高2021届高2018级版步步高3-5高中物理第四章 4-5

合集下载

2025高考物理步步高同步练习选修3第四章 原子结构和波粒二象性第1课时 氢原子光谱和玻尔的型含答案

2025高考物理步步高同步练习选修3第四章 原子结构和波粒二象性第1课时 氢原子光谱和玻尔的型含答案

2025高考物理步步高同步练习选修3第四章 原子结构和波粒二象性4 氢原子光谱和玻尔的原子模型第1课时 氢原子光谱和玻尔的原子模型[学习目标] 1.知道光谱、线状谱和连续谱的概念.2.知道氢原子光谱的实验规律,知道什么是光谱分析.3.知道玻尔原子理论的基本假设的主要内容.了解能级跃迁、轨道和能量量子化以及基态、激发态等概念.一、光谱1.定义:用棱镜或光栅把物质发出的光按波长(频率)展开,获得波长(频率)和强度分布的记录.2.分类(1)线状谱:光谱是一条条的亮线.(2)连续谱:光谱是连在一起的光带.3.特征谱线:气体中中性原子的发光光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线.4.应用:利用原子的特征谱线,可以鉴别物质和确定物质的组成成分,这种方法称为光谱分析,它的优点是灵敏度高,样本中一种元素的含量达到10-13 kg 时就可以被检测到.二、氢原子光谱的实验规律1.许多情况下光是由原子内部电子的运动产生的,因此光谱是探索原子结构的一条重要途径.2.氢原子光谱的实验规律满足巴耳末公式:1λ=R ∞(122-1n 2)(n =3,4,5,…) 式中R ∞为里德伯常量,R ∞=1.10×107 m -1,n 取整数.3.巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征.三、经典理论的困难1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验.2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立线状谱.四、玻尔原子理论的基本假设1.轨道量子化(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”).(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射.2.定态(1)当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.电子只能在特定轨道上运动,原子的能量只能取一系列特定的值.这些量子化的能量值叫作能级.(2)原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫作基态,其他的状态叫作激发态.3.频率条件当电子从能量较高的定态轨道(其能量记为E n)跃迁到能量较低的定态轨道(能量记为E m,m<n)时,会放出能量为hν的光子,该光子的能量hν=E n-E m,该式称为频率条件,又称辐射条件.判断下列说法的正误.(1)气体中中性原子的发光光谱都是线状谱,并且只能发出几种特定频率的光.(√)(2)线状谱和连续谱都可以用来鉴别物质.(×)(3)可以利用光谱分析来鉴别物质和确定物质的组成成分.(√)(4)玻尔的原子结构假说认为电子的轨道是量子化的.(√)(5)电子从较高的能级向较低的能级跃迁时,会放出任意频率的光子.(×)一、光谱和光谱分析1.光谱的分类2.太阳光谱特点在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱产生原因阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳的高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就弱了,这就形成了明亮背景下的暗线3.光谱分析(1)优点:灵敏度高,分析物质的最低量达10-13 kg.(2)应用:a.发现新元素;b.鉴别物体的物质成分.(3)用于光谱分析的光谱:线状谱和吸收光谱.例1关于光谱和光谱分析,下列说法正确的是()A.太阳光谱是连续谱,分析太阳光谱可以知道太阳内部的化学组成B.霓虹灯和炼钢炉中炽热铁水产生的光谱,都是线状谱C.强白光通过酒精灯火焰上的钠盐,形成的是吸收光谱D.进行光谱分析时,可以利用连续谱,也可以利用吸收光谱答案 C解析太阳光谱是吸收光谱,这是由于太阳内部发出的强光经过温度比较低的太阳大气层时产生的,所以A错误;霓虹灯呈稀薄气体状态,因此光谱是线状谱,而炼钢炉中炽热铁水产生的光谱是连续谱,所以B错误;强白光通过酒精灯火焰上的钠盐时,某些频率的光被吸收,形成吸收光谱,所以C正确;光谱分析中只能用线状谱和吸收光谱,因为它们都具备特征谱线,所以D错误.稀薄气体发出的光谱是线状谱,此光谱是一些不连续的亮线,仅含有一些特定频率的光.线状谱中不同的谱线对应不同的频率,不同元素的原子产生的线状谱不同,因而可以用线状谱来确定物质的成分.例2 (2022·江苏仪征一中高二月考)利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析,下列说法正确的是( )A .利用高温物体的连续谱就可鉴别其组成成分B .利用物质的线状谱就可鉴别其组成成分C .高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分D .同一种物质的线状谱上的亮线与吸收光谱上的暗线,由于光谱的不同,它们没有关系 答案 B解析 高温物体的连续谱包括了各种频率的光,无法鉴别其组成成分,A 错误;某种物质发射的线状谱中的亮线与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱线对照,即可确定物质的组成成分,B 正确;高温物体发出的光通过某物质后某些频率的光被吸收而形成暗线,这些暗线由所经过的物质决定,C 错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此同一物质线状谱上的亮线与吸收光谱上的暗线相对应,D 错误.二、氢原子光谱的实验规律 导学探究如图所示为氢原子的光谱.(1)仔细观察,氢原子光谱具有什么特点?(2)阅读课本,指出氢原子光谱的谱线波长具有什么规律?答案 (1)从右至左,相邻谱线间的距离越来越小.(2)可见光区域的四条谱线的波长满足巴耳末公式:1λ=R ∞(122-1n2),n =3,4,5,… 知识深化1.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.2.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到公式:1λ=R ∞(122-1n 2)(n =3,4,5,…),该公式称为巴耳末公式.式中R ∞叫作里德伯常量,实验值为R ∞=1.10×107 m -1.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值.3.其他谱线:除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.例3 下列关于巴耳末公式1λ=R ∞(122-1n2)的理解,正确的是( ) A .巴耳末系的4条谱线位于红外区B .公式中n 可取任意值,故氢原子光谱是连续谱C .公式中n 只能取大于或等于3的整数值,故氢原子光谱是线状谱D .在巴耳末系中n 值越大,对应的波长λ越长答案 C解析 此公式是巴耳末在研究氢原子光谱在可见光区的四条谱线时得到的,A 错误;公式中n 只能取大于或等于3的整数,λ不能连续取值,故氢原子光谱是线状谱,B 错误,C 正确;根据公式可知,n 值越大,对应的波长λ越短,D 错误.三、玻尔原子理论1.轨道量子化(1)轨道半径只能够是一些不连续的、某些分立的数值.(2)氢原子的电子轨道最小半径为r 1=0.053 nm ,其余轨道半径满足r n =n 2r 1,式中n 称为量子数,对应不同的轨道,只能取正整数.2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.(2)基态:原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E 1=-13.6 eV .(3)激发态:除基态之外的其他能量状态称为激发态,对应的电子在离核较远的轨道上运动.氢原子各能级的关系为:E n =1n2E 1(E 1=-13.6 eV ,n =1,2,3,…) 3.跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级E m 发射光子hν=E m -E n吸收光子hν=E m -E n 低能级E n .命题角度1 对玻尔理论的理解例4 (2021·广东学业水平考试)根据玻尔理论,下列关于氢原子的论述正确的是( )A .若氢原子由能量为E n 的定态向低能级E m 跃迁,则氢原子要辐射的光子能量为hν=E n -E mB .电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC .一个氢原子中的电子从一个半径为r a 的轨道直接跃迁到另一半径为r b 的轨道,则此过程原子要辐射某一频率的光子D .氢原子吸收光子后,将从高能级向低能级跃迁答案 A解析 原子由能量为E n 的定态向低能级跃迁时,辐射的光子能量等于两能级的能量差,故A 正确;电子沿某一轨道绕核运动,处于某一定态,不向外辐射能量,原子不发光,故B 错误; 电子只有由半径大的轨道跃迁到半径小的轨道,能级降低,才能辐射某一频率的光子,故C 错误;原子吸收光子后能量增加,能级升高,故D 错误.针对训练 若用|E 1|表示氢原子处于基态时能量的绝对值,处于n =3激发态的氢原子向基态跃迁时 (“辐射”或“吸收”)光子的能量为 .答案 辐射 89|E 1| 解析 n =3时,E 3=E 19,从n =3的激发态向基态跃迁时要辐射光子,辐射光子能量ΔE =|E 3-E 1|=89|E 1|. 命题角度2 氢原子的能量和能量变化例5 (2022·鹿泉区第一中学高二月考)根据玻尔理论,氢原子的核外电子由外层轨道跃迁到内层轨道后( )A .原子的能量增加,系统的电势能减少B .原子的能量减少,核外电子的动能减少C .原子的能量减少,核外电子的动能增加D .原子系统的电势能减少,核外电子的动能减少答案 C解析 电子由外层轨道跃迁到内层轨道时,放出光子,电子势能减少,原子总能量减少,根据k e2r2=m v2r,E k=12m v2,解得E k=k e22r,可知半径减小,电子动能增加,原子系统的电势能减少,故A、B、D错误,C正确.原子的能量及变化规律1.原子的能量:E n=E k n+E p n.2.电子绕氢原子核运动时:k e2r n2=m v n2r n,故E k n=12m v n 2=ke22r n电子轨道半径越大,电子绕核运动的动能越小.3.当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.4.电子的轨道半径增大时,说明原子吸收了能量,从能量较低的轨道跃迁到了能量较高的轨道.即电子轨道半径越大,原子的能量E n越大.考点一光谱和光谱分析1.(2022·靖西市第二中学高二开学考试)白炽灯发光产生的光谱是()A.连续谱B.明线光谱C.原子光谱D.吸收光谱答案 A解析白炽灯发光是由于灯丝在炽热状态下发出的光,是连续谱,选项A正确.2.(2022·内蒙古赤峰高二月考)关于光谱,下列说法正确的是()A.大量原子发出的光谱是连续谱,少量原子发出的光谱是线状谱B.线状谱由不连续的若干波长的光组成C.做光谱分析时只能用发射光谱,不能用吸收光谱D.做光谱分析时只能用吸收光谱,不能用发射光谱答案 B解析原子发出的光谱是特征光谱,是线状谱,A错误;线状谱只包含对应波长的若干光,B正确;做光谱分析一定要用线状谱,既可以是发射光谱也可以是吸收光谱,C、D错误.3.通过光栅分析太阳光谱,我们发现其中有很多暗线,对于这些暗线,我们可以得到的结论是()A.太阳中缺少与暗线相对应的元素B.太阳大气层中含有暗线对应的元素C.地球大气层中的某些元素吸收了暗线中对应的光谱D.观测仪器精度不足造成的答案 B解析太阳光谱是太阳内部发出的光在经过太阳大气层的时候,被太阳大气层中的某些元素吸收而产生的,是一种吸收光谱,所以太阳光的光谱中有许多暗线,它们对应着太阳大气层中的某些元素的特征谱线,故B正确,A、C、D错误.4.(2021·江苏仪征市第二中学高二月考)关于光谱和光谱分析,下列说法正确的是() A.太阳光谱和白炽灯光谱是线状谱B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱C.进行光谱分析时,可以利用线状谱,也可以利用连续谱D.观察月亮光谱,可以确定月亮的化学组成答案 B解析太阳光谱是吸收光谱,白炽灯是连续谱,所以A错误;霓虹灯及煤气灯火焰中钠蒸气产生的光谱属稀薄气体发光,是线状谱,所以B正确;进行光谱分析时,可以利用线状谱,不可以利用连续谱,所以C错误;由于月亮是反射的太阳光,其光谱无法确定月亮的化学组成,所以D错误.考点二氢原子光谱的实验规律经典理论的困难5.对于巴耳末公式,下列说法正确的是()A.所有氢原子光谱的波长都与巴耳末公式相对应B.巴耳末公式只确定了氢原子发光中的可见光部分的光波长C.巴耳末公式确定了氢原子发光中的一个线系的波长,其中既有可见光,又有紫外光D.巴耳末公式确定了各种原子发光中的光的波长答案 C解析巴耳末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子发光中的光的波长,A、D错误;巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴耳末线系,该线系包括可见光和紫外光,B错误,C正确.6.关于经典电磁理论与原子的核式结构之间的关系,下列说法正确的是()A.经典电磁理论很容易解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是不连续的D.原子的核式结构模型彻底否定了经典电磁理论答案 B解析根据经典电磁理论,电子在绕核做加速运动的过程中,要向外辐射电磁波,因此能量要减少,电子的轨道半径要减小,最终会落到原子上,因而原子是不稳定的.电子在转动过程中,随着转动半径不断减小,转动频率不断增大,辐射电磁波的频率不断变化,因而大量原子发光的光谱应该是连续谱.事实上,原子是稳定的,原子光谱也不是连续谱,而是线状谱,故选项A、C错误,B正确;经典电磁理论可以很好地应用于宏观物体,但不能用于解释原子世界的现象,故选项D错误.考点三玻尔原子理论7.光子的发射和吸收过程是()A.原子从基态跃迁到激发态要放出光子,放出光子的能量等于原子在始、末两个能级的能量差B.原子不能从低能级向高能级跃迁C.原子跃迁时所辐射光子的频率等于电子绕核做圆周运动的频率D.原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差答案 D解析原子从基态跃迁到激发态要吸收光子,吸收的光子的能量等于原子在始、末两个能级的能量差,故A错误;原子吸收光子可以从低能级跃迁到高能级,故B错误;根据玻尔理论,原子从高能级向低能级跃迁时辐射光子的频率满足hν=E m-E n(m>n),与电子绕核运动的频率无关,C错误;根据玻尔理论可知,原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差,故D正确.8.若用E 1表示氢原子处于基态时的能量,处于第n 能级的能量为E n =E 1n 2,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A.14||E 1 B.34||E 1 C.78||E 1 D.116||E 1 答案 B解析 处于第2能级的能量E 2=E 14,则向基态跃迁时辐射的能量ΔE =34||E 1,处于第3能级的能量E 3=E 19,则向基态跃迁时辐射的能量ΔE ′=89||E 1,处于第4能级的能量为E 4=E 116,向基态跃迁时辐射的能量ΔE ″=1516||E 1,则B 正确.9.(2021·广东模拟)原子从高能级向低能级跃迁产生光子,将频率相同的光子汇聚可形成激光.下列说法正确的是( )A .频率相同的光子能量相同B .原子跃迁发射的光子频率连续C .原子跃迁只产生单一频率的光子D .激光照射金属板不可能发生光电效应答案 A解析 根据E =hν可知,频率相同的光子能量相同,故A 正确;原子从一个定态跃迁到能级更低的定态时,原子辐射一定频率的光子,光子的能量由这两种定态的能量差决定,电子轨道是量子化的,能量是量子化的,故频率是不连续的,故B 错误;原子在不同的轨道之间跃迁产生不同频率的光子,故C 错误;根据爱因斯坦光电效应方程E k =hν-W 0可知,光子的能量大于金属板的逸出功时,照射金属板即可发生光电效应,故D 错误.10.如图甲所示为a 、b 、c 、d 四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A .a 元素B .b 元素C.c元素D.d元素答案 B解析由矿物的线状谱与几种元素的特征谱线进行对照,b元素的特征谱线在该线状谱中不存在,故选B.与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.11.(2021·江苏省震泽中学高二月考)关于玻尔的原子模型,下列说法正确的是()A.按照玻尔的观点,电子在定态轨道上运行时不向外辐射电磁波B.电子只能通过吸收或放出一定频率的光子在轨道间实现跃迁C.电子从外层轨道跃迁到内层轨道时,动能增大,原子能量也增大D.电子绕着原子核做匀速圆周运动.在外层轨道运动的周期比在内层轨道运动的周期小答案 A解析根据玻尔的原子模型可知,电子在定态轨道上运行时不向外辐射电磁波,A正确;电子在轨道间跃迁时,可通过吸收或放出一定频率的光子实现,也可通过其他方式实现(如电子间的碰撞),B错误;电子从外层轨道(高能级)跃迁到内层轨道(低能级)时动能增大,但原子的能量减小,C错误;电子绕着原子核做匀速圆周运动,具有“高轨、低速、大周期”的特点,即在外层轨道运动的周期比在内层轨道运动的周期大,D错误.12.(2022·东北师大附中高二月考)根据玻尔的氢原子理论,当某个氢原子吸收一个光子后()A.氢原子所在的能级下降B.氢原子的电势能增加C.电子绕核运动的半径减小D.电子绕核运动的动能增大答案 B解析根据玻尔的氢原子理论,当某个氢原子吸收一个光子后,氢原子的能级升高,半径增大,A、C错误;电子与原子核间的距离增大,库仑力做负功,电势能增大,B正确;电子围绕原子核做圆周运动,库仑力提供向心力,由ke2r2=m v2r,可得E k=12m v 2=ke22r,半径增大,动能减小,D错误.第2课时玻尔理论对氢光谱的解释氢原子能级跃迁[学习目标] 1.能用玻尔理论解释氢原子光谱.了解玻尔理论的不足之处和原因.2.进一步加深对玻尔理论的理解,会计算原子跃迁过程中吸收或放出光子的能量.3.知道使氢原子电离的方法并能进行有关计算.一、玻尔理论对氢光谱的解释1.氢原子能级图(如图所示)2.解释巴耳末公式巴耳末公式中的正整数n和2正好代表电子跃迁之前和跃迁之后所处的定态轨道的量子数n 和2.3.解释气体导电发光通常情况下,原子处于基态,非常稳定,气体放电管中的原子受到高速运动的电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.4.解释氢原子光谱的不连续性原子从较高的能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.5.解释不同原子具有不同的特征谱线不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.二、玻尔理论的局限性1.成功之处玻尔的原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.2.局限性保留了经典粒子的观念,仍然把电子的运动看作经典力学描述下的轨道运动.3.电子云原子中的电子没有确定的坐标值,我们只能描述某时刻电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图像就像云雾一样分布在原子核周围,故称电子云.1.判断下列说法的正误.(1)处于基态的氢原子可以吸收11 eV的光子而跃迁到能量较高的激发态.(×)(2)处于n=2激发态的氢原子可以吸收11 eV的光子而发生电离.(√)(3)处于低能级的原子只有吸收光子才能跃迁到激发态.(×)(4)玻尔的原子模型成功地引入了量子化观念,是一种完美的原子结构模型.(×)(5)玻尔的原子模型也具有局限性,因为它保留了过多的经典粒子的观念.(√)2.如图为氢原子的能级图,则电子处在n=4轨道上比处在n=3轨道上离核的距离(填“远”或“近”).当大量氢原子处在n=3的激发态时,由于跃迁所发射的谱线有条.放出的光子的最大能量为eV.答案远312.09一、玻尔理论对氢光谱的解释1.氢原子能级图(如图所示)2.能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为N=C 2n =n (n -1)2. 3.光子的发射:原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.hν=E m -E n (E m 、E n 是始末两个能级且m >n ),能级差越大,发射光子的频率就越高.4.光子的吸收:原子只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=E m -E n (m >n ).例1 (2021·江苏宿迁高二期末)氢原子的能级图如图所示,现有大量处于n =5能级(图中未标出)的氢原子向低能级跃迁,下列说法正确的是( )A .这些氢原子一定能发出10种不同频率的可见光(可见光能量范围:1.63~3.10 eV)B .已知钠的逸出功为2.29 eV ,则氢原子从n =5能级跃迁到n =2能级释放的光子可以使金属钠的表面逸出光电子C .氢原子从n =5能级跃迁到n =1能级释放的光子波长最长D .氢原子从n =5能级跃迁到n =4能级时,氢原子能量减小,核外电子动能减小 答案 B解析 大量处于n =5能级的氢原子向低能级跃迁,可能辐射出C 25=10种不同频率的光子,但是这些光子中只有3→2,4→2,5→2跃迁中产生的光子在可见光的范围内,A 错误;氢原子从n =5能级跃迁到n =2能级释放的光子,其能量为ΔE 52=-0.54 eV -(-3.40 eV)=2.86 eV ,。

高2021届高2018级版步步高3-5高中物理第四章 1

高2021届高2018级版步步高3-5高中物理第四章 1

1量子概念的诞生[学习目标] 1.知道热辐射、黑体和黑体辐射的概念, 知道黑体辐射的实验规律.2.知道普朗克提出的能量子假说.一、热辐射1.定义:我们周围的一切物体都在辐射电磁波, 这种辐射与物体的温度有关, 所以叫热辐射.2.特点:热辐射强度按波长的分布情况随物体的温度而有所不同.二、黑体与黑体辐射1.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射, 这种物体就是绝对黑体, 简称黑体.2.黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.三、能量子1.定义:普朗克认为, 黑体辐射是谐振子向外辐射的各种电磁波.谐振子的能量是不连续的, 而只能取一些分立的值, 即E n =nhν(n =1,2,3, …), 最小的一份能量称为能量子.2.大小:ε=hν, 其中ν是谐振动(电磁波)的频率, h 是普朗克常量, h =6.63×10-34J·s.3.能量的量子化:在微观世界中能量是量子化的, 或者说微观粒子的能量是分立的. [即学即用]1.判断下列说法的正误.(1)黑体一定是黑色的物体.( × )(2)能吸收各种电磁波而不反射电磁波的物体叫黑体.( √ ) (3)温度越高, 黑体辐射电磁波的强度越大.( √ ) (4)微观粒子的能量只能是能量子的整数倍.( √ )(5)能量子的能量不是任意的, 其大小与电磁波的频率成正比.( √ )2.人眼对绿光较为敏感, 正常人的眼睛接收到波长为530 nm 的绿光时, 只要每秒钟有6个绿光的光子射入瞳孔, 眼睛就能察觉.普朗克常量为6.63×10-34J·s, 光速为3×108 m/s, 则人眼能察觉到绿光时所接收到的最小功率约是( ) A.2.3×10-18W B.3.8×10-19W C.7.0×10-10W D.1.2×10-18W答案 A解析 因为只要每秒钟有6个绿光的光子射入瞳孔, 眼睛就能察觉.所以察觉到绿光时所接收到的最小功率P =E t , 式中t =1 s 时E =6ε, 又ε=hν=h c λ, 可解得P ≈2.3×10-18 W.一、黑体辐射的规律 [导学探究]1.什么是黑体辐射?它与热辐射有什么不同?答案能够完全吸收各种波长的电磁波而不发生反射的物体, 叫做黑体.黑体辐射电磁波的强度按波长的分布只与温度有关, 而热辐射还与其他因素有关(材料的种类和表面状况).2.黑体辐射电磁波的强度按波长分布如图1所示, 当温度从1 300 K升高到1 700 K时, 各种波长的电磁波的辐射强度怎么变化?辐射强度极大值对应的波长如何变化?图1答案变强.辐射强度极大值向波长较短的方向移动, 即变短.[知识深化]1.一般物体与黑体的比较短的方向移动.3.现实生活中不存在理想的黑体, 实际的物体都能辐射红外线(电磁波), 也都能吸收和反射红外线(电磁波), 绝对黑体不存在, 是理想化的模型.例1(多选)黑体辐射的实验规律如图2所示, 由图可知()图2A.随着温度升高, 各种波长的辐射强度都增加B.随着温度降低, 各种波长的辐射强度都增加C.随着温度升高, 辐射强度的极大值向波长较短的方向移动D.随着温度降低, 辐射强度的极大值向波长较长的方向移动 答案 ACD解析 由题图可知, 随着温度升高, 各种波长的辐射强度都增加, 且辐射强度的极大值向波长较短的方向移动, 当温度降低时, 上述变化都将反过来. 二、能量子[导学探究] 某激光器能发射波长为λ的激光, 那么激光能量子的能量可以取任意值吗?是连续的还是一份一份的?设普朗克常量为h , 那么每个激光能量子的能量是多少?如果激光发射功率为P , 那么每秒钟发射多少个能量子?(光速为c )答案 激光能量子的能量不是连续的, 而是一份一份的, ε=h c λ.个数n =P ε=Pλhc .[知识深化]1.物体在发射或接收能量的时候, 只能从某一状态“飞跃”地过渡到另一状态, 而不可能停留在不符合这些能量规律的任何一个中间状态.2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的, 能量变化也是连续的, 不必考虑能量量子化;在研究微观粒子时必须考虑能量量子化.3.能量子的能量ε=hν, 其中h 是普朗克常量, ν是电磁波的频率.例2(多选)对于带电微粒辐射和吸收能量时的特点, 以下说法正确的是( )A.以某一个最小能量值为单位一份一份地辐射或吸收B.辐射和吸收的能量是某一最小值的整数倍C.吸收的能量可以是连续的D.辐射和吸收的能量是量子化的 答案 ABD解析 带电微粒辐射或吸收能量时是以最小能量值——能量子ε的整数倍或一份一份地辐射或吸收的, 是不连续的, 故选项A 、B 、D 正确, C 错误.1.思维程序:c =λν→光的频率―――――――→ν=cλ能量子的能量――→ε=hν激光束的总能量E =nε→能量子的个数2.解决此类题目的关键是熟练掌握ε=hν和c =λν及E =nε=Pt 等公式.1.(对黑体辐射规律的理解)(多选)在实验室或工厂的高温炉子上开一小孔, 小孔可看做黑体, 由小孔的热辐射特性, 就可以确定炉内的温度.如图3所示就是黑体的辐射强度与其辐射光波长的关系图像, 则下列说法正确的是()图3A.T1>T2B.T1<T2C.随着温度的升高, 各种波长黑体辐射的强度都有所降低D.随着温度的升高, 辐射强度的极大值向波长较短的方向移动答案AD解析黑体是指在任何温度下, 能够完全吸收入射的各种波长的电磁波而不反射的物体, 黑体辐射的强度按波长的分布只与温度有关.实验表明, 随着温度的升高, 黑体辐射中各种波长的辐射强度都有所增加, 辐射强度的极大值向波长较短的方向移动.从题图中可以看出, λ1<λ2,T1>T2, 本题正确选项为A、D.2.(对能量子的理解)(多选)关于对普朗克能量子假说的认识, 下列说法正确的是()A.振动着的带电微粒的能量只能是某一能量值εB.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍C.能量子与电磁波的频率成正比D.这一假说与现实世界相矛盾, 因而是错误的答案BC3.(能量量子化的理解)硅光电池是将光辐射的能量转化为电能.若有N个波长为λ0的光子打在硅光电池极板上, 这些光子的总能量为(h为普朗克常量, c为真空中的光速)()A.h cλ0 B.Nh cλ0 C.Nhλ0 D.2Nhλ0答案 B解析一个光子的能量ε=hν=h cλ0, 则N个光子的总能量E=Nh cλ0, 选项B正确.一、选择题考点一黑体辐射的理解和应用1.关于对热辐射的认识, 下列说法中正确的是()A.热的物体向外辐射电磁波, 冷的物体只吸收电磁波B.温度越高, 物体辐射的电磁波越强C.辐射强度按波长的分布情况只与物体的温度有关, 与材料种类及表面状况无关D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色答案 B解析一切物体都在不停地向外辐射电磁波, 且温度越高, 辐射的电磁波越强, 对于一般材料的物体, 辐射强度按波长的分布除与物体的温度有关外, 还与材料的种类和表面状况有关;常温下我们看到的物体的颜色是反射光的颜色.2.黑体辐射电磁波的强度按波长分布的影响因素是()A.温度B.材料C.表面状况D.以上都正确答案 A解析黑体辐射电磁波的强度按波长的分布只与黑体的温度有关, A对.3.下列描绘两种温度下黑体辐射强度与波长关系的图像中, 符合黑体辐射实验规律的是()答案 A解析随着温度的升高, 黑体辐射的强度与波长的关系:一方面, 各种波长的辐射强度都增加, 另一方面, 辐射强度的极大值向波长较短的方向移动.由此规律可知应选A.4.“非典”期间, 很多地方用红外线热像仪监测人的体温, 只要被测者从仪器前走过, 便可知道他的体温是多少, 关于其中原理, 下列说法正确的是( )A.人的体温会影响周围空气温度, 仪器通过测量空气温度便可知道人的体温B.仪器发出的红外线遇人反射, 反射情况与被测者的温度有关C.被测者会辐射红外线, 辐射强度以及按波长的分布情况与温度有关, 温度高时辐射强且较短波长的成分强D.被测者会辐射红外线, 辐射强度以及按波长的分布情况与温度有关, 温度高时辐射强且较长波长的成分强 答案 C解析 根据辐射规律可知, 随着温度的升高, 各种波长的辐射强度都增加;随着温度的升高, 辐射强度的极大值向波长较短的方向移动.人的体温的高低, 直接决定了这个人辐射的红外线的频率和强度, 通过监测被测者辐射的红外线的情况就可知道这个人的体温, C 正确. 5.下列叙述错误的是( )A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波 答案 B解析 根据热辐射定义知A 对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外, 还与材料种类和表面状况有关, 而黑体辐射电磁波的强度按波长的分布只与黑体温度有关, B 错, C 对;根据黑体定义知D 对. 考点二 能量子的理解和应用6.普朗克在1900年将“能量子”引入物理学, 开创了物理学的新纪元.在下列宏观概念中, 具有“量子化”特征的是( ) A.人的个数 B.物体所受的重力 C.物体的动能 D.物体的长度答案 A解析 依据普朗克量子化观点, 能量是不连续的, 是一份一份地变化的, 属于“不连续的, 一份一份”的概念的是A 选项, 故A 正确, B 、C 、D 错误.7.已知某种单色光的波长为λ, 在真空中光速为c , 普朗克常量为h , 则电磁波辐射的能量子ε的值为( ) A.h c λ B.h λC.c hλD.以上均不正确答案 A解析 由波速公式c =λν可得:ν=c λ, 由光的能量子公式得ε=hν=h c λ, 故选项A 正确. 8.能引起人的眼睛视觉效应的最小能量为10-18 J, 已知可见光的平均波长为0.6 μm , 普朗克常量h =6.63×10-34 J·s, 光速为3×108 m/s, 若恰能引起人眼的感觉, 则进入人眼的光子数至少为( )A.1个B.3个C.30个D.300个答案 B解析 每个光子的能量为E 0=h c λ, 能引起人的眼睛视觉效应的最小能量E 为10-18 J, 由E =nE 0得进入人眼的光子数至少为n =E E 0=Eλhc =10-18×6×10-76.63×10-34×3×108个≈3个.故选B. 9.在自然界生态系统中, 蛇与老鼠和其他生物通过营养关系构成食物链, 在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌, 它是通过接收热辐射来发现老鼠的.假设老鼠的体温约37 ℃, 它发出的最强的热辐射的波长为λmin .根据热辐射理论, λmin 与辐射源的绝对温度T 的关系近似为Tλmin =2.90×10-3 m·K, 则老鼠发出的最强热辐射的波长为( )A.7.8×10-5 mB.9.4×10-6 m C.1.16×10-4 mD.9.7×10-8 m 答案 B解析 由Tλmin =2.90×10-3 m·K 可得, 老鼠发出的最强热辐射的波长为λmin =2.90×10-3 m·k T =2.90×10-3273+37m ≈9.4×10-6 m, B 正确. 10.红外遥感卫星通过接收地面物体发出的红外辐射来探测地面物体的状况.地球大气中的水汽(H 2O)、二氧化碳(CO 2)能强烈吸收某些波长范围的红外辐射, 即地面物体发出的某些波长的电磁波, 只有一部分能够通过大气层被遥感卫星接收.如图1所示为水和二氧化碳对某一波段不同波长电磁波的吸收情况, 由图可知, 在该波段红外遥感大致能够接收到的波长范围是( )图1A.2.5~3.5 μmB.4~4.5 μmC.5~7 μmD.8~13 μm 答案 D解析 由题图可知, 水对红外辐射吸收率最低的波长范围是8~13 μm ;二氧化碳对红外辐射吸收率最低的波长范围是5~13 μm.综上可知, 应选D.二、非选择题11.(能量子个数的计算)40瓦的白炽灯, 有5%的能量转化为可见光.设所发射的可见光的平均波长为580 nm, 那么该白炽灯每秒钟辐射的光子数为多少?(普朗克常量h =6.63×10-34 J·s, 光速c =3×108 m/s)答案 5.8×1018个解析 波长为λ的光子能量为:ε=hν=h c λ① 设白炽灯每秒内发出的光子数为n , 白炽灯电功率为P , 则:n =ηP ε② 式中, η=5%是白炽灯的发光效率.联立①②式得:n =ηPλhc代入题给数据得:n ≈5.8×1018个12.(能量子的理解和计算)某广播电台的发射功率为10 kW, 发射的是在空气中波长为187.5 m 的电磁波, 则:(普朗克常量h =6.63×10-34 J·s, 光速c =3×108 m/s)(1)该电台每秒从天线发射多少个能量子?(2)若发射的能量子在以天线为球心的同一球面上的分布视为均匀的, 求在离天线2.5 km 处, 直径为2 m 的球状天线每秒接收的能量子个数以及接收功率.(球面积公式S =4πR 2)答案 (1)9.4×1030个 (2)3.76×1023个 4×10-4 W解析 (1)每个能量子的能量ε=hν=hc λ=6.63×10-34×3×108187.5J ≈1.06×10-27 J 则能量子数N =Pt ε≈9.4×1030个. (2)设球状天线每秒接收的能量子数为n 个, 以电台发射天线为球心, 则半径为R 的球面积S =4πR 2,而球状天线的有效接收面积S ′=πr 2, 所以n =N S ′S =N r 24R 2=9.4×1030×124×(2.5×103)2个=3.76×1023个接收功率P 收=nεt=3.76×1023×1.06×10-27 W ≈4×10-4 W.。

2018高考物理步步高 第五章 第1讲

2018高考物理步步高 第五章  第1讲

第1讲功功率动能定理一、功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F的方向与位移l的方向成某一夹角α时:W=Fl cos_α.5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.6.一对作用力与反作用力的功]7.一对平衡力的功一对平衡力作用在同一个物体上,若物体静止,则两个力都不做功;若物体运动,则这一对力所做的功一定是数值相等,一正一负或均为零.二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)P =W t,P 为时间t 内物体做功的快慢. (2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.深度思考由公式P =Fv 得到F 与v 成反比正确吗答案 不正确,在P 一定时,F 与v 成反比. 三、动能 动能定理 1.动能(1)定义:物体由于运动而具有的能叫动能. (2)公式:E k =12mv 2.(3)矢标性:动能是标量,只有正值.(4)状态量:动能是状态量,因为v 是瞬时速度. 2.动能定理(1)内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量. (2)表达式:W =12mv 22-12mv 21=E k2-E k1.(3)适用条件:①既适用于直线运动,也适用于曲线运动.②既适用于恒力做功,也适用于变力做功.③力可以是各种性质的力,既可以同时作用,也可以分阶段作用.(4)应用技巧:若整个过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.深度思考物体的速度改变,动能一定改变吗答案不一定.如匀速圆周运动.1.(粤教版必修2P67第5题)用起重机将质量为m 的物体匀速吊起一段距离,那么作用在物体上的各力做功情况应是下列说法中的哪一种( )A .重力做正功,拉力做负功,合力做功为零B .重力做负功,拉力做正功,合力做正功C .重力做负功,拉力做正功,合力做功为零D .重力不做功,拉力做正功,合力做正功 答案 C2.(粤教版必修2P77第2题)(多选)一个物体在水平方向的两个恒力作用下沿水平方向做匀速直线运动,若撤去其中的一个力,则( )A .物体的动能可能减少B .物体的动能可能不变C .物体的动能可能增加D .余下的力一定对物体做功 答案 ACD3.(多选)关于功率公式P =Wt和P =Fv 的说法正确的是( ) A .由P =W t知,只要知道W 和t 就可求出任意时刻的功率 B .由P =Fv 既能求某一时刻的瞬时功率,也可以求平均功率 C .由P =Fv 知,随着汽车速度的增大,它的功率也可以无限增大 D .由P =Fv 知,当汽车发动机功率一定时,牵引力与速度成反比 答案 BD4.(人教版必修2P59第1题改编)如图1所示,两个物体与水平地面间的动摩擦因数相等,它们的质量也相等.在甲图中用力F 1拉物体,在乙图中用力F 2推物体,夹角均为α,两个物体都做匀速直线运动,通过相同的位移.设F1和F2对物体所做的功分别为W1和W2,物体克服摩擦力做的功分别为W3和W4,下列判断正确的是( )图1A.F1=F2B.W1=W2C.W3=W4D.W1-W3=W2-W4答案D5.有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图2所示.若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )图2A.木块所受的合外力为零B.因木块所受的力都不对其做功,所以合外力做的功为零C.重力和摩擦力的合力做的功为零D.重力和摩擦力的合力为零答案C命题点一功的分析与计算1.常用办法:对于恒力做功利用W=Fl cos α;对于变力做功可利用动能定理(W=ΔE k);对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=F f x相对.例1一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( ) A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1物体从静止开始经过同样的时间.答案 C 解析 根据x =v +v 02t 得,两过程的位移关系x 1=12x 2,根据加速度的定义a =v -v 0t,得两过程的加速度关系为a 1=a 22.由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即F f1=F f2=F f ,根据牛顿第二定律得,F 1-F f1=ma 1,F 2-F f2=ma 2,所以F 1=12F 2+12F f ,即F 1>F 22.根据功的计算公式W =Fl ,可知W f1=12W f2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D错误.判断力是否做功及做正、负功的方法1.看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形. 2.看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.3.根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W合=ΔE k,当动能增加时合外力做正功;当动能减少时合外力做负功.1.如图3所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对m的支持力和摩擦力的下列说法中错误的是( )图3A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功答案B解析支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 选项是错误的.2.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h ,空气阻力的大小恒为F ,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .FhD .-2Fh答案 D解析 阻力与小球速度方向始终相反,故阻力一直做负功,W =-Fh +(-Fh )=-2Fh ,D 选项正确.命题点二 功率的理解和计算 1.平均功率与瞬时功率 (1)平均功率的计算方法 ①利用P =W t.②利用P =F v cos α,其中v 为物体运动的平均速度. (2)瞬时功率的计算方法①利用公式P =Fv cos α,其中v 为t 时刻的瞬时速度. ②P =Fv F ,其中v F 为物体的速度v 在力F 方向上的分速度. ③P =F v v ,其中F v 为物体受到的外力F 在速度v 方向上的分力. 2.机车的两种启动模型3.机车启动问题常用的三个公式(1)牛顿第二定律:F-F f=ma.(2)功率公式:P=F·v.(3)速度公式:v=at.说明:F为牵引力,F f为机车所受恒定阻力.例2在检测某种汽车性能的实验中,质量为3×103kg 的汽车由静止开始沿平直公路行驶,达到的最大速度为40 m/s ,利用传感器测得此过程中不同时刻该汽车的牵引力F 与对应速度v ,并描绘出如图4所示的F -1v图象(图线ABC 为汽车由静止到达到最大速度的全过程,AB 、BO 均为直线).假设该汽车行驶中所受的阻力恒定,根据图线ABC :图4(1)求该汽车的额定功率;(2)该汽车由静止开始运动,经过35 s 达到最大速度40 m/s ,求其在BC 段的位移.①最大速度在图象中对应的力;②AB 、BO 均为直线.答案 (1)8×104W (2)75 m解析 (1)由图线分析可知:图线AB 表示牵引力F 不变即F =8 000 N ,阻力F f 不变,汽车由静止开始做匀加速直线运动;图线BC 的斜率表示汽车的功率P 不变,达到额定功率后,汽车所受牵引力逐渐减小,汽车做加速度减小的变加速直线运动,直至达到最大速度40 m/s ,此后汽车做匀速直线运动.由图可知:当最大速度v max =40 m/s 时,牵引力为F min =2 000 N 由平衡条件F f =F min 可得F f =2 000 N 由公式P =F min v max 得额定功率P =8×104W.(2)匀加速运动的末速度v B =P F,代入数据解得v B =10 m/s 汽车由A 到B 做匀加速运动的加速度为a =F -F f m=2 m/s 2设汽车由A 到B 所用时间为t 1,由B 到C 所用时间为t 2,位移为x ,则t 1=v B a=5 s ,t 2=35 s -5 s =30 sB 点之后,对汽车由动能定理可得Pt 2-F f x =12mv 2C -12mv 2B ,代入数据可得x =75 m.1.求解功率时应注意的“三个”问题(1)首先要明确所求功率是平均功率还是瞬时功率;(2)平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率;(3)瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率. 2.机车启动中的功率问题(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,但速度不是最大,v =P F <v m =P F 阻.3.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图5所示.假定汽车所受阻力的大小F f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是( )图5答案 A解析 当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-F f =ma 1,F f 不变,所以汽车做加速度减小的加速运动,当F 1=F f 时速度最大,且v m =P 1F 1=P 1F f.当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-F f =ma 2,所以加速度逐渐减小,直到F 2=F f 时,速度最大v m ′=P 2F f,此后汽车做匀速直线运动.综合以上分析可知选项A 正确.4.一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,重物上升的高度为h ,则整个过程中,下列说法正确的是( )A .钢绳的最大拉力为P v 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为P mgD .重物匀加速运动的加速度为Pmv 1-g 答案 D解析 加速过程重物处于超重状态,钢绳拉力较大,匀速运动阶段钢绳的拉力为P v 2,故A 错误;加速过程重物处于超重状态,钢绳拉力大于重力,故B 错误;重物匀加速运动的末速度不是运动的最大速度,此时钢绳对重物的拉力大于其重力,故其速度小于P mg,故C 错误;重物匀加速运动的末速度为v 1,此时的拉力为F =P v 1,由牛顿第二定律得:a =F -mg m =Pmv 1-g ,故D 正确.命题点三 动能定理及其应用 1.动能定理 (1)三种表述①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12mv 2-12mv 20或W 合=E k -E k0;③图象表述:如图6所示,E k -l 图象中的斜率表示合外力.图6(2)适用范围①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功;③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路(1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况;(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解.例3我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图7所示,质量m=60 kg的运动员从长直助滑道AB的A 处由静止开始以加速度a= m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B 的竖直高度差H=48 m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1 530 J,取g=10 m/s2.图7(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大.答案 (1)144 N (2) m解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v 2B =2ax ① 由牛顿第二定律有mg Hx-F f =ma ② 联立①②式,代入数据解得F f =144 N③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得mgh +W =12mv 2C -12mv 2B ④设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m v2C R⑤由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R = m.5.(多选)(2015·浙江理综·18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为×104kg ,设起飞过程中发动机的推力恒为×105N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( )A .弹射器的推力大小为×106N B .弹射器对舰载机所做的功为×108J C .弹射器对舰载机做功的平均功率为×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 2答案 ABD解析 设总推力为F ,位移x =100 m ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x =12mv 2,解得F =×106 N ,弹射器推力F 弹=F -F 发=×106 N -×105 N =×106N ,A 正确;弹射器对舰载机所做的功为W =F 弹·x =×106×100 J=×108J ,B 正确;弹射器对舰载机做功的平均功率P =F 弹·0+v 2=×107 W ,C 错误;根据运动学公式v 2=2ax ,得a =v 22x=32 m/s 2,D 正确.6.(多选)(2016·浙江理综·18)如图8所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=,cos 37°=.则( )图8A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 对滑草车从坡顶由静止滑下,到底端静止的全过程,得mg ·2h -μmg cos45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;对经过上段滑道过程,根据动能定理得,mgh -μmg cos 45°·h sin 45°=12mv 2,解得v =2gh7,选项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度大小为a =μmg cos 37°-mg sin 37°m =335g ,选项D 错误.7.如图9所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为F f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.求:图9(1)小船从A 点运动到B 点的全过程克服阻力做的功W f ; (2)小船经过B 点时的速度大小v 1; (3)小船经过B 点时的加速度大小a . 答案 (1)F f d (2) v 20+2mPt 1-F f d(3)Pm 2v 20+2m Pt 1-F f d-F fm解析 (1)小船从A 点运动到B 点克服阻力做功W f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功W =Pt 1②由动能定理有W -W f =12mv 21-12mv 20③由①②③式解得v 1= v 20+2mPt 1-F f d ④(3)设小船经过B 点时缆绳的拉力大小为F ,缆绳与水平方向的夹角为θ,电动机牵引缆绳的速度大小为v ,则P =Fv ⑤ v =v 1cos θ⑥由牛顿第二定律有F cos θ-F f =ma ⑦由④⑤⑥⑦式解得a=Pm2v20+2m Pt1-F f d-F fm.求解变力做功的五种方法一、用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功,因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.典例1如图10所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.现用水平拉力F将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F做的功为( )图10A.FL cos θB.FL sin θC.FL(1-cos θ) D.mgL(1-cos θ)答案D解析在小球缓慢上升过程中,拉力F为变力,此变力F的功可用动能定理求解.由W F-mgL(1-cos θ)=0得W F=mgL(1-cos θ),故D正确.二、利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.典例2如图11所示,在一半径为R=6 m的圆弧形桥面的底端A,某人把一质量为m=8 kg的物块(可看成质点).用大小始终为F=75 N 的拉力从底端缓慢拉到桥面顶端B(圆弧AB在一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g取10 m/s2,sin 37°=,cos 37°=.求这一过程中:图11(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功. 答案 (1) J (2)- J解析 (1)将圆弧AB 分成很多小段l 1、l 2、…、l n ,拉力在每一小段上做的功为W 1、W 2、…、W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°、…、W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos 37°·16·2πR = J.(2)因为重力G 做的功W G =-mgR (1-cos 60°)=-240 J ,而因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =- J +240 J =- J. 三、化变力为恒力求变力做功变力做功直接求解时,通常都比较复杂,但若通过转换研究对象,有时可化为恒力做功,可以用W =Fl cos α求解,此法常常应用于轻绳通过定滑轮拉物体的问题中.四、用平均力求变力做功在求解变力做功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,即为均匀变化,则可以认为物体受到一大小为F =F 1+F 22的恒力作用,F 1、F 2分别为物体初、末状态所受到的力,然后用公式W =F l cos α求此力所做的功.五、用F -x 图象求变力做功在F -x 图象中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图).典例3轻质弹簧右端固定在墙上,左端与一质量m= kg的物块相连,如图12甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=.以物块所在处为原点,水平向右为正方向建立x轴,现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示,物块运动至x= m处时速度为零,则此时弹簧的弹性势能为(g=10 m/s2)( )图12A. J B. JC. J D. J答案A解析物块与水平面间的摩擦力为F f=μmg=1 N.现对物块施加水平向右的外力F,由F-x图象面积表示功可知F做功W= J,克服摩擦力做功W f=F f x= J.由功能关系可知,W-W f=E p,此时弹簧的弹性势能为E p= J,选项A正确.题组1 功和功率的分析与计算1.一个成年人以正常的速度骑自行车,受到的阻力为总重力的倍,则成年人骑自行车行驶时的功率最接近于( )A.1 W B.10 W C.100 W D.1 000 W答案C解析 设人和车的总质量为100 kg ,匀速行驶时的速率为5 m/s ,匀速行驶时的牵引力与阻力大小相等F ==20 N ,则人骑自行车行驶时的功率为P =Fv =100 W ,故C 正确.2.(多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图1所示.下列判断正确的是( )图1A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4 答案 AD解析 第1 s 末质点的速度v 1=F 1m t 1=31×1 m/s=3 m/s.第2 s 末质点的速度v 2=v 1+F 2m t 2=(3+11×1) m/s=4 m/s.则第2 s 内外力做功W 2=12mv 22-12mv 21= J0~2 s 内外力的平均功率 P =12mv 22t=错误! W =4 W.选项A 正确,选项B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W=9 W , 第2 s 末外力的瞬时功率P 2=F 2v 2=1×4 W=4 W ,故P 1∶P 2=9∶4.选项C 错误,选项D 正确.3.如图2甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时F 所做的总功为( )图2A .0F m x 0F m x 0x 20答案 C解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12π·F 2m =12π·F m ·12x 0=π4F m x 0.题组2 动能定理及其简单应用4.如图3所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则小球从A 到C 的过程中弹簧弹力做功是( )图3A .mgh -12mv 2mv 2-mghC .-mghD .-(mgh +12mv 2)答案 A解析 小球从A 点运动到C 点的过程中,重力和弹簧的弹力对小球做负功,由于支持力与位移始终垂直,则支持力对小球不做功,由动能定理,可得W G +W F =0-12mv 2,重力做功为W G =-mgh ,则弹簧的弹力对小球做功为W F =mgh -12mv 2,所以正确选项为A.5.(多选)质量为1 kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图4甲所示,外力F 和物体克服摩擦力F f 做的功W 与物体位移x 的关系如图乙所示,重力加速度g 取10 m/s 2.下列分析正确的是( )图4A .物体与地面之间的动摩擦因数为B .物体运动的位移为13 mC .物体在前3 m 运动过程中的加速度为3 m/s 2D .x =9 m 时,物体的速度为3 2 m/s 答案 ACD解析 由W f =F f x 对应图乙可知,物体与地面之间的滑动摩擦力F f =2 N ,由F f =μmg 可得μ=,A 正确;由W F =Fx 对应图乙可知,前3 m 内,拉力F 1=5 N,3~9 m 内拉力F 2=2 N ,物体在前3 m 内的加速度a 1=F 1-F f m =3 m/s 2,C 正确;由动能定理得:W F -F f x =12mv 2可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;物体的最大位移x m =W FF f= m ,B 错误.6.(多选)如图5所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离为l ,子弹进入木块的深度为d ,若木块对子弹的阻力F f 视为恒定,则下列关系式中正确的是( )图5A .F f l =12Mv 2B .F f d =12Mv 2C .F f d =12mv 20-12(M +m )v 2D .F f (l +d )=12mv 20-12mv 2答案 ACD解析 画出如图所示的运动过程示意图,从图中不难看出,当木块前进距离l ,子弹进入木块的深度为d 时,子弹相对于地发生的位移为l +d ,由牛顿第三定律,子弹对木块的作用力大小也为F f .子弹对木块的作用力对木块做正功,由动能定理得:F f l =12Mv 2木块对子弹的作用力对子弹做负功,由动能定理得: -F f (l +d )=12mv 2-12mv 2两式联立得:F f d =12mv 20-12(M +m )v 2所以,本题正确答案为A 、C 、D. 题组3 动能定理在多过程问题中的应用7.如图6所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图6(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12mv 2B -0④由③④式得W f =-(mgH -2mgR )(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12mv 2P -0⑤过P 点时,根据向心力公式,有mg cos θ-N =m v2P R⑥N =0⑦cos θ=hR⑧由⑤⑥⑦⑧式解得h =23R .8.如图7甲所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0处的P 点向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:图7(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功.。

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第4讲-万有引力与航天

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第4讲-万有引力与航天

[考试标准]一、开普勒行星运动三定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.3.开普勒第三定律(又叫周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.[深度思考] 判断下列说法是否正确.(1)开普勒定律只适用于行星绕太阳的运动,不适用于卫星绕地球的运动.( × ) (2)行星离太阳较近时,运动速率比较快,行星离太阳比较远时运动速率比较慢.( √ ) (3)离太阳越远的行星,周期越长.( √ ) 二、万有引力定律1.自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比. 2.万有引力定律的表达式为F =G m 1m 2r2.3.适用条件:万有引力定律的公式只适用于计算质点间的相互作用. 4.引力常量是由英国物理学家卡文迪许利用扭称装置测得的,G =6.67×10-11N·m 2/kg 2.三、万有引力理论的成就 1.预言未知星体英国的亚当斯和法国的勒维耶,根据天王星的观测资料,各自独立地利用万有引力定律计算出天王星轨道外面“新”行星的轨道.德国的伽勒在勒维耶预言的位置附近发现了海王星. 2.计算天体质量天体质量的计算一般有两条思路:(1)中心天体对卫星的万有引力提供卫星所需的向心力.以计算地球质量为例,若已知月球绕地球运动的周期T 和半径r ,则根据GMm r 2=m (2πT )2r ,得M =4π2r 3GT2.(2)地面(或某行星表面)的物体的重力近似等于物体所受的万有引力.若已知地球半径R 和地球表面的重力加速度g ,由mg =GMm R 2得M =gR 2G.[深度思考] 当两个物体间的距离趋近于0时,万有引力趋近于无穷大吗?为什么?答案不是,此时两个物体不能看成质点了.四、宇宙航行1.第一宇宙速度是物体在地面附近绕地球做匀速圆周运动的速度,大小为7.9 km/s,第一宇宙速度是卫星最大的环绕速度,也是发射卫星的最小发射速度.2.第二宇宙速度是指将卫星发射出去,挣脱地球的束缚所需要的最小发射速度,其大小为11.2 km/s.3.第三宇宙速度是指使发射出去的卫星挣脱太阳引力的束缚,飞到太阳系外所需要的最小发射速度,其大小为16.7 km/s.五、经典力学的局限性1.在经典力学中,物体的质量是不变的,而狭义相对论指出,质量要随着物体运动速度的增大而增大,即m=m01-v2c2,两者在低速的条件下是统一的.2.经典力学认为位移和时间的测量与参考系无关,相对论认为,同一过程的位移和时间的测量与参考系有关.3.经典力学的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.4.当物体的运动速度远小于光速c(3×108 m/s)时,相对论物理学与经典物理学的结论没有区别.1.(2016·资阳期末)关于开普勒对行星运动规律的认识,下列说法正确的是()A.所有行星绕太阳的运动都是匀速圆周运动B.所有行星以相同的速率绕太阳做椭圆运动C.对于每一个行星在近日点时的速率均大于它在远日点的速率D.所有行星轨道的半长轴的二次方与公转周期的三次方的比值都相同答案 C2.(多选)关于开普勒行星运动的公式R 3T 2=k ,以下理解正确的是( )A .k 是一个与行星无关的量B .若地球绕太阳运动轨道的半长轴为R 地,周期为T 地;月球绕地球运动轨道的半长轴为R月,周期为T 月,则R 3地T 2地=R 3月T2月 C .T 表示行星运动的自转周期 D .T 表示行星运动的公转周期 答案 AD3.下面叙述的力,属于万有引力的是( ) A .马拉车的力B .月球对登月舱的吸引力C .钢绳吊起重物,重物对钢绳的拉力D .地磁场对指南针的吸引力 答案 B4.卡文迪许利用扭秤实验测量的物理量是( ) A .地球的半径 B .太阳的质量 C .地球到太阳的距离 D .引力常量答案 D5.2012年10月25日,我国再次成功将一颗北斗导航卫星发射升空,并送入绕地球的椭圆轨道.该卫星发射速度v 大小的范围是( ) A .v <7.9 km/sB .7.9 km /s< v <11.2 km/sC .11.2 km /s< v <16.7 km/sD .v >16.7 km/s 答案 B命题点一 万有引力定律的理解和应用例1 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕.“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( )A.110B .1C .5D .10 解析 根据万有引力提供向心力,有G Mm r 2=m 4π2T 2r ,可得M =4π2r 3GT 2,所以恒星质量与太阳质量之比为M 恒M 太=r 3恒T 2地 r 3地T 2恒=(120)3×(3654)2≈1,故选项B 正确.答案 B应用万有引力定律解题的思路和方法 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T2. (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的估算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3.题组阶梯突破1.(2016·广西模拟)如图1所示为绕太阳运转的各行星轨道示意图,假设图中各行星只受到太阳引力作用,并绕太阳做匀速圆周运动.下列说法正确的是( )图1A .水星运行的周期最长B .地球运行的线速度最大C .火星运行的向心加速度最小D .天王星运行的角速度最小 答案 D解析 根据G Mm r 2=ma n =m v 2r =mrω2=mr 4π2T 2得,向心加速度a n =GM r 2,线速度v =GMr,角速度ω=GMr 3,周期T = 4π2r 3GM,天王星的轨道半径最大,周期最长,角速度最小,向心加速度最小,水星的轨道半径最小,线速度最大,故D 正确,A 、B 、C 错误. 2.某行星与地球的质量比为a ,半径比为b ,则该行星表面与地球表面的重力加速度之比为( )A.a bB.ab 2 C .ab 2 D .ab 答案 B解析 星球表面上万有引力与重力相等,则地球表面上mg =G mMR 2 ①某行星表面上mg ′=G mM ′r 2 ②由①②两式得g ′g =M ′R 2Mr 2=ab2,故B 正确.3.(2016·广西模拟)两颗行星的质量分别为m 1和m 2,它们绕太阳运行的轨道半径分别是r 1和r 2,若它们只受太阳引力的作用,那么这两颗行星的向心加速度之比为( )A .1 B.m 2r 1m 1r 2 C.m 1r 2m 2r 1 D.r 22r21答案 D解析 万有引力提供行星圆周运动的向心力即:G mM r 2=ma n ,可得行星的向心加速度a n =GMr2,所以a 1a 2=r 22r21.4.如图2所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )图2A .b 、c 的线速度大小相等,且大于a 的线速度B .b 、c 的向心加速度大小相等,且大于a 的向心加速度C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,其线速度将增大 答案 D命题点二 宇宙航行和卫星问题例2 宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R ).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为( ) A.2Rh t B.2Rh t C.Rh t D.Rh 2t解析 设月球表面的重力加速度为g ′,由物体“自由落体”可得h =12g ′t 2,飞船在月球表面附近做匀速圆周运动可得G Mm R 2=m v 2R ,在月球表面附近mg ′=GMm R 2,联立得v =2Rht ,故B 正确. 答案 B第一宇宙速度求解和同步卫星的特点1.第一宇宙速度的推导 方法一:由G MmR 2=m v 21R得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 21R得v 1=gR =7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度. 2.同步卫星的六个“一定”题组阶梯突破5.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是( ) A .若其质量加倍,则轨道半径也要加倍 B .它在北京上空运行,故可用于我国的电视广播 C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同 答案 D解析 由G Mm r 2=m v 2r 得r =GMv 2,可知轨道半径与卫星质量无关,A 错;同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 对.6.若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球的6倍,半径是地球的1.5倍,则该行星的第一宇宙速度约为( )A .16 km /sB .32 km/sC .4 km /sD .2 km/s 答案 A解析 由GMm R 2=m v2R ,得v =GMR =8 km/s ,所以该行星的第一宇宙速度v ′=G ×6M1.5R=16 km/s ,A 项正确.7.(多选)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星的质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( ) A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度 答案 BD解析 天体运动的基本原理为由万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 引=F 向=m v 2r =4π2mr T 2.当卫星在地球表面运行时,F 引=GMmR 2=mg (此时R 为地球半径),设同步卫星离地面高度为h ,则F 引=GMm(R +h )2=F 向=ma 向<mg ,所以C 错误、D 正确.由GMm (R +h )2=m v 2R +h得,v =GMR +h< GM R ,B 正确.由GMm (R +h )2=4π2m (R +h )T 2,得R +h =3GMT 24π2,即h =3GMT 24π2-R ,A 错误.(建议时间:30分钟)1.(2016·朝阳区期末)利用如图1所示的装置首先精确测量引力常量的科学家是( )图1A .第谷B .牛顿C .开普勒D .卡文迪许答案 D解析 牛顿发现万有引力定律后,由英国科学家卡文迪许最先利用扭秤实验较精确测出引力常量G ,故D 正确,A 、B 、C 错误.2.牛顿发现了万有引力定律,卡文迪许通过实验测出了引力常量G ,G 的单位是( ) A .N·m /kg B .N·m 2/kg C .N·m /kg 2 D .N·m 2/kg 2 答案 D解析 万有引力定律F =G mMr 2,公式中,质量m 的单位为kg ,距离r 的单位为m ,引力F的单位为N ,由公式推导得出,G 的单位为N·m 2/kg 2,故D 正确,A 、B 、C 错误. 3.(2016·宁波质检)地球对月球具有强大的万有引力,为什么不靠在一起,其原因是( )A.不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等、方向相反,互相平衡了B.不仅地球对月球有万有引力,而且太阳系里其它星球对月球也有万有引力,这些力的合力等于零C.地球对月球的万有引力还不算大D.万有引力不断改变月球的运动方向,使得月球绕地球运行答案 D解析地球对月球的万有引力和月球对地球的万有引力是相互作用力,两个力大小相等、方向相反,作用在两个物体上,不能平衡,故A错误;月球绕地球做匀速圆周运动,合力不等于零,故B错误;月球绕地球做匀速圆周运动,万有引力恰好提供向心力,万有引力不断改变月球的运动方向,使得月球绕地球运行,故C错误,D正确.4.理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用.下面对于开普勒第三定律的公式a3T2=k,下列说法正确的是()A.公式只适用于轨道是椭圆的运动B.式中的k值,对于所有行星(或卫星)都相等C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离答案 C解析开普勒第三定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动.所以也适用于轨道是圆的运动,故A错误;式中的k与中心天体的质量有关,与绕中心天体旋转的行星(或卫星)无关.故B错误,C正确;已知月球与地球之间的距离,无法求出地球与太阳之间的距离,故D错误.5.开普勒定律告诉我们()A.绕太阳运行的天体称为卫星B.太阳系的八大行星中,离太阳越远的,其周期就越大C.太阳系的八大行星中,离太阳越远的,其运行速度就越大D .太阳系的八大行星绕太阳运行的轨迹都是圆 答案 B6.1984年我国第一颗试验同步卫星发射成功到2003年神舟五号载人飞行,我国的航天事业实现了两次质的飞跃.神舟五号历经21小时27分37秒,绕地球运行14圈安全着陆,神舟五号与同步卫星相比( )A .神舟五号比同步卫星运行时的加速度小B .神舟五号比同步卫星运行时的速度大C .神舟五号比同步卫星离地高度大D .神舟五号与同步卫星在同一轨道平面内 答案 B解析 根据G Mm r 2=mr 4π2T2得,T =4π2r 3GM,由题意知,同步卫星的周期大于神舟五号的周期,则同步卫星的轨道半径大于神舟五号的轨道半径,得知神舟五号比同步卫星离地高度小,故C 错误;根据G Mm r 2=ma n =m v 2r 得,a n =GMr2,v =GMr,同步卫星的轨道半径大,则同步卫星的加速度小,速度小,故A 错误,B 正确;同步卫星的轨道平面在赤道的上空,与神舟五号不在同一轨道平面内,故D 错误.7.(多选)(2016·广西模拟)如图2为绕太阳运转的各行星轨道示意图,假设图中各行星只受太阳引力,并绕太阳做匀速圆周运动.下列说法正确的是( )图2A .各行星运行的线速度相同B .各行星运行的角速度相同C .离太阳越近的行星运行周期越小D .离太阳越近的行星向心加速度越大答案 CD解析 根据G Mm r 2=ma n =m v 2r =mrω2=mr 4π2T 2得,向心加速度a n =GM r 2,线速度v =GMr,角速度ω=GMr 3,周期T = 4π2r 3GM,知各行星的线速度、角速度不等;离太阳越近,轨道半径越小,周期越小,向心加速度越大,故C 、D 正确,A 、B 错误.8.宇宙飞船围绕太阳在近似圆周的轨道上运动,若其轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( ) A .3年 B .9年 C .27年 D .81年 答案 C9.已知引力常量为G ,地球表面重力加速度为g ,地球半径为R ,则地球质量为( ) A .M =gR 2B .M =gR 2GC .M =GgRD .M =gRG答案 B解析 设地球表面有一物体质量为m ,由万有引力公式得:GMm R 2=mg ,解得:M =gR 2G .10.地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( ) A .g B.g 2 C.g4 D .2g答案 C解析 根据题意有:G MmR 2=mg ①G mM (R +R )2=mg ′ ② 由①和②得:g ′=g4故C 正确,A 、B 、D 错误.11.假设地球质量不变,而地球半径增大到原来的2倍,那么从地球上发射人造卫星的第一宇宙速度变为原来的( )A.2倍B.22C.12D .2倍 答案 B12.2011年9月29日,我国成功发射“天宫一号”飞行器,“天宫一号”绕地球做匀速圆周运动的速度约为28 000 km /h ,地球同步卫星的环绕速度约为3.1 km/s ,比较两者绕地球的运动( )A .“天宫一号”的轨道半径大于同步卫星的轨道半径B .“天宫一号”的周期大于同步卫星的周期C .“天宫一号”的角速度小于同步卫星的角速度D .“天宫一号”的向心加速度大于同步卫星的向心加速度 答案 D解析 “天宫一号”绕地球做匀速圆周运动的速度28 000 km /h ≈7.78 km /s ,大于地球同步卫星的线速度,由万有引力提供向心力,有G Mm r 2=m v 2r =m 4π2T 2r =mω2r =ma n ,得出线速度v=GMr,可知“天宫一号”的轨道半径小于同步卫星的轨道半径,所以A 项错误;根据周期公式T = 4π2r 3GM可知“天宫一号”的周期小于同步卫星的周期,所以B 项错误;根据角速度公式ω=GMr 3可知“天宫一号”的角速度大于同步卫星的角速度,所以C 项错误;根据向心加速度公式a n =GMr 2可知“天宫一号”的向心加速度大于同步卫星的向心加速度,所以D 项正确.13.(多选)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =GMRB .角速度ω=gRC .运行周期T =2πR g D .向心加速度a n =Gm R 2答案 AC解析 由GMm R 2=m v 2R =mω2R =m 4π2T 2R =mg =ma n 得v =GMR ,A 对;ω=gR,B 错;T =2πR g ,C 对;a n =GMR2,D 错. 14.据报道,天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的a 倍,质量是地球的b 倍.已知近地卫星绕地球运动的周期约为T ,引力常量为G .则该行星的平均密度为( ) A.3πGT 2 B.π3T 2 C.3πb aGT 2 D.3πa bGT 2答案 C解析 万有引力提供近地卫星绕地球运动的向心力G M 地m R 2=m 4π2RT 2,且ρ地=3M 地4πR 3,由以上两式得ρ地=3πGT 2.而ρ星ρ地=M 星V 地V 星M 地=b a,因而ρ星=3πbaGT 2.15.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( ) A .距地面的高度变大 B .向心加速度变大 C .线速度变大 D .角速度变大 答案 A解析 地球对卫星的万有引力提供向心力,由G mM r 2=mr (2π)2T 2得:T =2πr 3GM,由于周期T 变大,所以卫星距地面的高度变大,A 正确;由卫星运行的规律可知,向心加速度变小,线速度变小,角速度变小,B 、C 、D 错.16.如图3所示,火箭内平台上放有测试仪器,火箭从地面启动后,以g2的加速度竖直向上匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的1718.已知地球半径为R ,求:图3(1)此时火箭所在位置的重力加速度.(2)火箭此时离地面的高度.(g 为地面附近的重力加速度) 答案 (1)49g (2)R2解析 (1)在地面附近的物体,所受重力近似等于物体所受到的万有引力.取测试仪为研究对象,其先后受力分析如图甲、乙所示,据物体的平衡条件有F N1=mg 1,g 1=g ,当升到某一高度时,根据牛顿第二定律有 F N2-mg 2=m g2,所以F N2=mg 2+mg 2=1718mg ,所以g 2=49g .(2)设火箭距地面高度为H , mg 2=G ·Mm (R +H )2,mg =GMmR 2, 解得H =R 2.。

高2021届高2018级版步步高3-5高中物理第四章 3

高2021届高2018级版步步高3-5高中物理第四章 3

3 光的波粒二象性[学习目标] 1.了解康普顿效应及其意义, 了解光子理论对康普顿效应的解释.2.知道光的波粒二象性, 知道波和粒子的对立、统一的关系.3.了解什么是概率波, 知道光也是一种概率波.一、康普顿效应1.光的散射光在介质中与物质微粒相互作用, 因而传播方向发生改变, 这种现象叫做光的散射.2.康普顿效应美国物理学家康普顿在研究石墨对X 射线的散射时, 发现在散射的X 射线中, 除了与入射波长λ0相同的成分外, 还有波长大于λ0的成分, 这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外, 还具有动量, 深入揭示了光的粒子性的一面.4.光子的动量(1)表达式:p =h λ. (2)说明:在康普顿效应中, 入射光子与晶体中电子碰撞时, 把一部分动量转移给电子, 光子的动量变小.因此, 有些光子散射后波长变大.二、光的波粒二象性1.光的干涉和衍射现象说明光具有波动性, 光电效应和康普顿效应说明光具有粒子性.2.光子的能量ε=hν, 光子的动量p =h λ.3.光子既有粒子的特征, 又有波的特征, 即光具有波粒二象性.三、光是一种概率波在双缝干涉实验中, 屏上亮纹的地方, 是光子到达概率大的地方, 暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小. [即学即用]判断下列说法的正误.(1)光子的动量与波长成反比.(√)(2)光子发生散射后, 其动量大小发生变化, 但光子的频率不发生变化.(×)(3)光的干涉、衍射、偏振现象说明光具有波动性.(√)(4)光子数量越大, 其粒子性越明显.(×)(5)光具有粒子性, 但光子又是不同于宏观观念的粒子.(√)(6)光在传播过程中, 有的光是波, 有的光是粒子.(×)一、对康普顿效应的理解康普顿效应不仅有力地验证了光子理论, 而且证实了微观领域的现象也严格遵循能量守恒和动量守恒定律.康普顿效应深刻揭示出光具有粒子性的一面.例1康普顿效应证实了光子不仅具有能量, 还是有动量.图1给出了光子与静止电子碰撞后, 电子的运动方向, 则碰撞后光子可能沿方向________运动, 并且波长________(填“不变”“变短”或“变长”).图1答案1变长解析因光子与电子的碰撞过程动量守恒, 所以碰撞后光子和电子的总动量的方向与光子碰撞前动量的方向一致, 可见碰撞后光子运动的方向可能沿1方向, 不可能沿2或3方向;通过碰撞, 光子将一部分能量转移给电子, 光子的能量减少, 由ε=hν知, 频率变小, 再根据c=λν知, 波长变长.二、对光的波粒二象性的理解[导学探究]人类对光本性的认识过程中先后进行了一系列实验, 比如:光的单缝衍射实验(图2A)光的双缝干涉实验(图B)光电效应实验(图C)光的薄膜干涉实验(图D)康普顿效应实验等等.图2(1)在以上实验中哪些体现了光的波动性?哪些体现了光的粒子性?(2)光的波动性和光的粒子性是否矛盾?答案(1)单缝衍射实验、双缝干涉实验、薄膜干涉实验体现了光的波动性.光电效应实验和康普顿效应实验体现了光的粒子性.(2)不矛盾.大量光子在传播过程中显示出波动性, 比如干涉和衍射.当光与物质发生作用时, 显示出粒子性, 如光电效应、康普顿效应.光具有波粒二象性.[知识深化]1.大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.2.光子的能量与其对应的频率成正比, 而频率是描述波动性特征的物理量, 因此ε=hν揭示了光的粒子性和波动性之间的密切联系.3.频率低、波长长的光, 波动性特征显著, 而频率高、波长短的光, 粒子性特征显著.4.光在传播时体现出波动性, 在与其他物质相互作用时体现出粒子性.光的粒子性和波动性组成一个有机的统一体.例2下面关于光的波粒二象性的说法中, 不正确的是()A.大量光子产生的效果往往显示出波动性, 个别光子产生的效果往往显示出粒子性B.频率越大的光其粒子性越显著, 频率越小的光其波动性越显著C.光在传播时往往表现出波动性, 光在跟物质相互作用时往往表现出粒子性D.光不可能同时具有波动性和粒子性答案 D解析光既具有粒子性, 又具有波动性, 大量的光子波动性比较明显, 个别光子粒子性比较明显, 故A正确;在光的波粒二象性中, 频率越大的光其粒子性越显著, 频率越小的光其波动性越显著, 故B正确;光在传播时往往表现出波动性, 光在跟物质相互作用时往往表现出粒子性, 故C正确;光的波粒二象性是指光有时表现为波动性, 有时表现为粒子性, 二者是统一的, 故D错误.三、对光是概率波的理解1.单个粒子运动的偶然性:我们可以知道粒子落在某点的概率, 但不能预言粒子落在什么位置, 即粒子到达什么位置是随机的, 是预先不能确定的.2.大量粒子运动的必然性:由波动规律我们可以准确地知道大量粒子运动时的统计规律, 因此我们可以对宏观现象进行预言.3.概率波体现了波粒二象性的和谐统一:概率波的主体是光子、实物粒子, 体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配, 体现了波动性的一面, 所以说概率波将波动性和粒子性统一在一起.例3(多选)在单缝衍射实验中, 中央亮纹的光强占从单缝射入的整个光强的95%以上, 假设现在只让一个光子通过单缝, 那么该光子()A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大答案CD解析根据光波是概率波的概念, 对于一个光子通过单缝落在何处, 是不确定的, 但概率最大的是落在中央亮纹处, 可达95%以上, 当然也可能落在其他亮纹处, 还可能落在暗纹处, 不过, 落在暗纹处的概率很小, 故C、D选项正确.1.(对康普顿效应的理解)(多选)关于康普顿效应, 下列说法正确的是()A.康普顿在研究X射线散射时, 发现散射光的波长发生了变化, 为波动说提供了依据B.X射线散射时, 波长改变了多少与散射角有关C.发生散射时, 波长较短的X射线或γ射线入射时, 产生康普顿效应D.爱因斯坦的光子说能够解释康普顿效应, 所以康普顿效应支持粒子说答案BCD2.(对光的波粒二象性的认识)对于光的波粒二象性的说法, 正确的是()A.一束传播的光, 有的光是波, 有的光是粒子B.光波与机械波是同样的一种波C.光的波动性是由于光子间的相互作用而形成的D.光是一种波, 同时也是一种粒子, 光子说并未否定电磁说, 在光子能量ε=hν中, 频率ν表示的是波的特性答案 D3.(对光的本性的认识)关于光的本性, 下列说法中正确的是()A.关于光的本性, 牛顿提出“微粒说”, 惠更斯提出“波动说”, 爱因斯坦提出“光子说”,它们都说明了光的本性B.光具有波粒二象性是指:既可以把光看成宏观概念上的波, 也可以看成微观概念上的粒子C.光的干涉、衍射现象说明光具有波动性, 光电效应说明光具有粒子性D.牛顿的“微粒说”和惠更斯的“波动说”相结合就是光的波粒二象性答案 C解析 光的波动性指大量光子在空间各点出现的可能性的大小, 可以用波动规律来描述, 不是惠更斯的“波动说”中宏观概念上的机械波.光的粒子性是指光的能量是一份一份的, 每一份是一个光子, 不是牛顿“微粒说”中的经典微粒.某现象说明光具有波动性, 是指波动理论能解释这一现象.某现象说明光具有粒子性, 是指能用粒子说解释这个现象.要区分题中说法和物理史实与波粒二象性之间的关系.C 正确, A 、B 、D 错误.考点一 康普顿效应1.白天的天空各处都是亮的, 是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获1927年的诺贝尔物理学奖.假设一个沿着一定方向运动的光子和一个静止的自由电子相互碰撞以后, 电子向某一个方向运动, 光子沿另一方向散射出去, 则这个散射光子跟原来的光子相比( )A.频率变大B.速度变小C.光子能量变大D.波长变长答案 D解析 光子与自由电子碰撞时, 遵守动量守恒定律和能量守恒定律, 自由电子碰撞前静止,碰撞后其动量、能量增加, 所以光子的动量、能量减小, 故C 错误.由λ=h p、ε=hν可知光子频率变小, 波长变长, 故A 错误, D 正确.由于光子速度是不变的, 故B 错误.2.光电效应和康普顿效应都包含电子与光子的相互作用过程, 对此下列说法正确的是( )A.两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律B.两种效应都相当于电子与光子的弹性碰撞过程C.两种效应都属于吸收光子的过程D.光电效应是吸收光子的过程, 而康普顿效应相当于光子和电子弹性碰撞的过程答案 D解析 光电效应吸收光子放出电子, 其过程能量守恒, 但动量不守恒, 康普顿效应相当于光子与电子弹性碰撞的过程, 并且遵守动量守恒定律和能量守恒定律, 故D 正确.3.科学研究证明, 光子有能量也有动量, 当光子与电子碰撞时, 光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ, 碰撞后的波长为λ′, 则碰撞过程中( )A.能量守恒, 动量不守恒, 且λ=λ′B.能量不守恒, 动量不守恒, 且λ=λ′C.能量守恒, 动量守恒, 且λ<λ′D.能量守恒, 动量守恒, 且λ>λ′答案 C解析 能量守恒和动量守恒是自然界的普遍规律, 适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个规律.光子与电子碰撞前光子的能量ε=hν=h c λ, 当光子与电子碰撞时, 光子的一些能量转移给了电子, 光子的能量ε′=hν′=h c λ′, 由ε>ε′可知λ<λ′, 选项C 正确.考点二 光的波粒二象性4.(多选)人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是( )A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B.光的双缝干涉实验说明了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性答案 BCD解析 牛顿的“微粒说”认为光是一种物质微粒, 爱因斯坦的“光子说”认为光是一份一份不连续的能量, 显然A 错误;干涉、衍射是波的特性, 光能发生干涉说明光具有波动性, B 正确;麦克斯韦根据光的传播不需要介质, 以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波, 后来赫兹用实验证实了光的电磁说, C 正确;光具有波动性与粒子性, 称为光的波粒二象性, D 正确.5.(多选)说明光具有粒子性的现象是( )A.光电效应B.光的干涉C.光的衍射D.康普顿效应答案AD6.下列有关光的波粒二象性的说法中, 正确的是()A.有的光是波, 有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长, 其波动性越显著;波长越短, 其粒子性越显著D.大量光子的行为往往表现出粒子性答案 C解析一切光都具有波粒二象性, 光的有些行为(如干涉、衍射)表现出波动性, 有些行为(如光电效应)表现出粒子性, A错误.虽然光子与电子都是微观粒子, 都具有波粒二象性, 但电子是实物粒子, 有静止质量, 光子不是实物粒子, 没有静止质量, 电子是以实物形式存在的物质, 光子是以场形式存在的物质, 所以B错误.光的波粒二象性的理论和实验表明, 大量光子的行为表现出波动性, 个别光子的行为表现出粒子性.光的波长越长, 衍射现象越明显, 即波动性越显著;光的波长越短, 其粒子性越显著, 故选项C正确, D错误.7.有关光的本性, 下列说法中正确的是()A.光具有波动性, 又具有粒子性, 这是相互矛盾和对立的B.光的波动性类似于机械波, 光的粒子性类似于质点C.大量光子才具有波动性, 个别光子只具有粒子性D.由于光既具有波动性, 又具有粒子性, 无法只用其中一种去说明光的一切行为, 只能认为光具有波粒二象性答案 D解析光在不同条件下表现出不同的行为, 其波动性和粒子性并不矛盾, A错, D对;光的波动性不同于机械波, 其粒子性也不同于质点, B错;大量光子往往表现出波动性, 个别光子往往表现出粒子性, C错.8.数码相机几近家喻户晓, 用来衡量数码相机性能的一个非常重要的指标就是像素, 1像素可理解为光子打在光屏上的一个亮点, 现知2 000万像素的数码相机拍出的照片比200万像素的数码相机拍出的等大的照片清晰得多, 其原因可以理解为()A.光是一种粒子, 它和物质的作用是一份一份的B.光的波动性是大量光子之间的相互作用引起的C.大量光子表现出光的粒子性D.光具有波粒二象性, 大量光子表现出光的波动性答案 D考点三光是概率波9.(多选)为了验证光的波粒二象性, 在双缝干涉实验中将光屏换成照相底片, 并设法减弱光的强度, 下列说法正确的是()A.使光子一个一个地通过双缝干涉实验装置的单缝, 如果时间足够长, 底片上将出现双缝干涉图样B.使光子一个一个地通过双缝干涉实验装置的单缝, 如果时间很短, 底片上将出现不太清晰的双缝干涉图样C.大量光子的运动显示光的波动性, 个别光子的运动显示光的粒子性D.光只有波动性没有粒子性答案AC解析光的波动性是统计规律的结果, 对个别光子我们无法判断它落到哪个位置;对于大量光子遵循统计规律, 即大量光子的运动或曝光时间足够长, 显示出光的波动性.。

高2021届高2018级版步步高3-5高中物理第一章章末总结

高2021届高2018级版步步高3-5高中物理第一章章末总结

高2021届高2018级版步步高3-5高中物理第一章章末总结章末总结一、动量定理及其应用1.冲量的计算(1)恒力的冲量:公式I=Ft适用于计算恒力的冲量.图1(2)变力的冲量①通常利用动量定理I=Δp求解.②可用图像法计算.如图1所示, 在F-t图像中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.2.动量定理Ft=m v2-m v1的应用(1)它说明的是力对时间的累积效应.应用动量定理解题时, 只考虑物体的初、末状态的动量, 而不必考虑中间的运动过程.(2)应用动量定理求解的问题:①求解曲线运动的动量变化量.②求变力的冲量问题及平均力问题.(3)应用动量定理解题的思路①确定研究对象, 进行受力分析;②确定初、末状态的动量m v1和m v2(要先规定正方向, 以便确定动量的正负, 还要把v1和v2换成相对于同一惯性参考系的速度);③利用Ft=m v2-m v1列方程求解.3.由动量定理得F=ΔpΔt, 即物体动量的变化率ΔpΔt等于它所受的合外力, 这是牛顿第二定律的另一种表达式.例1质量为0.2 kg的小球竖直向下以6 m/s的速度落至水平地面, 再以4 m/s的速度反向弹回, 取竖直向上为正方向, 则小球与地面碰撞前后的动量变化为________ kg·m/s.若小球与地面的作用时间为0.2 s, 则小球受到的地面的平均作用力大小为________N(g取10 m/s2).答案 2 12解析由题意知v t =4 m /s 方向为正, 则动量变化Δp =m v t -m v 0=0.2×4 kg·m /s -0.2×(-6)kg·m /s =2 kg·m /s.由动量定理F 合·t =Δp 得(N -mg )t =Δp , 则N =Δp t +mg =20.2N +0.2×10 N =12 N.二、多过程问题中的动量守恒1.正确选择系统(由哪几个物体组成)和划分过程, 分析系统所受的外力, 判断是否满足动量守恒的条件.2.准确选择初、末状态, 选定正方向, 根据动量守恒定律列方程.例2 如图2所示, 两端带有固定薄挡板的滑板C 长为L , 质量为m 2, 与地面间的动摩擦因数为μ, 其光滑上表面上静置着质量分别为m 、m 2的物块A 、B , A 位于C 的中点, 现使B 以水平速度2v 向右运动, 与挡板碰撞并瞬间粘连, 不再分开, A 、B 可看做质点, A 与B 、C 的碰撞都可视为弹性碰撞.已知重力加速度为g , 求:图2(1)B 与C 上挡板碰撞后瞬间的速度大小以及B 、C 碰撞后C 在水平面上滑动时的加速度大小;(2)A 与C 上挡板第一次碰撞后A 的速度大小.答案(1)v 2μg (2)v 2-2μgL解析 (1)B 、C 碰撞过程系统动量守恒, 以向右为正方向, 由动量守恒定律得:m 2·2v =(m 2+m 2)v 1① 解得v 1=v ②对B 、C , 由牛顿第二定律得:μ(m +m 2+m 2)g =(m 2+m 2)a , ③ 解得a =2μg .④(2)设A 、C 第一次碰撞前瞬间C 的速度为v 2, 由匀变速直线运动的速度位移公式得v 22-v 12=2(-a )·12L , ⑤ A 与C 上挡板的第一次碰撞可视为弹性碰撞, 系统动量守恒, 以向右为正方向, 由动量守恒定律得:(m 2+m 2)v 2=(m 2+m 2)v 3+m v 4⑥ 由能量守恒定律得12(m 2+m 2)v 22=12(m 2+m 2)v 32+12m v 42⑦ 解得A 与C 上挡板第一次碰撞后A 的速度大小为:v 4=v 2-2μgL .三、板块模型中的“三x ”问题如图3所示, 质量为m 的滑块以速度v 0滑上放于光滑水平地面上的质量为M 的长木板上.长木板上表面粗糙, 滑块与木板间的动摩擦因数为μ, 长木板足够长.图3满足以下关系:f =μmg , m v 0=(m +M )v t , -fx 1=12m v t 2-12m v 02, fx 2=12M v t 2, fx 3=f (x 1-x 2)=12m v 02-12(M +m )v t 2=Q .3 一质量为2m 的物体P 静置于光滑水平地面上, 其截面如图4所示.图中ab 为粗糙的水平面, 长度为L ;bc 为一光滑斜面, 斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动, 在斜面上上升的最大高度为h (h 小于斜面bc 的高度), 返回后在到达a 点前与物体P 相对静止.重力加速度为g .图4求:(1)木块在ab 段受到的摩擦力f 的大小;(2)木块最后距a 点的距离s .答案 (1)m v 02-3mgh 3L (2)v 02-6gh v 02-3ghL 解析 (1)从开始运动到木块到达最大高度的过程, 规定向左为正方向,由水平方向动量守恒得, m v 0=3m v 1由能量守恒得, 12m v 02=12×3m v 12+mgh +fL 解得:f =m v 02-3mgh 3L. (2)木块从最大高度至与物体P 最终相对静止的过程, 规定向左为正方向,由动量守恒得, 3m v 1=3m v 2由能量守恒得, 12×3m v 12+mgh =12×3m v 22+fx 距a 点的距离为s =L -x解得:s =L -3ghL v 02-3gh =v 02-6gh v 02-3ghL . 四、动量和能量综合问题分析1.动量定理和动量守恒定律是矢量表达式, 还可以写出分量表达式;而动能定理和能量守恒定律是标量表达式, 绝无分量表达式.2.动量守恒及机械能守恒都有条件.注意某些过程动量守恒, 但机械能不守恒;某些过程机械能守恒, 但动量不守恒;某些过程动量和机械能都守恒.但任何过程能量都守恒.3.两物体相互作用后具有相同速度的过程损失的动能最多.4如图5所示, 固定的长直水平轨道MN与位于竖直平面内的光滑半圆轨道相接, 圆轨道半径为R, PN恰好为该圆的一条竖直直径.可视为质点的物块A和B紧靠在一起静置于N处, 物块A的质量m A=2m, B的质量m B=m.两物块在足够大的内力作用下突然分离, 分别沿轨道向左、右运动, 物块B恰好能通过P点并被接住, 物块B不能落到轨道MN上.已知物块A与MN轨道间的动摩擦因数为μ, 重力加速度为g.求:图5(1)物块B运动到P点时的速度大小v P;(2)两物块刚分离时物块B的速度大小v B;(3)物块A在水平面上运动的时间t.答案(1)gR(2)5gR(3)5gR 2μg解析(1)对于物块B, 恰好通过P点时只受重力的作用, 根据牛顿第二定律有:m B g =m B v P 2R① 解得v P =gR ②(2)对于物块B , 从N 点到P 点的过程中机械能守恒, 有: 12m B vB 2=12m B v P 2+2m B gR ③ 解得v B =5gR ④(3)设物块A 、B 分离时A 的速度大小为v A , 以向左为正方向, 根据动量守恒定律有:m A v A -m B v B =0⑤此后A 滑行过程中, 根据动量定理有:-μm A gt =0-m A v A ⑥联立④⑤⑥式可得:t =5gR2μg .。

高中物理选修3-5步步高全套学案及课件第四章 4-5

高中物理选修3-5步步高全套学案及课件第四章 4-5
答案
2.德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的 汽车,并未感觉到它的波动性,你如何理解该问题?谈谈自己的认识. 答案 波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性, 宏观物体(汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短, 难以观测.
答案
[知识深化] 1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观 察不到宏观物体的波动性,是因为宏观物体对应的物质波的波长太小. 2.物质波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不能 以宏观观点中的波来理解德布罗意波. 3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质 粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波 是电磁波,与实物粒子对应的波是物质波.
( √)
答案
2.质量为1 000 kg的小汽车以v=40 m/s的速度在高速公路上行驶,则估算小 汽车的德布罗意波的波长为___1_._6_6_×__1_0_-_3_8_m.(h=6.63×10-34 J·s) 解析 小汽车的动量p=mv=4×104 kg·m/s 小汽车的德布罗意波的波长 λ=hp≈1.66×10-38 m.
意波的波长为λ2的物体2,二者相向碰撞后粘在一起,已知|p1|<|p2|,则粘在一
起的物体的德布罗意波的波长为多少?
答案
λ1λ2 λ1-λ2
解析 答案
规律总结
物体德布罗意波的波长的计算 1.首先计算物体的速度,再计算其动量.如果知道物体动能也可以直接 用p= 2mEk 计算其动量. 2.再根据λ=h 计算德布罗意波的波长.
图2
答案
2.单缝衍射时,屏上各点的亮度反映了粒子到达这点的概率.图3是粒子 到达屏上的概率在坐标系中的表示.

高考物理自由复习步步高系列04(原卷版).docx

高考物理自由复习步步高系列04(原卷版).docx

高中物理学习材料(鼎尚**整理制作)【课本内容再回顾——查缺补漏】回顾一、功和功率1.功(1)做功的两个要素:力和在力的方向上发生的位移(位移是相对地面的位移)W Fl =或者cos W Fl α=(α是力和位移的夹角)。

(2)特殊情况如重力做功为W mgh =,电场力做功W qEd qU ==(d 是沿电场方向的位移,u 是初末位置电势差)(3)变力如弹簧弹力做功和安培力做功一般用动能定理求解或者利用安培力做功等于电路消耗的电能求解即可。

2.功率:定义式为W P t=,和速度的关系为cos P Fv α=(α是力和速度的夹角),注意夹角α,考点很容易设计重力做功的功率问题,重点看α是否相同(2)机动车匀加速启动:匀加速启动分两个阶段,第一个阶段,加速度F f a m-=不变,即加速度不变,所以牵引力F 不变,此为匀加速,速度v at =,速度随时间均匀增大,功率P Fv Fat ==,功率也与时间成正比,随速度增大的,功率增大,当功率等于额定功率时,此阶段结束。

问题考察方式多求解匀加速的末速度,从阻力和加速度求出牵引力,从而根据额定功率牵引力求解出速度和时间。

第二阶段为额定功率运行,除去初速度不为0外其他与第一种启动方式相同。

回顾二、动能定理1.内容:合外力做功等于动能变化量k E W ∆=合,注意分析各个力做功的计算,比如每个力作用的阶段,不同阶段各个力做功的情况,比如在运动过程中有变力做功,那么就可以根据其他各个力做功以及动能变化量来求解变力做功。

2.实验探究功和能的关系:实验考查多利用如下所示的装置探究动能定理,设计的问题集中在如下几个方面○1木板适当倾斜,平衡摩擦力,使得橡皮筋的弹力即小车受到的合力,橡皮筋做功即合力做功○2由于橡皮筋的弹力在变化,实验利用同样规格的橡皮筋同样的形变量开始做功,使得功成整数倍增加而解决功的测量问题○3数据处理上,一定要处理成2W v -图像,这样得到一条倾斜的直线。

高中物理选修3-5步步高全套学案及课件第四章1

高中物理选修3-5步步高全套学案及课件第四章1

1量子概念的诞生[学习目标] 1.知道热辐射、黑体和黑体辐射的概念,知道黑体辐射的实验规律.2.知道普朗克提出的能量子假说.一、热辐射1.定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.2.特点:热辐射强度按波长的分布情况随物体的温度而有所不同.二、黑体与黑体辐射1.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.2.黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.三、能量子1.定义:普朗克认为,黑体辐射是谐振子向外辐射的各种电磁波.谐振子的能量是不连续的,而只能取一些分立的值,即E n=nhν(n=1,2,3,…),最小的一份能量称为能量子.2.大小:ε=hν,其中ν是谐振动(电磁波)的频率,h是普朗克常量,h=6.63×10-34 J·s.3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.[即学即用]1.判断下列说法的正误.(1)黑体一定是黑色的物体.(×)(2)能吸收各种电磁波而不反射电磁波的物体叫黑体.(√)(3)温度越高,黑体辐射电磁波的强度越大.(√)(4)微观粒子的能量只能是能量子的整数倍.(√)(5)能量子的能量不是任意的,其大小与电磁波的频率成正比.(√)2.人眼对绿光较为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.普朗克常量为6.63×10-34J·s,光速为3×108m/s,则人眼能察觉到绿光时所接收到的最小功率约是( ) A.2.3×10-18W B.3.8×10-19W C.7.0×10-10W D.1.2×10-18W答案 A解析 因为只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.所以察觉到绿光时所接收到的最小功率P =E t ,式中t =1 s 时E =6ε,又ε=hν=h c λ,可解得P ≈2.3×10-18W.一、黑体辐射的规律 [导学探究]1.什么是黑体辐射?它与热辐射有什么不同?答案 能够完全吸收各种波长的电磁波而不发生反射的物体,叫做黑体.黑体辐射电磁波的强度按波长的分布只与温度有关,而热辐射还与其他因素有关(材料的种类和表面状况).2.黑体辐射电磁波的强度按波长分布如图1所示,当温度从1 300 K 升高到1 700 K 时,各种波长的电磁波的辐射强度怎么变化?辐射强度极大值对应的波长如何变化?图1答案 变强.辐射强度极大值向波长较短的方向移动,即变短. [知识深化]1.一般物体与黑体的比较2.随着温度的升高,黑体辐射的各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动.3.现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型.例1 (多选)黑体辐射的实验规律如图2所示,由图可知( )图2A.随着温度升高,各种波长的辐射强度都增加B.随着温度降低,各种波长的辐射强度都增加C.随着温度升高,辐射强度的极大值向波长较短的方向移动D.随着温度降低,辐射强度的极大值向波长较长的方向移动 答案 ACD解析 由题图可知,随着温度升高,各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来. 二、能量子[导学探究] 某激光器能发射波长为λ的激光,那么激光能量子的能量可以取任意值吗?是连续的还是一份一份的?设普朗克常量为h ,那么每个激光能量子的能量是多少?如果激光发射功率为P ,那么每秒钟发射多少个能量子?(光速为c )答案 激光能量子的能量不是连续的,而是一份一份的,ε=h c λ.个数n =P ε=Pλhc .[知识深化]1.物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量规律的任何一个中间状态.2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化也是连续的,不必考虑能量量子化;在研究微观粒子时必须考虑能量量子化.3.能量子的能量ε=hν,其中h 是普朗克常量,ν是电磁波的频率.例2 (多选)对于带电微粒辐射和吸收能量时的特点,以下说法正确的是( ) A.以某一个最小能量值为单位一份一份地辐射或吸收 B.辐射和吸收的能量是某一最小值的整数倍 C.吸收的能量可以是连续的D.辐射和吸收的能量是量子化的 答案 ABD解析 带电微粒辐射或吸收能量时是以最小能量值——能量子ε的整数倍或一份一份地辐射或吸收的,是不连续的,故选项A 、B 、D 正确,C 错误.1.思维程序:c =λν→光的频率―――――――→ν=cλ能量子的能量――→ε=hν激光束的总能量E =nε→能量子的个数2.解决此类题目的关键是熟练掌握ε=hν和c =λν及E =nε=Pt 等公式.1.(对黑体辐射规律的理解)(多选)在实验室或工厂的高温炉子上开一小孔,小孔可看做黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图3所示就是黑体的辐射强度与其辐射光波长的关系图像,则下列说法正确的是( )图3A.T 1>T 2B.T 1<T 2C.随着温度的升高,各种波长黑体辐射的强度都有所降低D.随着温度的升高,辐射强度的极大值向波长较短的方向移动 答案 AD解析 黑体是指在任何温度下,能够完全吸收入射的各种波长的电磁波而不反射的物体,黑体辐射的强度按波长的分布只与温度有关.实验表明,随着温度的升高,黑体辐射中各种波长的辐射强度都有所增加,辐射强度的极大值向波长较短的方向移动.从题图中可以看出,λ1<λ2,T 1>T 2,本题正确选项为A 、D.2.(对能量子的理解)(多选)关于对普朗克能量子假说的认识,下列说法正确的是( ) A.振动着的带电微粒的能量只能是某一能量值εB.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍C.能量子与电磁波的频率成正比D.这一假说与现实世界相矛盾,因而是错误的 答案 BC3.(能量量子化的理解)硅光电池是将光辐射的能量转化为电能.若有N个波长为λ0的光子打在硅光电池极板上,这些光子的总能量为(h为普朗克常量,c为真空中的光速)()A.h cλ0 B.Nh cλ0 C.Nhλ0 D.2Nhλ0答案 B解析一个光子的能量ε=hν=h cλ0,则N个光子的总能量E=Nh cλ0,选项B正确.一、选择题考点一黑体辐射的理解和应用1.关于对热辐射的认识,下列说法中正确的是()A.热的物体向外辐射电磁波,冷的物体只吸收电磁波B.温度越高,物体辐射的电磁波越强C.辐射强度按波长的分布情况只与物体的温度有关,与材料种类及表面状况无关D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色答案 B解析一切物体都在不停地向外辐射电磁波,且温度越高,辐射的电磁波越强,对于一般材料的物体,辐射强度按波长的分布除与物体的温度有关外,还与材料的种类和表面状况有关;常温下我们看到的物体的颜色是反射光的颜色.2.黑体辐射电磁波的强度按波长分布的影响因素是()A.温度B.材料C.表面状况D.以上都正确答案 A解析黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,A对.3.下列描绘两种温度下黑体辐射强度与波长关系的图像中,符合黑体辐射实验规律的是()答案 A解析随着温度的升高,黑体辐射的强度与波长的关系:一方面,各种波长的辐射强度都增加,另一方面,辐射强度的极大值向波长较短的方向移动.由此规律可知应选A.4.“非典”期间,很多地方用红外线热像仪监测人的体温,只要被测者从仪器前走过,便可知道他的体温是多少,关于其中原理,下列说法正确的是()A.人的体温会影响周围空气温度,仪器通过测量空气温度便可知道人的体温B.仪器发出的红外线遇人反射,反射情况与被测者的温度有关C.被测者会辐射红外线,辐射强度以及按波长的分布情况与温度有关,温度高时辐射强且较短波长的成分强D.被测者会辐射红外线,辐射强度以及按波长的分布情况与温度有关,温度高时辐射强且较长波长的成分强答案 C解析根据辐射规律可知,随着温度的升高,各种波长的辐射强度都增加;随着温度的升高,辐射强度的极大值向波长较短的方向移动.人的体温的高低,直接决定了这个人辐射的红外线的频率和强度,通过监测被测者辐射的红外线的情况就可知道这个人的体温,C正确.5.下列叙述错误的是()A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波答案 B解析根据热辐射定义知A对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射电磁波的强度按波长的分布只与黑体温度有关,B错,C对;根据黑体定义知D对.考点二能量子的理解和应用6.普朗克在1900年将“能量子”引入物理学,开创了物理学的新纪元.在下列宏观概念中,具有“量子化”特征的是()A.人的个数B.物体所受的重力C.物体的动能D.物体的长度答案 A解析 依据普朗克量子化观点,能量是不连续的,是一份一份地变化的,属于“不连续的,一份一份”的概念的是A 选项,故A 正确,B 、C 、D 错误.7.已知某种单色光的波长为λ,在真空中光速为c ,普朗克常量为h ,则电磁波辐射的能量子ε的值为( ) A.h c λ B.h λC.c hλD.以上均不正确答案 A解析 由波速公式c =λν可得:ν=c λ,由光的能量子公式得ε=hν=h cλ,故选项A 正确.8.能引起人的眼睛视觉效应的最小能量为10-18J,已知可见光的平均波长为0.6 μm ,普朗克常量h =6.63×10-34J·s,光速为3×108 m/s,若恰能引起人眼的感觉,则进入人眼的光子数至少为( )A.1个B.3个C.30个D.300个 答案 B解析 每个光子的能量为E 0=h c λ,能引起人的眼睛视觉效应的最小能量E 为10-18 J,由E =nE 0得进入人眼的光子数至少为n =E E 0=Eλhc =10-18×6×10-76.63×10-34×3×108个≈3个.故选B.9.在自然界生态系统中,蛇与老鼠和其他生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌,它是通过接收热辐射来发现老鼠的.假设老鼠的体温约37 ℃,它发出的最强的热辐射的波长为λmin .根据热辐射理论,λmin 与辐射源的绝对温度T 的关系近似为Tλmin =2.90×10-3 m·K,则老鼠发出的最强热辐射的波长为( )A.7.8×10-5 mB.9.4×10-6 mC.1.16×10-4 mD.9.7×10-8 m答案 B解析 由Tλmin =2.90×10-3m·K 可得,老鼠发出的最强热辐射的波长为λmin =2.90×10-3 m·kT=2.90×10-3273+37m ≈9.4×10-6 m,B 正确.10.红外遥感卫星通过接收地面物体发出的红外辐射来探测地面物体的状况.地球大气中的水汽(H 2O)、二氧化碳(CO 2)能强烈吸收某些波长范围的红外辐射,即地面物体发出的某些波长的电磁波,只有一部分能够通过大气层被遥感卫星接收.如图1所示为水和二氧化碳对某一波段不同波长电磁波的吸收情况,由图可知,在该波段红外遥感大致能够接收到的波长范围是( )图1A.2.5~3.5 μmB.4~4.5 μmC.5~7 μmD.8~13 μm答案 D解析 由题图可知,水对红外辐射吸收率最低的波长范围是8~13 μm ;二氧化碳对红外辐射吸收率最低的波长范围是5~13 μm.综上可知,应选D. 二、非选择题11.(能量子个数的计算)40瓦的白炽灯,有5%的能量转化为可见光.设所发射的可见光的平均波长为580 nm,那么该白炽灯每秒钟辐射的光子数为多少?(普朗克常量h =6.63×10-34J·s,光速c =3×108 m/s) 答案 5.8×1018个解析 波长为λ的光子能量为:ε=hν=h cλ①设白炽灯每秒内发出的光子数为n ,白炽灯电功率为P ,则:n =ηPε②式中,η=5%是白炽灯的发光效率.联立①②式得: n =ηPλhc代入题给数据得:n ≈5.8×1018个12.(能量子的理解和计算)某广播电台的发射功率为10 kW,发射的是在空气中波长为187.5 m 的电磁波,则:(普朗克常量h =6.63×10-34J·s,光速c =3×108 m/s)(1)该电台每秒从天线发射多少个能量子?(2)若发射的能量子在以天线为球心的同一球面上的分布视为均匀的,求在离天线2.5 km 处,直径为2 m 的球状天线每秒接收的能量子个数以及接收功率.(球面积公式S =4πR 2) 答案 (1)9.4×1030个 (2)3.76×1023个 4×10-4 W解析 (1)每个能量子的能量ε=hν=hc λ=6.63×10-34×3×108187.5J ≈1.06×10-27 J则能量子数N =Pt≈9.4×1030个.(2)设球状天线每秒接收的能量子数为n 个,以电台发射天线为球心,则半径为R 的球面积S =4πR 2,而球状天线的有效接收面积S ′=πr 2,所以n =N S ′S =N r 24R 2=9.4×1030×124×(2.5×103)2个=3.76×1023个接收功率P 收=nεt =3.76×1023×1.06×10-27 W ≈4×10-4 W.。

2025高考物理步步高同步练习第四章牛顿第一定律含答案

2025高考物理步步高同步练习第四章牛顿第一定律含答案

2025高考物理步步高同步练习第四章1牛顿第一定律[学习目标] 1.理解牛顿第一定律的内容和意义.2.明确惯性的概念,会用惯性解释有关现象.3.知道质量是惯性大小的唯一量度.一、理想实验的魅力1.亚里士多德认为:必须有力作用在物体上,物体才能运动;没有力的作用,物体就要静止在某个地方.2.伽利略的理想实验(1)斜面实验:如图1所示,让一个小球沿斜面从静止状态开始运动,小球将“冲”上另一个斜面.如果没有摩擦,小球将到达原来的高度.减小第二个斜面的倾角,小球仍将到达原来的高度,但是运动的距离更长.当第二个斜面最终变为水平面时,小球将永远运动下去.图1(2)推理结论:力不是(选填“是”或“不是”)维持物体运动的原因.3.笛卡儿的观点:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不会停下来,也不会偏离原来的方向.二、牛顿第一定律1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.惯性(1)物体保持原来匀速直线运动状态或静止状态的性质叫作惯性.牛顿第一定律也被叫作惯性定律.(2)惯性是物体的固有属性,一切物体都具有惯性.三、惯性与质量物体惯性大小仅与质量有关,描述物体惯性的物理量是它的质量,惯性大小与物体是否运动、运动快慢等因素均无关.1.判断下列说法的正误.(1)伽利略的理想实验是永远无法实现的.(√)(2)伽利略的理想实验说明了力是维持物体运动的原因.(×)(3)由牛顿第一定律可知,做加速直线运动的物体所受外力全部消失时,物体立刻静止.(×)(4)物体从竖直向上运动的气球上掉落后,立即向下运动.(×)(5)速度越大,物体的惯性越大.(×)(6)受力越大,物体的惯性越大.(×)2.前进中的大巴车突然刹车时,乘客向________倾倒;在匀速直线运动的火车上竖直跳起,人会落在________(选填“原来位置”“原位置前”或“原位置后”).答案前原来位置一、伽利略理想实验导学探究在伽利略的斜面实验的各个过程中(如图2所示),哪些可以通过实验完成?哪些是推理得出的?图2答案小球由静止状态从斜面上滚下,可以滚上另一斜面,是实验事实,可以通过实验完成,其余各个结论是由推理得出的,不可以用实验完成.知识深化1.伽利略理想实验的推论一切运动着的物体在没有受到外力的时候,它的速度将保持不变,并且一直运动下去.2.理想实验的意义(1)伽利略理想实验是以可靠的实验事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地揭示了自然规律.(2)伽利略理想实验是把实验和逻辑推理相结合的一种科学研究方法.理想实验有时更能深刻地反映自然规律.如图3所示,伽利略设想了一个理想实验,其中有一个是实验事实,其余是推论.图3①减小第二个斜面的倾角,小球在这一斜面上仍然要达到原来的高度;②两个斜面对接,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;③如果没有摩擦,小球将上升到原来释放时的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球将沿水平面做持续的匀速运动.(1)请将上述理想实验的设想步骤按照正确的顺序排列:________(填数字序号).(2)在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论.下列关于事实和推论的分类正确的是________(填选项前的字母).A.①是事实,②③④是推论B.②是事实,①③④是推论C.③是事实,①②④是推论D.④是事实,①②③是推论答案(1)②③①④(2)B解析步骤②是理想实验的实验基础,属于可靠的事实,在此基础上利用推理,先得到小球不受阻力作用将上升到原来释放时的高度的推论,再设想减小第二个斜面的倾角,小球在这一斜面上仍然要达到原来的高度,继续减小第二个斜面的倾角直至第二个斜面成为水平面,得到小球将匀速运动的推论.所以正确的顺序排列是②③①④,②是事实,①③④是推论.二、牛顿第一定律导学探究如图4所示是冰壶在冰面上的运动情景.冰壶比赛过程中,运动员在冰壶前面擦扫冰面,可以使表面冰层融化,形成一层薄薄的水膜,而水膜的阻力比冰面要小,所以冰壶可以滑行得更远.图4(1)图中的冰壶为什么会停下来?这说明了什么问题?(2)试猜想如果冰壶不受外力作用将处于什么状态?(3)从(1)、(2)两个问题中,我们能得到什么结论?答案(1)冰壶停下来是因为受到了冰面的摩擦力的作用.说明力是改变物体运动状态的原因.(2)冰壶原来静止,不受外力作用时,仍然静止;冰壶原来运动,不受外力作用时将保持匀速直线运动状态.(3)物体不受外力作用或所受合力为零时,总保持静止或匀速直线运动状态.知识深化1.运动状态改变即速度发生变化,有三种情况:(1)速度的方向不变,大小改变.(2)速度的大小不变,方向改变.(3)速度的大小和方向同时改变.2.对牛顿第一定律的理解(1)定性揭示了力和运动的关系:①力是改变物体运动状态的原因,而不是维持物体运动的原因.②物体不受外力时的运动状态:匀速直线运动状态或静止状态.(2)揭示了一切物体都具有的一种固有属性——惯性.因此牛顿第一定律也叫惯性定律.(3)牛顿第一定律是牛顿在总结前人工作的基础上得出的,是在理想实验的基础上加以科学抽象和逻辑推理得到的,但其得到的一切结论经过实践证明都是正确的.(4)牛顿第一定律无法用实验直接验证.它所描述的是一种理想状态,即不受外力的状态.关于牛顿第一定律的理解正确的是()A.牛顿第一定律无法用实验验证,因此无实际意义B.不受外力作用时,物体静止不动C.在水平地面上滑动的木块最终停下来,是由于没有外力维持木块的运动D.奔跑的运动员遇到障碍而被绊倒,是因为他受到外力作用迫使他改变原来的运动状态答案 D解析牛顿第一定律虽然无法用实验验证,但它阐述了运动和力的关系,其得到的一切结论经过实践证明都是正确的,故A项错误;牛顿第一定律描述了物体在不受外力作用时的状态,即总保持匀速直线运动或静止状态,故B项错误;牛顿第一定律揭示了力和运动的关系,力是改变物体运动状态的原因,而不是维持物体运动状态的原因,在水平地面上滑动的木块最终停下来,是由于摩擦力的作用改变了木块的运动状态;奔跑的运动员遇到障碍而被绊倒,是因为他受到外力作用而改变了原来的运动状态,故C项错误,D项正确.针对训练1下列说法正确的是()A.牛顿第一定律是科学家凭空想象出来的,没有实验依据B.牛顿第一定律无法用实验直接验证,因此是不成立的C.理想实验的思维方法与质点概念的建立一样,都是一种科学抽象的思维方法D.由牛顿第一定律可知,静止的物体一定不受外力作用答案 C解析牛顿第一定律是在理想实验的基础上经过合理归纳总结出来的,但无法用实验来直接验证,故选项A、B错误;理想实验的思维方法与质点概念的建立相同,都是突出主要因素、忽略次要因素的科学抽象的思维方法,故选项C正确;物体静止时不受外力或所受合外力为零,故选项D错误.三、惯性导学探究(1)如图5所示,公交车在运行时突然急刹车,车内乘客身体为什么会向前倾倒?图5(2)“同一物体在地球上的重力比在月球上大,所以物体在地球上的惯性比在月球上大”,这种说法对吗?为什么?答案(1)乘客随车一起运动,当急刹车时,车停止运动,乘客身体的下半部分受到车的摩擦力作用也随车停止运动,而上半部分由于惯性要保持原来的运动状态,故向前倾倒.(2)不对.惯性大小只与质量有关,与位置无关.虽然物体在地球上的重力比在月球上大,但物体的质量不变,即惯性不变.知识深化1.惯性是物体的固有属性,一切物体都具有惯性.2.物体惯性的大小由质量决定,与物体的运动状态无关,与是否受力无关,与物体的速度大小无关.3.惯性的表现(1)在不受力的条件下,惯性表现出维持其原来运动状态的“能力”,有“惰性”的意思.(2)在受力的条件下,惯性的大小表现为运动状态改变的难易程度.质量越大,惯性越大,运动状态越难改变.[深度思考](1)战斗机在投入战斗时有时要抛掉副油箱,这是为什么?(2)汽车超载时遇到紧急刹车不容易停下来,为什么?答案(1)减小飞机的质量以减小惯性,使飞机有较好的机动性.(2)质量越大,惯性越大,运动状态越难改变.关于物体的惯性,下列说法中正确的是()A.骑自行车的人,上坡前要紧蹬几下,是为了增大惯性冲上坡B.子弹从枪膛中射出后,在空中飞行速度逐渐减小,因此惯性也减小C.物体惯性的大小由物体质量大小决定D.物体由静止开始运动的瞬间,它的惯性最大答案 C解析骑自行车的人,上坡前要紧蹬几下是为了增大人和自行车整体的速度.惯性是物体的固有属性,只与物体本身质量有关,与物体的运动状态和受力情况无关,故A、B、D项错误,C项正确.针对训练2关于物体的惯性,以下说法正确的是()A.物体的运动速度越大,物体越难停下来,说明运动速度大的物体惯性大B.汽车突然减速时,车上的人向前倾,拐弯时人会往外甩,而汽车匀速前进时,车上的人感觉平稳,说明突然减速和拐弯时人有惯性,匀速运动时人没有惯性C.在同样大小的刹车力的作用下,超载车更不容易停下来,是因为超载车惯性大D.在沿长直水平轨道匀速运动的火车上,门窗紧闭的车厢内有一人向上跳起后,发现落回原处,这是因为人跳起后,车继续向前运动,人落下后必定向后偏些,但因时间太短,偏后距离太小,不明显而已答案 C解析物体的惯性大小只由质量决定,与物体的速度大小无关,A错误;一切物体都具有惯性,不论物体处于加速、减速还是匀速运动状态,B错误;超载车质量大,保持原来运动状态的本领强,惯性大,C正确;人向上跳起后,人在水平方向不受外力作用,由于惯性,人在水平方向的速度不变,与车速相同,因此仍落在车厢内原处,D错误.(2020·大同铁路一中高一上学期期末)在水平路面上有一辆匀速行驶的小车,小车上固定着盛满水的碗.若突然发现碗中的水向右洒出,如图6所示,则关于小车在此种情况下的运动,下列描述正确的是()图6A.小车匀速向左运动B.小车一定突然向左加速运动C.小车可能突然向左减速运动D.小车可能突然向右减速运动答案 D解析若小车匀速向左运动,小车、碗、水速度相同且不变,三者无相对运动,水不会洒出,选项A错误;若小车原来向左匀速运动,突然向左减速运动,碗随小车一起开始向左减速,根据牛顿第一定律可知,水由于惯性,仍保持向左的匀速运动状态,水相对于碗向左运动,水向左洒出,选项C错误;若小车原来向左匀速运动,突然开始向左加速运动,碗随小车开始向左加速,根据牛顿第一定律可知,碗中水由于惯性仍保持原来向左的匀速运动状态,水相对于碗向右运动,水向右洒出,若小车原来向右匀速运动,突然向右减速运动,碗随小车开始向右减速,根据牛顿第一定律可知,水由于惯性仍要保持向右的匀速运动状态,水相对于碗向右运动,水将向右洒出,选项B错误,D正确.考点一对牛顿第一定律的理解1.(2020·太原市模拟)伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体的运动不需要力来维持答案 D2.(2021·泰兴中学、南菁高中高一上第二次联考)东汉王充在《论衡·状留篇》中记述了球的运动:“圆物投之于地,东西南北,无之不可;策杖叩动,才微辄停”.关于运动和力的关系,下列说法中正确的是()A.力是维持物体运动的原因B.力是改变物体惯性大小的原因C.力是改变物体运动状态的原因D.力是改变物体位置的原因答案 C3.关于牛顿第一定律,下列理解正确的是()A.牛顿第一定律是利用逻辑思维对事物进行分析的产物,不可能用实验直接验证B.牛顿第一定律反映了物体受到外力时的运动规律C.牛顿第一定律中提出的物体不受外力作用的条件是不可能达到的,所以这条定律可能是错误的D.向上抛出的物体,在向上运动的过程中,一定受到向上的作用力,否则不可能向上运动答案 A解析牛顿第一定律是利用逻辑思维对事物进行分析的产物,不可能用实验直接验证,A正确,C错误;牛顿第一定律反映了物体不受力时的运动规律,B错误;向上抛出的物体,由于惯性继续向上运动,D错误.考点二惯性的理解与应用4.(2020·扬州市高一上期末)图1为月球车示意图,为完成月球探测、考察、采样等任务,月球车从地球到达月球后()图1A.失去惯性B.惯性增大C.惯性减小D.惯性不变答案 D5.下列关于惯性的说法正确的是()A.人走路时没有惯性,被绊倒时有惯性B.百米赛跑到达终点时不能立即停下来是由于惯性,停下来时就没有惯性了C.物体没有受外力作用时有惯性,受外力作用后惯性被克服了D.物体的惯性与物体的运动状态及受力情况均无关答案 D解析惯性是物体的固有属性,物体在任何情况下都有惯性,且惯性的大小与物体的运动状态及受力情况均无关,它仅取决于物体的质量大小,因此A、B、C错误,D正确.6.下列事例中(如图2),利用了惯性的是()图2①跳远运动员在起跳前高速助跑②跳伞运动员在落地前打开降落伞③自行车轮胎制成不平整的花纹④铁饼运动员在掷出铁饼前快速旋转A.①②B.③④C.①④D.②③答案 C7.下列选项是四位同学根据图3中驾驶员和乘客的身体姿势,分别对向前(向左)运动的汽车运动情况做出的判断,其中正确的是()图3A.汽车一定做匀加速直线运动B.汽车一定做匀速直线运动C.汽车可能是突然减速D.汽车可能是突然加速答案 C解析当汽车突然向前加速时,人会向后倾,反之人会向前倾,由题图可知,汽车此时可能突然减速,故选项C正确,A、B、D错误.8.图4所示照片记录了一名骑车人因自行车前轮突然陷入一较深的水坑而倒地的过程.下面是从物理的角度去解释此情境的,其中正确的是()图4A.这是因为水坑里的水对自行车前轮的阻力太大,而使人和车一起倒地的B.骑车人与自行车原来处于运动状态,车前轮陷入水坑后前轮立刻静止,但人与车的后半部分由于惯性仍保持原来的运动状态,因此摔倒C.因为自行车的前轮陷入水坑后,自行车还能加速运动,所以人和车一起倒地了D.因为自行车的前轮陷入水坑后,自行车的惯性立即消失,而人由于惯性将保持原有的运动状态,故人向原来的运动方向倒下了答案 B9.如图5所示,一个劈形物体A,各面均光滑,放在固定的斜面上,A的上表面水平,在A 的上表面上放一光滑的小球B,A由静止开始释放,则小球在碰到斜面前的运动轨迹是()图5A.沿斜面向下的直线B.竖直向下的直线C.无规则曲线D.抛物线答案 B解析小球原来静止时受重力和支持力作用,其合力为零.当劈形物体A由静止释放,A应沿斜面下滑,故B也将运动,运动状态就要发生改变,但由于惯性,小球原来速度为零,而小球又光滑,除竖直方向受力外,其他方向上不受力,因为力是使物体运动状态改变的原因,故小球只能在竖直方向上运动,在碰到斜面之前,运动轨迹应为竖2实验:探究加速度与力、质量的关系[学习目标] 1.学会用控制变量法探究物理规律.2.会测量加速度、力和质量,能作出物体运动的a-F、a-1m图像.3.能通过实验数据及图像得出加速度与力、质量的关系.一、实验思路——控制变量法1.探究加速度与力的关系保持小车质量不变,通过改变槽码的个数改变小车所受的拉力,测得不同拉力下小车运动的加速度,分析加速度与拉力的变化情况,找出二者之间的定量关系.2.探究加速度与质量的关系保持小车所受的拉力不变,通过在小车上增加重物改变小车的质量,测得不同质量的小车在这个拉力下运动的加速度,分析加速度与质量的变化情况,找出二者之间的定量关系. 二、物理量的测量1.质量的测量:用天平测量.在小车中增减砝码的数量可改变小车的质量. 2.加速度的测量(1)方法1:让小车做初速度为0的匀加速直线运动,用刻度尺测量小车移动的位移x ,用秒表测量发生这段位移所用的时间t ,然后由a =2xt 2计算出加速度a .(2)方法2:由纸带根据公式Δx =aT 2结合逐差法计算出小车的加速度.(3)方法3:不直接测量加速度的具体数值,求不同情况下物体加速度的比值,例如:让两个做初速度为0的匀加速直线运动的物体的运动时间t 相等,测出各自的位移x 1、x 2,则a 1a 2=x 1x 2,把加速度的测量转换成位移的测量. 3.力的测量在阻力得到补偿的情况下,小车受到的拉力等于小车所受的合力.(1)在槽码的质量比小车的质量小得多时,可认为小车所受的拉力近似等于槽码所受的重力. (2)使用力传感器可以直接测量拉力的大小,不需要使槽码的质量远小于小车的质量. 三、实验器材小车、砝码、槽码、细线、一端附有定滑轮的长木板、垫木、打点计时器、交流电源、纸带、刻度尺、天平.四、进行实验(以参考案例1为例)1.用天平测出小车的质量m ,并把数值记录下来.2.按如图1所示的装置把实验器材安装好(小车上先不系细线).图13.补偿阻力:在长木板不带定滑轮的一端下面垫上垫木,反复移动垫木位置,启动打点计时器,直到轻推小车使小车在木板上运动时可保持匀速直线运动为止(纸带上相邻点间距相等),此时小车重力沿木板方向的分力等于打点计时器对小车的阻力和长木板的摩擦阻力及其他阻力之和.4.把细线绕过定滑轮系在小车上,另一端挂上槽码.保持小车质量不变,改变槽码的个数,以改变小车所受的拉力.处理纸带,测出加速度,将结果填入表1中.表1小车质量一定拉力F/N加速度a/(m·s-2)5.保持槽码个数不变,即保持小车所受的拉力不变,在小车上加放砝码,重复上面的实验,求出相应的加速度,把数据记录在表2中.表2小车所受的拉力一定质量m/kg加速度a/(m·s-2)五、数据分析1.分析加速度a与力F的定量关系图2由表1中记录的数据,以加速度a为纵坐标,力F为横坐标,根据测量数据描点,然后作出a-F图像,如图2所示,若图像是一条过原点的倾斜直线,就能说明a与F成正比.2.分析加速度a与质量m的定量关系由表2中记录的数据,以a为纵坐标,以1m为横坐标,根据测量数据描点,然后作出a-1m图像,如图3所示.若a-1m图像是一条过原点的倾斜直线,说明a与1m成正比,即a与m成反比.图33.实验结论(1)保持物体质量不变时,物体的加速度a与所受拉力F成正比.(2)保持拉力F不变时,物体的加速度a与质量m成反比.六、注意事项1.打点前小车应靠近打点计时器且应先启动打点计时器后放开小车.2.在补偿阻力时,不要(选填“要”或“不要”)悬挂槽码,但小车应连着纸带且启动打点计时器.用手轻轻地给小车一个初速度,如果在纸带上打出的点的间隔均匀,表明小车受到的阻力跟它受到的重力沿木板向下的分力平衡.3.改变槽码的质量的过程中,要始终保证槽码的质量远小于小车的质量.4.作图时应使所作的直线通过尽可能多的点,不在直线上的点也要尽可能地均匀分布在直线的两侧,个别偏离较远的点应舍去.一、实验原理与实验操作在研究作用力F一定时,小车的加速度a与小车(含砝码)质量M的关系的实验中,某同学安装的实验装置和设计的实验步骤如下:图4A.用天平称出小车和槽码的质量B.按图4安装好实验器材C.把细绳系在小车上并绕过定滑轮悬挂槽码D.将电磁打点计时器接在6 V电压的蓄电池上,接通电源,释放小车,打点计时器在纸带上打下一系列点,并在纸带上标明小车质量E.保持槽码的质量不变,增加小车上的砝码个数,并记录每次增加后的M值,重复上述实验F.分析每条纸带,测量并计算出加速度的值G.作a-M关系图像,并由图像确定a与M的关系(1)请改正实验装置图中的错误.①电磁打点计时器位置___________________________________________;②小车位置________________________;③滑轮位置___________________________________________.(2)该同学漏掉的重要实验步骤是________,该步骤应排在步骤________之后.(3)在上述步骤中,有错误的是步骤________,应把________________改为____________.(4)在上述步骤中,处理不恰当的是步骤________,应把____________改为____________.答案(1)①应靠右端②应靠近打点计时器③应使细绳平行于木板(2)补偿阻力B(3)D 6 V电压的蓄电池8 V的交流电源(4)G作a-M关系图像作a-1M关系图像解析(1)①电磁打点计时器应固定在长木板无滑轮的一端,且应靠近右端;②释放小车时,小车应靠近打点计时器;③连接小车的细绳应平行于木板,故应调节滑轮位置使细绳平行于木板.(2)实验时应补偿阻力,使小车所受重力沿木板方向的分力与小车所受阻力平衡,故应垫高长木板右端以补偿阻力.实验中把槽码的重力看成与小车所受拉力大小相等,没有考虑阻力,故必须补偿阻力且应排在步骤B之后.(3)步骤D中电磁打点计时器接在6 V电压的蓄电池上将无法工作,必须接在8 V的交流电源上.(4)步骤G中作a-M关系图像,得到的是曲线,很难进行正确的判断,必须“化曲为直”,改作a-1M关系图像.二、实验数据处理某同学设计了一个“探究加速度a与物体所受合力F及物体质量m的关系”的实验,图5所示为实验装置简图(交流电源的频率为50 Hz).图5(1)图6所示为某次实验得到的纸带,根据纸带可求出小车的加速度大小为________ m/s2.(结果保留两位有效数字)图6(2)保持沙和沙桶的质量不变,改变小车质量m,分别得到小车加速度a与质量m及对应的1m,数据如下表.序号12345678小车加速度a/(m·s-2) 1.90 1.72 1.49 1.25 1.000.750.500.30 小车质量m/kg0.250.290.330.400.500.71 1.00 1.67 1m/kg-1 4.00 3.45 3.03 2.50 2.00 1.41 1.000.60。

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第3节 原子的核式结构模型含答案

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第3节 原子的核式结构模型含答案

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第3节 原子的核式结构模型一、电子的发现 1.阴极射线:阴极发出的一种射线。

它能使对着阴极的玻璃管壁发出荧光。

2.汤姆孙的探究根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电(选填“正电”或“负电”)的粒子流,并求出了这种粒子的比荷。

组成阴极射线的粒子被称为电子。

3.密立根实验:电子电荷的精确测定是由密立根通过著名的“油滴实验”做出的。

目前公认的电子电荷的值为e =1.6×10-19__C(保留2位有效数字)。

4.电荷的量子化:任何带电体的电荷只能是e 的整数倍。

5.电子的质量m e =9.1×10-31 kg(保留2位有效数字),质子质量与电子质量的比值为m p m e=1__836。

二、原子的核式结构模型1.汤姆孙原子模型:汤姆孙于1898年提出了原子模型,他认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”,如图所示。

2.α粒子散射实验(1)α粒子散射实验装置由α粒子源、金箔、显微镜等几部分组成,实验时从α粒子源到荧光屏这段路程应处于真空中。

(2)实验现象①绝大多数的α粒子穿过金箔后,基本上仍沿原来的方向前进;②少数α粒子发生了大角度偏转;偏转的角度甚至大于90°,它们几乎被“撞了回来”。

(3)实验意义:卢瑟福通过α粒子散射实验,否定了汤姆孙的原子模型,建立了核式结构模型。

3.核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动。

三、原子核的电荷与尺度1.原子核的电荷数:各种元素的原子核的电荷数,即原子内的电子数,非常接近它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的。

2.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。

3.原子核的大小:用核半径描述核的大小。

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第2讲-平抛运动

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第2讲-平抛运动

[考试标准]平抛运动1.定义将一物体水平抛出,物体只在重力作用下的运动.2.性质加速度为重力加速度g的匀变速曲线运动,运动轨迹是抛物线.3.平抛运动的研究方法将平抛运动分解为水平方向的匀速直线运动和竖直方向自由落体运动,分别研究两个分运动的规律,必要时再用运动合成的方法进行合成.4.基本规律以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:速度v x =v 0,位移x =v 0t . (2)竖直方向:速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,则tan θ=v y v x =gtv 0.(4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.[深度思考]1.从离水平地面某一高度的地方平抛的物体,其落地的时间由哪些因素决定?其水平射程由哪些因素决定?平抛的初速度越大,水平射程越大吗?答案 运动时间t =2hg,取决于高度h 和当地的重力加速度g .水平射程x =v 0t =v 02h g,取决于初速度v 0、高度h 和当地的重力加速度g .当高度、重力加速度一定时,初速度越大,水平射程越大.2.判断下列说法是否正确.(1)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化.( × ) (2)无论初速度是斜向上方还是斜向下方的斜抛运动都是匀变速曲线运动.( √ ) (3)做平抛运动的物体初速度越大,落地时竖直方向的速度越大.( × )1.运动员将网球水平击出,球未触网落到对方场地,已知击球点离地面的高度为1.8 m ,重力加速度g 取10 m/s 2,则球在空中的飞行时间大约是( ) A .0.6 s B .0.36 s C .5 s D .0.18 s答案 A2.从距地面高h处水平抛出一小石子,空气阻力不计,下列说法正确的是()A.石子运动速度与时间成正比B.石子抛出时速度越大,石子在空中飞行时间越长C.抛出点高度越大,石子在空中飞行时间越长D.石子在空中某一时刻的速度方向有可能竖直向下答案C3.将一个物体以10 m/s的速度从5 m的高度水平抛出,落地时它的速度方向与水平地面的夹角为(不计空气阻力,取g=10 m/s2)()A.30°B.45°C.60°D.90°答案 B4.以10 m/s的初速度从距水平地面20 m高的塔上水平抛出一个石子,不计空气阻力,取g =10 m/s2,则石子抛出点到落地点位移的大小为()A.20 m B.30 m C.20 2 m D.30 2 m答案 C命题点一平抛运动的基本规律例1小明将铅球以初速度v0水平抛出,铅球落地时的速度方向与水平方向成θ角,如图1所示.不计空气阻力,重力加速度为g.求:图1(1)铅球的抛出点离地面的高度; (2)铅球的水平位移.解析 (1)根据几何关系,tan θ=v yv 0解得v y =v 0tan θ 由t =v y g =v 0tan θg则抛出点离地面的高度h =12gt 2=v 20tan 2 θ2g(2)水平位移x =v 0t =v 20tan θg.答案 (1)v 20tan 2θ2g (2)v 20tan θg平抛运动问题的常用解法1.解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度,也不用分解加速度.2.将平抛运动分解之后,要充分利用平抛运动中的位移矢量三角形和速度矢量三角形找各量的关系.3.时间相等是联系两个分运动的桥梁. 4.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图2中A点和B点所示.图2(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.题组阶梯突破1.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图3所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有()图3A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动答案BC解析小锤打击弹性金属片后,A球做平抛运动,B球做自由落体运动.A球在竖直方向上的运动情况与B球相同,做自由落体运动,因此两球同时落地.实验时,需A、B两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A球在水平方向上的运动性质,故选项B、C正确,选项A、D错误.2.(2016·惠州模拟)某人向放在水平地面的正前方的小桶中水平抛球,结果球划着一条弧线飞到小桶的前方,如图4所示.不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛球时,可能做出的调整为()图4A.减小初速度,增大抛出点高度B.增大初速度,抛出点高度不变C.初速度大小不变,降低抛出点高度D.初速度大小不变,增大抛出点高度答案 C解析为了能把小球抛进桶中,须减小水平位移,由x=v0t=v02hg知,选项C正确.3.如图5所示,P是水平地面上的一点,A、B、C、D在同一条竖直线上,且AB=BC=CD.从A、B、C三点分别水平抛出一个物体,这三个物体都落在水平地面上的P点.则三个物体抛出时的速度大小之比为v A∶v B∶v C为()图5A.2∶3∶ 6 B.1∶2∶ 3C .1∶2∶3D .1∶1∶1答案 A解析 由平抛运动的规律可知竖直方向上:h =12gt 2,水平方向上:x =v 0t ,两式联立解得v 0=xg 2h ,知v 0∝1h.设h A =3h ,h B =2h ,h C =h ,代入上式可知选项A 正确.命题点二 与斜面有关的平抛运动问题例2 倾角为θ的斜面,长为l ,在顶端水平抛出一个小球,小球刚好落在斜面的底端,如图6所示,那么小球的初速度v 0的大小是( )图6A .cos θglsin θ B .cos θgl2sin θ C .sin θgl2cos θ D .sin θgl cos θ解析 小球运动为平抛运动,水平方向为匀速直线运动,x =v 0t ,竖直方向y =12gt 2.由斜面的几何关系可得:x =l cos θ,y =l sin θ,解得t =2l sin θg ,v 0=x t =l cos θ2l sin θg=cos θgl2sin θ,B 对. 答案 B平抛运动的两类特殊模型及解题技巧 1.两类模型问题 (1)从斜面上平抛(如图7)图7已知位移方向,方法:分解位移 x =v 0t y =12gt 2 tan θ=y x可求得t =2v 0tan θg(2)对着斜面平抛(如图8)图8已知速度的大小或方向,方法:分解速度 v x =v 0 v y =gttan θ=v 0v y =v 0gt可求得t =v 0g tan θ2.解题技巧(1)如果知道速度的大小或方向,应首先考虑分解速度. (2)如果知道位移的大小或方向,应首先考虑分解位移. (3)两种分解方法:①沿水平方向的匀速运动和竖直方向的自由落体运动; ②沿斜面方向的匀加速运动和垂直斜面方向的匀减速运动.题组阶梯突破4.(多选)如图9所示,一小球自长为L 、倾角为θ的斜面底端的正上方某处水平抛出,运动一段时间后,小球恰好垂直落到斜面中点,则据此可计算( )图9A .小球落到斜面前,在空中的运动时间B .小球平抛的初速度C .小球抛出点距斜面底端的高度D .小球抛出时的初动能 答案 ABC解析 小球的水平位移x =L cos θ2,落在斜面上时,速度与水平方向的夹角的正切值已知,该正切值是位移与水平方向夹角正切值的两倍,得出小球位移与水平方向夹角的正切值,从而可以求出下落的高度h .根据h =12gt 2,可以得出在空中的运动时间,故A 正确;小球的水平位移已知,根据v 0=xt 可以求出小球平抛运动的初速度,故B 正确.小球做平抛运动的高度可以求出,设为h ,则小球抛出点距斜面底端的高度H =h +L sin θ2.故C 正确.由于小球的质量未知,故无法求出小球抛出时的初动能.故D 错误.5.如图10所示,以10 m/s 的初速度水平抛出的物体,飞行一段时间后垂直撞在倾角为30°的斜面上,则物体在空中飞行的时间是(g 取10 m/s 2)( )图10A.33s B.233 s C. 3 s D .2 s 答案 C解析 速度分解图如图所示,由几何关系可知v y =v 0tan 30°=10 3 m/s ,由v y =gt ,得t = 3 s.命题点三 平抛运动的临界问题例3 如图11,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁距离L =1.4 m 、距窗子上沿高h =0.2 m 处的P 点,将可视为质点的小物体以速度v 垂直于墙壁水平抛出,小物体直接穿过窗口并落在水平地面上,取g =10 m/s 2,则v 的取值范围是( )图11A .v >7 m/sB .v >2.3 m/sC .3 m/s <v <7 m/sD .2.3 m/s <v <3 m/s解析 小物体做平抛运动,恰好擦着窗口上沿右侧穿过时v 最大.此时有L =v max t ,h =12gt 2代入解得v max =7 m/s恰好擦着窗口下沿左侧穿过时速度v 最小,则有L +d =v min t ′,H +h =12gt ′2解得v min =3 m/s故v 的取值范围是3 m/s <v <7 m/s. 答案 C极限分析法在临界问题中的应用分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到临界条件.题组阶梯突破6.(2016·吉林模拟)如图12所示,一圆柱形容器高、底部直径均为L ,球到容器左侧的水平距离也是L ,一可视为质点的小球离地高为2L ,现将小球水平抛出,要使小球直接落在容器底部,重力加速度为g ,小球抛出的初速度v 的大小范围为(空气阻力不计)( )图12A.12gL <v <gL B.12gL <v <212gL C.12gL <v < 32gL D.12gL <v <gL 答案 A解析 要使小球直接落在容器的底部,设最小初速度为v 1,则有:L =12gt 21,v 1=Lt 1,联立解得:v 1=12gL .设最大速度为v 2,则有:2L =12gt 22,v 2=2Lt 2,联立解得:v 2=gL ,因此小球抛出的初速度大小范围为:12gL <v <gL . 7.(2016·金华模拟)一带有乒乓球发射机的乒乓球台如图13所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h ,不考虑乒乓球的旋转和空气阻力(重力加速度为g ),则( )图13A .若球发射速度v =L 18gh,则恰好越过球网落在球台的右侧 B .若球发射速度v =L 24gh,则恰好越过球网落在球台的右侧 C .若球发射速度v =L 2g6h,则恰好落在球台的右侧边缘 D .若球以速度v =L 1g6h垂直台面左侧底线水平发射,则恰好落在球台的右侧边缘 答案 D解析 若球与网恰好不相碰,根据3h -h =12gt 21得:t 1=4h g ,水平位移为:x min =L 12,则发射速度为:v 1=L 12t 1=L 14gh.故A 、B 错误; 若球与球台边缘相碰,根据3h =12gt 22得:t 2=6hg,水平位移为:x max =L 1,则发射速度为:v 2=L 1t 2=L 1g6h,故C 错误,D 正确.(建议时间:40分钟)1.对于平抛运动,下列说法正确的是( ) A .平抛运动是非匀变速曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 C解析做平抛运动的物体只受重力作用,其加速度为重力加速度恒定不变,故A项错误;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy=gt2,水平方向位移增量不变,故B项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t=2hg,落地速度为v=v2x+v2y=v20+2gh,所以C项对,D项错.2.某学生在体育场上抛出铅球,其运动轨迹如图1所示.已知在B点时的速度与加速度相互垂直,则下列说法中正确的是()图1A.D点的速率比C点的速率大B.D点的加速度比C点的加速度大C.从B到D加速度与速度始终垂直D.从B到D加速度与速度的夹角先减小后增大答案 A3.在高空中匀速飞行的轰炸机,每隔时间t投放一颗炸弹,若不计空气阻力,则投放的炸弹在空中的位置是选项中的(图中竖直的虚线将各图隔离)()答案 B解析炸弹的运动是一个平抛运动,它在水平方向上是匀速直线运动,与飞机速度相等,所以所有离开飞机的炸弹与飞机应在同一条竖直线上,显然A、C两选项错误;炸弹在竖直方向上是自由落体运动,从上至下,炸弹间的距离越来越大,B项正确,D项错误.4.(2016·杭州模拟)重力加速度已知,决定平抛物体落地点与抛出点间水平距离的因素是()A .初速度B .抛出时物体的高度C .抛出时物体的高度和初速度D .物体的质量和初速度 答案 C解析 物体做平抛运动,水平方向上:x =v 0t ;竖直方向上:h =12gt 2;由以上两式可以求得x=v 02hg,所以落地点与抛出点间水平距离与抛出时物体的高度和初速度有关. 5.(2016·乐清国际外国语学校期末)做平抛运动的物体,其竖直方向的速度v y 随时间变化的图象是下图中的( )答案 B解析 做平抛运动的物体,竖直方向做匀加速运动,有v y =gt ,竖直方向的速度与时间是一次函数关系,所以B 正确.6.如图2所示,在同一竖直线上不同高度处同时平抛P 、Q 两个小球,两者的运动轨迹相交于M 点,P 、Q 两小球平抛的初速度分别为v 1、v 2,P 、Q 两小球运动到M 点的时间分别为t 1、t 2,不计空气阻力,下列说法正确的是( )图2A .t 1<t 2,v 1<v 2B .t 1<t 2,v 1>v 2C .t 1>t 2,v 1<v 2D .t 1>t 2,v 1=v 2 答案 C解析 两个小球做平抛运动,在竖直方向做自由落体运动,由h =12gt 2得t =2hg,知P 的运动时间大于Q 的运动时间,即t 1>t 2,在水平方向做匀速直线运动,由x =v 0t ,水平射程相等,则v 1<v 2,故C 正确.7.以10 m/s 的速度水平抛出一小球,空气阻力不计,g 取10 m/s 2,当其水平位移与竖直位移相等时,下列说法中正确的是( ) A .小球的速度大小是10 2 m/s B .小球的运动时间是2 s C .小球的速度大小是20 m/s D .小球的运动时间是1 s 答案 B解析 由平抛运动的竖直分运动是自由落体运动y =12gt 2,水平分运动为匀速直线运动x =v 0t ,结合x =y 可得t =2 s ,B 正确,D 错误.小球的速度大小v =v 20+(gt )2=10 5 m/s ,A 、C 错误.8.一个物体以初速度v 0水平抛出,落地时速度为v ,则运动时间为( ) A.v -v 0gB.v +v 0gC.v 2-v 20gD.v 2+v 20g答案 C解析 求出落地时的竖直分速度v y =v 2-v 20,由竖直方向做自由落体运动求时间t =v yg=v 2-v 2g,故C 正确. 9.(2016·海口模拟)某同学篮球场上练习投篮,一次投篮恰好垂直打在篮板上,且篮球撞击篮板处与投出点之间的水平距离是竖直的2倍,空气阻力不计,篮球被投出时的速度与水平方向间的夹角为( )A .30°B .45°C .60°D .75° 答案 B解析 采用逆向思维,篮球做平抛运动,设竖直位移为h ,则水平位移为:x =2h ,根据h =12gt 2得:t =2h g, 可知篮球水平分速度为:v x =xt=2hg2h=2gh ,v y =2gh ,根据平行四边形定则知,tan α=v yv x=1,解得篮球被投出时的速度与水平方向间的夹角α=45°. 10.(2016·宝鸡模拟)平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v -t 图线,如图3所示.若平抛运动的时间大于2t 1,下列说法中正确的是( )图3A .图线2表示水平分运动的v -t 图线B .t 1时刻的速度方向与初速度方向的夹角为30°C .t 1时间内的竖直位移与水平位移之比为1∶2D .2t 1时刻的位移方向与初速度方向的夹角为60°答案 C解析 图线2是初速度为0的匀加速直线运动,所以图线2表示的是竖直分运动,故A 错误;t 1时刻可知水平分速度和竖直分速度相等,则该时刻速度与初速度方向的夹角为45°.故B 错误;图线与时间轴围成的面积表示位移,则t 1时刻竖直方向的位移与水平方向的位移之比为1∶2,故C 正确;2t 1时刻竖直方向的位移和水平方向的位移相等,所以2t 1时刻的位移方向与初速度方向夹角为45°,故D 错误.11.在倾角为θ的斜面顶端,以初速度v 0水平抛出一小球,则小球与斜面相距最远时速度的大小为( )A .v 0cos θ B.v 0cos θ C .v 0sin θ D.v 0sin θ答案 B解析 当小球速度方向与斜面平行时离斜面最远,速度的水平分量不变,为v 0,故v cos θ=v 0解得:v =v 0cos θ.12.如图4所示,在足够长的斜面上A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上的水平距离为x 1;若将此球改用2v 0水平速度抛出,落到斜面上的水平距离为x 2,则x 1∶x 2为()图4A .1∶1B .1∶2C .1∶3D .1∶4答案 D解析 设斜面倾角为θ,则tan θ=y x =12gt2v 0t =gt2v 0,故t =2v 0tan θg ,水平位移x =v 0t =2v 20tan θg∝v 20,故当水平初速度由v 0变为2v 0后,水平位移变为原来的4倍,D 项正确.13.(2016·汉中模拟)如图5所示,一网球运动员将球在左侧边界中点处正上方水平向右击出,球刚好过网落在图中位置(不计空气阻力),数据如图所示,则下列说法中正确的是( )图5A .击球点高度h 1与球网高度h 2之间的关系为h 1=2h 2B .若保持击球高度不变,球的初速度v 0只要不大于s h 12gh 1,一定落在对方界内C .任意降低击球高度(仍大于h 2),只要击球初速度合适,球一定能落在对方界内D .任意增加击球高度,只要击球初速度合适,球一定能落在对方界内 答案 D解析 平抛运动在水平方向上做匀速直线运动,水平位移为s 和3s2的运动时间比2∶3,则竖直方向上,根据h =12gt 2,则有h 1-h 2h 1=49,解得h 1=1.8h 2.故A 错误;若保持击球高度不变,要想球落在对方界内,要既不能出界,又不能触网,根据h 1=12gt 21得,t 1=2h 1g,则平抛运动的最大速度v 01=2s t 1=s h 12gh 1,根据h 1-h 2=12gt 22,t 2=2(h 1-h 2)g,则平抛运动的最小速度v 02=st 2=sg2(h 1-h 2).故B 错误;任意降低击球高度(仍大于h 2),会有一临界情况,此时球刚好触网又刚好压界,若小于该临界高度,速度大,会出界,速度小,会触网,所以不是击球高度比网高,就一定能将球发到界内.故C 错误;增加击球高度,只要速度合适,球一定能发到对方界内,故D 正确.14.如图6所示,从倾角为θ的足够长斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v 1,球落到斜面上时瞬时速度方向与斜面夹角为α1;第二次初速度为v 2,球落到斜面上时瞬时速度方向与斜面夹角为α2,不计空气阻力,若v 1>v 2,且α1________(填“>”“<”或“=”)α2.图6答案 =解析 如图所示,从A 到B 竖直下落h ,水平位移为x ,把末速度正交分解,水平速度为v 1,竖直速度为v y .tan θ=h x =12gt2v 1t =gt2v 1,tan γ=v y v 1=gt v 1,可知tan γ=2tan θ,又θ为已知量,所以γ为定值,与初速度无关,所以两次以不同速度抛出,落点与斜面夹角相同.15.如图7所示,在倾角为θ的斜面顶端P 点以初速度v 0水平抛出一个小球,最后落在斜面上的Q 点,求:图7(1)小球在空中运动的时间以及P 、Q 间的距离; (2)小球离开斜面的距离最大时,抛出了多久. 答案 (1)2v 0tan θg 2v 20tan θg cos θ (2)v 0tan θg解析 (1)根据平抛运动分运动的特点,两个分运动的位移与合运动的位移构成一个直角三角形,如图甲所示,由s x =v 0t ,s y =12gt 2得s y s x =tan θ=gt 2v 0,可得小球在空中运动的时间t =2v 0tan θg. PQ 间距离s =s x cos θ=2v 20tan θg cos θ. (2)如图乙所示,两个分运动的速度与合运动的速度也构成一个直角三角形,当小球与斜面间距离最远时,速度方向与水平分速度之间的夹角为θ.由v y v x =tan θ=gt v 0,可得小球离开斜面距离最大时所需时间为t =v 0tan θg. 16.如图8所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求:图8(1)小球离开屋顶时的速度v 0的大小范围;(2)小球落在空地上的最小速度.答案 (1)5 m/s ≤v 0≤13 m/s (2)5 5 m/s解析 (1)设小球恰好落到空地的右侧边缘时的水平初速度为v 01,则小球的水平位移:L +x =v 01t 1小球的竖直位移:H =12gt 21解以上两式得v 01=(L +x ) g 2H=13 m/s 设小球恰好越过围墙的边缘时的水平初速度为v 02,则此过程中小球的水平位移: L =v 02t 2小球的竖直位移:H -h =12gt 22解以上两式得:v 02=L g2(H -h )=5 m/s小球离开屋顶时速度v 0的大小为5 m/s ≤v 0≤13 m/s(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在空地上时,落地速度最小.竖直方向:v 2y =2gH又有:v min =v 202+v 2y 解得:v min =5 5 m/s。

高考物理自由复习步步高系列05(原卷版).docx

高考物理自由复习步步高系列05(原卷版).docx

高中物理学习材料唐玲收集整理【课本内容再回顾——查缺补漏】回顾一:电场一、库仑定律与受力分析1.电荷量、元电荷、点电荷和试探电荷(1)电荷量是物体带电的多少,电荷量只能是元电荷的整数倍.(2)元电荷不是电子,也不是质子,而是最小的电荷量,电子和质子带有最小的电荷量,即e=1.6×10-19 C.(3)点电荷要求“线度远小于研究范围的空间尺度”,是一种理想化的模型,对其带电荷量无限制.(4)试探电荷要求放入电场后对原来的电场不产生影响,且要求在其占据的空间内场强“相同”,故其应为带电荷量“足够小”的点电荷.二、库仑力作用下的平衡问题涉及到库仑力作用下的平衡问题方法与力学中分析物体平衡的方法是一样的,学会把电学问题力学化.注意:如电子、质子等带电粒子可不考虑重力,而尘埃、液滴、等一般需考虑重力.特别要注意带电质点一般要考虑质量的,二、场强的三个表达式的比较及场强的叠加1.场强的三个表达式的比较定义式决定式关系式表达式E=F/q E=kQ/r2E=U/d 适用范围任何电场真空中的点电荷匀强电场说明E的大小及方向与检验电荷的电荷量及存在与否无关.Q:场源电荷的电荷量.r:研究点到场源电荷的距离,用于均匀带电球体(或球壳)时,r是球心到研究点的距离,Q是整个球体的带电荷量.U:电场中两点的电势差.d:两点沿电场方向的距离.2.电场的叠加原理多个电荷在电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,这种关系叫电场强度的叠加,电场强度的叠加遵循平行四边形定则.在近年的高考及高考模拟中经常出现这类问题,我们常用割补法、对称法加以分析。

3.电场线三、电势高低及电势能大小的比较方法1.比较电势高低的几种方法(1)沿电场线方向,电势越来越低,电场线由电势高的等势面指向电势低的等势面.(2)判断出U AB的正负,再由U AB=φA-φB,比较φA、φB的大小,若U AB>0,则φA>φB,若U AB<0,则φA <φB.(3)取无穷远处为零电势点,正电荷周围电势为正值,且离正电荷近处电势高;负电荷周围电势为负值,且离负电荷近处电势低.2.电势能大小的比较方法我们一般通过电场力做功正负功的方法来判断电场力做正功,电荷(无论是正电荷还是负电荷)从电势能较大的地方移向电势能较小的地方.反之,如果电荷克服电场力做功,那么电荷将从电势能较小的地方移向电势能较大的地方,这一点可类比成重力做功与重力势能变化。

高中物理选修3-5步步高全套学案及课件第四章2

高中物理选修3-5步步高全套学案及课件第四章2

2 光电效应与光的量子说[学习目标] 1.知道光电效应现象,能说出光电效应的实验规律.2.能用爱因斯坦光电效应方程对光电效应作出解释,会用光电效应方程解决一些简单的问题.一、光电效应1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象.2.光电子:光电效应中发射出来的电子.3.光电效应的实验规律(1)对于给定的光电阴极材料,都存在一个截止频率ν0,只有超过截止频率ν0的光,才能引起光电效应.(2)光电流的大小由光强决定,光强越大,光电流越大. (3)光电子的最大初动能与入射光的频率成线性关系.(4)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9s.二、爱因斯坦的光电效应方程1.光子说:光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子ε=hν.2.爱因斯坦光电效应方程的表达式:hν=12m v 2+W .其中W 为电子从金属内逸出表面时所需做的功.3.截止频率:当最大初动能等于零时,金属表面不再有光电子逸出,这时入射光的频率就是截止频率ν0=W h .[即学即用]1.判断下列说法的正误.(1)任何频率的光照射到金属表面都可以发生光电效应.( × ) (2)金属表面是否发生光电效应与入射光的强弱有关.( × ) (3)“光子”就是“光电子”的简称.( × ) (4)逸出功的大小与入射光无关.( √ )(5)入射光若能使某金属发生光电效应,则入射光的强度越大,照射出的光电子数越多.( √ )(6)最大初动能的大小与入射光的频率有关,与入射光的光强无关.( √ )2.某金属的逸出功为W,则这种金属的截止频率ν0=________,用波长为λ的光照射金属的表面,光电子的最大初动能E k=________.(已知普朗克常量为h,光速为c)答案Wh hcλ-W一、光电效应现象及其实验规律[导学探究]如图1甲是研究光电效应现象的装置图,图乙是研究光电效应的电路图,请结合装置图及产生的现象回答下列问题:图1(1)在甲图中发现,利用紫外线照射锌板无论光的强度如何变化,验电器都有张角,而用红光照射锌板,无论光的强度如何变化,验电器总无张角,这说明了什么?(2)在乙图中光电管两端加正向电压,用一定强度的光照射时,若增加电压,电流表示数不变,而光强增加时,同样电压,电流表示数会增大,这说明了什么?(3)在乙图中若加反向电压,当光强增大时,遏止电压不变,而入射光的频率增加时,遏止电压却增加,这一现象说明了什么?(4)光电效应实验表明,发射电子的能量与入射光的强度无关,而与光的频率有关,试用光子说分析其原因.答案(1)金属能否发生光电效应,决定于入射光的频率,与入射光的强度无关.(2)发生光电效应时,当入射光频率不变时,飞出的光电子个数只与光的强度有关.(3)光电子的能量与入射光频率有关,与光的强度无关.(4)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量,而且传递能量的过程只能是一个光子对应一个电子的行为.如果光的频率低于截止频率,则光子提供给电子的能量不足以克服原来的束缚,就不能发生光电效应.而当光的频率高于截止频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在.[知识深化]1.光电效应的实质:光现象――→转化为电现象. 2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的电子,其本质还是电子.4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关.5.发生光电效应时,在光的颜色不变的情况下,入射光越强,单位时间内发出的光电子数越多.6.光的强度与饱和光电流:饱和光电流与光强有关,与所加的正向电压大小无关.饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的.对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间不是简单的正比关系.例1 (多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是( )A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生 答案 AC解析 保持入射光的频率不变,入射光的光强变大,单位时间内逸出的光电子变多,饱和光电流变大,A 对;据爱因斯坦光电效应方程hν=12m v 2+W 可知,入射光的频率变高,光电子的最大初动能变大,饱和光电流不变,B 错,C 对;当hν<W 时没有光电流产生,D 错. 二、光电效应方程的理解和应用[导学探究] 用如图2所示的装置研究光电效应现象.用光子能量为2.75 eV 的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑片,发现当电压表的示数大于或等于1.7 V 时,电流表示数为0.图2(1)光电子的最大初动能是多少?遏止电压为多少? (2)光电管阴极的逸出功又是多少?(3)当滑片向a 端滑动时,光电流变大还是变小?(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢? 答案 (1)1.7 eV 1.7 V(2)W =hν-12m v 2=2.75 eV -1.7 eV =1.05 eV(3)变大 (4)变大 变大 [知识深化]1.光电效应方程hν=12m v 2+W 的四点理解(1)式中的12m v 2是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能的大小可以是0~12m v 2范围内的任何数值.(2)光电效应方程实质上是能量守恒方程.①能量为ε=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分转化为电子离开金属表面时的动能.②若要克服吸引力做功最少为W ,则电子离开金属表面时动能最大为12m v 2,根据能量守恒定律可知:12m v 2=hν-W .(3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即12m v 2=hν-W >0,亦即hν>W ,ν>Wh =ν0,而ν0=Wh 恰好是光电效应的截止频率.2.光电效应规律中的两条线索、两个关系 (1)两条线索(2)两个关系光照强度大→光子数目多→发射光电子多→光电流大; 光子频率高→光子能量大→产生光电子的最大初动能大.例2 在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图3所示,则可判断出( )图3A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的频率大于丙光的频率D.甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能 答案 B解析 当光电管两端加上反向遏止电压光电流为零时,有12m v m 2=eU 0,对同一光电管(逸出功W相同)使用不同频率的光照射,有hν=W +12m v m 2,两式联立可得hν-W =eU 0,丙光的反向遏止电压最大,则丙光的频率最大,甲光的频率等于乙光的频率,A 、C 错误;由λ=cν可知λ丙<λ乙,B 正确;又由hν=W +12m v m 2或由12m v m 2-0=eU 0可知丙光对应的最大初动能最大,D 错误.光电效应图线的理解和应用1.E k -ν图线:如图4甲所示是光电子最大初动能E k 随入射光频率ν的变化图线.这里,横轴上的截距是阴极金属的截止频率;纵轴上的截距是阴极金属的逸出功的负值;斜率为普朗克常量(E k =12m v 2=hν-W ,E k 是ν的一次函数,不是正比例函数).图42.I -U 曲线:如图乙所示是光电流I 随光电管两极板间电压U 的变化曲线,图中 I m 为饱和光电流,U 0为反向遏止电压.说明:(1)由E k =eU 0和E k =hν-W 知,同一色光,遏止电压相同,与入射光强度无关;频率越大,遏止电压越大.(2)在入射光频率一定时,饱和光电流随入射光强度的增大而增大.1.(对光电效应现象的理解)(多选)如图5所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是( )图5A.用紫外线照射锌板,验电器指针会发生偏转B.用红光照射锌板,验电器指针一定会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷答案AD解析将擦得很亮的锌板与验电器连接,用弧光灯照射锌板(弧光灯可以发出紫外线),验电器指针张开一个角度,说明锌板带了电,进一步研究表明锌板带正电.这说明在紫外线的照射下,锌板中有一部分自由电子从表面飞出,锌板带正电,选项A、D正确,C错误.红光的频率低于紫外线的频率不一定能使锌板发生光电效应,B错误.2.(光电效应的实验及规律)利用光电管研究光电效应实验如图6所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则()图6A.用紫外线照射,电流表不一定有电流通过B.用红光照射,电流表一定无电流通过C.用频率为ν的可见光照射阴极K,当滑动变阻器的滑片移到A端时,电流表中一定无电流通过D.用频率为ν的可见光照射阴极K,当滑动变阻器的滑动片向B端滑动时,电流表示数可能不变答案 D解析因紫外线的频率比可见光的频率高,所以用紫外线照射阴极K时,电流表中一定有电流通过,选项A错误.因不知阴极K的截止频率,所以用红光照射时,不一定发生光电效应,选项B 错误.即使U AK=0,电流表中也可能有电流通过,所以选项C错误.当滑片向B端滑动时,U AK增大,阳极A吸收光电子的能力增强,光电流会增大,直至达到饱和光电流.若在滑动前,电流已经达到饱和光电流,那么即使增大U AK,光电流也不会增大,所以选项D正确.3.(光电效应的图像)如图7所示是光电效应中光电子的最大初动能E k与入射光频率ν的关系图像.从图中可知()图7A.E k 与ν成正比B.入射光频率必须小于极限频率ν0时,才能产生光电效应C.对同一种金属而言,E k 仅与ν有关D.E k 与入射光强度成正比 答案 C解析 由E k =12m v 2=hν-W 知C 正确,A 、B 、D 错误.4.(光电效应方程的应用)在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为______.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______.已知电子电荷量的绝对值、真空中的光速和普朗克常量分别为e 、c 和h . 答案hc λ0 hc (λ0-λ)eλ0λ解析 由光电效应方程知,光电子的最大初动能12m v 2=hν-W ,其中金属的逸出功W =hν0,又由c =λν知W =hc λ0.用波长为λ的单色光照射时,E k =hc λ-hcλ0=hc λ0-λλ0λ.又因为eU 0=E k ,所以遏止电压U 0=E k e =hc (λ0-λ)eλ0λ.一、选择题考点一 光电效应现象及规律1.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么( )A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应 答案 C解析 发生光电效应几乎是瞬时的,与入射光的强度无关,选项A 错误.入射光的强度减弱,说明单位时间内的入射光子数目减少;频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B 错误.入射光子的数目减少,逸出的光电子数目也就减少,故选项C 正确.入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的截止频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D 错误. 2.(多选)关于光电效应现象,下列说法中正确的是( )A.当入射光的频率高于金属的截止频率时,光强越大,光电流越大B.光电子的最大初动能跟入射光的强度有关C.发生光电效应的时间一般都大于10-7 sD.发生光电效应时,当入射光频率一定时,单位时间内从金属内逸出的光电子数与入射光的强度有关 答案 AD解析 由hν=12m v 2+W 知,最大初动能由入射光频率与金属材料决定,与入射光的强度无关,B错;发生光电效应的时间一般不超过10-9 s,C 错.3.如图1,用一定频率的单色光照射光电管时,电流表指针会发生偏转,则( )图1A.电源右端应为正极B.流过电流表G 的电流大小取决于入射光的频率C.流过电流表G 的电流方向是由a 流向bD.普朗克解释了光电效应并提出光子能量ε=hν 答案 C解析 发生光电效应时,电子从光电管右端运动到左端,电流的方向与电子定向移动的方向相反,所以流过电流表G 的电流方向是由a 流向b ;光电管两端可能是正向电压也可能是反向电压,所以电源右端可能为正极,也可能为负极;流过电流表G 的电流大小取决于入射光的强度,与入射光的频率无关;爱因斯坦解释了光电效应并提出光子能量ε=hν. 考点二 光电效应方程的应用4.(多选)已知能使某金属发生光电效应的截止频率为ν0,则( ) A.当用频率为2ν0的单色光照射该金属时,一定能产生光电子B.当用频率为2ν0的单色光照射该金属时,所产生的光电子的最大初动能为hν0C.当入射光的频率ν大于ν0时,若ν增大,则逸出功增大D.当入射光的频率ν大于ν0时,若ν增大一倍,则光电子的最大初动能也增大一倍答案 AB解析 因入射光的频率大于或等于截止频率时会发生光电效应,所以A 正确;因为金属的截止频率为ν0,所以逸出功W =hν0,再由12m v 2=hν-W 得,12m v 2=2hν0-hν0=hν0,B 正确;因为逸出功是光电子恰好逸出时需要做的功,对于同种金属是恒定的,故C 错误;由E k =12m v 2=hν-W=hν-hν0=h (ν-ν0)可得,当ν增大一倍时:E k ′E k =2ν-ν0ν-ν0≠2,故D 错误.5.分别用波长为λ和23λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1∶2,以h表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为( ) A.hc 2λ B.3hc 2λ C.3hc 4λ D.2hλc 答案 A解析 根据光电效应方程得 E k1=h cλ-W ①E k2=h c23λ-W ②又E k2=2E k1③联立①②③得W =hc2λ,A 正确.6.(多选)如图2所示,两平行金属板A 、B 间电压恒为U ,一束波长为λ的入射光射到金属板B 上,使B 板发生了光电效应,已知该金属板的逸出功为W ,电子的质量为m ,电荷量的绝对值为e ,普朗克常量为h ,真空中光速为c ,下列说法中正确的是( )图2A.入射光子的能量为h cλB.到达A 板的光电子的最大动能为h cλ-W +eUC.若增大两板间电压,B 板没有光电子逸出D.若减小入射光的波长一定会有光电子逸出 答案 ABD解析 根据ε=hν,而ν=c λ,则入射光子的能量为h cλ,故A 正确;逸出光电子的最大初动能E km=h c λ-W ,根据动能定理,eU =E km ′-E km ,则到达A 板的光电子的最大动能为E km ′=h cλ-W +eU ,故B 正确;若增大两板间电压,不会影响光电效应现象,仍有光电子逸出,故C 错误;若减小入射光的波长,则其频率增大,一定会有光电子逸出,故D 正确. 考点三 光电效应图像问题7.(多选)在某次光电效应实验中,得到的遏止电压U 0与入射光的频率ν的关系如图3所示,若该直线的斜率和纵截距分别为k 和-b ,电子电荷量的绝对值为e ,则( )图3A.普朗克常量可表示为k eB.若更换材料再次实验,得到的图线的k 不改变,b 改变C.所用材料的逸出功可表示为ebD.b 由入射光决定,与所用材料无关 答案 BC解析 根据光电效应方程得E k =hν-W ,又E k =eU 0,则U 0=hνe -W e ,图线的斜率k =he ,解得普朗克常量h =ke ,故A 错误;纵轴截距的绝对值b =We ,解得逸出功W =eb ,故C 正确;b 等于逸出功与电子电荷量绝对值的比值,而逸出功与材料有关,则b 与材料有关,故D 错误;更换材料再次实验,由于逸出功变化,可知图线的斜率不变,纵轴截距改变,故B 正确.8.研究光电效应的电路如图4所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K ),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流.下列光电流I 与A 、K 之间的电压U AK 的关系图像中,正确的是( )图4答案 C解析 用频率相同的光照射同一金属时,发射出的光电子的最大初动能相同,所以遏止电压相同;饱和光电流与光的强度有关,光的强度越大,饱和光电流越大,故选项C 正确.9.(多选)美国物理学家密立根利用如图5甲所示的电路研究金属的遏止电压U 0与入射光频率ν的关系,描绘出图乙中的图像,由此算出普朗克常量h ,电子电荷量的绝对值用e 表示,下列说法正确的是( )图5A.入射光的频率增大,测遏止电压时,应使滑动变阻器的滑片P 向M 端移动B.增大入射光的强度,光电子的最大初动能也增大C.由U 0-ν图像可知,这种金属的截止频率为ν0D.由U 0-ν图像可得普朗克常量的表达式为h =U 1e ν1-ν0答案 CD解析 入射光的频率增大,光电子的最大初动能增大,则遏止电压增大,测遏止电压时,应使滑动变阻器的滑片P 向N 端移动,故A 错误;根据光电效应方程得E k =hν-W ,光电子的最大初动能与入射光的强度无关,故B 错误;根据E k =hν-W =eU 0,解得U 0=hνe -hν0e ,图线的斜率k =h e=U 1ν1-ν0,则h =U 1e ν1-ν0,当遏止电压为零时,ν=ν0,故C 、D 正确. 二、非选择题10.(光电效应实验规律及图像应用)小明用阴极为金属铷的光电管观测光电效应现象,实验装置示意图如图6甲所示.已知普朗克常量h =6.63×10-34 J·s.图6(1)图甲中电极A为光电管的____________(选填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U0与入射光频率ν之间的关系如图乙所示,则铷的截止频率ν0=________Hz,逸出功W=________J;(3)如果实验中入射光的频率ν=7.00×1014 Hz,则产生的光电子的最大初动能E k=________J. 答案(1)阳极(2)5.15×1014 3.41×10-19(3)1.23×10-19解析(1)在光电效应中,电子向A极运动,故电极A为光电管的阳极.(2)由题图乙可知,铷的截止频率ν0为5.15×1014 Hz,逸出功W=hν0=6.63×10-34×5.15×1014 J≈3.41×10-19 J.(3)当入射光的频率为ν=7.00×1014 Hz时,由光电效应方程得E k=hν-hν0,光电子的最大初动能为E k =6.63×10-34×(7.00-5.15)×1014 J≈1.23×10-19 J.11.(光电效应方程的应用)如图7所示,一光电管的阴极用极限波长λ0=500 nm的钠制成.用波长λ=300 nm的紫外线照射阴极,光电管阳极A和阴极K之间的电势差U=2.1 V,饱和光电流的值(当阴极K发射的电子全部到达阳极A时,电路中的电流达到最大值,称为饱和光电流)I=0.56 μA.(普朗克常量h=6.63×10-34 J·s,真空中光速c=3.0×108 m/s,电子电荷量的绝对值e=1.6×10-19 C,结果均保留两位有效数字)图7(1)求每秒由K极发射的光电子数目.(2)求电子到达A 极时的最大动能.(3)如果电势差U 不变,而照射光的强度增大到原值的三倍,此时电子到达A 极的最大动能是多大?答案 (1)3.5×1012个 (2)6.0×10-19 J (3)6.0×10-19 J解析 (1)设每秒内发射的光电子数为n ,则:n =It e =0.56×10-6×11.6×10-19=3.5×1012个. (2)由光电效应方程可知:E k =hν-W =h c λ-h c λ0=hc (1λ-1λ0) 在A 、K 间加电压U 时,电子到达阳极时的动能为E km =E k +eU =hc (1λ-1λ0)+eU . 代入数值得:E km ≈6.0×10-19 J.(3)根据光电效应规律,光电子的最大初动能与入射光的强度无关.如果电势差U 不变,则电子到达A 极的最大动能不变,仍为6.0×10-19 J.。

高中物理选修3-5步步高全套学案及课件第三章高中物理选修3-5步步高全套学案及课件章末总结

高中物理选修3-5步步高全套学案及课件第三章高中物理选修3-5步步高全套学案及课件章末总结

章末总结一、对核反应方程及类型的理解1.核反应的四种类型2.核反应方程式的书写(1)熟记常见基本粒子的符号是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子(0-1e)、正电子( 0+1e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵循的规律是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向. (3)核反应过程中质量数守恒,电荷数守恒.例1 (多选)能源是社会发展的基础,发展核能是解决能源问题的途径之一.下列释放核能的反应方程中,表述正确的是( )A.42He +2713Al ―→3015P +10n 是原子核的人工转变B.31H +11H ―→42He +γ是核聚变反应C.19 9F +11H ―→16 8O +42He 是α衰变 D.235 92U +10n ―→9038Sr +136 54Xe +1010n 是裂变反应答案 ABD解析 A 是原子核的人工转变的反应方程式;B 是聚变的核反应方程式;C 并不是α衰变,而是人工转变,衰变是自发进行的,不受外界因素的影响;D 是裂变的核反应方程式.故A 、B 、D 正确.针对训练1 在下列四个核反应方程式中,X 表示中子的是______,属于原子核的人工转变的是________.A.14 7N +42He ―→17 8O +XB.2713Al +42He ―→3015P +XC.21H +31H ―→42He +XD.235 92U +X ―→9038Sr +136 54Xe +10X答案 BCD AB解析 不管是什么类型的核反应,都遵守电荷数守恒和质量数守恒,对A,未知粒子的质量数为14+4-17=1,电荷数为7+2-8=1,即未知粒子是质子(11H);对B,未知粒子的质量数为27+4-30=1,电荷数为13+2-15=0,所以X 是中子(10n);对C,未知粒子的质量数为2+3-4=1,电荷数为:1+1-2=0,X 也是中子(10n);对D,未知粒子质量数为235-90-1369=1,电荷数为38+54-92=0,X 也是中子(10n),故方程中X 是中子的核反应为B 、C 、D,其中A 、B 为原子核的人工转变.二、半衰期及衰变次数的计算1.半衰期:大量放射性元素的原子核有半数发生衰变所需要的时间. 计算公式:N 余=N 原(12)n 或m 余=m 原(12)n ,其中n =tT 1/2,T 1/2为半衰期.2.确定衰变次数的方法(1)A Z X →A ′Z ′Y +n 42He +m-1e根据质量数、电荷数守恒得 A =A ′+4n Z =Z ′+2n -m两式联立求解得α衰变次数n 和β衰变次数m . (2)根据α衰变和β衰变(β衰变质量数不变)直接求解. 例2 (多选)关于天然放射现象,以下叙述正确的是( ) A.若使放射性物质的温度升高,其半衰期将变长B.β衰变所释放的电子是原子核内的质子转变为中子时产生的C.在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强D.铀核(238 92U)衰变为铅核(206 82Pb)的过程中,要经过8次α衰变和6次β衰变答案 CD解析 半衰期的时间与元素的物理状态无关,若使某放射性物质的温度升高,其半衰期不变,故A 错误;β衰变所释放的电子是原子核内的中子转化成质子时产生的,故B 错误;在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强,故C 正确;铀核(238 92U)衰变为铅核(206 82Pb)的过程中,每经过一次α衰变质子数少2,质量数少4;而每经过一次β衰变质子数增加1,质量数不变;由质量数和核电荷数守恒,可知要经过8次α衰变和6次β衰变,故D 正确.针对训练2 放射性元素238 92U 衰变有多种可能途径,其中一种途径是先变成210 83Bi,而210 83Bi 可以经一次衰变变成210 a X(X 代表某种元素),也可以经一次衰变变成 b 81Tl,210 a X 和 b 81Tl 最后都变成206 82Pb,衰变路径如图1所示.则( )图1A.a =82,b =211B.210 83Bi ―→210 a X 是β衰变,210 83Bi ―→ b 81Tl 是α衰变C.210 83Bi ―→210 a X 是α衰变,210 83Bi ―→ b 81Tl 是β衰变D.b81Tl经过一次α衰变变成20682Pb答案 B解析由21083Bi―→210a X,质量数不变,说明发生的是β衰变,同时知a=84.由21083Bi―→b81Tl,核电荷数减2,说明发生的是α衰变,同时知b=206,故20681Tl―→20682Pb发生了一次β衰变.故选B.三、核能的计算1.利用质能方程来计算核能(1)根据核反应方程,计算核反应前与核反应后的质量亏损Δm.(2)根据爱因斯坦质能方程E=mc2或ΔE=Δmc2计算核能.方程ΔE=Δmc2中若Δm的单位用“kg”、c的单位用“m/s”,则ΔE的单位为“J”;若Δm的单位用“u”,可直接用质量与能量的关系式推算ΔE,此时ΔE的单位为“兆电子伏(MeV)”,即 1 u=1.66×10-27kg,相当于931.5 MeV,即原子质量单位1 u对应的能量为931.5 MeV,这个结论可在计算中直接应用.2.利用平均结合能来计算核能原子核的结合能=核子的平均结合能×核子数.核反应中反应前系统内所有原子核的总结合能与反应后生成的所有新核的总结合能之差,就是该次核反应所释放(或吸收)的核能.例3已知氘核的平均结合能为1.1 MeV,氦核的平均结合能为7.1 MeV,则两个氘核结合成一个氦核时()A.释放出4.9 MeV的能量B.释放出6.0 MeV的能量C.释放出24.0 MeV的能量D.吸收4.9 MeV的能量答案 C解析依据题意可写出两个氘核结合成一个氦核的核反应方程为21H+21H→42He,因氘核的平均结合能为 1.1 MeV,氦核的平均结合能为7.1 MeV,故释放的核能为ΔE=4×7.1 MeV-2×2×1.1 MeV=24.0 MeV,故选C.例4用中子轰击锂核(63Li)发生核反应,生成氚核(31H)和α粒子,并放出4.8 MeV的能量.已知1 u相当于931.5 MeV的能量.(1)写出核反应方程;(2)求出质量亏损;(3)若中子和锂核是以等大反向的动量相碰,且核反应释放的能量全部转化为新生核的动能,则氚核和α粒子的动能比是多少?答案(1)63Li+10n→31H+42He+4.8 MeV(2)0.005 2 u(3)4∶3解析(1)核反应方程为63Li+10n→31H+42He+4.8 MeV.(2)依据ΔE =Δmc 2得,Δm =4.8931.5u ≈0.005 2 u.(3)根据题意有m 氚v 氚+m αv α=0,由上式及动能E k =p 22m ,可得它们的动能之比为E k 氚∶E kα=p 22m 氚∶p 22m α=m α∶m 氚=4∶3.。

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第5节 粒子的波动性和量子力学的含答案

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第5节 粒子的波动性和量子力学的含答案

2025高考物理步步高同步练习选修3第四章原子结构和波粒二象性第5节粒子的波动性和量子力学的建立[学习目标要求] 1.知道实物粒子和光子一样具有波粒二象性。

2.理解物质波的概念,并掌握λ=hp的含义及应用。

3.了解量子力学的建立过程和量子力学的应用。

一、粒子的波动性及物质波的实验验证1.粒子的波动性(1)德布罗意波:每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波后来被称为德布罗意波,也叫作物质波。

(2)物质波的波长:λ=h p。

(3)物质波的频率:ν=εh。

2.物质波的实验验证(1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。

(2)实验验证:1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性。

(3)说明:人们陆续证实了中子、质子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh和λ=hp的关系同样正确。

【判一判】(1)一切宏观物体的运动都伴随一种波,即物质波。

(√)(2)湖面上的水波就是物质波。

(×)(3)电子的衍射现象证实了实物粒子具有波动性。

(√)二、量子力学的建立及应用1.早期量子论的创立(1)普朗克黑体辐射理论,能量子ε=hν。

(2)爱因斯坦光电效应理论,光子ε=hν。

(3)康普顿散射理论:光子动量p=h λ。

(4)玻尔氢原子理论:氢原子发光hν=E n-E m。

(5)德布罗意物质波假说,频率:ν=εh,波长λ=hp。

2.现代量子论的创立20世纪中期,在以玻恩、海森堡、薛定谔以及英国的狄拉克和奥地利的泡利为代表的众多物理学家的共同努力下,描述微观世界行为的理论被逐步完善并最终完整地建立起来,它被称为量子力学。

3.量子力学的应用(1)量子力学推动了核物理和粒子物理的发展。

人们认识了原子、原子核、基本粒子等各个微观层次的物质结构。

而粒子物理学的发展又促进了天文学和宇宙学的研究。

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第1讲-曲线运动、运动的合成与分解

【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第四章第1讲-曲线运动、运动的合成与分解

[考试标准]一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线上该点的切线方向.2.运动性质:做曲线运动的物体,速度的方向时刻改变,故曲线运动一定是变速运动,即必然具有加速度.3.物体做曲线运动的条件:(1)运动学角度:物体的加速度方向跟速度方向不在同一条直线上.(2)动力学角度:物体所受合外力的方向跟速度方向不在同一条直线上.[深度思考]判断下列说法是否正确.(1)变速运动一定是曲线运动.(×)(2)做曲线运动的物体速度大小一定发生变化.(×)(3)做曲线运动的物体加速度可以为零.(×)(4)做曲线运动的物体加速度可以不变.(√)(5)曲线运动可能是匀变速运动.(√)二、运动的合成与分解1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动即分运动,物体的实际运动即合运动.2.运动的合成:已知分运动求合运动,包括位移、速度和加速度的合成.3.运动的分解:已知合运动求分运动,解题时应按实际效果分解,或正交分解.[深度思考]判断下列说法是否正确.(1)两个分运动的时间一定与它们的合运动的时间相等.(√)(2)合运动的速度一定比分运动的速度大.(×)(3)只要两个分运动为直线运动,合运动一定是直线运动.(×)(4)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则.(√)(5)合运动不一定是物体的实际运动.(×)1.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速度B.速率C.加速度D.合外力答案 A2.关于做曲线运动的物体,下列说法中正确的是()A.它所受的合外力一定不为零B.它所受的合外力一定是变力C.其速度可以保持不变D.其动能一定发生变化答案 A3.某一时刻,一物体沿水平和竖直方向的分速度分别为8 m/s和6 m/s,则该物体的速度大小是()A.2 m/s B.6 m/s C.10 m/s D.14 m/s答案 C4.如图1所示,降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞()图1A.下落的时间越短B.下落的时间越长C.落地时速度越小D.落地时速度越大答案 D命题点一曲线运动的条件及轨迹例1“神舟十号”飞船于2013年6月11日发射升空,在靠近轨道沿曲线从M点到N点的飞行过程中,速度逐渐减小,在此过程中“神舟十号”所受合外力的方向,可能是()解析考虑到合外力方向指向轨迹凹侧,且由M到N速度减小可知,C选项正确.答案 C合力、速度、轨迹之间的关系做曲线运动的物体,所受的合力方向与速度方向不在同一条直线上,合力改变物体的运动状态:图21.如图2所示,已知运动轨迹,可以判断合力的大致方向在轨迹的包围区间(凹侧).2.运动轨迹在速度方向与合力方向所夹的区间内,根据受力方向和速度方向可以判断轨迹的大致弯曲方向.3.根据合力方向与速度方向的夹角,判断物体的速率变化情况:夹角为锐角时,速率变大;夹角为钝角时,速率变小;合力方向与速度方向总是垂直时,速率不变.题组阶梯突破1.(2016·盐城期中)做曲线运动的物体所受合外力突然消失后,物体将()A.立即停止运动B.沿原路返回出发点C.沿速度方向前进,但速度逐渐变小直至停下D.保持匀速直线运动答案 D解析由牛顿第一定律可得,当外力全部消失时,物体将保持原来的运动状态,因物体原来是运动的,则合外力消失后,物体将保持合外力消失时的速度沿直线运动下去.2.(2016·金坛市模拟)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的A 位置,让小钢珠在水平桌面上以初速度v0运动,得到小钢珠的运动轨迹.图3中a、b、c、d 哪一条为其运动轨迹()图3A.a B.b C.c D.d答案 C命题点二运动的合成与分解例2有一个质量为2 kg的质点在xOy平面上运动,在x方向的速度图象和y方向的位移图象如图4甲、乙所示,下列说法正确的是()图4A .质点所受的合外力为3 NB .质点的初速度为3 m/sC .质点做匀变速直线运动D .质点初速度的方向与合外力的方向垂直解析 由题图乙知,v y =ΔyΔt =4 m/s ,a x =Δv Δt =1.5 m/s 2,所以F 合=ma x =3 N ,选项A 正确;质点的初速度为v =v 2x 0+v 2y =5 m/s ,选项B 错误;质点的初速度与F 合不垂直,也不同向,故选项C 、D 错误. 答案 A处理运动的合成与分解问题的技巧1.两个分方向上的运动具有等时性,这是处理运动分解问题的切入点.2.判断两个直线运动的合运动轨迹的依据:合初速度方向与合加速度方向是否共线.题组阶梯突破3.(2016·绍兴市调研)手持滑轮把悬挂重物的细线拉至如图5所示的实线位置,然后滑轮水平向右匀速移动,运动中始终保持悬挂重物的细线竖直,则重物运动的速度( ) A .大小和方向均不变 B .大小不变,方向改变图5C .大小改变,方向不变D .大小和方向均改变 答案 A4.无风时气球匀速竖直上升,速度为3 m/s .现吹水平方向的风,使气球获得4 m/s 的水平速度,气球经一定时间到达某一高度h ,则有风后( ) A .气球实际速度的大小为7 m/s B .气球的运动轨迹是曲线C .若气球获5 m/s 的水平速度,气球到达高度h 的路程变长D .若气球获5 m/s 的水平速度,气球到达高度h 的时间变短 答案 C解析 有风时,气球实际速度的大小v =32+42 m/s =5 m/s ,A 错误;气球沿合速度方向做匀速直线运动,轨迹为直线,B 错误;竖直方向速度不变,则气球飞行到达高度h 的时间不变,水平速度增大,则水平方向的位移增大,竖直方向的位移不变,合位移增大,故气球到达高度h 的路程变长,C 正确,D 错误.5.某研究性学习小组进行了实验:如图6所示,在一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R ,将玻璃管的开口端用胶塞塞紧后竖直倒置且与y 轴重合,在R 从坐标原点以速度v 0=3 cm/s 匀速上浮的同时,玻璃管沿x 轴正方向做初速度为零的匀加速直线运动.同学们测出某时刻R 的坐标为(4 cm,6 cm),此时R 的速度大小为________ c m/s ,R 在上升过程中运动轨迹的示意图是________.(R 视为质点)图6答案 5 D解析 R 在竖直方向做匀速直线运动,故运动时间t =y v 0=6 cm 3 cm/s =2 s ;R 在水平方向做初速度为零的匀加速直线运动,由平均速度公式可得x =v x 2t ,解得v x =2xt =4 cm/s ,故此时R 的速度v =v 20+v 2x=5 cm/s.轨迹曲线应弯向加速度的方向,又因R 的加速度方向沿x 轴正方向,故选项D 正确.命题点三 运动合成与分解的实例分析例3 (2016·连云港模拟)如图7所示,某轮渡站两岸的码头A 和B 正对,轮渡沿直线往返于两码头之间,已知水流速度恒定且小于船速,船速大小不变.下列说法正确的是( )图7A.往返所用的时间不相等B.往返时船头均应垂直河岸航行C.往返时船头均应适当偏向上游D.从A驶往B,船头应适当偏向上游,返回时船头应适当偏向下游解析根据矢量的合成法则,可知往返所用的时间相等,故A错误;从A到B,合速度方向垂直于河岸,水流速度水平向右,根据平行四边形定则,则船头的方向偏向上游一侧.从B 到A,合速度的方向仍然垂直于河岸,水流速度水平向右,船头的方向仍然偏向上游一侧.故C正确,B、D错误.答案 C1.根据运动的实际效果确定两个分运动,而实际运动为合运动.注意只有实际运动才是合运动(平行四边形的对角线).2.求解运动的合成与分解问题,应抓住合运动和分运动具有等时性、独立性、等效性的关系.3.在小船渡河问题中可将小船的运动分解为沿船头方向和沿水流方向的两个分运动.4.过河路径最短(1)v2<v1时:合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2 v1.(2)v2>v1时:合速度图8不可能垂直于河岸,无法垂直渡河.确定方法如下:如图8所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=dcos α=v 2v 1d .题组阶梯突破 6.(2016·潮州模拟)如图9所示,红蜡块可以在竖直玻璃管内的水中匀速上升,若在红蜡块从A 点开始匀速上升的同时,玻璃管水平向右做匀速直线运动,则红蜡块的实际运动轨迹可能是图中的( )图9A .直线PB .曲线QC .曲线RD .三条轨迹都有可能 答案 A7.篮球是深受广大人民群众喜爱的体育运动,某电视台为宣传全民健身运动,举办了一期趣味投篮比赛,运动员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球.如果运动员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中箭头指向表示投篮方向)( )答案 C解析当沿圆周切线方向的速度和出手速度的合速度沿篮筐方向,球就会被投入篮筐,故C 正确,A、B、D错误.(建议时间:30分钟)1.(2015·浙江1月学考·5)如图1所示,小锐同学正在荡秋千,他经过最低点P时的速度方向是()图1A.a方向B.b方向C.c方向D.d方向答案 B2.如图2所示,物体在恒力的作用下沿曲线从A运动到B时突然使力反向,此后物体的运动情况是()图2A.物体可能沿曲线Ba运动B.物体可能沿直线Bb运动C.物体可能沿曲线Bc运动D.物体可能沿曲线B返回A答案 C解析物体从A运动到B,因为运动轨迹是在速度与力的夹角之中,所以物体所受恒力方向应是向下的.到达B点后,力的大小不变,方向变成向上.由于力的方向发生了改变,曲线Ba不在力与速度的夹角内,故物体不可能沿曲线Ba运动,故A错误.因为物体在B点的速度方向为切线方向,即直线Bb,而力与速度方向不同,所以物体不可能做直线运动,故B 错误.Bc在力与速度的夹角内,物体有可能沿Bc运动,故C正确.很明显,物体不可能由B返回A,故D错误.3.如图3所示,小钢球m以初速度v0在光滑水平面上运动后,受到磁极的侧向作用力而做图示的曲线运动到D点,由图可知磁极的位置及极性可能是()图3A.磁极在A位置,极性一定是N极B.磁极在B位置,极性一定是S极C.磁极在C位置,极性一定是N极D.磁极在B位置,极性无法确定答案 D解析小钢球受磁极的吸引力而做曲线运动,运动方向只会向受吸引力的方向偏转,因而磁极位置只可能在B点.又因为磁极的N极或S极对小钢球都有吸引力,故极性无法确定.4.如图4所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B点的速度与加速度相互垂直,则下列说法中正确的是()图4A.从A到B速率逐渐增大B.D点的速率比C点的速率大C.A点的加速度比D点的加速度大D.A点的加速度与速度的夹角小于90°答案 B解析质点做匀变速曲线运动,所以加速度不变,选项C错误;由于在B点速度方向与加速度方向垂直,则在D点、C点时速度方向与加速度方向的夹角为锐角,质点由C到D速率增大,选项B正确;A点的加速度方向与速度方向的夹角为钝角,选项D错误;由于从A到B的过程中速度方向与加速度方向的夹角为钝角,合外力为阻力,所以速率不断减小,A错误.5.某质点从A到B做速率逐渐增大的曲线运动,轨迹如下图所示.现有四位同学在轨迹某处画出该质点的速度方向及加速度的方向,正确的是()答案 D6.(多选)在地面上观察下列物体的运动,其中物体做曲线运动的是()A.正在竖直下落的雨滴突然遭遇一阵北风B.向东运动的质点受到一个向西的力的作用C.河水匀速流动,正在河里匀加速驶向对岸的汽艇D.在以速度v前进的列车尾部,以相对列车的速度v水平向后抛出的小球答案AC7.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,将F1突然增大为2F1,则此后质点()A.不一定做曲线运动B.一定做匀变速运动C.可能做匀速直线运动D.可能做匀变速直线运动答案 B解析F1增大前,质点沿合力方向做匀加速直线运动.F1增大后,合力方向与F1增大之前的质点的速度方向不共线,因而做曲线运动.由于二力方向不变,只将F1增大为2F1,所以合力恒定,质点做匀变速曲线运动.故本题答案为B.8.(多选)光滑水平面上一运动质点以速度v0通过点O,如图5所示,与此同时给质点加上沿x轴正方向的恒力F x和沿y轴正方向的恒力F y,则()图5A.因为有F x,质点一定做曲线运动B.如果F y<F x,质点向y轴一侧做曲线运动C.如果F y=F x tan α,质点做直线运动D.如果F x>F ytan α,质点向x轴一侧做曲线运动答案CD解析如果F x、F y二力的合力沿v0方向,即F y=F x tan α,则质点做直线运动,选项A错误,C正确;若F x>F ytan α,则合力方向在v0与x轴正方向之间,运动轨迹向x轴一侧弯曲而做曲线运动;若F x<F ytan α,则合力方向在v0与y轴之间,所以运动轨迹必向y轴一侧弯曲而做曲线运动,因不知α的大小,所以只凭F x、F y的大小不能确定F合是偏向x轴还是y轴,选项B错误,D正确.9.如图6所示,直升飞机放下绳索从湖里吊起困在水中的伤员后,在离湖面H的高度飞行,空气阻力不计,在伤员与飞机以相同的水平速度匀速运动的同时,绳索将伤员吊起,飞机与伤员之间的距离L与时间t之间的关系是L=H-t2,则伤员的受力情况和运动轨迹可能是下图中的()图6答案 A解析伤员在水平方向上做匀速直线运动,水平方向上不受力.设伤员最初与飞机的距离为L0,由L=H-t2可知,伤员在竖直方向所做运动的位移表达式为y=L0-(H-t2)=t2+(L0-H),即做匀加速直线运动,加速度的方向竖直向上,所以绳索的拉力大于伤员的重力,两力均在竖直方向上.他在水平方向做匀速直线运动,竖直方向上是匀加速直线运动,从地面看,轨迹应是倾斜向上的弯曲的抛物线,A正确.10.如图7所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()图7A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v答案 D解析以帆板为参照物,帆船具有正东方向的速度v和正北方向的速度v,所以帆船相对帆板的速度v相对=2v,方向为北偏东45°,D正确.11.一快艇从离岸边100 m远的河中向岸边行驶,已知快艇在静水中的速度图象如图8甲所示,河水流动的速度图象如图乙所示,则()图8A.快艇的运动轨迹一定为直线B.快艇的运动轨迹可能为曲线,也可能为直线C.快艇到达岸边的最短时间为20 sD.快艇以最短时间过河时经过的位移为100 m答案 A解析 快艇在静水中做匀速直线运动,河水流动速度为匀速,故无论快艇向哪个方向行驶,只要方向恒定,其轨迹必为直线;快艇的实际位移为合位移,故A 正确,B 错误;快艇到达岸边最快的办法为船头垂直于河岸行驶,最短时间为t =1004 s =25 s ,故C 错误;快艇以最短时间过河时,合速度为5 m/s ,故经过的位移s =5×25 m =125 m ,故D 错误.12.跳伞表演是人们普遍喜欢的观赏性体育项目,当运动员从直升机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是( ) A .风力越大,运动员下落时间越长,运动员可完成更多的动作 B .风力越大,运动员着地速度越大,有可能对运动员造成伤害 C .运动员下落时间与风力有关 D .运动员着地速度与风力无关 答案 B解析 根据运动的独立性原理,水平方向吹来的风不会影响竖直方向的运动,A 、C 错误;根据速度的合成,落地时速度v =v 2x +v 2y ,风力越大,v x 越大,则运动员落地时速度越大,B 正确,D 错误. 13.(2016·温州月考)如图9所示,某人游珠江,他以一定速度面部始终垂直河岸向对岸游去.江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )图9A .水速大时,路程长,时间长B .水速大时,路程长,时间短C .水速大时,路程长,时间不变D.路程、时间与水速无关答案 C解析游泳者相对于岸的速度为他相对于水的速度和水流速度的合速度,水流速度越大,其合速度与岸的夹角越小,路程越长,但过河时间t=dv人,与水速无关,故A、B、D均错误,C正确.14.(2016·徐州模拟)如图10所示,一架执行救援任务的直升飞机用缆绳将被救人员竖直向上匀速拉起,同时直升飞机沿水平方向匀速飞行.若仅增大飞机水平匀速飞行的速度,以地面为参考系,则被救人员()图10A.上升时间变短B.上升时间变长C.运动速度不变D.运动速度变大答案 D15.2014年4月26日至29日,全国山地自行车冠军赛第二站在山东胶州举行.如图11所示,若在某一路段车手骑自行车以4 m/s的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4 m/s,则车手感觉的风速为________ m/s,方向是________.图11答案 42 西南解析 以人为参考系,气流在水平方向上向西有4 m/s 的速度,向南有4 m/s 的速度,所以合速度为4 2 m/s ,方向为西南方向,如图所示.16.质量为1 kg 的物体在水平面内做曲线运动,已知该物体在互相垂直的方向上的两个分运动的速度—时间图象分别如图12甲、乙所示.求:图12(1)物体的初速度大小; (2)物体所受的合外力; (3)2 s 末物体的速度大小; (4)2 s 内物体发生的位移大小.答案 (1)4 m/s (2)1.5 N (3)5 m/s (4)8.5 m解析 (1)从两幅图中可得水平方向的初速度为0,竖直方向上的初速度为4 m/s ,故物体的初速度为4 m/s.(2)物体在竖直方向上做匀速直线运动,即合力为零,在水平方向上做加速度a =32 m/s 2的匀加速直线运动,故水平方向上的合外力F =ma =1.5 N. 即物体所受的合外力为1.5 N. (3)2 s 末物体的速度大小为v =v 2x +v 2y =32+42 m/s =5 m/s.(4)2 s 末物体的位移大小为s =x 2+y 2=(12at 2)2+(v y t )2 m =73 m =8.5 m.。

高2021届高2018级版步步高3-5高中物理第三章 4

高2021届高2018级版步步高3-5高中物理第三章 4

4 原子核的结合能[学习目标] 1.理解原子核的结合能的概念.2.知道质量亏损的概念, 了解爱因斯坦的质能方程.3.学会根据质能方程和质量亏损的概念进行核能的计算.一、原子核的结合能和比结合能曲线1.结合能:核子结合成原子核时释放的能量或原子核分解为核子时吸收的能量叫做原子核的结合能.2.比结合能:把原子核的结合能ΔE 除以核子数A , 即ΔE A称为原子核的比结合能.比结合能越大, 核就越稳定.3.比结合能曲线(如图1所示)图1由原子核的比结合能曲线可以看出:第一, 比结合能越大, 取出一个核子就越困难, 核就越稳定, 比结合能是原子核稳定程度的量度;第二, 曲线中间高两头低, 说明中等质量的原子核的比结合能最大, 近似于一个常数, 表明中等质量的核最稳定;第三, 质量较大的重核和质量较小的轻核比结合能都较小, 且轻核的比结合能还有些起伏.二、原子核的结合能的计算对质能方程和质量亏损的理解(1)质能方程爱因斯坦的相对论指出, 物体的能量和质量之间存在着密切的联系, 其关系是E=mc2.(2)质量亏损:核反应中原子核的质量小于组成它的核子的质量.(3)质量亏损与释放核能的关系:ΔE=Δmc2.[即学即用]1.判断下列说法的正误.(1)一切原子核均具有结合能.(√)(2)组成原子核的核子越多, 它的结合能就越高.(√)(3)结合能越大, 核子结合得越牢固, 原子越稳定.(×)(4)自由核子结合为原子核时, 可能吸收能量.(×)(5)因在核反应中能产生能量, 有质量的转化, 所以系统只有质量数守恒, 系统的总能量和总质量并不守恒.(×)2.已知α粒子(42He)是由2个质子、2个中子组成的, 取质子的质量m p=1.672 6×10-27 kg, 中子的质量m n=1.674 9×10-27kg, α粒子的质量mα=6.646 7×10-27kg, 真空中光速c=3.0×108 m/s.则α粒子的结合能为________.(计算结果保留两位有效数字)答案 4.3×10-12 J解析组成α粒子的核子与α粒子的质量差Δm=(2m p+2m n)-mαα粒子的结合能ΔE=Δmc2代入数据得ΔE≈4.3×10-12 J.一、对结合能的理解[导学探究]1.设有一个质子和一个中子在核力作用下靠近碰撞并结合成一个氘核.质子和中子结合成氘核的过程中是释放能量还是吸收能量?使氘核分解为质子和中子的过程中呢?答案质子和中子结合成氘核的过程中要释放能量;氘核分解成质子和中子时要吸收能量.2.如图2所示是不同原子核的比结合能随质量数变化的曲线.图2(1)从图中看出, 中等质量的原子核与重核、轻核相比比结合能有什么特点?比结合能的大小反映了什么?(2)比结合能较小的原子核转化为比结合能较大的原子核时是吸收能量还是释放能量?答案(1)中等质量的原子核比结合能较大, 比结合能的大小反映了原子核的稳定性, 比结合能越大, 原子核越稳定.1.中等质量原子核的比结合能最大, 轻核和重核的比结合能都比中等质量原子核的比结合能要小.2.比结合能与原子核稳定的关系(1)比结合能的大小能够反映原子核的稳定程度, 比结合能越大, 原子核就越难拆开, 表示该原子核就越稳定.(2)核子数较小的轻核与核子数较大的重核, 比结合能都比较小, 表示原子核不太稳定;中等核子数的原子核, 比结合能较大, 表示原子核较稳定.(3)当比结合能较小的原子核转化成比结合能较大的原子核时, 就能释放核能.例如, 一个核子数较大的重核分裂成两个核子数小一些的核, 或者两个核子数很小的轻核结合成一个核子数大一些的核, 都能释放出巨大的核能.例1下列关于结合能和比结合能的说法中, 正确的是()A.核子结合成原子核吸收的能量或原子核拆解成核子放出的能量称为结合能B.比结合能越大的原子核越稳定, 因此它的结合能也一定越大C.重核与中等质量的原子核相比较, 重核的结合能和比结合能都大D.中等质量原子核的结合能和比结合能均比轻核的要大答案 D解析核子结合成原子核是放出能量, 原子核拆解成核子是吸收能量, A选项错误;比结合能越大的原子核越稳定, 但比结合能越大的原子核, 其结合能不一定大, 例如中等质量原子核的比结合能比重核大, 但由于核子数比重核少, 其结合能比重核小, B、C选项错误;中等质量原子核的比结合能比轻核的大, 它的核子数又比轻核多, 因此它的结合能也比轻核大, D选项正确.1.核子结合成原子核时一定释放能量, 原子核分开成核子时一定吸收能量, 吸收或释放的能量越大, 表明原子核的结合能越大.2.比结合能越大表明原子核越稳定.一般情况下, 中等质量的原子核比轻核和重核的比结合能大.二、质量亏损和核能的计算[导学探究]如图3所示是原子核转变示意图.图3(1)在核反应过程中质量数、核电荷数是否守恒?(2)在该核反应过程中会释放出能量, 反应前后原子核的质量是否会发生变化?答案(1)在核反应中, 质量数、核电荷数是守恒的.(2)会发生变化, 是减少的.[知识深化]1.质量亏损:所谓质量亏损, 并不是质量消失, 减少的质量在核子结合成核的过程中以能量的形式辐射出去了.反过来, 把原子核分裂成核子, 总质量要增加, 总能量也要增加, 增加的能量要由外部提供.2.质能方程E=mc2(1)质能方程说明一定的质量总是跟一定的能量相联系.具体地说, 一定质量的物体所具有的总能量是一定的, E=mc2, 不是单指物体的动能、核能或其他哪一种能量, 而是物体所具有的各种能量的总和.(2)根据质能方程, 物体的总能量与其质量成正比.物体质量增加, 则总能量随之增加;物体质量减少, 总能量也随之减少, 这时质能方程也写成ΔE=Δmc2.3.核能的计算方法(1)根据质量亏损计算:①根据核反应方程, 计算核反应前和核反应后的质量亏损Δm.②根据爱因斯坦质能方程ΔE=Δmc2计算核能.其中Δm的单位是千克, ΔE的单位是焦耳.③利用原子质量单位u和电子伏特计算1原子质量单位(u)相当于931.5 MeV的能量, ΔE=Δm×931.5 MeV, 其中Δm的单位为u, ΔE 的单位为MeV.(2)利用平均结合能来计算核能.原子核的结合能=核子的平均结合能×核子数.核反应中反应前系统内所有原子核的总结合能与反应后生成的所有新核的总结合能之差, 就是该次核反应所释放(或吸收)的核能.4.判断核反应过程是释放能量还是吸收能量的方法(1)根据反应前后质量的变化情况进行判断, 若质量减少即发生了质量亏损, 则释放能量;若质量增加, 则吸收能量.(2)根据动能变化判断, 若不吸收光子而动能增加则放出能量.例231H的质量是3.016 050 u, 质子的质量是1.007 277 u, 中子的质量为1.008 665 u.求:(质量亏损1 u相当于释放931.5 MeV的能量)(1)一个质子和两个中子结合为氚核时, 是吸收还是放出能量?该能量为多少?(2)氚核的结合能和比结合能各是多少?答案(1)放出能量7.97 MeV(2)7.97 MeV 2.66 MeV解析(1)一个质子和两个中子结合成氚核的反应方程式是11H+210n―→31H,反应前各核子总质量为m p +2m n =(1.007 277+2×1.008 665) u =3.024 607 u,反应后新核的质量为m H =3.016 050 u,质量亏损为Δm =(3.024 607-3.016 050) u =0.008 557 u.因反应前的总质量大于反应后的总质量, 故此核反应放出能量.释放的核能为ΔE =0.008 557×931.5 MeV ≈7.97 MeV .(2)氚核的结合能即为ΔE =7.97 MeV ,它的比结合能为ΔE 3≈2.66 MeV .核能的两种单位换算技巧1.若以kg 为质量亏损Δm 的单位, 则计算时应用公式ΔE =Δmc 2, 核能的单位为J.2.若以原子质量单位“u ”为质量亏损Δm 的单位, 则ΔE =Δm ×931.5 MeV, 核能的单位为MeV .3.两种单位的换算:1 MeV =1×106×1.6×10-19 J =1.6×10-13 J.针对训练 一个锂核(73Li)受到一个质子的轰击, 变成两个α粒子.已知质子的质量是1.672 6×10-27 kg, 锂核的质量是11.650 5×10-27 kg, 氦核的质量是6.646 6×10-27 kg.(1)写出上述核反应的方程;(2)计算上述核反应释放出的能量.答案 (1)73Li +11H →242He (2)2.691×10-12 J解析 (1)73Li +11H →242He (2)核反应的质量亏损Δm =m Li +m p -2m α=(11.650 5×10-27+1.672 6×10-27-2×6.646 6×10-27) kg =2.99×10-29 kg 释放的能量ΔE =Δmc 2=2.99×10-29×(3×108)2 J =2.691×10-12 J1.(对结合能和比结合能的理解)(多选)关于原子核的结合能, 下列说法正确的是()A.原子核的结合能等于使其完全分解成自由核子所需的最小能量B.一重原子核衰变成α粒子和另一原子核, 衰变产物的结合能之和一定大于原来重核的结合能C.铯原子核(133 55Cs)的结合能小于铅原子核(208 82Pb)的结合能D.比结合能越大, 原子核越不稳定答案ABC解析结合能是把核子分开所需的最小能量, 选项A正确;一重原子核衰变成α粒子和另一原子核, 存在质量亏损, 核子比结合能增大, 衰变产物的结合能之和一定大于原来重核的结合能, 选项B正确;核子数越多, 结合能越大, 选项C正确;比结合能越大, 分开核子所需的能量越大, 原子核越稳定, 选项D错误.2.(质能方程的理解)(多选)关于质能方程, 下列哪些说法是正确的()A.质量减少, 能量就会增加, 在一定条件下质量转化为能量B.物体获得一定的能量, 它的质量也相应地增加一定值C.物体一定有质量, 但不一定有能量, 所以质能方程仅是某种特殊条件下的数量关系D.某一定量的质量总是与一定量的能量相联系的答案BD解析质能方程E=mc2表明某一定量的质量与一定量的能量是相联系的, 当物体获得一定的能量, 即能量增加某一定值时, 它的质量也相应增加一定值, 并可根据ΔE=Δmc2进行计算, 所以B、D正确.3.(核能的计算)原子质量单位为u,1 u相当于931.5 MeV的能量, 真空中光速为c, 当质量分别为m1和m2的原子核结合为质量为M的原子核时释放出的能量是()A.(M-m1-m2) u×c2B.(m 1+m 2-M ) u ×931.5 JC.(m 1+m 2-M )cD.(m 1+m 2-M ) u ×931.5 MeV答案 D4.(核能的计算)一个α粒子轰击硼(11 5B)核变成碳14和一个未知粒子, 并放出7.5×105 eV 的能量, 写出核反应方程并求出反应过程中的质量亏损.答案 42He +11 5B →14 6C +11H 1.3×10-30 kg解析 根据质量数守恒和核电荷数守恒可得42He +11 5B →14 6C +11HΔE =7.5×105×1.6×10-19 J =1.2×10-13 J.由ΔE =Δmc 2可得 Δm =ΔE c 2≈1.3×10-30 kg.一、选择题考点一 对结合能的理解1.下列关于平均结合能的说法正确的是( )A.核子数越多, 平均结合能越大B.核子数越多, 平均结合能越小C.结合能越大, 平均结合能越大D.平均结合能越大, 原子核越稳定答案 D2.关于原子核的结合能与平均结合能, 下列说法中不正确的是( )A.原子核的结合能等于核子与核子之间结合成原子核时, 核力做的功B.原子核的结合能等于核子从原子核中分离, 外力克服核力做的功C.平均结合能是核子与核子结合成原子核时平均每个核子放出的能量D.不同原子核的平均结合能不同, 重核的平均结合能比轻核的平均结合能大答案 D解析原子核中, 核子与核子之间存在核力, 要将核子从原子核中分离, 需要外力克服核力做功.当自由核子结合成原子核时, 核力将做正功, 释放能量.对某种原子核, 平均每个核子的结合能称为比结合能也称为平均结合能.不同原子核的平均结合能不同.重核的平均结合能比中等质量核的平均结合能要小, 轻核的平均结合能比稍重核的平均结合能要小.考点二质能方程的理解、质量亏损和核能的计算3.(多选)对公式ΔE=Δmc2的正确理解是()A.如果物体的能量减少了ΔE, 它的质量也一定相应地减少ΔmB.如果物体的质量增加了Δm, 它的能量也一定相应地增加Δmc2C.Δm是某原子核在衰变过程中增加的质量D.在把核子结合成原子核时, 若放出的能量是ΔE, 则这些核子的质量和与组成原子核的质量之差就是Δm答案ABD解析一定的质量对应一定的能量, 物体的能量减少了ΔE, 它的质量也一定相应地减少Δm, 即发生质量亏损, 所以选项A、D正确.如果物体的质量增加了Δm, 它的能量一定相应地增加Δmc2, 所以选项B正确.某原子核衰变时, 一定发生质量亏损, 所以选项C错误.4.(多选)一个质子和一个中子结合成氘核, 同时放出γ光子, 核反应方程是11H+10n→21H+γ, 以下说法中正确的是()A.反应后氘核的质量一定小于反应前质子和中子的质量之和B.反应前后的质量数不变, 因而质量不变C.γ光子的能量为Δmc2, Δm为反应中的质量亏损, c为光在真空中的速度D.因存在质量亏损Δm, 所以“物质不灭”的说法不正确答案AC解析核反应中质量数与电荷数及能量均守恒.由于反应中要释放核能, 会出现质量亏损, 反应后氘核的质量一定小于反应前质子和中子的质量之和, 所以质量不守恒, 但质量数不变, 且能量守恒, 释放的能量会以光子的形式向外释放, 则光子的能量为Δm·c2(Δm为反应中的质量亏损, c为真空中的光速), 故正确答案为A、C.5.如图1所示是描述原子核核子的平均质量m与原子序数Z的关系曲线, 由图可知下列说法正确的是()图1A.将原子核A分解为原子核B、C可能吸收能量B.将原子核D、E结合成原子核F可能吸收能量C.将原子核A分解为原子核B、F一定释放能量D.将原子核F、C结合成原子核B一定释放能量答案 C解析因B、C核子平均质量小于A的核子平均质量, 故A分解为B、C时, 会出现质量亏损, 故放出核能, 故A错误, 同理可得B、D错误, C正确.6.(多选)在某些恒星内, 3个α粒子结合成1个C原子, C原子的质量是12.000 0 u, He原子的质量是4.002 6 u.已知1 u=1.66×10-27 kg, 则()A.反应过程中的质量亏损是0.007 8 uB.反应过程中的质量亏损是1.29×10-29 kgC.反应过程中释放的能量是7.26 MeVD.反应过程中释放的能量是1.16×10-19 J答案ABC解析由题意可得核反应方程为342He→12 6C+ΔE.则核反应中的质量亏损为Δm=(3×4.002 6-12.000 0) u=0.007 8 u=0.007 8×1.66×10-27 kg≈1.29×10-29 kg, 由质能方程得ΔE=Δmc2=1.29×10-29×(3×108)2 J=1.161×10-12 J≈7.26 MeV.故正确答案为A、B、C.7.质子、中子和氘核的质量分别为m1、m2和m3.当一个质子和一个中子结合成氘核时, 释放的能量是(c表示真空中的光速)()A.(m1+m2-m3)cB.(m1-m2-m3)cC.(m1+m2-m3)c2D.(m1-m2-m3)c2答案 C解析一个质子和一个中子结合成氘核时, 质量亏损Δm=m1+m2-m3, 根据质能方程, 释放的能量ΔE=Δmc2=(m1+m2-m3)c2, 选项C正确, A、B、D错误.8.一个氘核21H 质量为m 1, 一个氚核31H 质量为m 2, 它们结合成一个质量为m 3的氦核.核反应方程如下:21H +31H ―→42He +X.在这一核反应过程中释放的能量为ΔE .已知真空中光速为c , 则以下判断正确的是( )A.X 是质子B.X 是正电子C.X 的质量为m 1+m 2-m 3D.X 的质量为m 1+m 2-m 3-ΔE c 2答案 D解析 由电荷数守恒知, X 的质子数为0, 由质量数守恒知, X 的质量数为1, 故X 为中子, 设X 的质量为m , 反应中的质量亏损Δm =m 1+m 2-m 3-m , 释放的能量ΔE =Δmc 2=(m 1+m 2-m 3-m )c 2, 则X 的质量为m 1+m 2-m 3-ΔE c 2, 故选项D 正确. 9.(多选)关于核反应方程234 90Th ―→234 91Pa +X +ΔE (ΔE 为释放出的核能, X 为新生成的粒子), 已知234 90Th 的半衰期为T , 则下列说法正确的是( )A.234 91Pa 没有放射性 B.234 91Pa 比234 90Th 少1个中子, X 粒子是从原子核中射出的, 此核反应为β衰变 C.N 0个234 90Th 经2T 时间因发生上述核反应而放出的核能为34N 0ΔE (N 0数值很大) D.234 90Th 的比结合能为ΔE 234答案 BC解析 原子序数大于83的原子核都具有放射性, A 项错误;该核反应为β衰变, 是原子核内的一个中子转化为一个质子, 同时释放出一个电子, B 项正确;N 0个234 90Th 原子核经2T 时间发生衰变的个数为34N 0, 由核反应方程知, 放出的核能为34N 0ΔE , C 项正确;由比结合能的定义知, D 项错误.二、非选择题10.(质量亏损与核能的计算)一个静止的镭核226 88Ra 发生衰变放出一个粒子变为氡核222 86Rn.已知镭核226质量为226.025 4 u, 氡核222质量为222.016 3 u, 放出粒子的质量为4.002 6 u,1 u 相当于931.5 MeV 的能量.(1)写出核反应方程;(2)求镭核衰变放出的能量;(3)若衰变放出的能量均转变为氡核和放出粒子的动能, 求放出粒子的动能.答案 (1)226 88Ra →222 86Rn +42He (2)6.05 MeV (3)5.94 MeV解析 (1)核反应方程为226 88Ra →222 86Rn +42He.(2)镭核衰变放出的能量为ΔE =Δm ·c 2=(226.025 4-4.002 6-222.016 3)×931.5 MeV≈6.05 MeV.(3)镭核衰变前静止, 镭核衰变时动量守恒, 则由动量守恒定律可得m Rn v Rn -m αv α=0①又因为衰变放出的能量均转变为氡核和α粒子的动能, 则ΔE =12m Rn v Rn 2+12m αv α2② 由①②可得E kα=m Rn m Rn +m α·ΔE =222.016 3222.016 3+4.002 6×6.05 MeV ≈5.94 MeV . 11.(质量亏损与核能的计算)氘核与氚核的核反应为:21H +31H →42He +b a X +17.6×106 eV, 求:(1)核反应式中的X 是什么粒子.(2)这一过程的质量亏损是多少?(3)1 g 氘核完全参与上述反应, 共释放核能多少?氘核的摩尔质量M =2 g/mol, 阿伏伽德罗常量N A =6.0×1023 mol -1.答案 (1)中子 (2)3.1×10-29 kg (3)8.448×1011 J解析 (1)由质量数和电荷数守恒可知, 氘核与氚核的核反应:21H +31H →42He +b a X +17.6×106eV, X 的质量数是1, 电荷数是0, 故X 是中子.(2)根据爱因斯坦的质能方程ΔE =Δmc 2, 得Δm =ΔE c 2=17.6×106×1.6×10-19(3×108)2 kg ≈3.1×10-29 kg(3)1 g 氘核完全与氚核发生反应释放的核能为:ΔE ′=m MN A ×17.6×106 eV =5.28×1030 eV =8.448×1011 J.。

高2021届高2018级版步步高3-5高中物理章末检测试卷(一)

高2021届高2018级版步步高3-5高中物理章末检测试卷(一)

章末检测试卷(一)一、选择题(本题共10小题, 每小题4分, 共40分.1~6题为单选题, 7~10题为多选题.全部选对的得4分, 选对但不全的得2分, 有选错的得0分)1.下列说法错误的是( )A.根据F =Δp Δt可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力 B.力与力的作用时间的乘积叫做力的冲量, 它反映了力的作用对时间的累积效应, 是一个标量C.动量定理的物理实质与牛顿第二定律是相同的, 但有时用起来更方便D.易碎品运输时要用柔软材料包装, 船舷常常悬挂旧轮胎, 都是为了延长作用时间以减小作用力答案 B解析 A 选项是牛顿第二定律的另一种表达方式, 所以A 正确;冲量是矢量, B 错误;F =Δp Δt是牛顿第二定律的最初表达方式, 实质是一样的, C 正确;易碎品运输时用柔软材料包装, 船舷常常悬挂旧轮胎, 都是为了延长作用时间, 减小作用力, D 正确.2.如图1所示, 在光滑的水平面上有两物体A 、B , 它们的质量均为m .在物体B 上固定一个水平轻弹簧, B 处于静止状态.物体A 以速度v 0沿水平方向向右运动, 通过弹簧与物体B 发生作用.下列说法正确的是( )图1A.当弹簧获得的弹性势能最大时, 物体A 的速度为零B.当弹簧获得的弹性势能最大时, 物体B 的速度为零C.在弹簧的弹性势能逐渐增大的过程中, 弹簧对物体B 所做的功为12m v 02 D.在弹簧的弹性势能逐渐增大的过程中, 弹簧对物体A 和物体B 的冲量大小相等, 方向相反 答案 D3.一位质量为m 的运动员从下蹲状态向上跳起, 经Δt 时间, 身体伸直并刚好离开地面, 速度为v , 在此过程中, 下列说法正确的是(重力加速度为g )( )A.地面对他的冲量为m v +mg Δt , 地面对他做的功为12m v 2 B.地面对他的冲量为m v -mg Δt , 地面对他做的功为零C.地面对他的冲量为m v , 地面对他做的功为12m v 2 D.地面对他的冲量为m v +mg Δt , 地面对他做的功为零答案 D解析 人的速度原来为零, 起跳后变为v , 以向上为正方向, 由动量定理可得I -mg Δt =m v -0, 故地面对人的冲量为m v +mg Δt , 人在跳起时, 地面对人的支持力竖直向上, 在跳起过程中, 在支持力方向上没有位移, 地面对运动员的支持力不做功, 故D 正确.4.如图2所示, 半径为R 的光滑半圆槽质量为M , 静止在光滑水平面上, 其内表面有一质量为m 的小球被竖直细线吊着位于槽的边缘处, 现将线烧断, 小球滑行到最低点向右运动时, 槽的速度为(重力加速度为g )( )图2A.0B.m M2MgR M +m , 方向向左 C.m M 2MgR M +m, 方向向右D.不能确定答案 B解析以水平向右为正方向, 设在最低点时m和M的速度大小分别为v和v′, 根据动量守恒定律得:0=m v-M v′, 根据机械能守恒定律得:mgR=12m v2+12M v′2, 联立以上两式解得v′=mM 2MgRM+m, 方向向左, 故选项B正确.5.如图3所示, 小车由光滑的弧形段AB和粗糙的水平段BC组成, 静止在光滑水平面上, 当小车固定时, 从A点由静止滑下的物体到C点恰好停止.如果小车不固定, 物体仍从A点由静止滑下, 则()图3A.还是滑到C点停止B.滑到BC间停止C.会冲出C点落到车外D.上述三种情况都有可能答案 A解析设BC长度为L.小车固定时, 根据能量守恒定律可知, 物体的重力势能全部转化为因摩擦产生的内能, 即有:Q1=fL,若小车不固定, 设物体相对小车滑行的距离为s.对小车和物体组成的系统, 水平方向动量守恒, 最终两者必定均静止, 根据能量守恒定律可知物体的重力势能全部转化为因摩擦产生的内能, 则有:Q2=Q1, 而Q2=fs,则物体在小车BC段滑行的距离s=L, 即物体仍滑到C点停止, 故A正确.6.如图4所示, 总质量为M、带有底座的足够宽的框架直立在光滑水平面上, 质量为m的小球通过细线悬挂于框架顶部O 处, 细线长为L , 已知M >m , 重力加速度为g , 某时刻小球获得一瞬时速度v 0, 当小球第一次回到O 点正下方时, 细线拉力大小为( )图4A.mgB.mg +m v 02LC.mg +m (2m )2v 02(M +m )2LD.mg +m (M -m )2v 02(M +m )2L答案 B解析 设小球第一次回到O 点正下方时, 小球与框架的速度分别为v 1和v 2.取水平向右为正方向, 由题意可知, 小球、框架组成的系统水平方向动量守恒、机械能守恒, 即m v 0=m v 1+M v 2, 12m v 02=12m v 12+12M v 22, 解得v 1=m -M m +M v 0, v 2=2m m +M v 0.当小球第一次回到O 点正下方时, 以小球为研究对象, 由牛顿第二定律得T -mg =m (v 1-v 2)2L , 解得细线的拉力T =mg +m v 02L , B 正确.7.A 、B 两球沿一直线运动并发生正碰.如图5所示为两球碰撞前、后的位移—时间图像.a 、b 分别为A 、B 两球碰前的位移—时间图像, c 为碰撞后两球共同运动的位移—时间图像, 若A 球质量是m =2 kg, 则由图可知下列结论错误的是( )图5A.A 、B 碰撞前的总动量为3 kg·m/sB.碰撞时A 对B 的冲量为-4 N·sC.碰撞前、后A 的动量变化为6 kg·m/sD.碰撞中A 、B 两球组成的系统损失的动能为10 J答案 AC解析 由x -t 图像可知, 碰撞前A 球的速度v A =Δx A Δt A =4-102m /s =-3 m/s, 碰撞前B 球的速度v B =Δx B Δt B =42 m/s =2 m/s ;碰撞后A 、B 两球的速度相等, v A ′=v B ′=v =Δx C Δt C =2-42m /s =-1 m/s, 则碰撞前、后A 的动量变化为Δp A =m v -m v A =4 kg·m/s ;对A 、B 组成的系统, 由动量守恒定律m v A +m B v B =(m +m B )v 得:m B =43kg.A 与B 碰撞前的总动量为:p 总=m v A +m B v B =2×(-3)+43×2 kg·m/s =-103kg·m /s ;由动量定理可知, 碰撞时A 对B 的冲量为:I B =Δp B =-4 kg·m /s =-4 N·s.碰撞中A 、B 两球组成的系统损失的动能:ΔE k =12m v A 2+12m B v B 2-12(m +m B )v 2, 代入数据解得:ΔE k =10 J, 故A 、C 错误, B 、D 正确.8.如图6所示, 在光滑的水平面上静止放一质量为m 的木板B , 木板表面光滑, 左端固定一水平轻质弹簧.质量为2m 的木块A 以速度v 0从木板的右端水平向左滑上木板B .在木块A 与弹簧相互作用的过程中, 下列说法正确的是( )图6A.弹簧压缩量最大时, B 板运动速率最大B.B 板的加速度先增大后减小C.弹簧给木块A 的冲量大小为2m v 03D.弹簧的最大弹性势能为m v 203答案 BD解析 当木块与木板速度相等时, 弹簧的压缩量最大, 此后弹簧要恢复原状, 木板进一步加速, 故A 错误;弹簧压缩量先增大后减小, 故B 板的加速度先增大后减小, 故B 正确;当木块与木板速度相等时, 弹簧的压缩量最大,以v 0的方向为正方向, 有:2m v 0=(m +2m )v ①E p =12×2m v 02-12(2m +m )v 2② 由①②解得E p =13m v 02, 故D 正确; 从木块与木板作用至弹簧恢复原长时, 有:2m v 0=2m v 1+m v 2③,根据机械能守恒定律, 有12×2m v 02=12×2m v 12+12m v 22④ 解得v 1=13v 0, v 2=43v 0, 对木块A , 根据动量定理, 有I =2m v 1-2m v 0=-43m v 0(负号表示方向向右), 故C 错误.9.小车静置于光滑的水平面上, 小车的A端固定一个水平轻质小弹簧, B端粘有橡皮泥, 小车的质量为M, 长为L.质量为m的木块C放在小车上, 用细绳连接于小车的A端并使弹簧压缩(细绳未画出), 开始时小车与C都处于静止状态, 如图7所示, 当突然烧断细绳, 弹簧被释放, 使木块C离开弹簧向B端冲去, 并跟B端橡皮泥粘在一起, 以下说法中正确的是()图7A.如果小车内表面光滑, 整个系统任何时刻机械能都守恒B.当木块对地运动速度大小为v时, 小车对地运动速度大小为mM vC.小车向左运动的最大位移为mLM+mD.小车向左运动的最大位移为mM L答案BC解析小车、弹簧与木块这一系统所受合外力为零, 系统在整个过程中动量守恒, 但粘接过程有机械能损失.M v′-m v=0, 则v′=mMv, 同时该系统属于“人船模型”, Md=m(L-d), 所以车向左运动的最大位移d=mLM+m, 综上所述, 选项B、C正确.10.两个小球A、B在光滑的水平地面上相向运动, 已知它们的质量分别是m A=4 kg, m B=2 kg, A的速度v A=3 m/s(设为正), B的速度v B=-3 m/s, 则它们发生正碰后, 其速度可能分别为()A.均为+1 m/sB.+4 m/s和-5 m/sC.+2 m/s和-1 m/sD.-1 m/s和+5 m/s答案AD二、实验题(本题共2小题, 共13分)11.(5分)在做“验证动量守恒定律”实验时, 入射球a的质量为m1, 被碰球b的质量为m2, 各小球的落地点如图8所示, 下列关于这个实验的说法正确的是________.图8A.入射球与被碰球最好采用大小相同、质量相等的小球B.每次都要使入射小球从斜槽上不同的位置滚下C.要验证的表达式是m1ON=m1OM+m2OPD.要验证的表达式是m1OP=m1OM+m2ON答案 D解析为让两球发生对心碰撞, 两球的直径应相等, 即两球大小相等, 为防止碰撞后入射球反弹, 入射球的质量应大于被碰球的质量, 故A错误;为保证入射小球碰撞前的速度相等, 每次都应使入射小球从斜槽上相同的位置由静止滚下, 故B错误;小球离开轨道后做平抛运动, 由于小球抛出点的高度相等, 它们在空中的运动时间t相等, 如果碰撞过程中动量守恒, 则:m1v0=m1v1+m2v2, 两边同时乘以t得:m1v0t=m1v1t+m2v2t, 即m1OP=m1OM+m2ON, 故D正确, C错误.12.(8分)某同学利用打点计时器和气垫导轨做“探究碰撞中的不变量”的实验, 气垫导轨装置如图9所示, 所用的气垫导轨装置由导轨、滑块、弹射架等组成.图9(1)下面是实验的主要步骤:①安装好气垫导轨, 调节气垫导轨的调节旋钮, 使导轨水平;②向气垫导轨中通入压缩空气;③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧, 将纸带穿过打点计时器越过弹射架并固定在滑块1的左端, 调节打点计时器的高度, 直至滑块拖着纸带移动时, 纸带始终在水平方向;④滑块1挤压导轨左端弹射架上的橡皮绳;⑤把滑块2放在气垫导轨的中间;⑥先________, 然后________, 让滑块带动纸带一起运动;⑦取下纸带, 重复步骤④⑤⑥, 选出较理想的纸带如图10所示;图10⑧测得滑块1(包括撞针)的质量为310 g, 滑块2(包括橡皮泥)的质量为205 g.试完善实验步骤⑥的内容.(2)已知打点计时器每隔0.02 s 打一个点, 计算可知, 两滑块相互作用前动量之和为______kg·m /s ;两滑块相互作用以后系统动量之和为_______kg·m/s(结果保留三位有效数字).(3)试说明第(2)问中两结果不完全相等的主要原因是______________________________. 答案 (1)接通打点计时器的电源 放开滑块1(2)0.620 0.618(3)纸带与打点计时器的限位孔之间有摩擦解析 (2)作用前滑块1的速度v 1=0.20.1m /s =2 m/s, 其动量为0.310×2 kg·m /s =0.620 kg·m/s,作用后滑块1和滑块2具有相同的速度v =0.1680.14m /s =1.2 m/s, 其动量之和为(0.310+0.205)×1.2 kg·m /s =0.618 kg·m/s.三、计算题(本题共4小题, 共47分)13.(10分)如图11, 光滑水平地面上静止放置三个滑块A 、B 、C , A 和B 的质量均为2m , C 的质量为m .A 、B 之间用一根水平轻质弹簧连接, B 、C 接触但不粘连, 现给A 施加一向右的瞬时冲量, 使A 获得一水平向右的初速度v 0.在此后的运动过程中, 求:图11(1)C 最终的速度大小.(2)当弹簧第二次被压缩至最短时, 弹簧储存的弹性势能.答案 (1)0.8v 0 (2)12m v 02解析 (1)弹簧第一次被压缩至最短时弹性势能最大, 此后第一次恢复原长时, C 的速度达到最大值, 设向右为正方向, 由动量守恒定律可知:2m v 0=2m v 1+3m v 2, 由能量守恒定律可知:12×2m v 02=12×2m v 12+12×3m ×v 22 联立解得:v 1=-0.2v 0, v 2=0.8v 0即C 最终的速度大小为0.8v 0.(2)弹簧第二次被压缩至最短时, A 、B 速度相等, 以向右为正方向, 故:2m v 1+2m v 2=4m v , 解得:v =0.3v 0故此时弹簧储存的弹性势能为:E p =12(2m )v 12+12(2m )v 22-12(4m )v 2=12m v 02. 14.(10分)如图12(a)所示, 在光滑的水平面上有甲、乙两辆小车, 质量为30 kg 的小孩乘甲车以5 m/s 的速度水平向右匀速运动, 甲车的质量为15 kg, 乙车静止于甲车的正前方, 两车碰撞前后的位移随时间变化的图像如图(b)所示.求:图12(1)甲、乙两车碰撞后的速度大小;(2)乙车的质量;(3)为了避免甲、乙两车相撞, 小孩至少要以多大的水平速度从甲车跳到乙车上?答案 (1)1 m /s 3 m/s (2)90 kg (3)203m/s 解析 (1)由题图(b)可知, 碰撞后甲车的速度为v 1=-1 m /s, 负号表示方向向左.所以甲车速度大小为1 m/s.乙车的速度为v 2=3 m /s, 方向向右, 乙车速度大小为3 m/s.(2)在碰撞过程中, 三者组成的系统满足动量守恒条件, 以向右为正方向, 由动量守恒定律得,(m 小孩+m 甲)v 0=(m 小孩+m 甲)v 1+m 乙v 2解得:m 乙=90 kg.(3)设小孩跳向乙车的速度为v 小孩, 以向右为正方向, 由动量守恒定律得, 小孩跳离甲车:(m 小孩+m 甲)v 0=m 小孩v 小孩+m 甲v 3小孩跳至乙车:m 小孩v 小孩=(m 小孩+m 乙)v 4为避免两车相撞, 应满足v 3≤v 4当v 3=v 4时, 小孩跳离甲车的速度最小, v 小孩=203m/s 因此小孩至少要以203m/s 的水平速度从甲车跳到乙车上. 15.(13分)如图13所示, 可看成质点的A 物体叠放在上表面光滑的B 物体上, 一起以v 0的速度沿光滑的水平轨道匀速运动, 与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连, A 滑上C 后恰好能到达C 板的最右端, 已知A 、B 、C 质量均相等, 木板C 长为L , 求:图13(1)A 物体最终的速度大小;(2)A 在木板C 上滑行的时间.答案 (1)3v 04 (2)4L v 0解析 (1)设A 、B 、C 的质量为m , B 、C 碰撞过程中动量守恒, 设B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向, 由动量守恒定律得m v 0=2m v 1, 解得v 1=v 02B 、C 速度相同后A 以v 0的速度滑上C , A 滑上C 后, B 、C 脱离, A 、C 相互作用过程中动量守恒, 设最终A 、C 的共同速度为v 2, 以向右为正方向, 由动量守恒定律得m v 0+m v 1=2m v 2, 解得v 2=3v 04. (2)在A 、C 相互作用过程中, 由能量守恒定律得:fL =12m v 02+12m v 12-12×2m v 22, 解得f =m v 0216L, 此过程中以C 为研究对象, 由动量定理得ft =m v 2-m v 1, 解得t =4L v 0. 16.(14分)如图14所示, 物块A 和B 通过一根轻质不可伸长的细绳相连, 跨放在质量不计的光滑定滑轮两侧, 质量分别为m A =2 kg 、m B =1 kg.初始时A 静止于水平地面上, B 悬于空中.现将B 竖直向上再举高h =1.8 m(未触及滑轮), 然后由静止释放.一段时间后细绳绷直, A 、B 以大小相等的速度一起运动, 之后B 恰好可以和地面接触.g 取10 m/s 2, 空气阻力不计.求:图14(1)B 从释放到细绳刚绷直时的运动时间t ;(2)A 的最大速度v 的大小;(3)初始时B 离地面的高度H .答案 (1)0.6 s (2)2 m/s (3)0.6 m解析 (1)B 从释放到细绳刚绷直前做自由落体运动, 有h =12gt 2① 代入数据解得t =0.6 s ②(2)设细绳绷直前瞬间B 的速度大小为v B , 有v B =gt ③细绳绷直瞬间, 细绳张力远大于A 、B 的重力, A 、B 相互作用, 由动量守恒定律得m B v B =(m A +m B )v ④之后A 做匀减速运动, 所以细绳绷直后瞬间的速度v 即为A 的最大速度, 联立②③④式, 代入数据解得v=2 m/s⑤(3)细绳绷直后, A、B一起运动, B恰好可以和地面接触, 说明此时A、B的速度为零, 这一过程中A、B组成的系统机械能守恒,有12(m A+m B)v2+m B gH=m A gH⑥代入数据解得H=0.6 m.⑦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 实物粒子的波粒二象性5 不确定关系[学习目标] 1.了解德布罗意物质波假说的内容, 知道德布罗意波的波长和粒子动量的关系.2.知道粒子和光一样具有波粒二象性, 了解电子波动性的实验验证.3.初步了解不确定关系的内容, 感受数学工具在物理学发展过程中的作用.一、实物粒子的波动性1.德布罗意波(1)定义:任何运动着的物体, 小到电子、质子, 大到行星、太阳, 都有一种波与它相对应, 这种波叫物质波, 又叫德布罗意波.(2)德布罗意波的波长、频率的计算公式为λ=h p , ν=E h. (3)我们之所以看不到宏观物体的波动性, 是因为宏观物体的动量太大, 德布罗意波的波长太小.2.电子波动性的实验验证(1)实验探究思路:干涉、衍射是波特有的现象, 如果实物粒子具有波动性, 则在一定条件下, 也应该发生干涉或衍射现象.(2)实验验证:1926年戴维孙观察到了电子衍射图样, 证实了电子的波动性.(3)汤姆孙做电子束穿过多晶薄膜的衍射实验, 也证实了电子的波动性.二、氢原子中的电子云1.定义:用点的多少表示的电子出现的概率分布.2.电子的分布:某一空间范围内电子出现概率大的地方点多, 电子出现概率小的地方点少.电子云反映了原子核外的电子位置的不确定性, 说明电子对应的波也是一种概率波.三、不确定关系1.定义:在经典物理学中, 一个质点的位置和动量是可以同时测定的, 在微观物理学中, 要同时测出微观粒子的位置和动量是不太可能的, 这种关系叫不确定关系.2.表达式:Δx·Δp x≥h4π.其中以Δx表示粒子位置的不确定量, 以Δp x表示粒子在x方向上的动量的不确定量, h是普朗克常量.3.不确定关系在微观世界与宏观世界中的不同作用在微观世界里, 由于粒子的波动性比较显著, 粒子的不确定关系表现比较明显, 但在宏观世界里, 由于其德布罗意波的波长非常小, 宏观粒子的波动性根本无法察觉, 所以宏观物体的不确定关系不需要考虑.[即学即用]1.判断下列说法的正误.(1)一切宏观物体都伴随一种波, 即德布罗意波.( × )(2)湖面上的水波就是德布罗意波.( × )(3)电子的衍射现象证实了实物粒子具有波动性.( √ )(4)微观粒子的动量和位置不可同时确定.( √ )(5)微观粒子同时具有确定的位置和动量在将来可以用实验验证.( × )(6)不确定关系不仅适用于电子和光子等微观粒子, 也适用于宏观物体.( √ )2.质量为1 000 kg 的小汽车以v =40 m/s 的速度在高速公路上行驶, 则估算小汽车的德布罗意波的波长为______.(h =6.63×10-34 J·s) 答案 1.66×10-38 m解析 小汽车的动量p =m v =4×104 kg·m/s小汽车的德布罗意波的波长λ=h p≈1.66×10-38 m.一、对物质波的理解[导学探究]1.如图1是电子束通过铝箔后的衍射图样, 结合图样及课本内容回答下列问题:图1(1)德布罗意提出“实物粒子也具有波动性”假设的理论基础是什么?(2)电子束穿过铝箔的衍射图样说明了什么?答案(1)普朗克能量子假说和爱因斯坦光子理论.(2)电子束具有波动性.2.德布罗意认为任何运动着的物体均具有波动性, 可是我们观察运动着的汽车, 并未感觉到它的波动性, 你如何理解该问题?谈谈自己的认识.答案波粒二象性是微观粒子的特殊规律, 一切微观粒子都存在波动性, 宏观物体(汽车)也存在波动性, 只是因为宏观物体质量大, 动量大, 波长短, 难以观测.[知识深化]1.任何物体, 小到电子、质子, 大到行星、太阳都存在波动性, 我们之所以观察不到宏观物体的波动性, 是因为宏观物体对应的物质波的波长太小.2.物质波是一种概率波, 粒子在空间各处出现的概率受波动规律支配, 不能以宏观观点中的波来理解德布罗意波.3.德布罗意假说是光子的波粒二象性的一种推广, 使之包括了所有的物质粒子, 即光子与实物粒子都具有粒子性, 又都具有波动性, 与光子对应的波是电磁波, 与实物粒子对应的波是物质波.例1(多选)关于物质波, 下列认识中正确的是()A.任何运动的物体(质点)都伴随一种波, 这种波叫物质波B.X射线的衍射实验, 证实了物质波假设是正确的C.电子的衍射实验, 证实了物质波假设是正确的D.宏观物体尽管可以看做物质波, 但它们不具有干涉、衍射等现象答案AC解析据德布罗意物质波理论知, 任何一个运动的物体, 小到电子、质子, 大到行星、太阳, 都有一种波与之相对应, 这种波就叫物质波, A选项正确;由于X射线本身就是一种波, 而不是实物粒子, 故X射线的衍射现象并不能证实物质波理论的正确性, 即B选项错误;电子是一种实物粒子, 电子的衍射现象表明运动着的实物粒子具有波动性, 故C选项正确;由电子穿过铝箔的衍射实验知, 少量电子穿过铝箔后所落位置是散乱的, 无规律的, 但大量电子穿过铝箔后所落的位置则呈现出衍射图样, 即大量电子的行为表现出电子的波动性, 干涉、衍射是波的特有现象, 只要是波, 都会发生干涉、衍射现象, 故选项D 错误.例2 任何一个运动着的物体, 小到电子、质子,大到行星、太阳, 都有一种波与之对应, 波长λ=h p, 式中p 是运动物体的动量, h 是普朗克常量, 人们把这种波叫做德布罗意波.现有一个德布罗意波的波长为λ1的物体1和一个德布罗意波的波长为λ2的物体2, 二者相向碰撞后粘在一起, 已知|p 1|<|p 2|, 则粘在一起的物体的德布罗意波的波长为多少?答案 λ1λ2λ1-λ2解析 以物体2碰前速度的方向为正方向, 由动量守恒定律p 2-p 1=(m 1+m 2)v 及p =h λ, 得h λ2-h λ1=h λ, 所以λ=λ1λ2λ1-λ2.物体德布罗意波的波长的计算1.首先计算物体的速度, 再计算其动量.如果知道物体动能也可以直接用p =2mE k 计算其动量.2.再根据λ=h p计算德布罗意波的波长. 3.需要注意:德布罗意波的波长一般都很短, 比一般的光波波长还要短, 可以根据结果的数量级大致判断计算结果是否合理.二、不确定关系[导学探究]1.如果光子是经典的粒子, 它在从光源飞出后应该做匀速直线运动, 它在屏上的落点应该在缝的投影之内, 即屏上亮条纹宽度与缝宽相同.但是实际上, 它到达屏上的位置超出了单缝投影的范围, 形成了中间宽、两侧窄、明暗相间的衍射条纹, 如图2所示.微观粒子的运动是否遵循牛顿运动定律?能否用经典物理学的方法准确确定粒子到达屏上的位置和动量?图2答案按照牛顿运动定律, 如果光子是经典的粒子, 它在运动过程中不受力, 光子应该做匀速直线运动.而由光的衍射可知, 光子运动并不遵从牛顿运动定律, 即对于微观粒子的运动, 不能用经典物理学的方法确定其位置及动量.2.单缝衍射时, 屏上各点的亮度反映了粒子到达这点的概率.图3是粒子到达屏上的概率在坐标系中的表示.图3(1)如果狭缝变窄, 粒子的衍射图样中, 中央亮条纹变宽.这说明当粒子的位置不确定量减小时, 动量的不确定量如何变化?(2)通过狭缝后, 单个粒子的运动情况能否预知?粒子出现在屏上的位置遵循什么规律?(3)粒子位置的不确定量Δx与动量的不确定量Δp x有什么关系?答案(1)变大(2)不能粒子出现在屏上的位置遵循统计规律(3)遵循不确定关系:ΔxΔp x≥h 4π[知识深化]1.粒子位置的不确定:单缝衍射现象中, 入射的粒子有确定的动量, 但它们经过狭缝后可以处于任何位置, 也就是说, 粒子的位置是完全不确定的.2.粒子动量的不确定(1)微观粒子具有波动性, 会发生衍射.大部分粒子到达狭缝之前沿水平方向运动, 而在经过狭缝之后, 有些粒子跑到投影位置以外.这些粒子具有与其原来运动方向垂直的动量.(2)由于哪个粒子到达屏上的哪个位置是随机的, 所以粒子在垂直方向上的动量也具有不确定性, 不确定量的大小可以由中央亮条纹的宽度来衡量.3.位置和动量的不确定关系:Δx·Δp x≥h4π.由Δx·Δp x≥h4π可以知道, 在微观领域, 要准确地确定粒子的位置, 动量的不确定性就更大;反之, 要准确地确定粒子的动量, 那么位置的不确定性就更大.4.微观粒子的位置和动量是不能同时被确定的, 这也就决定了不能用“轨迹”的观点来描述粒子的运动.例3(多选)根据不确定关系Δx·Δp x≥h4π, 判断下列说法正确的是()A.采取办法提高测量Δx精度时, Δp x的精度下降B.采取办法提高测量Δx精度时, Δp x的精度上升C.Δx与Δp x的测量精度与测量仪器及测量方法是否完备有关D.Δx与Δp x的测量精度与测量仪器及测量方法是否完备无关答案AD解析不确定关系表明, 无论采用什么方法试图确定位置坐标和相应动量中的一个, 必然引起另一个较大的不确定性, 这样的结果与测量仪器及测量方法是否完备无关, 无论怎样改善测量仪器和测量方法, 都不可能逾越不确定关系所给出的限度.故A、D正确.例4已知h4π=5.3×10-35J·s, 试求下列情况中速度测定的不确定量, 并根据计算结果, 讨论在宏观和微观世界中进行测量的不同情况.(1)一个球的质量m=1.0 kg, 测定其位置的不确定量为10-6 m.(2)电子的质量m e=9.0×10-31 kg, 测定其位置的不确定量为10-10 m.答案见解析解析(1)m=1.0 kg,Δx1=10-6 m,由ΔxΔp x≥h4π, Δp x=mΔv知Δv1=h4πΔx1m=5.3×10-3510-6×1.0m/s=5.3×10-29 m/s这个速度不确定量在宏观世界中微不足道, 可认为球的速度是确定的, 其运动遵从经典的物理学理论.(2)m e=9.0×10-31 kg, Δx2=10-10 mΔv2=h4πΔx2m e=5.3×10-3510-10×9.0×10-31m/s≈5.89×105 m/s.这个速度不确定量不可忽略, 不能认为原子中的电子具有确定的速度, 其运动不能用经典物理学理论处理.理解不确定关系时应注意的问题1.对球这样的宏观物体, 不确定量是微不足道的, 对测量准确性没有任何限制, 但对微观粒子却是不可忽略的.2.在微观世界中, 粒子质量较小, 不能同时精确地测出粒子的位置和动量, 也就不能准确地把握粒子的运动状态.1.(对物质波的理解)下列说法中正确的是()A.物质波属于机械波B.只有像电子、质子、中子这样的微观粒子才具有波动性C.德布罗意认为任何一个运动的物体, 小到电子、质子、中子, 大到行星、太阳都有一种波与之相对应, 这种波叫物质波D.宏观物体运动时, 看不到它的衍射和干涉现象, 所以宏观物体运动时不具有波动性答案 C解析 任何一个运动的物体都具有波动性, 但因为宏观物体的德布罗意波的波长很短, 所以很难看到它的衍射和干涉现象, 所以C 项对, B 、D 项错;物质波不同于宏观意义上的波, 故A 项错.2.(物质波公式的应用)如果一个电子的德布罗意波的波长和一个中子的相等, 则下列物理量中相等的是( )A.速度B.动能C.动量D.总能量答案 C解析 根据德布罗意波的波长公式λ=h p, 可得其动量相等, 故选C. 3.(对不确定关系的理解)(多选)关于不确定关系Δx ·Δp x ≥h 4π有以下几种理解, 正确的是( ) A.微观粒子的动量不可确定B.微观粒子的位置坐标不可确定C.微观粒子的动量和位置不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子, 也适用于其他宏观粒子答案 CD4.(不确定关系式的计算)质量为10 g 的子弹与电子的速率相同, 均为500 m/s, 测量准确度为0.01%, 若位置和速率在同一实验中同时测量, 试问它们位置的最小不确定量各为多少?(普朗克常量h =6.63×10-34 J·s, 电子质量为m =9.1×10-31 kg, 结果保留三位有效数字) 答案 1.06×10-31 m 1.15×10-3 m解析 由题意知, 子弹、电子的速度不确定量为Δv =0.05 m /s, 子弹的动量的不确定量Δp x 1=5×10-4 kg·m /s, 电子动量的不确定量Δp x 2≈4.6×10-32 kg·m/s, 由Δx ≥h 4πΔp x , 子弹位置的最小不确定量Δx 1= 6.63×10-344×3.14×5×10-4 m ≈1.06×10-31 m, 电子位置的最小不确定量Δx 2=6.63×10-344×3.14×4.6×10-32 m ≈1.15×10-3 m.考点一 物质波1.关于物质波, 下列说法正确的是( )A.速度相等的电子和质子, 电子的波长长B.动能相等的电子和质子, 电子的波长短C.动量相等的电子和中子, 中子的波长短D.如果甲、乙两电子的速度都远小于光速, 甲电子速度是乙电子的3倍, 则甲电子的波长也是乙电子的3倍答案 A解析 由λ=h p可知, 动量大的波长短.电子与质子的速度相等时, 电子动量小, 波长长.电子与质子动能相等时, 由动量与动能的关系式p = 2mE k 可知, 电子的动量小, 波长长.动量相等的电子和中子, 其波长应相等.如果甲、乙两电子的速度远都小于光速, 甲的速度是乙的三倍,甲的动量也是乙的三倍, 则甲的波长应是乙的13.2.(多选)频率为ν的光子, 德布罗意波的波长为λ=h p, 能量为E , 则光的速度为( ) A.Eλh B.pE C.E p D.h 2Ep答案 AC解析 根据c =λν, E =hν, λ=h p , 即可解得光的速度为Eλh 或E p. 3.(多选)为了观察晶体的原子排列, 可以采用下列方法:①用分辨率比光学显微镜更高的电子显微镜成像(由于电子的物质波的波长很短, 能防止发生明显衍射现象, 因此电子显微镜的分辨率高);②利用X 射线或中子束得到晶体的衍射图样, 进而分析出晶体的原子排列.则下列分析中正确的是( )A.电子显微镜所利用的是电子的物质波的波长比原子尺寸小得多B.电子显微镜中电子束运动的速度应很小C.要获得晶体的X 射线衍射图样, X 射线波长要远小于原子的尺寸D.中子的物质波的波长可以与原子尺寸相当答案 AD解析 由题目所给信息“电子的物质波的波长很短, 能防止发生明显衍射现象”及发生明显衍射现象的条件可知, 电子的物质波的波长比原子尺寸小得多, 它的动量应很大, 即速度应很大, A 正确, B 错误;由信息“利用X 射线或中子束得到晶体的衍射图样”及发生明显衍射现象的条件可知, 中子的物质波或X 射线的波长与原子尺寸相当, C 错误, D 正确.4.2002年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴昌俊发现了宇宙X 射线源.X 射线是一种高频电磁波, 若X 射线在真空中的波长为λ, 以h 表示普朗克常量, c 表示真空中的光速, 以ε和p 分别表示X 射线每个光子的能量和动量, 则( )A.ε=hλc, p =0 B.ε=hλc , p =hλc 2 C.ε=hc λ, p =0 D.ε=hc λ, p =h λ 答案 D解析 根据ε=hν, λ=h p , c =λν可得X 射线每个光子的能量为ε=hc λ, 每个光子的动量为p =h λ. 5.利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样, 方法是使电子通过电场加速后, 让电子束照射到金属晶格上, 从而得到电子的衍射图样.已知电子质量为m , 电荷量的绝对值为e , 初速度为0, 加速电压为U , 普朗克常量为h , 则下列说法中不正确的是( )A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波的波长为λ=h 2meUC.加速电压U 越大, 电子的衍射现象越不明显D.若用相同动能的质子替代电子, 衍射现象将更加明显答案 D解析 实验得到了电子的衍射图样, 说明电子这种实物粒子发生了衍射, 即电子具有波动性,故A 正确;由动能定理可得, eU =12m v 2-0, 电子加速后的速度v = 2eU m , 电子德布罗意波的波长λ=h p =h m v =h m 2eU m=h 2meU , 故B 正确;由电子的德布罗意波的波长公式λ=h 2meU可知, 加速电压U 越大, 电子德布罗意波的波长越短, 衍射现象越不明显, 故C 正确;物体动能与动量的关系是p =2mE k , 由于质子的质量远大于电子的质量, 所以动能相同的质子的动量远大于电子的动量, 由λ=h p可知, 相同动能的质子的德布罗意波的波长远小于电子德布罗意波的波长, 波长越小, 衍射现象越不明显, 因此用相同动能的质子代替电子, 衍射现象将更不明显, 故D 错误.考点二 氢原子中的电子云6.(多选)电子的运动受波动性的支配, 对于氢原子的核外电子, 下列说法正确的是( )A.氢原子的核外电子可以用确定的坐标描述它们在原子中的位置B.电子绕核运动时, 可以运用牛顿运动定律确定它的轨道C.电子绕核运动的“轨道”其实是没有意义的D.电子轨道只不过是电子出现的概率比较大的位置答案 CD解析 微观粒子的波动性是一种概率波, 对于微观粒子的运动, 牛顿运动定律已经不适用了, 所以氢原子的核外电子不能用确定的坐标描述它们在原子中的位置, 电子的“轨道”其实是没有意义的, 电子轨道只不过是电子出现的概率比较大的位置, 综上所述, C 、D 正确.7.关于电子的运动规律, 以下说法正确的是( )A.电子如果不表现波动性, 则无法用轨迹来描述它们的运动, 其规律遵循牛顿运动定律B.电子如果不表现波动性, 则可以用轨迹来描述它们的运动, 其规律遵循波动规律C.电子如果表现波动性, 则无法用轨迹来描述它们的运动, 空间分布的概率遵循波动规律D.电子如果表现波动性, 则可以用轨迹来描述它们的运动, 其规律遵循牛顿运动定律 答案 C解析 电子的波动性属于概率波, 少量电子表现出粒子性, 不遵循牛顿运动定律, 无法用轨迹描述其运动, A 、B 错.大量电子表现出波动性, 无法用轨迹描述其运动, 可确定电子在某点附近出现的概率, 且其遵循波动规律, C 对, D 错.考点三 不确定关系的理解8.(多选)下列各种说法中正确的有()A.普朗克在研究黑体的热辐射问题中提出了能量子假说B.一束光照射到某种金属上不能发生光电效应, 是因为该束光的照射时间太短C.在光的单缝衍射实验中, 狭缝越窄, 光子动量的不确定量越大D.任何一个运动物体, 大到太阳、地球, 小到电子、质子, 都与一种波相对应, 这就是物质波.物质波是概率波答案ACD解析普朗克在研究黑体的热辐射问题中提出了能量子假说, 故A正确;一束光照射到某种金属上不能发生光电效应, 是因为该束光的频率小于截止频率, 故B错误;光的单缝衍射实验中, 狭缝越窄, 光子动量的不确定量越大, 故C正确;任何一个运动物体, 大到太阳、地球, 小到电子、质子, 都与一种波相对应, 这就是物质波, 物质波是概率波, 故D正确.9.(多选)以下说法正确的是()A.微观粒子不能用“轨道”观点来描述粒子的运动B.微观粒子能用“轨道”观点来描述粒子的运动C.微观粒子位置不能精确确定D.微观粒子位置能精确确定答案AC解析微观粒子的动量和位置是不能同时精确确定的, 这也就决定不能用“轨道”的观点来描述粒子的运动(轨道上运动的粒子在某时刻具有确定的位置和动量), 故A正确, B错误.由微观粒子的波粒二象性可知微观粒子位置不能精确确定, 故C正确, D错误.10.从衍射的规律可以知道, 狭缝越窄, 屏上中央亮条纹就越宽, 由不确定关系ΔxΔp x≥h4π, 判断下列说法正确的是()A.入射的粒子有确定的动量, 射到屏上粒子就有准确的位置B.狭缝的宽度变小了, 因此粒子的动量的不确定量也变小了C.更窄的狭缝可以更准确地测得粒子的位置, 但粒子动量的不确定量却更大了D.可以同时确定粒子的位置和动量答案 C解析由ΔxΔp x≥h4π知, 狭缝变窄了, 即Δx减小了, Δp x变大, 即动量的不确定量变大, 故C 正确, A、B、D错误.。

相关文档
最新文档