,,连接,与相交于点,求证:是的垂直平分线.答案第一部分1. C 【解析】A的逆命题是:相等的角是对顶角,假命题;B的逆命题是:相等的角是直角,假命题;C的逆命题是:两直线平行,同旁内角互补,真命题;D的逆命题是:等腰三角形是等边三角形,假命题.2. B3. D4. B 【解析】设三角形的三个角分别为:,,.假设,,,,则,即,与三角形内角和定理矛盾.假设不成立,即三角形中至少有一个角不小于.5. C【解析】作于,于,因为是的角平分线,,,所以,因为是的角平分线,,,所以,因为,所以两平行线与间的距离为.第二部分6.7.8. 四边相等的四边形是菱形9.第三部分10. 提示:过点分别作三边的垂线.11. (1)如果,那么,原命题与逆命题都是假命题.(2)如果,那么,原命题是真命题,逆命题是假命题.12. (1),点是中点,,,,点是中点,.(2)设,交于点,,,,,,,,平分,,,,,,,.13. 是的角平分线,,,,.在和中,,.,是的垂直平分线,垂直平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版八年级下数学第一章随堂练习75
一、选择题(共5小题;共25分)
1. 下列定理中,有逆定理的是
A. 对顶角相等
B. 同角的余角相等
C. 全等三角形的对应角相等
D. 在一个三角形中,等边对等角
2. 如图,中,,点在边上,且,则的度数为
A. B. C. D.
3. 中,,,的对边分别记为,,,由下列条件不能判定为直角三
角形的是
A. B.
C. D.
4. 用反证法证明命题“四边形中至少有一个角不小于直角”时,应假设
A. 没有一个角大于直角
B. 至多有一个角不小于直角
C. 每一个内角都为锐角
D. 至少有一个角大于直角
5. 如图,中,,利用尺规在,上分别截取,,使
;分别以,为圆心、以大于的长为半径作弧,两弧在内交于点;
作射线交于点.若,为上一动点,则的最小值为
A. 无法确定 C. D.
二、填空题(共4小题;共20分)
6. 如图所示,是等边内一点,将绕着点顺时针方向旋转,得到
.若,则.
7. 中,,的中垂线交于,垂足为,若,则
.
8. 把命题“平行于同一直线的两直线平行”改写成“如果,那么”的形式:.
9. 如图,在三角形中,,,,,
度.
三、解答题(共4小题;共52分)
10. 判断下面的证明过程是否正确,并说明理由.
已知:如图,点是射线上的一点,点,分别在,上,且.
求证:平分.
证明:点是射线上一点,且(已知),
平分(在一个角的内部且到角两边距离相等的点,在这个角的平分线上).
11. 有下列命题:
①直角都相等;
②内错角相等,两直线平行;
③如果,那么,;
④相等的角都是直角;
⑤如果,,那么;
⑥两直线平行,内错角相等.
(1)③和⑤是互逆命题吗?
(2)你能说出③和⑤的逆命题各是什么吗?
(3)请指出哪几个命题是互逆命题.
12. 如图,已知四边形中,,点是中点,点是
中点.
(1)求证:;
(2)过点作于点,如果平分,求证:.
13. 如图,已知,.求证:.
答案
第一部分
1. D
2. B
3. A
4. C 【解析】反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.
5. C
第二部分
6.
【解析】提示:是等边三角形.
7.
8. 如果两条直线都与第三条直线平行,那么这两条直线互相平行
9.
第三部分
10. 错误.
因为已知中缺少条件:,.
11. (1)③和⑤不是互逆命题.
由于③的题设是,而⑤的结论是,故⑤不是由③交换命题的题设和结论得到的,所以③和⑤不是互逆命题.
(2)能.③的逆命题是如果,,那么.⑤的逆命题是如果,那么,.
(3)①与④,②与⑥分别是互逆命题.
12. (1),点是中点,
,,
,
点是中点,
.
(2)设,交于点,
,,
,
,
,
,
,
平分,
,
,
,
,
,
,
.
13. 由,得垂直平分,得.。