高中数学直线与圆精选题目(附答案)

合集下载

2020年高中数学必修二《直线与圆的位置关系》

2020年高中数学必修二《直线与圆的位置关系》

第 1 页 共 3 页 2020年高中数学必修二《直线与圆的位置关系》1.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( )A .122B .2 2C .3 2D .4 2答案 B解析 x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,∴圆心(-2,2)到x -y +4=0的距离d =0.∴弦长等于直径2 2.故选B.2.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y =5 B.2x +y +5=0 C .2x +y =5D .2x +y +5=0 答案 C解析 ∵M(2,1)在圆上,∴切线与MO 垂直,∵k MO =12,∴切线斜率为-2.又过(2,1),∴y -1=-2(x -2),即y +2x =5.故选C.3.以点P(-4,3)为圆心的圆与直线2x +y -5=0没有公共点,则圆的半径r 的取值范围为( )A .(0,2)B .(0,5)C .(0,25)D .(0,10) 答案 C解析 圆心到直线的距离为d ,则d =|-8+3-5|5=2 5. ∵没有公共点,∴d>r ,∴选C.4.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 ∵x 2+y 2+2x +4y -3=0,∴(x +1)2+(y +2)2=8,圆心(-1,-2)到x +y +1=0的距离为d =|-1-2+1|2=2=r 2,∴有三个点.故选C. 5.由点P(1,3)引圆x 2+y 2=9的切线的长是( )A .2B.19 C .1D .4 答案 C。

高考数学直线与圆的方程复习题及答案

高考数学直线与圆的方程复习题及答案

高考数学直线与圆的方程复习题及参考答案:一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2009•重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为 ( )A.30°B.60°C.120°D.150°答案:A解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.2.(2009•湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为( )A.x-y-3=0B.x+y+3=0C.x+y-3=0D.x-y+3=0答案:C解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.3.(2009•东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为 ( )A.2x+y-7=0B.2x-y-1=0C.x-2y+4=0D.x+y-5=0答案:D解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 ( )A.-32B.32C.3D.-3答案:A解析:由两点式,得y-31-3=x-0-1-0,即2x-y+3=0,令y=0,得x=-32,即在x轴上的截距为-32.5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 ( )A.3B.0C.-1D.0或-1答案:D解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是( )A.-32≤m≤2B.-32C.-32≤m<2D.-32答案:B解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0⇒-327.(2009•福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为 ( )A.-5B.1C.2D.3答案:D解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的区域如图所示.∵其面积为2,∴|AC|=4,∴C的坐标为(1,4),代入ax-y+1=0,得a=3.故选D.8.(2009•陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为( )A.3B.2C.6D.23答案:D解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.9.(2009•西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 ( )A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D.(x-1)2+(y+1)=4答案:C解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009•安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为 ( )A.2B.-2C.2或-2D.6或-6答案:C解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→•OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.11.(2009•河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 ( )A.点在圆上B.点在圆内C.点在圆外D.不能确定答案:C解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.12.(2010•保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2C.arccos79D.arcsin229答案:C解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。

高中数学直线与圆习题精讲精练

高中数学直线与圆习题精讲精练

圆与直线一、典型例题例1、已知定点P (6,4)与定直线 1:y=4x ,过P 点的直线 与 1交于第一象限Q 点,与x 轴正半轴交于点M ,求使△OQM 面积最小的直线 方程。

分析:直线 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。

通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。

设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线 ∴ k PQ =k PM ∴m 64x 6x 4400-=--解之得:1x x 5m 00-=∵ x 0>0,m>0 ∴ x 0-1>0 ∴ 1x x 10mx2x 4|OM |21S 020OMQ -===∆令x 0-1=t ,则t>0 )2t1t (10t)1t (10S 2++=+=≥40当且仅当t=1,x 0=11时,等号成立 此时Q (11,44),直线 :x+y-10=0评注:本题通过引入参数,建立了关于目标函数S △OQM 的函数关系式,再由基本不等式再此目标函数的最值。

要学会选择适当参数,在解析几何中,斜率k ,截距b ,角度θ,点的坐标都是常用参数,特别是点参数。

例2、已知△ABC 中,A (2,-1),B (4,3),C (3,-2),求:(1)BC 边上的高所在直线方程;(2)AB 边中垂线方程;(3)∠A 平分线所在直线方程。

分析: (1)∵ k BC =5∴ BC 边上的高AD 所在直线斜率k=51-∴ AD 所在直线方程y+1=51-(x-2)即x+5y+3=0(2)∵ AB 中点为(3,1),k AB =2∴ AB 中垂线方程为x+2y-5=0(3)设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。

∵ k AC =-1,k AB =2 ∴k21k 2k11k +-=-+∴ k 2+6k-1=0∴ k=-3-10(舍),k=-3+10∴ AE 所在直线方程为(10-3)x-y-210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学经典例题—与圆有关的最值问题

高中数学经典例题—与圆有关的最值问题

高中数学经典例题-与圆有关的最值问题I .题源探究·黄金母题【例1】已知圆()()22:1225C x y -+-=,直线()():211740,l m x m y m m +++--=为任意实数.(1)求证:直线l 恒过定点;(2)判断直线l 被圆截C 得的弦何时最长、何时最短?并求截得的弦长最短时m 的值以及最短长度. 【答案】(1)()3,1;(2)34-, 【解析】(1)直线l 的方程经过整理得()()2740x y m x y +-++-=.由于m 的任意性,于是有27,4.x y x y +-⎧⎨+-⎩解此方程组,得3,1x y =⎧⎨=⎩,即直线l 恒过定点()3,1D .(2)因为直线l 恒过圆C 内一点D ,所以当直线l 经过圆心C 时被截得的弦最长,它是圆的直径;当直线l 垂直于CD 时被截得的弦长最短.由()()1,2,3,1C D ,可知直线CD 的斜率为12CD k =-,故当直线l 被圆C 截得的弦长最短时,直线l 的斜率为2,于是有2121m m +-=+,解得34m =-,此时直线l 的方程为()123y x -=-,即250x y --=。

又CD精彩解读【试题来源】人教A 版必修2P 144B 组T6.【母题评析】本题考查圆的有关最值问题,考查考生的分析问题、解决问题的能力. 【思路方法】结合圆的有关几何性质解题.线l 被圆C 截得的弦最短时m 的值为34-,最短长度是45。

II .考场精彩·真题回放【例2】【2017高考江苏卷】在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅,则点P 的横坐标的取值范围是 . 【答案】52,1⎡⎤-⎣⎦【解析】不妨设()00,P x y ,则220050x y +=,且易知052,52x ⎡⎤∈-⎣⎦.因为PA PB AP BP =⋅⋅()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-,故00250x y -+.B (1,7)A (-5,-5)2x-y+5=0Oyx52所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知052,1x ⎡⎤∈-⎣⎦.【命题意图】本类题主要考查点与圆、直线与圆、圆与圆位置关系,以及考查逻辑思维能力、运算求解能力、数形结合的能力、方程思想的应用.【考试方向】这类试题考查根据给定直线、圆方程判断点与圆、直线与圆、圆与圆的位置关系,同时考查通过数形结合思想、充分利用圆的几何性质解决圆的切线、圆的弦长等问题.在考查形式上,主要要以选择题、填空题为主,也有时会出现在解答题中,中档题.【难点中心】1.直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断. 若d r >,则直线与圆相离; 若d r =,则直线与圆相切;若d r <,则直线与圆相交. (2)代数法故填52,1⎡⎤-⎣⎦.【例3】【2015高考江苏卷】在平面直角坐标系xOy 中,以点()1,0为圆心且与直线210mx y m ---=()m ∈R 相切的所有圆中,半径最大的圆的标准方程为 .【答案】()2212x y -+=【解析】解法一(几何意义):动直线210mx y m ---=整理得()()210m x y --+=,则l 经过定点()2,1M -,故满足题意的圆与l 切于M 时,半径最大,从而()()2221102r =-+--=,故标准方程为()2212x y -+=.解法二(代数法——基本不等式):由题意222221112111m m m m r d m m m ++==+--==+++ 211m m=++21212mm+=,当且仅当1m =时,取“=”.故标准方程为()2212x y -+=.解法三(代数法——∆判别式):由题意211m r d m --==+22211m m m ++=+,设22211m m t m ++=+,则()21210t m m t --+-=,m ∴∈R ,2.点与圆、圆与圆位置关系的判断方法,类似的也有几何法和代数法两种; 3.比较圆心距与两个圆的半径和与半径差的大小关系,特别是遇到参数问题时,如何建立等式或不等式是一个难点.()()222410t ≥∴∆=---,解得02t ≤≤,maxd ∴=【例4】【2015高考广东卷】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭;(3)3325,,4477k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦.【解析】(1)由22650x y x +-+=得()2234x y -+=,所以圆1C 的圆心坐标为()3,0;(2)设(),M x y .因为点M 为弦AB 中点,即1C M AB ⊥,所以11C M AB k k =-,即13y yx x=--,所以线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭; (3)由(2)知点M的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心,32r =为半径的部分圆弧EF (不包括两端点),且533E ⎛ ⎪⎝⎭,525,3F ⎛⎫- ⎪ ⎪⎝⎭.又直线():4l y k x =-过定点()4,0D , 当直线l 与圆C 相切时,由223402321k k ⎛⎫-- ⎪⎝⎭=+得34k =±. 又250255743DEDFkk ⎛⎫-- ⎪⎝⎭=-=-=-,所以当332525,,44k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦时,直线():4l y k x =-与曲线C 只有一个交点.III .理论基础·解题原理考点一 与截距有关的圆的最值问题形如t ax by =+形式的最值问题,可转化为动直线截距的最值问题. 考点二 与斜率有关的圆的最值问题形如y bx aμ-=-形式的最值问题,可转化为动直线斜率的最值问题. 考点三 与距离有关的圆的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题.常见的结论有:(1)圆外一点A 到圆上距离最近为AO r -,最远为AO r +; (2)过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;(3)直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r +,最近为d r -;(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积. (5)直线外一点与直线上的点的距离中,最短的是点到直线的距离;(6)两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离. 考点四 与面积相关的最值问题与圆有关的最值问题,因与平面几何性质联系密切,且与圆锥曲线相结合的命题趋势,使与圆相关的最值问题成为命题宠儿.与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.IV .题型攻略·深度挖掘【考试方向】这类试题,通常以选择题或填空题的形式出现,试题难度不大,多为容易题、中档题;若以解答题的形式呈现,则有一定难度. 【技能方法】1.数形结合法处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.研究与圆有关的最值问题时,可借助图形的性质,利用数形结合求解.常见的最值问题有以下几种类型:①形如y bx aμ-=-形式的最值问题,可转化为动直线斜率的最值问题;②形如t ax by =+形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.2.建立函数关系求最值根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参数法、配方法、判别式法等进行求解.2.利用基本不等式求解最值如果所求的表达式是满足基本不等式的结构特征,如a b ⋅或者a b +的表达式求最值,常常利用题设条件建立两个变量的等量关系,进而求解最值.同时需要注意,“一正二定三相等”的验证.V .举一反三·触类旁通考向1 与斜率有关的圆的最值问题【例1】如果直线()21400,0ax by a b -+=>>和函数()()110,1x f x mm m +=+>≠的图象恒过同一个定点,且该定点始终落在圆()()221225x a y b -+++-=的内部或圆上,那么ba的取值范围是 A .⎪⎭⎫⎢⎣⎡3443, B .⎥⎦⎤ ⎝⎛3443, C .⎥⎦⎤⎢⎣⎡3443, D .⎪⎭⎫⎝⎛3443,【答案】C【解析】函数()11x f x m+=+恒过定点()1,2-.将点()1,2-代入直线2140ax by -+=可得22140a b --+=,即()7,0,0a b a b +=>>.由点()1,2-在圆()()221225x a y b -+++-=内部或圆上可得()()22112225a b --+++-≤即2225a b +≤()0,0a b >>.2273425a b a b a b +==⎧⎧⇒⎨⎨=+=⎩⎩或43a b =⎧⎨=⎩.所以点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率.所以min 303404b a -⎛⎫==⎪-⎝⎭,max404303b a -⎛⎫== ⎪-⎝⎭.所以3443b a ≤≤.故C 正确. 【例2】已知圆22:8150C x y x +-+=,直线2y kx =+上至少存在一点P ,使得以点P 为原心,半径为1的圆与圆C 有公共点,则k 的最小值是 ( )A .43-B .54-C .35-D .53- 【答案】A【跟踪练习】1.已知实数x 、y 满足x 2+y 2=4,则22-+y x xy的最小值为 ( )A .222-B .222-C .222+D .222-- 【答案】A2.在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是_______. 【答案】[]5,55【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =.3.过点()1,2M 的直线l 与圆C :()()223425x y -+-=交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 . 【答案】: 30x y +-=【解析】:要使ACB ∠最小,由余弦定理可知,需弦长AB 最短.要使得弦长最短,借助结论可知当()1,2M 为弦的中点时最短.因圆心和()1,2M 所在直线的42131k-==-,则所求的直线斜率为1-,由点斜式可得1(2)30y x x y -=--⇒+-=.【点评】此题通过两次转化,最终转化为求过定点的弦长最短的问题.4.若圆C :034222=+-++y x y x 关于直线062=++by ax 对称,则由点(a ,b )向圆所作的切线长的最小值是_____________. 【答案】4【点评】与切线长有关的问题及与切线有关的夹角问题,解题时应注意圆心与切点连线与切线垂直,从而得出一个直角三角形.考向2 与截距有关的圆的最值问题【例3】【2017北京海淀模拟】设为不等式表示的平面区域,直线与区域有公共点,则的取值范围是_____.【答案】或者【解析】由题设到直线的距离,解之得,应填答案.【跟踪练习】1.【2017江苏南通高三第三次调研考试】在平面直角坐标系xOy中,已知点,点,为圆上一动点,则的最大值是____.【答案】2点睛:首先根据问题将的表达式列出来,做最值问题的小题,首先得明确问题表达式,然后根据函数或者基本不等式求解最值,本题解题关键在于,写出表达式后要将其化为斜率的定义求法来理解从而求得结论.2.【2018安徽六安模拟】若直线2x y m =-+与曲线2142y x =-恰有三个公共点,则实数m 的取值范围是 ( ) A .2) B .(2121) C .(121) D .21)思路分析:直线2x y m =-+与曲线21|4|2y x =-m 的取值范围,可以转化为直 线2x y m =-+的图象与曲线21|4|2y x =-的图象有三个交点时实数m 的取值范围,作出两个函数 的图象,通过图象观察临界直线,从而求出m 的取值范围;本题曲线21|4|2y x =- 画图时要分类讨论,知图象由椭圆的上一部分与双曲线的上部分组成.3.【2018湖北稳派教育高三上学期第二次联考】已知圆C的圆心在x 轴的正半轴上,且y 轴和直线320x y-+=均与圆C相切.(1)求圆C的标准方程;(2)设点()0,1P,若直线y x m=+与圆C相交于M,N两点,且MPN∠为锐角,求实数m的取值范围.【答案】(1)()2224x y-+=;(2)1515222,(,222⎛⎫---+--⋃-+⎪⎪⎝⎭).试题解析:(1)设圆C的标准方程为:故由题意得,解得,∴圆C 的标准方程为:.(2)由()22{24y x mx y=+-+=消去y整理得.∵直线y x m =+与圆C 相交于M ,N 两点,∴,解得,设,则.∴依题意得()()()()121212121111PM PN x x y y x x x m x m ⋅=+--=++-+-()()()212122110x x m x x m =+-++->,∴()()()221210m m m m +--+->,整理得210m m +->,解得或.又,∴15222m ----<<或152222m -+<<-+.故实数m 的取值范围是.点睛:(1)对于BAC ∠为锐角的问题(或点A 在以BC 为直径的圆外,或222AB AC BC >+),都可转化为0AB AC ⋅>,然后坐标化,转化为代数运算处理.(2)对于直线和圆位置关系的问题,可将直线方程和圆的方程联立消元后根据所得的二次方程的判别式、根据系数的关系,借助于代数运算处理.解题时注意“设而不求”、“整体代换”等方法的运用,以减少计算量、提高解题速度.考向3 与距离有关的圆的最值问题【例4】【2018广西南宁模拟】在平面直角坐标系xOy 中,已知()221125x y -+=,22240x y -+=,则()()221212x x y y -+-的最小值为( )A .55.15 C .1215D .1155 【答案】B【跟踪练习】1.【2018江西赣州红色七校一联】已知圆C :(a<0)的圆心在直线 上,且圆C 上的点到直线的距离的最大值为,则的值为( )A .1B .2C .3D .4 【答案】C【解析】圆的方程为,圆心为①,圆C 上的点到直线的距离的最大值为②由①②得,a <0,故得 , =3.点睛:圆上的点到直线的距离的最大值,就是圆心到直线的距离加半径;再就是二元化一元的应用. 2.【2018山西临汾一中、忻州一中、长治二中、康杰中学模拟】已知()2,0A ,直线4310x y ++=被圆()()22:313(3)C x y m m ++-=<所截得的弦长为43P 为圆C 上任意一点,则PA 的最大值为( )A .2913B .513+.7132913 【答案】D【解析】根据弦心距、半径、半弦长的关系得: 22311(23=135m ⎛⎫-+ ⎪⎝⎭),解得: 2m =或163m = (舍去),当2m =时, PA 的最大值2913PC r +=+,故选D .3.【2017辽宁辽南协作校一模】圆x 2+y 2-4x -4y -10=0上的点到直线x +y -8=0的最大距离与最小距离的差是( ) A .18 B .6 C .52 D .42【答案】C点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.4.【2017安徽宣城二模】已知P 是圆224x y +=上一点,且不在坐标轴上, ()2,0A , ()0,2B ,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,则2AN BM +的最小值为__________.【答案】8【解析】设点()2cos ,2sin P θθ,则直线PA 的方程: ()sin 2cos 1y x θθ=--,则2sin 0,cos 1M θθ⎛⎫- ⎪-⎝⎭同理2cos ,0sin 1N θθ⎛⎫-⎪-⎝⎭,则2AN BM + 2cos 4sin 6sin 1cos 1θθθθ=++--的最小值为8. 5.【2107吉林省延边州模拟】点N 是圆()2251x y ++=上的动点,以点()3,0A 为直角顶点的R t ABC ∆另外两顶,B C 在圆2225x y +=上,且BC 的中点为M ,则MN 的最大值为__________.【答案】1541+ 【解析】6.【2017山东济宁3月模拟考试】在平面直角坐标系xOy 中,椭圆C : 22221(0)x y a b a b+=>>的离心率31l : 1x ya b+=被椭圆C 5 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线1l 与圆D : 22640x y x y m +--+=相切: (i )求圆D 的标准方程;(ii )若直线2l 过定点()3,0,与椭圆C 交于不同的两点E 、F ,与圆D 交于不同的两点M 、N ,求EF MN ⋅的取值范围.【答案】(I )2214x y +=;(II )(i )()()22325x y -+-=;(ii )(]0,8.【解析】试题分析:(Ⅰ)由直线1l 过定点(),0a , ()0,b ,可得到225a b +=,再结合c a =,即可求出椭圆的方程;(Ⅱ)(i )利用圆的几何性质,求出圆心到直线1l 的距离等于半径,即可求出m 的值,即可求出圆D 的标准方程;(ii )首先设直线2l 的方程为()3y k x =-,利用韦达定理即可求出弦长EF 的表达式,同理利用圆的几何关系可求出弦长MN 的表达式,即可得到EF MN ⋅的表达式,再用换元法29141,5t k ⎡⎫=+∈⎪⎢⎣⎭,即可求出EF MN ⋅的取值范围.试题解析:(Ⅰ)由已知得直线1l 过定点(),0a , ()0,b , 225a b +=,又2c a =, 222a b c =+,解得24a =, 21b =,故所求椭圆C 的标准方程为2214x y +=. (Ⅱ)(i )由(Ⅰ)得直线1l 的方程为12xy +=,即220x y +-=,又圆D 的标准方程为()()223213x y m -+-=-,∴圆心为()3,2,圆的半径r ==∴圆D 的标准方程为()()22325x y -+-=.(ii )由题可得直线2l 的斜率存在,设2l : ()3y k x =-,与椭圆C 的两个交点为()11,E x y 、()22,F x y ,由()223,{1,4y k x x y =++=消去y 得()222214243640k x k x k +-+-=,由0∆>,得2105k ≤<, 21222414k x x k +=+, 212236414k x x k-=+, ∴EF ===.又圆D 的圆心()3,2到直线2l : 30kx y k --==∴圆D 截直线2l 所得弦长222251221k MN r d k +=-=+, ∴()()()()2224222221155112542811414k k k k EF MN k k k +-+-⋅=⨯=+++,设29141,5t k ⎡⎫=+∈⎪⎢⎣⎭, 214t k -=,则22211251148295025t EF MN t t t -⎛⎫- ⎪⎛⎫⎛⎫⎝⎭⋅==-+- ⎪ ⎪⎝⎭⎝⎭, ∵295025y x x =-+-的对称轴为259x =,在5,19⎛⎤⎥⎝⎦上单调递增, 016y <≤, ∴21109502516t t ⎛⎫⎛⎫<-+-≤ ⎪ ⎪⎝⎭⎝⎭,∴08EF MN <⋅≤.【点睛】本题考查了椭圆方程的求法,考查了直线与圆锥曲线,直线与圆的位置关系,常采取联立直线和圆锥曲线方程,利用一元二次方程的根与系数关系求解,对于直线与圆的位置关系,常采取圆的几何性质较多,运算量较少点,圆锥曲线类的题目的特点就是运算量大,要求学生具有较强的运算能力,属于难题. 考向4 与面积相关的最值问题【例5】 在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为_______________.【答案】45π【例6】动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线221y x =+总有公共点,则圆C 的面积的最小值_________________.【答案】4π【解析】设圆心为(,)a b ,半径为r ,|||1|r CF a ==+,即222(1)(1)a b a -+=+,即214a b =,∴圆心为21(,)4b b ,2114r b =+,圆心到直线221y x =++的距离为22|221|4142b b b d -++=≤+,∴2(223)b ≤-+或2b ≥,当2b =时,min 14124r =⨯+=,∴2min 4S r ππ==. 【跟踪练习】1.设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则ABO ∆面积的最小值为_____________. 【答案】3【解析】l 与圆相交所得弦的长为2,故弦心距2222213d m n ==-=+,所以22123m n mn +=≥,16mn ∴≤,l 与x 轴相交于点A 1,0m ⎛⎫ ⎪⎝⎭,与y 轴相交于点B 1,0n ⎛⎫ ⎪⎝⎭, 1111111632222AOB S OA OB m n mn ∆∴===≥⨯=. 2.【2017届高三七校联考期中考试】已知直线1:=-y x l 与圆M :012222=-+-+y x y x 相交于A ,C 两点,点B ,D 分别在圆M 上运动,且位于直线AC 两侧,则四边形ABCD 面积的最大值为 .30【解析】3)1()1(01222222=++-⇒=-+-+y x y x y x ,圆心M 到直线1:=-y x l 距离为212|111|=-+,BD 为过圆心M 且垂直于AC 的直径时,四边形ABCD 面积取最大值,为303221322121=⨯-⨯=⨯⨯BD AC .3.【2017河南安阳二模】已知圆:,动点在圆:上,则面积的最大值为( ) A .B .C .D .【答案】B4.【2018河南洛阳模拟】已知两动圆2221:(3)F x y r +=和2222:(3)(4)(04)F x y r r +=-<<,把它们的公共点的轨迹记为曲线C ,若曲线C 与y 轴的正半轴的交点为M ,且曲线C 上的相异两点,A B 满足:0MA MB =.(1)求曲线C 的方程;(2)证明直线AB 恒经过一定点,并求此定点的坐标; (3)求ABM ∆面积S 的最大值.【答案】(1)2214x y += ;(2)证明见解析,定点坐标为3(0,)5N -;(3)6425. 【解析】试题分析:(1)设两动圆的公共点为Q ,则有12124()QF QF F F +=> ,根据椭圆的定义可知Q 的轨迹为椭圆,由此求出轨迹方程;(2)先求出(0,1)M ,设1122(,),()A x y B x y ,当直线AB 斜率存在时设直线方程为y kx m =+ 与椭圆方程联立,由韦达定理计算1212(1)(1)0MA MB x x kx m kx m ⋅=++-+-=得35m -=,所以直线恒过定点3(0,)5N -,验证当直线AB 斜率不存在时也过此点即可;(3)将三角形面积分割成两部分进行计算,即ABM △面积212213225422514MNA MNB k S S S MN x x k ∆∆+=+=⋅-=⋅+,令254t k =+即可求出面积的最大值.试题解析: (1)设两动圆的公共点为Q ,则有12124()QF QF F F +=>.由椭圆的定义可知Q 的轨迹为椭圆,2,a c ==C 的方程是:2214x y +=. (2)证法一:由题意可知:(0,1)M ,设11(,)A x y ,22(,)B x y ,当AB 的斜率不存在时,易知满足条件0MA MB ⋅=的直线AB 为:0x =过定点3(0,)5N -当AB 的斜率存在时,设直线AB :y kx m =+,联立方程组:2214x y y kx m ⎧+=⎪⎨⎪=+⎩①②,把②代入①有:222(14)8440k x kmx m +++-= 122814km x x k-+=+③,21224414m x x k -⋅=+④, 因为0MA MB ⋅=,所以有1212(1)(1)0x x kx m kx m ⋅++-+-=,221212(1)(1)()(1)0k x x k m x x m +⋅+-++-=,把③④代入整理:22222448(1)(1)(1)01414m km k k m m k k--++-+-=++,(有公因式m -1)继续化简得: (1)(53)0m m --=,35m -=或1m =(舍), 综合斜率不存在的情况,直线AB 恒过定点3(0,)5N -.证法二:(先猜后证)由题意可知:(0,1)M ,设11(,)A x y ,22(,)B x y ,如果直线AB 恒经过一定点,由椭圆的对称性可猜测此定点在y 轴上,设为(0,)N m ; 取特殊直线:1MA y x =+,则直线MB 的方程为1y x =-+,解方程组22141x y y x ⎧+=⎪⎨⎪=+⎩得点83(,)55A --,同理得点83(,)55B -,此时直线AB 恒经过y 轴上的点3(0,)5N -下边证明点3(0,)5N -满足条件0MA MB ⋅=当AB 的斜率不存在时,直线AB 方程为:0x =, 点A B 、的坐标为(0,1)±,满足条件0MA MB ⋅=;当AB 的斜率存在时,设直线AB :35y kx =-,联立方程组: 221435x y y kx ⎧+=⎪⎪⎨⎪=-⎪⎩①②,把②代入①得:222464(14)0525k k x x +--= 122245(14)k x x k +=+③,1226425(14)x x k -⋅=+④, 所以1212121288(1)(1)()()55MA MB x x y y x x kx kx ⋅=⋅+--=⋅+--21212864(1)()525k k x x x x =+-++2226482464(1)052525(14)5(14)k k k k k -=+⋅-⋅+=++ (3)ABM △面积MNA MNB S S S =+△△=1212MN x x -由第(2)小题的③④代入,整理得:2322514S k=+ 因N 在椭圆内部,所以k R ∈,可设t 23249t t +32(2)94t t t=≥+92542t t +≥,∴6425S ≤(0k =时取到最大值).所以ABM △面积S 的最大值为6425.考点:1.椭圆的定义与几何性质;2.直线与椭圆的位置关系;3.基本不等式. 考向5 与圆有关的最值问题综合题【例7】已知实数x ,y 满足方程x 2+y 2-4x +1=0,求: (1)yx 的最大值和最小值;(2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.【点评】研究与圆有关的最值问题时,可借助图形的性质,利用数形结合求解.常见的最值问题有以下几种类型:①形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【例8】设Q P ,分别为()2622=-+y x 11022=+y x 上的点,则Q P ,两点间的最大距离是________________.【答案】26【例9】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 . 【答案】5【跟踪练习】1.【2018广西桂林柳州模拟】已知圆()221:24C x a y ++=和圆()222:1C x y b +-=只有一条公切线,若,a b R ∈且0ab ≠,则2211a b +的最小值为( ) A .2 B .4 C .8 D .9 【答案】D【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.【2017甘肃兰州高三第一次诊断性考试】已知圆和两点,,,若圆上存在点,使得,则当取得最大值时,点的坐标是( )A .B .C .D .【答案】D 【解析】设为圆上一点,由题意知,,即,,,,,所以所在直线倾斜角为30,所以的纵坐标为,的横坐标为,所以,故选D .3.【2018黑龙江海林朝鲜中学】已知两点(),0A a , (),0B a -(0a >),若曲线2223230x y x y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(]0,3B .[]1,3C .[]2,3D .[]1,2 【答案】B4.【2017吉林吉林大学附中高三第七次模拟】已知圆C : (()22311x y +-=和两点()0A t -,,()0(0)B t t >,,若圆C 上存在点P ,使得·0PA PB =,则t 的最小值为( )A .3B .2C .1 【答案】D【解析】由题意可得点P 的轨迹方程是以AB 位直径的圆,当两圆外切时有:min min 11t t =+⇒=,即t 的最小值为1.本题选择D 选项.点睛:在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围5.【2017天津河西区二模】若直线20ax by -+=(0a >, 0b >)被圆222410x y x y ++-+=截得的弦长为4,则11a b+的最小值为( )A .32+ C .14 D .32+【答案】A【解析】由题意得()()22124x y ++-= ,所以直线20ax by -+=过圆心,即220,22a b a b --+=+= ,因此111121213332222a b b a a b a b a b ⎛++⎛⎫⎛⎫⎛⎫+=+=++≥+= ⎪⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝ ,选A . 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.【2018安徽合肥一中、马鞍山二中等六校教育研究会上学期第一次联考】从直线y x =上一动点出发的两条射线恰与圆()22:21C x y +-=都相切,则这两条射线夹角的最大值为__________.【答案】2π 【解析】当动点与圆心连线与y=x 垂直时,两条射线夹角的最大,如图,易得夹角的最大值为2π.答案: 2π 7.若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.【答案】[1,1]-过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以||||sin 45OA OM ==2||12OM ≤, 解得||2OM ≤M (0x ,1),所以20||12OM x =+≤011x -≤≤,故0x 的取值范围是[1,1]-.8.【湖北省黄石市2017届高三年级九月份调研,10】圆222240x y ax a +++-=和圆2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈,且0ab ≠,则2211a b+的最小值为 . 【答案】19.【2017江苏苏北三市(连云港、徐州、宿迁)高三年级第三次调研】在平面直角坐标系中,圆:.若圆存在以为中点的弦,且,则实数的取值范围是__________.【答案】(或)【解析】由于原C 存在以G 位中点的弦AB ,且AB=2GO ,故 , 如图所示,过点O 作圆C 的两条切线,切点分别为B ,D ,圆上要存在满足题意的点A ,只需,即,连结CB ,由可得: , .10.【2016-2017学年天津市静海县第一中学高二上学期期末五校联考理】在平面直角坐标系中,直线被圆截得的弦的中点为,且满足,当取得最大值时,直线的方程是__________.【答案】。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。

高中关于圆的试题及答案

高中关于圆的试题及答案

高中关于圆的试题及答案题目一:求圆的面积和周长某圆的半径为5厘米,求该圆的面积和周长。

解答:圆的面积公式为:\[ A = \pi r^2 \]圆的周长公式为:\[ C = 2\pi r \]将半径 \( r = 5 \) 厘米代入公式计算:面积 \( A = \pi \times 5^2 = 25\pi \) 平方厘米周长 \( C = 2\pi \times 5 = 10\pi \) 厘米题目二:圆的切线问题已知点P(4,3)在圆 \( x^2 + y^2 = 25 \) 上,求过点P的圆的切线方程。

解答:首先,我们知道圆心O的坐标为(0,0),半径为5。

点P在圆上,所以OP是半径,OP的长度为5。

切线与半径垂直,因此切线的斜率与OP的斜率互为相反数的倒数。

OP 的斜率为 \( \frac{3-0}{4-0} = \frac{3}{4} \),所以切线的斜率为 \( -\frac{4}{3} \)。

切线方程为 \( y - y_1 = m(x - x_1) \),代入点P(4,3)和斜率\( m = -\frac{4}{3} \),得到:\[ y - 3 = -\frac{4}{3}(x - 4) \]化简得切线方程为:\[ 4x + 3y - 25 = 0 \]题目三:圆与直线的位置关系已知直线 \( l: 2x - 3y + 6 = 0 \) 与圆 \( C: x^2 + y^2 - 4x - 6y + 4 = 0 \),求直线l与圆C的位置关系。

解答:首先,将圆的方程化为标准形式:\[ (x-2)^2 + (y-3)^2 = 9 \]圆心C的坐标为(2,3),半径r为3。

接下来,计算圆心C到直线l的距离d:\[ d = \frac{|2\cdot2 - 3\cdot3 + 6|}{\sqrt{2^2 + (-3)^2}} = \frac{|4 - 9 + 6|}{\sqrt{13}} = \frac{1}{\sqrt{13}} \]由于 \( d < r \),即 \( \frac{1}{\sqrt{13}} < 3 \),所以直线l 与圆C相交。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)

一、选择题1.一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35 B .32-或23- C .54-或45- D .43-或34- 2.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=4.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .55.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±6.已知0a >,0b >,直线1l :()410x a y +-+=,2l :220bx y +-=,且12l l ⊥,则1112a b++的最小值为( ) A .2B .4C .23D .457.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .49.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( ) A .3,-3 B .5,2 C .5,1 D .7,1 11.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( )A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.若M 是直线cos sin 10x y θθ++=上到原点的距离最近的点,则当θ在实数范围内变化时,动点M 的轨迹方程是______.15.三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形,则a 的取值集合是__________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.若实数x ,y 满足关系10x y ++=,则式子S =______.18.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________. 19.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.20.若直线l :y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.三、解答题21.已知圆C 经过点A (0,2)和B (2,-2),且圆心C 在直线l :x-y +1=0上. (1)求圆C 的方程;(2)若直线m 过点(1,4),且被圆C 截得的弦长为6,求直线m 的方程.22.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 23.已知圆C :22420x y x +-+=. (1)求圆心C 的坐标和半径.(2)已知过点()1,3P 的直线l 交圆C 于,A B 两点,且2AB =,求直线l 的方程. 24.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB的面积为(1)求直线l 的方程; (2)直线:3l y x =-',点P 在l '上,求PA PB +的最小值. 25.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C截得的弦长为l 的方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-,设反射光线所在直线方程为()32y k x +=-,利用直线与圆相切的性质即可求得斜率k . 【详解】根据光的反射原理知,反射光线的反向延长线必过点()2,3--关于y 轴的对称点()2,3-, 设反射光线所在直线的斜率为k ,则反射光线所在直线方程为()32y k x +=-,即230kx y k ---=, 又由反射光线与圆()()22321x y ++-=1=,整理得21225120k k ++=,解得43k =-或34k =-.故选:D. 【点睛】过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a -≤≤-解得3a ≤-或2a ≥. 故选:D . 【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.A解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.4.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.D解析:D 【分析】根据12l l ⊥得到125a b ++=,再将1112a b++化为积为定值的形式后,利用基本不等式可求得结果. 【详解】因为12l l ⊥,所以240b a +-=,即125a b ++=, 因为0,0a b >>,所以10,20a b +>>, 所以1112a b ++=1112a b ⎛⎫+ ⎪+⎝⎭()1125a b ⨯++1212512b a a b +⎛⎫=++ ⎪+⎝⎭14255⎛≥+= ⎝, 当且仅当35,24a b ==时,等号成立. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方7.D解析:D【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.9.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.12.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.【分析】直线上到原点的距离最近的点就是过原点作直线的垂线垂足即为又原点到直线的距离为定值所以可知动点的轨迹【详解】∵原点到直线的距离为∴当在实数范围内变化时动点的轨迹为以原点为圆心半径为1的圆即其轨 解析:221x y +=【分析】直线cos sin 10x y θθ++=上到原点的距离最近的点,就是过原点作直线的垂线,垂足即为M ,又原点到直线的距离为定值,所以可知动点M 的轨迹. 【详解】∵原点()0,0到直线cos sin 10x y θθ++=1=,∴当θ在实数范围内变化时,动点M 的轨迹为以原点()0,0为圆心,半径为1的圆, 即其轨迹方程为221x y +=. 故答案为:221x y += 【点睛】本题主要考查轨迹方程,解决与直线有关的轨迹问题时,要充分考虑到图形的几何性质,属于中档题.15.【分析】由题意可知直线与另外两条直线分别平行或三条直线交于一点由此可求得实数的取值【详解】由于三条直线不能围成三角形则直线与另外两条直线分别平行或三条直线交于一点(1)直线与直线平行则解得;(2)直解析:1,3,63⎧⎫-⎨⎬⎩⎭【分析】由题意可知直线350ax y +-=与另外两条直线分别平行或三条直线交于一点,由此可求得实数a 的取值.【详解】由于三条直线10x y ++=,280x y -+=,350ax y +-=不能围成三角形, 则直线350ax y +-=与另外两条直线分别平行或三条直线交于一点.(1)直线350ax y +-=与直线10x y ++=平行,则35111a -=≠,解得3a =; (2)直线350ax y +-=与直线280x y -+=平行,则35218a -=≠-,解得6a =-; (3)若三条直线交于一点,联立10280x y x y ++=⎧⎨-+=⎩,解得32x y =-⎧⎨=⎩, 所以直线10x y ++=,280x y -+=交于点()3,2-,由题意可知,点()3,2-在直线350ax y +-=上,可得3650a -+-=,解得13a =. 因此,实数a 的取值集合为1,3,63⎧⎫-⎨⎬⎩⎭. 故答案为:1,3,63⎧⎫-⎨⎬⎩⎭.【点睛】由三线不能确定三角形问题的求解,除了考虑直线平行外,同时也不能忽略三线交于一点这种情况的讨论. 16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆解析:【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2l ==. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==, 根据图像的对称性可知2232l PC d =-= 所以线段MN 长度的最大值为3故答案为: 3【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的 解析:322【分析】 ()()222222211x y x y x y +--+=-+-,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】()()22222211x y x y x y +--+=-+-,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离,从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离, 由点到直线的距离公式,可得1113222d ++==, 所以S 的最小值为min 322S d ==故答案为:2. 【点睛】 形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.18.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以 解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果.【详解】 当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x y a a+=, 又直线l 过点(2,1)A -,则211a a -+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--. 故答案为:12y x =-或1y x =--. 【点睛】 易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x y a b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.19.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】 利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值, 过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3. 此时22(32)(30)10PC =-+-=,此时,213L PC =-= 故答案为:3【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.20.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(033303k -==-,直线l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭三、解答题21.(1)()()223225x y +++=;(2)x =1或512430x y -+=【分析】(1)根据圆心C 在直线l :x-y +1=0上,设圆心为:(),1a a +,再根据圆C 经过点A (0,2)和B (2,-2),由()()()2222123a a a a +-=-++求解.(2)当直线m 的斜率不存在时,方程为x =1,验证即可,当直线m 的斜率存在时,设方程为()41y k x -=-4=求解.【详解】(1)因为圆心C 在直线l :x-y +1=0上.设圆心为:(),1a a +又圆C 经过点A (0,2)和B (2,-2),所以()()()2222123a a a a +-=-++,解得3a =-, 所以圆心为 ()3,2--, ()222125r a a =+-=, 所以圆的方程为:()()223225x y +++=;(2)若直线m 的斜率不存在时,方程为x =1,被圆C 截得的弦长为6,符合, 若直线m 的斜率存在时,方程为()41y k x -=-,即 40kx y k -+-=,4=, 解得512k =, 所以直线方程为512430x y -+=,综上:直线m 的方程为x =1或512430x y -+=.【点睛】方法点睛:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.22.(1)()()224225x y -++=;(2)2200x y --=.【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程.【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=. (2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=.【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 23.(1)圆心()2,0C ,半径r =2)1x =或43130x y +-=. 【分析】(1)将圆的一般方程化为标准方程,由此得到圆心和半径;(2)直线l 斜率不存在时,可验证满足题意;当直线l 斜率存在时,假设l 方程,利用垂径定理构造方程可求得斜率k ,从而得到所求方程.【详解】(1)圆C 方程可化为:()2222x y -+=,∴圆心()2,0C ,半径r =(2)①当直线l 斜率不存在时,l 的方程为:1x =,由()22122x x y =⎧⎪⎨-+=⎪⎩得:11x y =⎧⎨=⎩或11x y =⎧⎨=-⎩,()112AB ∴=--=,满足题意; ②当直线l 斜率存在时,设l 方程为:()31y k x -=-,即30kx y k --+=,∴圆心C 到直线l的距离d ==,2AB =,2∴==,解得:43k =-, 413:033l x y ∴--+=,即43130x y +-=; 综上所述:直线l 的方程为:1x =或43130x y +-=.【点睛】易错点睛:本题考查根据直线被圆截得弦长求解直线方程的问题,易错点是忽略直线斜率不存在的情况,造成求解不完整.24.(1)y =+;(2) .【分析】(1)求出直线l 的斜率,设直线l 的方程为:y b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A ,(0,B ,求出点()4,0A 关于直线:l y x ='的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值. 【详解】(1)由题意可得:直线l 的斜率2πtan3k ==,设直线l 的方程为:y b =+.可得直线l 与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b>.123OAB S b b ∴=⨯⨯=△b =,∴直线l的方程为:y =+.(2)由(1)可得:()4,0A ,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则04422n m n m -⎧=⎪-⎪⎨+⎪=⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-.PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】 关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.25.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4xy -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --= 1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.26.(1)()()22228x y ++-=;(2. 【分析】(1)由已知求得圆心和半径可得所求的圆的方程;(2)由已知得A ,B 两点都在以OP 为直径的圆上.联立两圆的方程得直线AB 的方程为4410x y -+=,再由点到直线的距离公式可求得线段AB 的长度.【详解】(1)∵所求圆的圆心为线段OP 的中点()2,2-,半径为1||2OP ==∴以OP 为直径的圆的方程为()()22228x y ++-=. (2)∵PA 、PB 是圆22:1O x y +=的两条切线,∴OA PA ⊥,OB PB ⊥,∴A ,B 两点都在以OP 为直径的圆上.由2222(2)(2)81x y x y ⎧++-=⎨+=⎩得直线AB 的方程为4410x y -+=,O 点到直线AB 的距离为8d =,线段AB 的长度为4AB ==. 【点睛】方法点睛:在解决直线与圆的位置关系的问题时,注意运用平面几何知识,如圆的切线的性质,以及圆的垂径定理等.。

高中数学【直线与圆】专题练习

高中数学【直线与圆】专题练习

高中数学【直线与圆】专题练习1.点(0,-1)到直线y=k(x+1)距离的最大值为()A.1B. 2C. 3D.2答案 B解析设点A(0,-1),直线l:y=k(x+1),由l恒过定点B(-1,0),知当AB⊥l时,点A(0,-1)到直线y=k(x+1)的距离最大,最大值为 2.2.已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点,过点P作⊙M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为()A.2x-y-1=0B.2x+y-1=0C.2x-y+1=0D.2x+y+1=0答案 D解析由⊙M:x2+y2-2x-2y-2=0①,得⊙M:(x-1)2+(y-1)2=4,所以圆心为M(1,1),半径为2.如图,连接AM,BM,易知四边形PAMB的面积为12|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需△PAM的面积最小.因为|AM |=2,所以只需|PA |最小. 又|PA |=|PM |2-|AM |2=|PM |2-4,所以只需直线2x +y +2=0上的动点P 到M 的距离最小,其最小值为|2+1+2|5=5,此时PM ⊥l ,易求出直线PM 的方程为x -2y +1=0. 由⎩⎪⎨⎪⎧2x +y +2=0,x -2y +1=0,得⎩⎪⎨⎪⎧x =-1,y =0,所以P (-1,0). 易知P 、A 、M 、B 四点共圆,所以以PM 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫522,即x 2+y 2-y -1=0②, 由①②得,直线AB 的方程为2x +y +1=0,故选D.3.(多选)已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB |=3 2 D.当∠PBA 最大时,|PB |=3 2 答案 ACD解析 设圆(x -5)2+(y -5)2=16的圆心为M (5,5),半径为4. 由题意知直线AB 的方程为x 4+y2=1,即x +2y -4=0, 则圆心M 到直线AB 的距离d =|5+2×5-4|5=115>4, 所以直线AB 与圆M 相离,所以点P 到直线AB 的距离的最大值为4+d =4+115, 又4+115<5+1255=10,故A 正确;易知点P到直线AB的距离的最小值为d-4=115-4,又115-4<1255-4=1,故B不正确;过点B作圆M的两条切线,切点分别为N,Q,如图所示,连接MB,MN,MQ,则当∠PBA最小时,点P与N重合,|PB|=|MB|2-|MN|2=52+(5-2)2-42=32;当∠PBA最大时,点P与Q重合,|PB|=32,故C,D都正确.综上,选ACD.4.抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求抛物线C,⊙M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.解(1)由题意,直线x=1与C交于P,Q两点,且OP⊥OQ,设C的焦点为F,P在第一象限,则根据抛物线的对称性,得∠POF=∠QOF=45°,所以P(1,1),Q(1,-1).设抛物线C的方程为y2=2px(p>0),则1=2p,得p=1 2,所以抛物线C的方程为y2=x.由题意,圆心M(2,0)到l的距离即⊙M的半径,且距离为1,所以⊙M的方程为(x-2)2+y2=1.(2)直线A 2A 3与⊙M 相切,理由如下: 设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),当A 1,A 2,A 3中有一个为坐标原点,另外两个点的横坐标均为3时,A 1A 2,A 1A 3均与⊙M 相切,此时直线A 2A 3与⊙M 相切.当x 1≠x 2≠x 3时,直线A 1A 2的方程为x -(y 1+y 2)y +y 1y 2=0, 则|2+y 1y 2|(y 1+y 2)2+1=1,即(y 21-1)y 22+2y 1y 2+3-y 21=0, 同理可得(y 21-1)y 23+2y 1y 3+3-y 21=0,所以y 2,y 3是方程(y 21-1)y 2+2y 1y +3-y 21=0的两个根,则y 2+y 3=-2y 1y 21-1,y 2y 3=3-y 21y 21-1.直线A 2A 3的方程为x -(y 2+y 3)y +y 2y 3=0. 设点M 到直线A 2A 3的距离为d (d >0),则d 2=(2+y 2y 3)21+(y 2+y 3)2=⎝ ⎛⎭⎪⎫2+3-y 21y 21-121+⎝ ⎛⎭⎪⎫-2y 1y 21-12=1,从而d =r =1,所以直线A 2A 3与⊙M 相切. 综上可得,直线A 2A 3与⊙M 相切.1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为r =D 2+E 2-4F 2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】 (1)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823 C. 3D.833(2)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( ) A.2x +3y -12=0 B.2x +3y +12=0 C.2x -3y +12=0 D.2x -3y -12=0答案 (1)B (2)B解析 (1)由l 1∥l 2得(a -2)a =1×3,且a ×2a ≠3×6, 解得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+(-1)2=823.(2)由ax +y +3a -1=0可得a (x +3)+y -1=0, 令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为 2x +3y +c =0(c ≠-6), 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去). ∴所求直线方程为2x +3y +12=0.探究提高 1.求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.2.(1)要注意直线方程每种形式的局限性,点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程既不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(2)讨论两直线的位置关系时,要注意直线的斜率是否存在.【训练1】 (1)(多选)光线自点(2,4)射入,经倾斜角为135°的直线l :y =kx +1反射后经过点(5,0),则反射光线还经过下列哪些点( ) A.(14,2) B.⎝ ⎛⎭⎪⎫14,98 C.(13,2)D.(13,1)(2)已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为________. 答案 (1)BD (2)252解析 (1)因为直线l 的倾斜角为135°,所以直线l 的斜率k =-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则⎩⎪⎨⎪⎧n -4m -2=1,n +42=-m +22+1,解得⎩⎪⎨⎪⎧m =-3,n =-1,所以反射光线经过点(-3,-1)和点(5,0),则反射光线所在直线的方程为y =0-(-1)5-(-3)(x-5),即y=18(x-5),当x=13时,y=1;当x=14时,y=98.故选BD.(2)由题意可知,直线l1:kx-y+4=0经过定点A(0,4),直线l2:x+ky-3=0经过定点B(3,0),注意到直线l1:kx-y+4=0和直线l2:x+ky-3=0始终垂直,点M又是两条直线的交点,则有MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.故|MA|·|MB|≤252(当且仅当|MA|=|MB|=522时取“=”).热点二圆的方程【例2】(1)已知圆C与x轴的正半轴相切于点A,圆心在直线y=2x上,若点A 在直线x-y-4=0的左上方且到该直线的距离等于2,则圆C的标准方程为()A.(x-2)2+(y+4)2=4B.(x+2)2+(y+4)2=16C.(x-2)2+(y-4)2=4D.(x-2)2+(y-4)2=16(2)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个特定的三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4 km,丙、甲两地距离是丙、乙两地距离的3倍,则这个三角形信号覆盖区域的最大面积(单位:km2)是()A.2 3B.4 3C.3 6D.4 6答案(1)D(2)B解析(1)∵圆C的圆心在直线y=2x上,∴可设圆心C的坐标为(a,2a).∵圆C与x轴正半轴相切于点A,∴a>0,且圆C的半径r=2a,A(a,0).∵点A到直线x-y-4=0的距离d=2,|a-0-4|=2,解得a=6或a=2,∴d=1+1∴A(2,0)或A(6,0).∵点A在直线x-y-4=0的左上方,∴A(2,0),∴C(2,4),r=4,∴圆C的标准方程为(x-2)2+(y-4)2=16.(2)以甲、乙两地所在直线为x轴,甲、乙两地所连线段的垂直平分线为y轴建立平面直角坐标系.设甲、乙两地的坐标分别为(-2,0),(2,0),丙地坐标为(x,y)(y≠0),则(x+2)2+y2=3·(x-2)2+y2,整理得(x-4)2+y2=12(y≠0),可知丙地所在的圆的半径为r=2 3.所以三角形信号覆盖区域的最大面积为12×4×23=4 3.探究提高 1.求圆的方程主要方法有两种:(1)几何法求圆的方程,根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法求圆的方程时,若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,否则选择圆的一般方程.2.第(2)题是一道以阿波罗尼斯圆为背景的数学应用问题,解题关键是先利用题设条件给出的关系式,求出阿波罗尼斯圆的方程,然后应用圆中的几何量求解三角形信号覆盖区域的最大面积.温馨提醒解答圆的方程问题,应注意数形结合,充分运用圆的几何性质.【训练2】 (1)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A.4 B.5 C.6D.7(2)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为________. 答案 (1)A (2)x 2+(y -3)2=10解析 (1)由平面几何知识知,当且仅当原点、圆心、点(3,4)共线时,圆心到原点的距离最小且最小值为d min =(3-0)2+(4-0)2-1=4.(2)∵P (3,4)为C 上一点,∴9m -162=1, 解得m =1,则B (1,0),A (-1,0), ∴k PB =4-03-1=2,BP 的中点为(2,2),PB 的垂直平分线方程为l 1:y =-12(x -2)+2, AB 的垂直平分线方程为l 2:x =0,则圆心是l 1与l 2的交点M ,联立l 1与l 2方程, 解得⎩⎪⎨⎪⎧x =0,y =3,则M (0,3),r =|MB |=1+32=10,∴△PAB 外接圆的标准方程为x 2+(y -3)2=10. 热点三 直线(圆)与圆的位置关系 考向1 圆的切线问题【例3】 (1)已知直线y =kx +b (k >0)与圆x 2+y 2=1和圆(x -4)2+y 2=1均相切,则k =__________,b =________.(2)若斜率为3的直线与y 轴交于点A ,与圆x 2+(y -1)2=1相切于点B ,则|AB |=________.(3)直线l 是圆O :x 2+y 2=4的切线,且直线l 过点A (3,-1),点Q 是直线l 上的动点,过点Q 作圆M :x 2+43x +y 2=0的切线QT ,T 为切点,则线段QT 的长度的最小值为________.答案 (1)33 -233 (2)3 (3)13解析 (1)由题意知,直线kx -y +b =0(k >0)分别与圆心坐标为(0,0),半径为1,及圆心坐标为(4,0),半径为1的两圆相切, 可得⎩⎪⎨⎪⎧|b |k 2+1=1,①|4k +b |k 2+1=1,②由①②,解得⎩⎪⎨⎪⎧k =33,b =-233.(2)设直线AB 的方程为y =3x +b ,则点A (0,b ).由于直线AB 与圆x 2+(y -1)2=1相切,且圆心为C (0,1),半径为1, 则|b -1|(3)2+(-1)2=1,解得b =-1或b =3,所以|AC |=2.因为|BC |=1,故|AB |=|AC |2-|BC |2= 3.(3)因为A (3,-1)的坐标满足圆O 的方程,所以点A 在圆O 上.连接OA ,易知l ⊥OA ,k OA =-13,所以k l =3,所以过点A 的切线l 的方程为3x -y -4=0. 由x 2+43x +y 2=0,得(x +23)2+y 2=12, 易知圆M 的圆心为(-23,0),半径为2 3.连接MT ,MQ ,在Rt △MQT 中, |QT |=|MQ |2-|MT |2=|MQ |2-12.因为|MQ |的最小值是点M 到直线l 的距离d , d =|3×(-23)-0-4|(3)2+(-1)2=5,所以线段QT 的长度的最小值为|QT |min =52-12=13.探究提高 1.过一点求圆的切线,要考虑此点是在圆上还是在圆外.若点(x 0,y 0)在圆上,则切线只有一条,此时过圆x 2+y 2=r 2(r >0)上一点(x 0,y 0)的切线方程为x 0x +y 0y =r 2,过圆(x -a )2+(y -b )2=r 2(r >0)上一点(x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;若点(x 0,y 0)在圆外,则切线有两条.2.直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,但一定要注意斜率不存在的情形.【训练3】 (1)过点D (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则弦AB 所在直线的方程为( ) A.2y -1=0 B.2y +1=0 C.x +2y -1=0D.x -2y +1=0(2)(多选)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的值可以是( ) A.1 B.2 C.3D.4答案 (1)B (2)AB解析 (1)由圆C :(x -1)2+y 2=1的方程可知其圆心为C (1,0),半径为1. 连接CD ,以线段CD 为直径的圆的方程为(x -1)(x -1)+(y +2)(y -0)=0, 整理得(x -1)2+(y +1)2=1.将两圆的方程相减,可得公共弦AB 所在直线的方程为2y +1=0.(2)由x 2+y 2-4x =0,得(x -2)2+y 2=4,则圆心为C (2,0),半径r =2.过点P 所作的圆的两条切线相互垂直,设两切点分别为A ,B ,连接AC ,BC ,则四边形PACB 为正方形,所以|PC |=2r =22,则圆心到直线的距离d =|2k -0+k |1+k 2≤22,即-22≤k ≤22,所以实数k 的取值可以是1,2.故选AB. 考向2 直线与圆的弦长问题【例4】 在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. (1)解 不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2, ①y -12=x 2⎝ ⎛⎭⎪⎫x -x 22, ②又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.探究提高 1.研究直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与圆的弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.【训练4】 (1)已知圆C :(x -2)2+(y -3)2=9,过点M (1,1)的直线l 与圆C 交于A ,B 两点,则弦长|AB |最短时直线l 的方程为( ) A.2x -y -1=0 B.x +2y -8=0 C.2x -y +1=0D.x +2y -3=0(2)(多选)关于圆C :x 2+y 2-kx +2y +14k 2-k +1=0,下列说法正确的是( ) A.k 的取值范围是k >0B.若k =4,过M (3,4)的直线l 与圆C 相交所得弦长为23,则l 的方程为12x -5y -16=0C.若k =4,则圆C 与圆x 2+y 2=1相交D.若k =4,m >0,n >0,直线mx -ny -1=0恒过圆C 的圆心,则1m +2n ≥8恒成立答案 (1)D (2)ACD解析 (1)根据题意,圆C :(x -2)2+(y -3)2=9的圆心C 为(2,3),半径r =3, 当CM 与AB 垂直时,即M 为AB 的中点时,弦长|AB |最短, 此时k CM =3-12-1=2,则k AB =-12,此时直线AB 的方程为y -1=-12(x -1),变形可得x +2y -3=0. (2)对于A ,由(-k )2+22-4⎝ ⎛⎭⎪⎫14k 2-k +1=4k >0,得k >0,故A 正确;对于B ,当k =4时,圆C 的标准方程为(x -2)2+(y +1)2=4,圆心为(2,-1),半径r =2,M 在圆外,因此过M (3,4)与圆相交所得弦长为23的直线有两条,故B 错误;对于C ,由B 知,圆C 的圆心为C (2,-1),半径r =2.因为(2,-1)与(0,0)间的距离为5,2-1<5<2+1,所以两圆相交,故C 正确;对于D ,由直线mx -ny -1=0过圆心,得2m +n =1,所以1m +2n =(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+n m +4m n ≥4+24=8,当且仅当n =2m =12时等号成立,故D 正确.故选ACD.一、选择题1.设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 若直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行, 则⎩⎪⎨⎪⎧2λ(1-λ)=6(λ-1),2λ×(-4)≠6×(-1),解得λ=-3或λ=1. 又“λ=-3”是“λ=-3或λ=1”的充分不必要条件,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件.2.在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( ) A.圆 B.椭圆 C.抛物线 D.直线 答案 A解析 以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点A ,B 分别为(-a ,0),(a ,0)(a >0),点C 为(x ,y ), 则AC→=(x +a ,y ),BC →=(x -a ,y ), 所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1,整理得x 2+y 2=a 2+1. 因此点C 的轨迹为圆.故选A.3.(多选)已知直线l 过点A (a ,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 可能的取值为( ) A. 2 B.3 2 C.-3 2 D.- 2答案 AD解析 直线l 的方程为y =x -a ,即x -y -a =0.由圆的半径为2,又圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于1,则|a |2=1,a =±2.故选AD.4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.455答案 B解析 因为圆与两坐标轴都相切,且点(2,1)在圆上, 所以可设圆的方程为(x -a )2+(y -a )2=a 2(a >0), 则(2-a )2+(1-a )2=a 2,解之得a =1或a =5. 所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x -y -3=0的距离d =|2×1-1-3|22+(-1)2=255或d =|2×5-5-3|5=255.5.已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|PA →+PB→|的最大值为( ) A.26+2 B.26+4 C.226+4 D.226+2答案 C解析 取AB 中点D (2,-3),则PA→+PB →=2PD →,|PA →+PB →|=|2PD →|=2|PD →|, 又由题意知,圆C 的圆心C (1,2),半径为2,|PD →|的最大值为圆心C (1,2)到D (2,-3)的距离d 与半径r 的和, 又d =1+25=26,∴d +r =26+2,∴2|PD→|的最大值为226+4, 即|PA→+PB →|的最大值为226+4. 6.(多选)已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( )A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切 答案 ABD解析 圆心C (0,0)到直线l 的距离d =r 2a 2+b2.若点A (a ,b )在圆C 上,则a 2+b 2=r 2,所以d =r 2a 2+b2=|r |,则直线l 与圆C相切,故A 正确;若点A (a ,b )在圆C 内,则a 2+b 2<r 2,所以d =r 2a 2+b2>|r |,则直线l 与圆C 相离,故B 正确;若点A (a ,b )在圆C 外,则a 2+b 2>r 2,所以d =r 2a 2+b2<|r |,则直线l 与圆C 相交,故C 错误;若点A (a ,b )在直线l 上,则a 2+b 2-r 2=0即a 2+b 2=r 2,所以d =r 2a 2+b2=|r |,直线l 与圆C 相切,故D 正确.故选ABD.7.若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( ) A.y =2x +1 B.y =2x +12 C.y =12x +1 D.y =12x +12答案 D解析 易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①. 设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0), 则y ′|x =x 0=12x -12=k ②,x 0=kx 0+b ③.由②③可得b =12x 0,将b =12x 0,k =12x -12代入①得x 0=1或x 0=-15(舍去).所以k =b =12,故直线l 的方程为y =12x +12. 二、填空题8.已知△ABC 的顶点坐标分别为A (3,4),B (6,0),C (-5, -2),则内角A 的平分线所在直线的方程为________.答案 7x -y -17=0解析 法一 由题意,得|AC |=10,|AB |=5.设内角A 的平分线交BC 于点D ,则由角平分线定理得|CD ||DB |=|AC ||AB |=2,即CD →=23CB →,可求得D⎝ ⎛⎭⎪⎫73,-23,从而k AD =7,所以直线AD 的方程为7x -y -17=0. 法二 AB→=(3,-4),AC →=(-8,-6),所以△ABC 的内角A 的平分线所在直线的方向向量为AP →=AB →|AB →|+AC →|AC →|=15(3,-4)+110(-8,-6)=⎝ ⎛⎭⎪⎫-15,-75,所以所求直线的斜率为7,所以所求直线的方程为y -4=7(x -3),即7x -y -17=0. 9.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 的方程为________________. 答案 x +y -3=0解析 圆C 的标准方程为(x -4)2+(y -1)2=9, ∴圆C 的圆心C (4,1),半径r =3. 又直线l :y =a (x -3)过定点P (3,0),则当直线l 与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,∴a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0.10.已知曲线y =-x 2+4x -3与直线kx -y +k -1=0有两个不同的交点,则实数k 的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫12,34解析 曲线y =-x 2+4x -3整理得(x -2)2+y 2=1(y ≥0),则该曲线表示圆心为(2,0),半径为1的圆的上半部分,直线kx -y +k -1=0过定点A (-1,-1). 如图,当k ∈[k 1,k 2)时,曲线与直线有两个不同的交点,易得k 1=12,k 2=34,所以实数k 的取值范围是⎣⎢⎡⎭⎪⎫12,34.11.已知圆O :x 2+y 2=1,设点P (t ,4)为直线y =4上一点,过点P 作圆O 的切线,切点分别为M ,N ,则直线MN 所过定点的坐标为________.答案 ⎝ ⎛⎭⎪⎫0,14 解析 设M (x 1,y 1),N (x 2,y 2).因为M 是切点,在圆上,所以以点M 为切点的切线方程为x 1x +y 1y =1, 因为P (t ,4)在切线PM 上,所以tx 1+4y 1=1, 所以切点M (x 1,y 1)在直线tx +4y =1上, 同理,切点N (x 2,y 2)也在直线tx +4y =1上, 所以直线MN 的方程为tx +4y =1, 故直线MN 过定点⎝ ⎛⎭⎪⎫0,14.三、解答题12.已知以点A (-1,2)为圆心的圆与直线m :x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点. (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程.解 (1)易知点A (-1,2)到直线x +2y +7=0的距离为圆A 的半径r ,∴r=|-1+4+7|5=25,∴圆A的方程为(x+1)2+(y-2)2=20.(2)记MN的中点为Q,则∠MQA=90°,且|MQ|=19,在Rt△AMQ中,|AQ|=|AM|2-|MQ|2=1,当直线l的斜率不存在时,直线l的方程为x=-2,显然x=-2符合题意,当直线l的斜率存在时,设动直线l的方程为y=k(x+2),由点A(-1,2)到l的距离为1,得|-k-2+2k|k2+1=1,解得k=34.∴所求l的方程为3x-4y+6=0或x=-2.13.(多选)已知点A是直线l:x+y-2=0上一定点,点P,Q是圆x2+y2=1上的动点,若∠PAQ的最大值为90°,则点A的坐标可以是()A.(0,2)B.(1,2-1)C.(2,0)D.(2-1,1)答案AC解析如图所示,坐标原点O到直线l:x+y-2=0的距离d=212+12=1,则直线l与圆x2+y2=1相切,由图可知,当AP,AQ均为圆x2+y2=1的切线时,∠PAQ取得最大值.连接OP,OQ,OA,当∠PAQ=90°时,又∠APO=∠AQO=90°,|OP|=|OQ|=1,则四边形APOQ为正方形,所以|OA|=2|OP|=2.设A(t,2-t),由两点间的距离公式得|OA|=t2+(2-t)2=2,整理得2t2-22t=0,解得t=0或t=2,因此,点A的坐标为(0,2)或(2,0).故选AC.14.已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.又已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,OM,由已知得|AO|=2.又MO⊥AO,得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故得x2+y2+4=(x+2)2, 化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.。

高中数学必修二直线和圆练习含答案

高中数学必修二直线和圆练习含答案

高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )A.2条B.3条C.4条D.以上均错6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.1D.-18.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22-C.12-D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3.与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x2+y2-4x+6y-12=0的内部有一点A(4,-2),则以A为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A-并且和两个坐标轴围成的三角形的面积是1的直线方程。

高中数学人教A版(2019)选择性必修第一册《第二章 直线和圆的方程》章节练习(含解析)

高中数学人教A版(2019)选择性必修第一册《第二章 直线和圆的方程》章节练习(含解析)

人教A版(2019)选择性必修第一册《第二章直线和圆的方程》章节练习一、单选题(本大题共8小题,共40分)1.(5分)直线l经过两条直线3x+4y−5=0和3x−4y−13=0的交点,且与直线x+ 2y+1=0垂直,则l的方程是()A. 2x+y−7=0B. 2x−y−7=0C. 2x+y+7=0D. 2x−y+7=02.(5分)到直线2x+y+1=0的距离为√55的点的集合是()A. 直线2x+y−2=0B. 直线2x+y=0C. 直线2x+y=0和2x+y−2=0D. 直线2x+y=0和2x+y+2=03.(5分)直线√3x+y−1=0的倾斜角是()A. 30∘B. 60∘C. 120∘D. 150∘4.(5分)过P(2,−2)的直线l与圆(x−1)2+y2=1相切,则直线l的方程为()A. 3x+4y+2=0或y=−2B. 4x+3y−2=0或y=−2C. 3x+4y+2=0或x=2D. 4x+3y−2=0或x=25.(5分)若方程x2+y2−x+y+m=0表示圆,则实数m的取值范围是()A. m<12B. m>12C. m<0D. m⩽126.(5分)直线x+√2y−1=0的斜率是()A. √2B. −√2C. √22D. −√227.(5分)已知直线m过点A(2,−3),且在两个坐标轴上的截距相等,则直线m的方程是()A. 3x+2y=0B. x+y+1=0C. x+y+1=0或3x+2y=0D. x+y−1=0或3x−2y=08.(5分)直线x+2y+3=0在y轴上的截距为()A. 32B. 3 C. −3 D. −32二、多选题(本大题共5小题,共25分)9.(5分)古希腊著名数学家阿波罗尼斯发现“若A、B为平面上相异的两点,则所有满足:|PA||PB|=λ(λ>0,且λ≠1)的点P的轨迹是圆“,后来人们称这个圆为阿波罗尼斯圆.在平面直角坐标系xOy中,A(−2,0),B(4,0),若λ=12,则下列关于动点P的结论正确的是()A. 点P的轨迹方程为x2+y2+8x=0B. ΔAPB面积的最大值为6C. 在x轴上必存在异于A、B的两定点M、N,使得|PM||PN|=12D. 若点Q(−3,1),则2|PA|+|PQ|的最小值为5√210.(5分)已知双曲线C:x2−y24=1,则()A. 双曲线C的离心率等于焦距的长B. 双曲线y2−x24=1与双曲线C有相同的渐近线C. 双曲线C的一条准线被圆x2+y2=1截得的弦长为4√55D. 直线y=kx+b(k,b∈R)与双曲线C的公共点个数只可能为0,1,211.(5分)已知圆C:(x−1)2+(y−2)2=25,直线l:(2m+1)x+(m+1)y−7m−4=0.下列命题正确的有()A. 直线l与圆C可能相切B. y轴被圆C截得的弦长为4√6C. 直线l被圆C截得的最短弦长为2√5D. 直线l被圆C截得弦长最短时,直线l的方程为2x−y−5=012.(5分)设有一组圆C k:(x−1)2+(y−k)2=k4(k∈N∗).下列四个命题正确的是()A. 存在k,使圆与x轴相切B. 存在一条直线与所有的圆均相交C. 存在一条直线与所有的圆均不相交D. 所有的圆均不经过原点13.(5分)过点P(-1,1)的直线l与圆x2+y2+4x=0相交于A,B两点,当|AB|取得最值时,直线l的方程是()A. x-y+2=0B. x-y=0C. x-y-2=0D. x+y=0三、填空题(本大题共5小题,共25分)14.(5分)圆x2+y2+x=0与圆x2+y2−2y=0的公共弦所在的直线方程为______.15.(5分)已知点A(0,2)关于直线l的对称点为B(4,0),点C(6,3)关于直线l的对称点为D(m,n),则m+n= ______ .16.(5分)已知点P(1,3),点Q(−1,2),点M为直线x−y+1=0上一动点,则|PM|+|QM|的最小值为______ .17.(5分)设直线l:3x+4y+4=0,圆C:(x−2)2+y2=r2(r>0),若圆C上存在两点P,Q,直线l上存在一点M,使得∠PMQ=90°,则r的取值范围是______.18.(5分)过点P(3,4)且与直线2x−y+1=0平行的直线方程为 ______.四、解答题(本大题共5小题,共60分)19.(12分)已知线段AB两个端点的坐标为A(2,4),B(3,2),点P(x,y)是线段AB上一个动点.(1)求yx 的最大值和最小值. (2)求y−x y+x 的取值范围.20.(12分)已知圆心在原点的圆被直线y =x +1截得的弦长为√14. (1)求圆的方程;(2)设动直线y =k(x −1)(k ≠0)与圆C 交于A ,B 两点,问在x 轴正半轴上是否存在定点N ,使得AN 与直线BN 关于x 轴对称?若存在,请求出点N 的坐标;若不存在,请说明理由.21.(12分)圆心为C 的圆经过点A (0,2)和点B (2,0),且圆心C 在直线l 1:2x −y −4=0上.(Ⅰ)求圆C 的方程;(Ⅰ)求直线l 2:3x +4y −8=0被圆C 截得的弦的长度.22.(12分)如图,A(m,√3m)和B(n,−√3n)两点分别在射线OS 、OT 上移动,且OA →.OB →=−12,O 为坐标原点,动点P 满足OP →=OA →+OB →. (Ⅰ)求m ⋅n 的值;(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(Ⅲ)若直线l 过点E(2,0)交(Ⅱ)中曲线C 于M 、N 两点,且ME →=3EN →,求l 的方程.23.(12分)已知圆M :x 2+y 2−2x −2y −2=0,直线L 过点P(2,3)且与圆M 交于A ,B 两点,且|AB |=2√3,求直线L 的方程.答案和解析1.【答案】B;【解析】该题考查直线方程的求解,涉及直线的交点和直线的垂直问题,属基础题.先解方程组求出交点,然后利用垂直得到斜率,然后求出方程即可.解:联立方程{3x+4y−5=03x−4y−13=0,解得x=3,y=−1,故所求直线l过点(3,−1),由直线x+2y+1=0的斜率为−12,可知l的斜率为2,由点斜式方程可得:y+1=2(x−3),即2x−y−7=0,故选B.2.【答案】D;【解析】设点(x,y)满足条件,则√22+1=√55,整理得2x+y=0和2x+y+2=0,故选D.3.【答案】C;【解析】此题主要考查直线的倾斜角的求法,是基本知识的应用.首先求出直线的斜率,然后求解直线的倾斜角即可.解:设直线的倾斜角为α.因为直线√3x+y−1=0的斜率为−√3,所以tanα=−√3,α=120∘,故选C.4.【答案】D;【解析】解:圆(x−1)2+y2=1的圆心为(1,0),半径为1,当直线l的斜率不存在时,直线l的方程为x=2,圆心(1,0)到l的距离为1,满足题意;当直线l的斜率存在时,设直线l的方程为y=k(x−2)−2,即kx−y−2k−2=0,因为直线l与圆(x−1)2+y2=1相切,所以√k2+1=1,解得k=−34,此时直线l的方程为4x+3y−2=0,综上,直线l的方程为4x+3y−2=0或x=2.故选:D.分直线l的斜率不存在和存在两种情况分类讨论,从而可得直线l的方程.此题主要考查圆的切线方程,考查分类讨论思想与运算求解能力,属于基础题.5.【答案】A;【解析】解:方程x2+y2−x+y+m=0即(x−12)2+(y+12)2=12−m,此方程表示圆时,应有12−m>0,解得m<12,故选:A.方程x2+y2−x+y+m=0即(x−12)2+(y+12)2=12−m,此方程表示圆时,应有12−m>0,由此求得实数m的取值范围.这道题主要考查求圆的标准方程,二元二次方程表示圆的条件,属于基础题.6.【答案】D;【解析】由直线一般式的斜率计算公式即可得出.该题考查了直线的斜率,考查了推理能力与计算能力,属于基础题.解:直线x+√2y−1=0的斜率k=√2=−√22.故选:D.7.【答案】C;【解析】解:①当直线经过原点时,直线方程为y=−32x,即3x+2y=0;②当直线不经过原点时,设所求的直线方程为x+y=a,则a=2−3=−1,因此所求的直线方程为x+y+1=0.综上所述,直线m的方程是3x+2y=0或x+y+1=0.故选:C.分类讨论:当直线经过原点时,当直线不经过原点时两种情况,求出即可.该题考查了截距式、分类讨论等基础知识,属于基础题.8.【答案】D;【解析】此题主要考查直线方程的截距的概念,属于基础题.利用直线方程的截距的概念,令x=0,则y=−32,即可求解;解:因为直线x +2y +3=0, 令x =0,则y =−32,所以在y 轴上的截距为−32. 故选D.9.【答案】ACD;【解析】解:对于选项A ,设P(x,y),因为P 满足|PA ||PB |=12,所以√(x+2)2+y 2√(x−4)2+y2=12, 化简得x 2+8x +y 2=0,故A 正确;对于选项B ,由选项A 可知,点P 的轨迹方程为x 2+y 2+8x =0,即(x +4)2+y 2=16,所以点P 的轨迹是以(−4,0)为圆心,4为半径的圆, 又|AB |=6,且点A ,B 在直径上,故当点P 到圆的直径距离最大的时候,ΔPAB 的面积最大值, 因为圆上的点到直径的最大距离为半径,即ΔPAB 的高的最大值为4, 所以ΔPAB 面积的最大值为12×6×4=12,故B 错误;对于选项C ,假设在x 轴上存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12, 设M(m,0),N(n,0), 故√(x−m)2+y 2√(x−n)2+y 2=12,即√(x −n)2+y 2=2√(x −m)2+y 2,化简可得x 2+y 2=8m −2n 3x +4m 2−n 23=0.又点P 的轨迹方程为x 2+y 2+8x =0,可得{−8m −2n3=84m 2−n 23=0,解得{n =−12或{n −4(舍去),故存在异于A ,B 的两定点M(−6,0),N(−12,0),使得|PM ||PN |=12,故C 正确;对于选项D ,因为|PA ||PB |=12,所以2|PA |=|PB |,所以2|PA |+|PQ |=|PB |+|PQ |,又点P 在圆x 2+8x +y 2=0上, 如图所示,所以当P,Q,B三点共线时2|PA|+|PQ|取最小值,此时(2|PA|+|PQ|)min=|BQ|=√[4−(−3)]2+(0−1)2=5√2,故D正确.故选:ACD.设出点P的坐标,根据|PA||PB|=12即可求出点P的轨迹方程,即可判断选项A是否正确;根据点A(−2,0),B(4,0)的位置关系和圆的性质,即可求出ΔAPB面积的最大值,进而判断选项B是否正确;设M(m,0),N(n,0),根据|PM||PV|=12可求出点P的轨迹方程,再与x2+y2+8x=0方程进行对比,根据系数关系,列出方程组,即可求出m,n值,进而判断选项C是否正确;由题意可知2|PA|=PB,所以2|PA|+|PQ|=|PB|+|PQ|,当P,Q,B三点共线时,2|PA|+|PQ|取最小值,最小值为|BQ|,由此即可判断选项D是否正确.此题主要考查了轨迹方程,圆的方程以及与圆有关的最值问题,属于中档题.10.【答案】CD;【解析】此题主要考查双曲线的几何性质,考查直线和圆相交所得弦的弦长,考查直线和双曲线的位置关系,属于中档题.根据双曲线的几何性质,直线和双曲线的位置关系,直线和圆的位置关系等知识对选项逐一分析,由此确定正确选项.解:由双曲线C方程可知,a=1,b=2,c=√5,所以离心率e=ca=c≠2c,故A不正确;双曲线C的渐近线方程为y=±bax=±2x,而双曲线y2−x24=1的焦点在y轴上,渐近线方程为y=±12x,二者渐近线方程不同,所以B错误;圆x2+y2=1的圆心(0,0)到双曲线C的准线y=±a2c =±√55的距离为√55,所以准线被圆x 2+y 2=1截得的弦长为2×√12−(√55)2=2√45=4√55, 故C 正确;由直线与双曲线的位置关系可知直线y =kx +b 与双曲线C 的公共点个数只可能为0,1,2,故D 正确. 故选:CD .11.【答案】BD;【解析】解:将直线l :(2m +1)x +(m +1)y −7m −4=0整理为(x +y −4)+m(2x +y −7)=0,令{2x +y −7=0,解得{y =1, 故无论m 为何值,直线l 恒过定点D(3,1), ∵圆C :(x −1)2+(y −2)2=25, ∴圆C(1,2),半径r =5,∵|CD |=√(1−3)2+(2−1)2<5, ∴定点D 在圆内,直线l 与圆相交,故A 错误, ∵圆C :(x −1)2+(y −2)2=25,∴令x =0,则(y −2)2=24,解得y =2±2√6, 故y 轴被圆C 截得的弦长为4√6,故B 正确, 圆心C(1,2),r =5,CD =√5,当截得的弦长最短时,l ⊥CD ,k CD =−12,则直线l 的斜率为2,最短弦长为2√52−(√5)2=4√5,故C 错误,故此时直线l 的方程为y −1=2(x −3),即2x −y −5=0,故D 正确. 故选:BD .先求出直线l 的定点,通过两点之间的距离公式,可判断该定点在圆内,即可求解A 选项,令x =0,则(y −2)2=24,解得y =2±2√6,即可求解B 选择,结合椭圆最短弦的性质,即可求解CD 选项.此题主要考查直线与圆的位置关系,考查最短弦问题,属于中档题.12.【答案】ABD; 【解析】此题主要考查了圆的标准方程和直线与圆的位置关系,考查推理能力和计算能力,属于一般题.当k =1时A 正确;对于B 、存在直线 x =1;由于所有直线与圆都相交,故C 错误;将(0,0)代入即可判断D 错误.解:对于A:存在k,使圆与x轴相切⇔k=k2(k∈N∗)有正整数解⇔k=1,故A正确;对于B:因为圆心(1,k)恒在直线x=1上,故B正确;对于C:当k取无穷大的正数时,半径k2也无穷大,因此所有直线与圆都相交,故C不正确;对于D:将(0,0)代入得1+k2=k4,即1=k2(k2−1),因为右边是两个相邻整数相乘为偶数,而左边为奇数,故方程恒不成立,故D正确.故选ABD.13.【答案】AD;【解析】此题主要考查了直线与圆的位置关系,属于中档题.分|AB|取得最小值和最大值两种情况,求出直线l的斜率,从而求得直线l的方程.解:圆x2+y2+4x=0即圆(x+2)2+y2=4,是以C(−2,0)为圆心,r=2为半径的圆,k PC=1=1,−1+2过点P(−1,1)的直线l与圆x2+y2+4x=0相交于A,B两点,点P(−1,1)在圆内,当|AB|取得最小值时,AB⊥PC,即k PC.k AB=−1,∴k AB=−1,直线l的方程是y−1=−(x+1),即x+y=0,当|AB|取得最大值时,直线l经过圆心C,k AB=k PC=1,∴直线l的方程是y−1=x+1,即x−y+2=0,故选AD.14.【答案】x+2y=0;【解析】解:圆x2+y2+x=0与圆x2+y2−2y=0的公共弦所在的直线方程即为两圆方程相减可得:即为x+2y=0.故答案为:x+2y=0.两圆公共弦即为方程相减.该题考查公共弦方程,为基础题.;15.【答案】335【解析】该题考查直线关于点、直线对称的方程,根据题意,得到折痕为A,B的对称轴;也是C,D的对称轴,求出A,B的斜率及中点,求出对称轴方程,然后求出C,D的斜率令其等于对称轴斜率的负倒数,求出C,D的中点,将其代入对称轴方程,列出方程组,求出m,n的值,得到答案.解:根据题意,得到折痕为A(0,2),B(4,0)的对称轴;也是C(6,3),D(m,n)的对称轴,AB的斜率为k AB=−12,其中点为(2,1),所以图纸的折痕所在的直线方程为y−1=2(x−2)所以k CD=n−3m−6=−12,①CD的中点为(m+62,n+32),所以n+32−1=2(m+62−2)②由①②解得m=65,n=275,所以m+n=335.故答案为:335.16.【答案】3;【解析】利用对称思想方法求距离最值问题,考查转化思想和计算能力,属于中档题.由已知可判断P,Q在已知直线的两侧,求出P关于直线的对称点P′的坐标,根据对称性转化为|P′M|+|QM|的最小值的问题,利用两点之间的路程已知线段为最短得到问题的答案.解:设P(1,3)关于直线的对称点的坐标为P′(a,b),根据PP′与已知直线垂直,并且线段PP′的中点做已知直线上,∴{b−3a−1=−11+a 2−3+b2+1=0,∴a=2,b=2,∴P′(2,2),由于P′与Q的纵坐标相同,∴|PM|+|QM|=|P′M|+|QM|的最小值为|P′Q|=2+1= 3,故答案为3.17.【答案】[√2,+∞);【解析】此题主要考查直线和圆的位置关系,转化思想是解决问题的关键,属中档题.由切线的对称性和圆的知识将问题转化为MC⊥l时,使得过M作圆的两条切线,切线夹角大于等于90°即可.解:圆C:(x−2)2+y2=r2,圆心为:(2,0),半径为r,∵在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,∴在直线l上存在一点M,使得过M作圆的两条切线,切线夹角大于等于90°,∴只需MC⊥l时,使得过M作圆的两条切线,切线夹角大于等于90°即可∵C到直线l:3x+4y+4=0的距离2,则r⩾2×sin45°=√2.故答案为[√2,+∞).18.【答案】2x-y-2=0;【解析】解:设与直线2x−y+1=0平行的直线的方程为2x−y+c=0,由点P(3,4)在直线2x−y+c=0上,可得c=−2,故直线的方程为2x−y−2=0.故答案为:2x−y−2=0.设与直线2x−y+1=0平行的直线的方程为2x−y+c=0,由点P(3,4)在直线2x−y+c=0上,求出c,再确定直线的方程.此题主要考查的知识要点:直线的方程的求法,平行直线系的应用,主要考查学生的运算能力,属于基础题.19.【答案】解:(1)如图所示,其中A(2,4),B(3,2),则yx =y−0x−0可看作是直线OP的斜率,由图知,k OB⩽k OP⩽k OA,而k OB=23,k OA=2,所以(yx )max=2,(yx)min=23;(2)因为yx ∈[23,2],所以y−xy+x=yx−1yx+1=yx+1−2yx+1=1−2yx+1∈[−15,13],所以y−xy+x 的取值范围是[−15,13].;【解析】此题主要考查直线斜率几何意义的应用,(1)依题意,yx =y−0x−0可看作是直线OP的斜率,由图知,k OB⩽k OP⩽k OA,从而求得最值.(2)由(1)知y x∈[23,2],所以y−x y+x=1−2y x+1,从而求得结果.20.【答案】解:(1)圆心(0,0)到直线y=x+1的距离为d=√2由圆的性质可得r 2=d 2+(√142)2=4 ∴圆的方程为:x 2+y 2=4.(2)设N (t ,0),A (x 1,y 1),B (x 2,y 2). 由{x 2+y 2=4y =k(x −1),得(k 2+1)x 2-2k 2x+k 2-4=0. ∴x 1+x 2=2k 21+k2,x 1x 2=k 2−4k 2+1若直线AN 与直线BN 关于x 轴对称,则k AN =-k BN ⇒y 1x 1−t+y 2x 2−t=0⇒k(x 1−1)x 1−t+k(x 2−1)x 2−t=⇒2x 1x 2-(t+1)(x 1+x 2)+2t=0⇒2(k 2−4)k 2+1−2k 2(t+1)k 2+1+2t =0,⇒t=4.∴在x 轴正半轴上存在定点N (4,0),使得AN 与直线BN 关于x 轴对称.; 【解析】(1)圆心(0,0)到直线y =x +1的距离为d =√2由圆的性质可得r 2=d 2+(√142)2=4,即可;(2)设N(t,0),A(x 1,y 1),B(x 2,y 2).由{x 2+y 2=4y =k(x −1),得(k 2+1)x 2−2k 2x +k 2−4=0.x 1+x 2=2k 21+k 2,x 1x 2=k 2−4k 2+1, 若直线AN 与直线BN 关于x 轴对称,则k AN =−k BN ⇒y 1x 1−t+y 2x 2−t=0⇒k(x 1−1)x 1−t+k(x 2−1)x 2−t=0即可求得t .该题考查了圆的方程,圆的弦长的计算,定点问题,属于中档题.21.【答案】解:(Ⅰ)设圆C 的方程为x 2+y 2+Dx +Ey +F =0. 由{4+2E +F =04+2D +F =02×(−D 2)−(−E2)−4=0, 解得:{D =−8E =−8F =12,故所求圆C 的方程为x 2+y 2−8x −8y +12=0.(Ⅰ)圆心到l 2的距离为d =√32+42=4,所以弦长的一半为√20−16=2, 于是直线l 2被圆C 截得的弦的长度为4.; 【解析】此题主要考查圆的方程的求解,以及直线和圆相交时弦长公式的计算,考查学生的运算能力.(Ⅰ)利用待定系数法即可求圆C 的方程;(Ⅰ)根据直线和圆相交的弦长公式进行求解即可.22.【答案】解:(Ⅰ)由已知得 OA →.OB →=(m ,√3m).(n ,−√3n)(1分) =−2mn =−12∴m.n =14(4分)(Ⅱ)设P 点坐标为(x ,y )(x >0),由OP →=OA →+OB →得(x ,y )=(m ,√3m)+(n ,−√3n)=(m +n ,√3(m −n))(5分) ∴{x =m +n y =√3(m −n)消去m ,n 可得x 2−y 23=4mn ,又因mn =14(8分) ∴P 点的轨迹方程为x 2−y 23=1(x >0)它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线x 2−y 23=1的右支(9分)(Ⅲ)设直线l 的方程为x=ty+2,将其代入C 的方程得3(ty+2)2-y 2=3 即(3t 2-1)y 2+12ty+9=0易知(3t 2-1)≠0(否则,直线l 的斜率为±√3,它与渐近线平行,不符合题意) 又△=144t 2-36(3t 2-1)=36(t 2+1)>0设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=−12t3t 2−1,y 1y 2=93t 2−1 ∵l 与C 的两个交点M ,N 在y 轴的右侧 x 1x 2=(t y 1+2)(t y 2+2) =t 2y 1y 2+2t (y 1+y 2)+4 =t 2.93t 2−1+2t .−12t 3t 2−1+4=−3t 2+43t 2−1>0∴3t 2-1<0,即0<t 2<13又由x 1+x 2>0同理可得0<t 2<13(11分) 由ME →=3EN →得(2-x 1,-y 1)=3(2-x 2,y 2) ∴{2−x 1=3(2−x 2)−y 1=3y 2由y 1+y 2=−3y 2+y 2=−2y 2=−12t3t 2−1得y 2=6t3t 2−1由y 1y 2=(−3y 2)y 2=−3y 22=93t 2−1得y 22=−33t 2−1消去y 2得36t 2(3t 2−1)2=−33t 2−1解之得:t 2=115,满足0<t 2<13(13分)故所求直线l 存在,其方程为:√15x −y −2√5=0或√15x +y −2√5=0(14分); 【解析】(I)由向量数量积OA →.OB →=−12的坐标运算即可求得m ⋅n 的值;(II )欲求P 点的轨迹C 的方程,设点P(x,y),只须求出其坐标x ,y 的关系式即可,由题意向量关系将x ,y 用m ,n 表示,最后消去m ,n 得到一个关系式,即得点P 的轨迹方程. (III )设直线l 的方程为x =ty +2,将其代入C 的方程得到一个一元二次方程,利用根与系数的关系结合向量运算即可求得t 值,从而求得l 的方程.本小题主要考查曲线与方程,直线和圆锥曲线等基础知识,以及求直线方程的基本技能和综合运用数学知识解决问题的能力.23.【答案】解:当直线L 的斜率存在时,设直线L 的方程为y −3=k(x −2),即kx −y +3−2k =0,作MC ⊥AB 于C ,在直角三角形MBC 中,BC =√3,MB =2, 所以MC =1,又因为MC =√k 2+1=1,解得k =34,所以直线方程为3x −4y +6=0.当直线斜率不存在时,其方程为x =2,圆心到此直线的距离也为1, 所以也符合题意,综上可知,直线L 的方程为3x −4y +6=0或x =2.; 【解析】分斜率存在和斜率不存在两种情况,分别由条件利用点到直线的距离公式,弦长公式求出斜率,可得直线L 的方程.此题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,体现了分类讨论的数学思想,属于基础题.。

高中数学例题:圆系问题

高中数学例题:圆系问题

高中数学例题:圆系问题例7.求过直线2x+y+4=0和圆x 2+y 2+2x ―4y+1=0的交点,且满足下列条件之一的圆的方程:(1)过原点;(2)有最小面积.【思路点拨】设出圆系方程,然后再根据题目条件确定圆的方程。

【答案】(1)22317024x y x y ++-= (2) 221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭ 【解析】 设所求圆的方程为x 2+y 2+2x ―4y+1+λ(2x+y+4)=0,即x 2+y 2+2(1+λ)x+(λ―4)y+(1+4λ)=0. ①(1)因为所求的圆过原点,所以1+4λ=0,14λ=-. 故所求圆的方程为22317024x y x y ++-=. (2)当半径最小时,圆面积也最小.把方程①化为标准形式, 得2224584[(1)]2455x y λλλ-⎛⎫⎛⎫++++=-+ ⎪ ⎪⎝⎭⎝⎭.所以当85λ=时,22584455r λ⎛⎫=-+ ⎪⎝⎭取得最小值,即min r =,故满足条件(2)的圆的方程为221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 【点评 】 本题的一般解题思路是先求出直线与圆的交点的坐标A (x 1,y 1)、B (x 2,y 2),所求圆过两个点,再利用第三个独立条件和圆的一般方程即可求解.本题用了一个典型解法:设直线l :Ax+By+C=0与圆C :x 2+y 2+Dx+Ey+F=0,则方程x 2+y 2+Dx+Ex+F+λ(Ax+By+C)=0表示过直线l 与圆的交点的圆系方程.举一反三:【变式1】求过两圆x 2+y 2+6x ―4=0和x 2+y 2+6y ―28=0的交点,且圆心在直线x ―y ―4=0上的圆的方程.【答案】x 2+y 2―x+7y ―32=0【解析】设所求的圆的方程为x 2+y 2+6x ―4+λ(x 2+y 2+6y ―28)=0, 即22664280111x y x y λλλλλ++++-=+++. ∵圆心为33,11λλλ-⎛⎫-⎪++⎝⎭,且在直线x ―y ―4=0上, ∴3340711λλλλ-+-=⇒=-++. 故所求的圆的方程为x 2+y 2―x+7y ―32=0.。

专题十六 直线与圆(解析版)高中数学

专题十六   直线与圆(解析版)高中数学

专题十六 直线与圆一、单选题1.(2021·全国高一课时练习)数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知ABC 的顶点(2,0)A ,(0,4)B ,若其欧拉线的方程为20x y -+=,则顶点C 的坐标为( ) A .(4,0)- B .(2,2)-- C .(3,1)- D .(4,2)--【答案】A 【分析】设(,)C m n ,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于,m n 的方程,最后联立解方程即可. 【详解】设(,)C m n ,由重心坐标公式得, 三角形ABC 的重心为2(3m +,4)3n+, 代入欧拉线方程得:242033m n ++-+=, 整理得:40m n -+=①AB 的中点为(1,2),40202AB k -==--, AB 的中垂线方程为12(1)2y x -=-,即230x y -+=.联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩.ABC ∴的外心为(1,1)-.则2222(1)(1)3110m n ++-=+=, 整理得:22228m n m n ++-=②联立①②得:4m =-,0n =或0m =,4n =. 当0m =,4n =时B ,C 重合,舍去.∴顶点C 的坐标是(4,0)-.【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.2.(2021·全国高一课时练习)坐标原点(0,0)O 在动直线220mx ny m n +--=上的投影为点P ,若点(1,1)Q --,那么||PQ 的取值范围为( )A .B .C .D .【答案】A 【分析】先判断直线220mx ny m n +--=所经过的定点,根据圆的性质进行求解即可. 【详解】直线220mx ny m n +--=,可化为(2)(2)0m x n y -+-=, 故直线过定点(2,2)M ,坐标原点(0,0)O 在动直线220mx ny m n +--=上的投影为点P , 故90OPM ∠=︒,所以P 在以OM 为直径的圆上,圆的圆心为2020(,)22++,即(1,1)=根据点与圆的关系,||OQ||222PQ -+故选:A. 【点睛】关键点睛:根据题意得到P 在以OM 为直径的圆上、动直线过定点是解题的关键.3.(2021·全国高一课时练习)在直角坐标平面内,与点(0,3)A 距离为2,且与点(4,0)B 距离为3的直线共有( ) A .1条 B .2条C .3条D .4条【答案】C 【分析】根据直线是否存在斜率,分类讨论,利用点到直线距离公式进行求解即可.当直线不存在斜率时,设为x a =,由题意可知:02a -=且43a -=, 没有实数a 使得两个式子同时成立;当直线存在斜率时,设直线方程为:0y kx b kx y b =+⇒-+=,点(0,3)A 到该直线的距离为22(1)=,点(4,0)B 到该直线的距离为33(2)=,由(1)(2)得:89b k =+或985k b -=, 当89b k =+时,代入(1)中,得2152480k k ++=,该方程的判别式2244158960∆=-⨯⨯=>,该方程有两个不相等的实数根, 当985kb -=时,代入(1)中,得2924160k k -+=, 该方程的判别式2(24)49160∆=--⨯⨯=,该方程有两个相等的实数根, 所以这样的直线共有三条, 故选:C. 【点睛】关键点睛:本题的关键是解方程组.4.(2021·全国高一课时练习)平面直角坐标系xOy 中,P 是曲线3(1)y x x x=+上的一个动点,则点P 到直线0x y +=的距离的最小值是( ) AB .4CD.【答案】D 【分析】由题意得:当斜率为1-的直线与曲线3(1)y x x x=+相切时切点到直线的距离最小,求出切点坐标及距离即可. 【详解】由3(1)y x x x=+,得231y x '=-,设斜率为1-的直线与曲线3(1)y x x x=+切于点0(P x ,003)x x +,由20311x -=-,解得001)x x =; ∴曲线3(1)y x x x=+上,点P到直线0x y +=的距离最小,最小值为|d ==故选:D . 【点睛】曲线上的动点到直线的距离的最值一般有两种方法:(1)等价转化为平行线与曲线相切时,切点到直线的距离取到最大值或最小值.(2)联立平行线与曲线的方程,通过判别式等于0求出平行线的方程,然后根据平行线间的距离求出最值,这种方法的弊端是要带二次方程求解切点坐标.5.(2021·云南昆明市·高三其他模拟(理))若等边三角形一边所在直线的斜率为边所在直线斜率为( ) A.4-,5 B.4-,2 C.,5D.,4【答案】C 【分析】根据题意,设三角形另两条边所在直线的斜率为,k m ,且0m k <<,由直线的到角公式即可求出. 【详解】根据题意,设三角形另两条边所在直线的斜率为,k m ,且0m k <<,则有3tan 60===,解得5k =,m =, 故另两条边所在直线斜率为.故选:C. 【点睛】关键点睛:解题的关键是正确利用直线的夹角公式. 6.(2021·广东广州市·高三一模)已知(1,0),(0,2)A B -,直线:2230l x ay a -++=上存在点P,满足||||PA PB +=l 的倾斜角的取值范围是( )A .2,33ππ⎡⎤⎢⎥⎣⎦B .20,,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .3,44ππ⎡⎤⎢⎥⎣⎦ D .30,,44πππ⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【答案】D 【分析】根据AB =||||PA PB +=p 在线段AB 上,其方程为[]22,1,0y x x =+∈-上,又点在直线l 上,联立其方程,求得2343x a x +=+,然后由143tan 23x a x α+==+求解. 【详解】将(1,0)A -代入2230x ay a -++=得1a =-, 将(0,2)B 代入2230x ay a -++=得1a =, 所以A,B 不在直线l 上,又AB =||||PA PB += 所以点p 在线段AB 上,直线AB 的方程为:[]22,1,0y x x =+∈-,由22223010y x x ay a x =+⎧⎪-++=⎨⎪-≤≤⎩,解得()23232321222143x x x a y x x +++===-+-+, 直线方程2230x ay a -++=,即为132ay x a a+=+, 设直线l 的倾斜角为α, 则1433tan 22323x a x x α+===-++, 因为10x -≤≤, 所以1233x ≤+≤,则31323x ≤≤+, 所以312123x -≤-≤+, 即ta 11n α-≤≤, 因为(0,)απ∈,所以3(0,][,)44ππαπ∈⋃,故选:D 【点睛】关键点点睛:本题关键是得到点P 在线段AB 上,再根据点P 的直线l 上,联立求得()23232321222143x x x a y x x +++===-+-+,再利用斜率与倾斜角的关系而得解. 7.(2021·全国高一课时练习)已知半径为M 与圆225x y +=外切于点()1,2P -,则圆心M 的坐标为( ) A .()3,6- B .()6,3- C .()3,6-D.()【答案】C 【分析】设(),M a b ,由两圆向外切可知,,M P O三点共线且OM =,a b ,舍去两圆内切的情况即可得到结果. 【详解】由题意知:圆225x y +=圆心为()0,0O,半径r =设所求圆M 的圆心(),M a b ,若圆M 与圆225x y +=外切于点()1,2P -,则必有,,M P O三点共线且OM =即2202001045b a a b ---⎧=⎪--⎨⎪+=⎩,解得:36a b =⎧⎨=-⎩或36a b =-⎧⎨=⎩; 当3a =-,6b =时,圆M 与圆225x y +=相内切,不合题意; 当3a =,6b =-时,圆M 与圆225x y +=相外切,符合题意;()3,6M ∴-.故选:C. 【点睛】易错点点睛:本题考查根据圆与圆的位置关系求解参数的问题,易错点是在求解出参数值后,忽略两圆内切也有满足三点共线且圆心距为的情况,造成增根.8.(2021·全国高三其他模拟)已知圆C :()()223216x y -+-=,直线l :y x t =+与圆C 交于A ,B 两点,且ABC 的面积为8,则直线l 的方程为( ) A .3y x =-或5y x =- B .3yx 或5y x =+C .3yx 或5y x =- D .3y x =-或5y x =+【答案】C 【分析】由三角形面积定理求出等腰三角形顶角,进而求出其高,再用点到直线距离得解. 【详解】由圆C 的方程可得圆心C 的坐标为()3,2,半径为4.∵ABC 的面积为144sin 82ACB ⨯⨯∠=,∴90ACB ∠=︒,∴⊥CB CA ,∴点C 到直线AB 的距离为由点到直线的距离公式可得点C 到直线AB =∴3t =或5t =-,∴l 的方程为3y x 或5y x =-.故选:C . 【点睛】给定三角形面积的问题,可用三角形面积定理,也可用公式:12⨯底⨯高,本题用前者定角最佳.9.(2021·全国高三专题练习)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形P ACB 面积的最小值是( )A B .C D .【答案】C 【分析】由圆C 的标准方程可得圆心为()1,1C ,半径为1,由于四边形P ACB 面积等于2APCS=,故求解PC 最小值即可,又PC 最小为圆心到直线的距离,即可得出四边形P ACB 面积的最小值.【详解】圆的标准方程为(x -1)2+(y -1)2=1,圆心为()1,1C ,半径为r =1,圆心()1,1C 到直线l :3x -4y +11=0的距离10215d r ===>= 所以圆C 与直线l 相离.根据对称性可知,四边形P ACB 的面积为1222APCSPA r PA =⨯⨯⨯===要使四边形P ACB 的面积最小,则只需PC 最小.又PC 最小值为圆心到直线l :3x -4y +11=0的距离2d =.所以四边形P ACB ==.故选:C .【点睛】关键点睛:本题考查直线和圆的位置关系,点到直线的距离公式,考查圆心与直线上点的距离的最值,解答本题的关键是将四边形P ACB 面积化为2APCS =即解PC 最小值,转化为圆心到直线的距离,属于中档题.10.(2021·辽宁高三二模(理))已知直线x y a +=与圆224x y +=交于A 、B 两点,O 为坐标原点,3OA OB OA OB +=-,则实数a 的值为( )A .2±B .C .D .【答案】D 【分析】根据向量关系可得2OA OB ⋅=,即AOB结果. 【详解】由3OA OB OA OB +=-得:()()223OA OBOA OB +=-,又O 为圆224x y +=的圆心,则2OA OB ==,所以2OA OB ⋅=,所以cos 2OA OB AOB ⋅⋅∠=,即1cos 2AOB ∠=,所以3AOB π∠=,所以AOB 为等边三角形, 则O 到直线xy a +=的距离为:d =即d == a ⇒=故选:D. 【点睛】关键点点睛:本题考查直线与圆的相关问题,关键是能够利用向量的关系得到向量间的夹角,从而能将问题转化为点到直线的距离问题.11.(2021·全国高三其他模拟(理))知直线:0l x y m ++=,圆22:40C x y x +-=,若在直线l 上存在一点P ,使得过点P 作圆的切线PA ,PB (点A ,B 为切点),满足60APB ∠=︒,则m 的取值范围为( )A .[]22-,B.-⎡⎣C .[]1,1-D.2⎡⎤-⎣⎦【答案】D 【分析】由圆的标准方程得圆心(2,0)C ,2r ,连接CA ,CB ,||4CP =,再由条件得点C 到直线l 的距离4d ≤,根据点到直线的距离公式可求得范围. 【详解】圆22:(2)4C x y -+=,圆心(2,0)C ,2r ,连接CA ,CB ,则CA PA ⊥,CB PB ⊥,60APB ∠=︒,30APC ∴∠=︒,2r CA ==,||4CP ∴=,要使直线l 上存在一点P ,使其满足条件,只需点C 到直线l 的距离4d ≤,4≤,22m ∴-≤≤. 故选:D. 【点睛】关键点点睛:在解决直线与圆的位置关系相关问题,关键在于利用直线与圆相切、相交、相离时的几何性质,可以较容易地解决问题.12.(2021·全国高三月考(理))已知曲线y =与直线10kx y k -+-=有两个不同的交点,则实数k 的取值范围是( ) A .13,24⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .12,23⎡⎫⎪⎢⎣⎭D .12,43⎡⎫⎪⎢⎣⎭【答案】A 【分析】作出曲线y =(上半圆),直线10kx y k -+-=过定点(1,1)--,求出图中两条的斜率可得所求范围. 【详解】解:曲线y 整理得22(2)1(0)x y y -+=≥,则该曲线表示圆心为(2,0),半径为1的圆的上半部分,直线10kx y k -+-=过定点(1,1)--,如图,当[)12,k k k ∈时,曲线与直线有两个不同的交点,1=,得34k =或0k =,所以234k =, 1101112k --==--, 所以实数k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 故选:A .【点睛】方法点睛:本题考查直线与曲线的位置关系,解题方法是数形结合思想,即作出曲线(半圆),而直线是过定点的动直线,由直线与半圆的交点个数可得直线的位置,求出临界点直线的斜率后可得结论.13.(2020·黑龙江哈尔滨市·哈九中高二期中(理))设曲线x =20x y --=的距离的最大值为a ,最小值为b ,则-a b 的值为( )A .2B C 1 D .2【答案】C 【分析】利用点到直线的距离公式求出圆心到直线的距离d ,由d r -求出最小值,最大值为(0,2)到直线的距离,确定出a 与b 的值,即可求出-a b 的值. 【详解】将x =22(1)1y x +-=, 所以曲线是圆心(0,1),半径1r =的右半圆,如图,圆心到直线20x y --=的距离2d =∴圆上的点到直线的最小距离12b =-,最大值为(0,2)到直线的距离,即a ==则12a b -=+. 故选:C . 【点睛】本题考查了直线与圆的位置关系,关键点是到圆上的点的问题转化为到圆心的距离的问题,考查了学生的转化能力和计算能力.14.(2020·绥化市第一中学高二月考(文))直线y x b =+与曲线x =有且只有一个交点,则b 的取值范围是( )A .||b =B .11b -<≤或b =C .11b -<≤D .11b -≤<或b =【答案】B 【分析】判断得曲线x =1的右半圆,作图像分析,可知当直线y x b =+与半圆相交于一个点或者与半圆相切时满足题意,结合图像求解b 的取值范围. 【详解】曲线x =1的右半圆,作出曲线x =y x b =+与x = 即为直线与半圆相交于一个点或与半圆相切两种情况,当相交于一个交点时可得11b -<≤;直线与半圆相切时可得b =. 故选:B.【点睛】关于直线与圆的位置关系的求解,一般需要数形结合,尤其需要注意变量,x y 的取值范围,然后利用图像分析,求解直线与圆相切的问题时,一般要利用d r =列式求解.15.(2021·湖北高三月考)圆1C :()()22249x y -+-=与圆2C :()22516x y -+=的公切线条数为( ) A .1 B .2C .3D .4【答案】B 【分析】先找到两个圆的圆心和半径,计算圆心距,判断圆与圆的位置关系,求出公切线的条数. 【详解】依题意,圆1C 的圆心()12,4C ,半径R 1=3, 圆2C 的圆心()25,0C ,半径R 2=4,()1251,7C C ==∈,故圆1C 与2C 相交,有2条公切线.故选:B. 【点睛】圆C 1和圆C 2 的半径分别为R 和r ,圆心距为d ,圆与圆的位置关系有5种:(1)相离d R r ⇔>+;(2)相外切=d R r ⇔+;(3)相交R r d R r ⇔-<<+;(4)相内切||d R r ⇔=-;(5)相内含||d R r ⇔<-;16.(2021·全国高三专题练习(文))已知过点()0,2的直线l 与圆心为C 的圆()()222110x y -+-=相交于A 、B 两点,若CA CB ⊥,直线l 的方程为( ) A .220x y -+= B .220x y -+=或220x y +-= C .0x = D .0x =或220x y +-=【答案】A 【分析】分析得出圆心C 到直线l的距离为d =,然后对直线l 的斜率是否存在进行分类讨论,结合点到直线的距离公式可求得直线l 的方程. 【详解】圆()()222110x y -+-=的圆心为()2,1C,半径为r =,由CA CB ⊥,且CA CB ==ABC 是以ACB ∠为直角的等腰直角三角形, 所以,点C 到直线l 的距离为cos 455d r ==若直线l 的斜率不存在,则直线l 的方程为0x =,此时点C 到直线l 的距离为2,不合乎题意; 若直线l 的斜率存在,设直线l 的方程为2y kx =+,即20kx y -+=,则有d ==()220k -=,解得2k =,所以直线l 的方程为22y x =+. 故选:A. 【点睛】易错点点睛:本题利用直线与圆相交求直线的方程,在求解过定点的直线的方程时,要注意对直线斜率是否存在进行分类讨论,以防漏解.17.(2021·广西玉林市·高三其他模拟(理))过点()2,2P 的直线1l 与圆()2211x y -+=相切,则直线1l 的方程为( ) A .3420x y+=- B .4320x y --= C .3420x y+=-或2x = D .4320x y --=或2x =【答案】C 【分析】当1l 斜率不存在时可知满足题意;当1l 斜率存在时,设其方程为()22y k x -=-,利用圆心到直线距离等于半径可构造方程求得k ,由此可得切线方程. 【详解】当过()2,2P 的直线1l 斜率不存在时,方程为2x =,与圆()2211x y -+=相切,满足题意;当过()2,2P 的直线1l 斜率存在时,设方程为()22y k x -=-,即220kx y k --+=,∴圆()2211x y -+=的圆心到1l的距离1d ==,解得:34k =,131:042l x y ∴-+=,即3420x y+=-;∴直线1l 的方程为3420x y+=-或2x =.故选:C. 【点睛】易错点点睛:本题考查过圆外一点的圆的切线方程的求解,解决此类问题采用待定系数法,利用圆心到直线距离等于半径来进行求解;易错点是忽略切线斜率不存在的情况,造成丢根的情况出现. 18.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线22231x y 有公共点,则直线l 的斜率的取值范围为( )A.⎡⎣B.(C.33⎡-⎢⎣⎦ D.33⎛⎫- ⎪ ⎪⎝⎭【答案】C 【分析】先由题意,设直线l 的方程为()34y k x -=-,根据直线与圆位置关系,列出不等式求解,即可得出结果. 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-= 曲线22231x y 表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,1≤,即2k -≤,解得33k -≤≤.故选:C. 【点睛】方法点睛:本题主要考查由直线与圆的位置关系求参数,判断直线与圆的位置关系用几何法—圆心到直线的距离d 与圆的半径r 比较,d r =相切;d r 相离;d r <相交,考查学生的运算求解能力,属于一般题.19.(2020·江苏南通市·金沙中学高二月考)已知圆221:20C x y kx y +-+=与圆222:40C x y ky ++-=的公共弦所在直线恒过点(),P a b ,且点P 在直线20mx ny --=上,则mn 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .10,4⎛⎤ ⎥⎝⎦C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎤-∞ ⎥⎝⎦【答案】D 【分析】求出两圆的公共弦方程,求出点P 的坐标,可得出1m n +=,再利用基本不等式可求得mn 的取值范围. 【详解】将圆1C 与圆2C 的方程相减得公共弦所在直线的方程为()240kx k y +--=,即()()240k x y y +-+=,由2400y x y +=⎧⎨+=⎩,得22x y =⎧⎨=-⎩,即点()2,2P -, 因此,2220m n +-=,1m n ∴+=,由基本不等式可得2124m n mn +⎛⎫≤=⎪⎝⎭, 当且仅当12m n ==时,等号成立, 因此,mn 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.故选:D. 【点睛】方法点睛:当两圆相交时,把两圆方程(2x 、2y 项系数相同)相减便可得两圆公共弦所在直线的方程.20.(2020·江苏高一期中)若直线y x b =+与曲线y =b 的取值范围为( )A .[]22-,B .2,⎡-⎣C .-⎡⎣D .(-【答案】B 【分析】直线y x b =+与曲线y =有公共点,转化为直线y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况. 【详解】由y =()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-;当y x b =+与此半圆相切时,2r b ==⇒=,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线y =有公共点,则b ⎡∈-⎣.故选:B 【点睛】关键点点睛:由y =变形可知其图象为半圆,找出直线y x b =+与其有公共点的临界情况,是解决问题的关键.21.(2021·内蒙古包头市·高二期末(文))已知()1,0A -,()1,0B ,圆C :()2224x y R +-=(0R >),若圆C 上存在点M ,使90AMB ∠=︒,则圆C 的半径R 的范围是( )A .35R ≤≤B .34R ≤≤C .45R ≤≤D.2R ≤≤【答案】A 【分析】设00(,)M x y ,由90AMB ∠=︒得0MA MB ⋅=,即可知M 的轨迹为22001x y +=,要使圆C 上存在点M ,即圆C 与22001x y +=有交点,进而可得半径R 的范围.【详解】设00(,)M x y ,则00(1,)MA x y =---,00(1,)MB x y =--, ∵90AMB ∠=︒,即0MA MB ⋅=,∴22001x y +=,即M 在以原点为圆心,半径为1的圆上,而圆C 的圆心为(0,4),半径为R ,∴圆C 上存在点M ,即圆C 与22001x y +=有交点,∴[]11,141,3,5R OC R R R R -≤≤+-≤≤+∈. 故选:A 【点睛】关键点点睛:由90AMB ∠=︒及向量垂直的数量积公式即可确定M 的轨迹,要使圆C 上存在点M ,只需保证圆C 与M 的轨迹有交点即可.22.(2020·江苏苏州市·星海实验中学高一期中)已知方程23-+=kx k 则实数k 的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫⎪⎝⎭D .53,124⎛⎫⎪⎝⎭【答案】B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22=解得k 值,即得实数k 的取值范围.【详解】由题意得,半圆y =与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+.当直线和半圆相切时,由半径2=解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键. 23.(2021·全国高二课时练习)已知2,2m n +,6-成等差数列,则圆C:(()2214x y -++=上的点到点(),M m n 距离的最大值为( ) A .1 B .2C .5D.【答案】C 【分析】圆C的标准方程为:(()2214x y -++=,CM的最大值就是圆心()1-到直线220x y ++=的距离与半径的和. 【详解】因为2,2m n +,6-成等差数列,所以()2226m n +=-,可得220m n ++=,所以点M 的轨迹方程为220x y ++=,圆心()1-,则圆C 上的点到点M 的最大值为max 2325d =+=+=.故选:C. 【点睛】方法点睛:本题考查圆上点到直线的距离的最值,圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题,有时也可利用三角换元把最值问题转化为三角函数式的最值问题来处理,考查学的转化与化归思想与数形结合思想,属于一般题.24.(2021·铅山县第一中学高二月考(文))在平面直角坐标系中,直线10x y -+=与圆22:28130C x y x y +--+=相交于A 、B 两点,P 为圆C 上的动点,则PAB △面积的最大值为( )A .2+B .2C .1+D .2+【答案】A 【分析】计算出AB 以及点P 到直线AB 距离的最大值,由此可求得PAB △面积的最大值. 【详解】圆C 的标准方程为()()22144x y -+-=,圆心为()1,4C ,半径为2r,圆心C 到直线AB 的距离为d ==,AB ∴==,由于P 为圆C 上的动点,则点P 到直线AB 距离的最大值为2d r +=,因此,PAB △面积的最大值())112222AB d r ⋅+=⨯=+故选:A. 【点睛】结论点睛:若点P 为圆C 上任意一点,圆心C 到直线l 的距离为d ,圆C 的半径为r ,则点P 到直线l 的距离的最大值为d r +.二、多选题25.(2021·全国高三专题练习)(多选题)光线自点()2,4射入,经倾斜角为135的直线:1l y kx =+反射后经过点()5,0,则反射光线还经过下列哪个点( ) A .()14,2 B .914,8⎛⎫ ⎪⎝⎭C .()13,2D .()13,1【答案】BD 【分析】求出点()2,4关于直线l 的对称点的坐标,求出反射光线所在直线的方程,逐一验证各选项中的点是否在反射光线所在直线上,由此可得出合适的选项. 【详解】因为直线l 的倾斜角为135,所以直线l 的斜率为1k =-, 设点()2,4关于直线:1l y x =-+的对称点为(),m n ,则41242122n m n m -⎧=⎪⎪-⎨++⎪=-+⎪⎩,解得31m n =-⎧⎨=-⎩,所以,反射光线经过点()3,1--和点()5,0,反射光线所在直线的斜率为101358--=--,则反射光线所在直线的方程为()158y x =-, 当14x =时,98y =;当13x =时,1y =. 故选:BD. 【点睛】结论点睛:若点()11,P x y 与点()222,P x y 关于直线:0l Ax By C ++=对称,由方程组121222210221x x y y A B C y y A x x B ++⎧⋅+⋅+=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩可得到点1P 关于直线l 的对称点2P 的坐标()22,x y (其中0B ≠,12x x ≠).26.(2020·江苏苏州市·高一期中)在平面直角坐标系中,定义()1212,d P Q x x y y =-+-为()()1122,,,P x y Q x y 两点之间的“折线距离”,则下列说法中正确的是( )A .若点C 在线段AB 上,则有()()(),,,d AC d C B d A B +=B .若、、A BC 是三角形的三个顶点,则有()()(),,,d A C d C B d A B +> C .到()()1,0,1,0M N -两点的“折线距离”相等的点的轨迹是直线0x = D.若O 为坐标原点,点B 在直线+0x y -上,则(),d O B 的最小值为2 【答案】AC 【分析】对A ,根据“折线距离”的定义化简可得;对B ,由绝对值不等式可判断;对C ,设出点的坐标,根据定义列出方程即可求解;对D ,由(),d O B x y x x =+=+≥. 【详解】对A ,若点C 在线段AB 上,设()()()001122,,,,,C x y A x y B x y , 则0x 在12,x x 之间,0y 在12,y y 之间,则()()01012020,,d A C d C B x x y y x x y y +=-+-+-+-()1212,x x y y d A B =-+-=,故A 正确;对B ,在ABC 中,()()01012020,,d A C d C B x x y y x x y y +=-+-+-+-()()()()01200120x x x x y y y y ≥-+-+-+-()1212,x x y y d A B =-+-=,故B 错误;对C ,设到()()1,0,1,0M N -两点的“折线距离”相等的点的坐标为(),x y , 则11x y x y ++=-+,解得0x =,故C 正确;对D ,设(),B x y ,则(),d O B x y x x =+=+≥,即(),d O B 的最小值为D 错误. 故选:AC. 【点睛】本题考查“折线距离”的应用,属于新定义问题,解题的关键是正确理解定义,并结合绝对值不等式进行化简判断.27.(2020·江苏苏州市·星海实验中学高一期中)下列结论正确的是( )A .若直线1l 和2l 的斜率相等,则12l l //B .已知直线1111:0l A x B yC ++=,2222:0l A x B y C ++=(1A 、1B 、1C 、2A 、2B 、2C 为常数),若直线12l l ⊥,则12120A A B B +=C .点()00,P x y 到直线y kx b =+D .直线外一点与直线上一点的距离的最小值就是点到直线的距离 【答案】BD 【分析】根据两直线的位置关系与斜率的关系可判断A 选项的正误;利用两直线垂直与一般方程的关系可判断B 选项的正误;利用点到直线的距离公式可判断C 选项的正误;利用点到直线距离的定义可判断D 选项的正误. 【详解】对于A 选项,若直线1l 和2l 的斜率相等,则1l 与2l 平行或重合,A 选项错误;对于B 选项,已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=(1A 、1B 、1C 、2A 、2B 、2C 为常数).当直线1l 和2l 的斜率都存在时,则10B ≠,20B ≠, 直线1l 的斜率为111A k B =-,直线2l 的斜率为222A k B =-,若12l l ⊥,则1212121A A k k B B ==-,可得12120A A B B +=;当直线1l 和2l 分别与两坐标轴垂直,设1l x ⊥轴,则2l y ⊥轴,则10B =,20A =,满足12120A A B B +=. 综上所述,若直线12l l ⊥,则12120A A B B +=,B 选项正确; 对于C 选项,直线y kx b =+的一般方程为0kx y b -+=, 所以,点()00,P x y 到直线y kx b =+,C 选项错误;对于D 选项,由点到直线的距离的定义可知,直线外一点与直线上一点的距离的最小值就是点到直线的距离,D 选项正确. 故选:BD.【点睛】结论点睛:利用一般式方程判定直线的平行与垂直: 已知直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=. (1)121221//l l A B A B ⇔=且1221A C A C ≠; (2)2112210A A l B B l +⇔=⊥.28.(2021·全国高二课时练习)(多选)已知圆A 、圆B 相切,圆心距为10 cm ,其中圆A 的半径为4 cm ,则圆B 的半径为( ) A .6 cm B .10 cm C .14 cm D .18 cm【答案】AC 【分析】由两圆外切和内切分别求得结论. 【详解】令圆A 、圆B 的半径分别为r 1,r 2, 当两圆外切时,r 1+r 2=10, 所以r 2=10-r 1=10-4=6; 当两圆内切时,|r 1-r 2|=10, 即|4-r 2|=10,r 2=14或r 2=-6(舍), 即圆B 的半径为6 cm 或14 cm. 故选:AC . 【点睛】本题考查圆与圆的位置关系,解题关键是把问题转化为两圆相交.圆与圆的位置关系:两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,外切d R r ⇔=+,相交R r d R r ⇔-<<+,内切d R r ⇔=-,内含d R r ⇔<-.29.(2021·全国高三专题练习)设a ,b 为正数,若直线10ax by -+=被圆224210x y x y ++-+=截得弦长为4,则( ) A .1a b +=B .21a b +=C .18ab ≤D .29a bab+≥ 【答案】BCD 【分析】根据直线与圆的位置关系可得21a b +=排除A ,再由均值不等式判断CD 即可. 【详解】由224210x y x y ++-+=可得22(2)(1)4x y ++-=,故圆的直径是4,所以直线过圆心()2,1-,即21a b +=,故B 正确; 又a ,b 均为正数,所以由均值不等式18ab ≤,当且仅当11,42a b 时等号成立;故C 正确;又2212a b a b ab ab ab b a +=+=+()1222214a b a b b a b a ⎫⎛=++=+++ ⎪⎝⎭59≥+=, 当且仅当22a b b a=,即a b =,即13a b ==时,等号成立,故D 正确.故选:BCD 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.30.(2021·全国高三专题练习)设圆222220x y x y +---=的圆心为C ,直线l 过()0,3,且与圆C 交于A 、B 两点,且AB =,则直线l 的方程是( )A .4390x y -+=B .34120x y +-=C .0x =D .4390x y +-=【答案】BC 【分析】求出圆C 的圆心坐标与半径,利用勾股定理求出圆心C 到直线l 的距离d ,然后对直线l 的斜率是否存在进行分类讨论,结合点到直线的距离公式可求得直线l 的方程. 【详解】圆C 的标准方程为()()22114x y -+-=,圆心为()1,1C ,半径为2r,AB =,所以,圆心C 到直线l的距离为1d ==.①当直线l 的斜率不存在时,直线l 的方程为0x =,此时圆心C 到直线l 的距离为1d =,合乎题意; ②当直线l 的斜率存在时,设直线l 的方程为3y kx =+,即30kx y -+=, 圆心C 到直线l的距离为1d ==,解得34k =-,此时,直线l 的方程为334y x =-+,即34120x y +-=.综上所述,直线l 的方程为0x =或34120x y +-=. 故选:BC. 【点睛】易错点点睛:本题考查利用直线截圆所得弦长求直线的方程,在求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论.31.(2020·江苏南京市·南京一中高三月考)以下四个命题表述正确的是( ) A .直线()()34330m x y m m R ++-+=∈恒过定点()3,3--B .圆224x y +=上有且仅有3个点到直线:0l x y -+=的距离都等于1C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有三条公切线,则4m =D .已知圆22:4C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点()1,2 【答案】BCD 【分析】将直线的方程进行整理利用参数分离即可判断选项A ;根据圆心到直线的距离与半径的关系比较即可判断选项B ;由题意知两圆外切;由圆心距等于半径即可求m 得值,即可判断选项C ;设出点P 坐标,求出以线段PC 为直径的圆的方程,与已知圆的方程相减即可得直线AB 的方程,即可判断选项D ,进而可得正确选项.【详解】对于选项A :由()()34330m x y m m R ++-+=∈可得:()33430m x x y +++-=,由303430x x y +=⎧⎨+-=⎩可得33x y =-⎧⎨=⎩,所以直线恒过定点()3,3-,故选项A 不正确;对于选项B :圆心()0,0到直线:0l x y -+=的距离等于1,圆的半径2r ,平行于:0l x y -=且距离为1的两直线分别过圆心以及和圆相切, 故圆上有且仅有3个点到直线的距离等于1,故选项B 正确;对于选项C :由22120C :x y x ++=可得()2211x y ++=,圆心()11,0C -,11r =,由 222480C :x y x y m +--+=可得()()2224200x y m -+-=->,圆心()22,4C ,2r =1212C C r r =+,1=4m =,故选项C 正确;对于选项D :设点P 坐标为(),m n ,所以142m n+=,即24m n +=, 因为PA 、PB 分别为过点P 所作的圆的两条切线,所以CA PA ⊥,CB PB ⊥,所以点,A B 在以OP 为直径的圆上,以OP 为直径的圆的方程为22222m n x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理可得:220x y mx ny +--=,与已知圆22:4C x y +=相减可得4mx ny,消去m 可得:()424n x ny -+=即()2440n y x x -+-=,由20440y x x -=⎧⎨-=⎩可得12x y =⎧⎨=⎩,所以直线AB 经过定点()1,2,故选项D 正确. 故选:BCD. 【点睛】 结论点睛:(1)圆221111:0C x y D x E y F ++++=和圆222222:0C x y D x E y F ++++=的公共弦的方程为两圆的方程相减即可.(2)已知()11,A x y ,()22,B x y ,以线段AB 为直径的圆的方程为:()()()()12120x x x x y y y y --+--=.第II 卷(非选择题)三、解答题32.(2021·全国高一课时练习)已知直线1l 经过点(0,1),直线2l 过点(5,0),且12l l //. (1)若1l 与2l 距离为5,求两直线的方程;(2)若1l 与2l 之间的距离最大,求最大距离,并求此时两直线的方程.【答案】(1)1:12550l x y -+=,2:125600l x y --=或1l :0x =,2l :5x =;(2,1:510l x y -+=,2:5250l x y --=. 【分析】(1)根据两直线平行,斜率存在一定相等或都不存在两种情况,写出直线方程求解即可; (2)当经过两点的直线与两点连线垂直时,距离最大,求出此时直线的方程即可. 【详解】(1)①若1l ,2l 的斜率都存在时,设直线的斜率为k ,由斜截式得1l 的方程1y kx =+,即10kx y -+=. 由点斜式可得2l 的方程(5)y k x =-,即50kx y k --=. 在直线1l 上取点(0,1)A , 则点A 到直线2l 的距离5d ==,22251012525k k k ∴++=+, 125k ∴=. 1:12550l x y ∴-+=,2:125600l x y --=.②若1l 、2l 的斜率不存在,则1l 的方程为0x =,2l 的方程为5x =,它们之间的距离为5.同样满足条件. (2)当经过两点的直线与两点连线垂直时,距离最大,此时斜率5k =,1:510l x y-+=,2:5250l x y--=.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.33.(2021·全国高二课时练习)一河流同侧有两个村庄A,B,两村庄计划在河上共建一水电站供两村使用,已知A,B两村到河边的垂直距离分别为300 m和700 m,且两村相距500 m,问:水电站建于何处送电到两村的电线用料最省?【答案】水电站建在P(90,0)处电线用料最省.【分析】如图,以河流所在直线为x轴、y轴通过点A,建立平面直角坐标系,再求出点B的坐标,利用对称性求解. 【详解】解:如图,以河流所在直线为x轴、y轴通过点A,建立平面直角坐标系,则点A(0,300),B(x,700).设点B在y轴上的射影为H,则x=|BH|300,故点B(300,700).设点A关于x轴的对称点A′(0,-300),则直线A′B的斜率k=103,直线A′B的方程为y=103x-300.令y=0,得x=90,得点P(90,0),故水电站建在P(90,0)处电线用料最省.【点睛】关键点睛:解答本题有两个关键,其一是:想到利用解析法来求解;其二是,能够利用数形结合利用对称性找到满足题意的位置.34.(2020·全国高二课时练习)已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点.求直线l的斜率k的取值范围.。

人教版高中数学选修一第二单元《直线和圆的方程》测试题(有答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试题(有答案解析)

一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.过点)引直线l 与曲线y =A ,B 两点,O 为坐标原点,当AOB 的面积取最大值时,直线l 的斜率等于( )A .B .3±C .D3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l的条数是( ) A .1 B .2C .3D .45.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .146.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 7.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为( )A .(4][4)-∞-⋃+∞,, B .(22)-, C .3[8]2-,D .(4)+∞,8.在平面直角坐标系xOy 中,直线240x y +-=与两坐标轴分别交于点A 、B ,圆C 经过A 、B ,且圆心在y 轴上,则圆C 的方程为( ) A .226160x y y ++-= B .226160x y y +--= C .22890x y y ++-=D .22890x y y +--=9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(4,3)A -处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .8B .7C .6D .510.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .22⎡-⎢⎣⎦D .2⎡⎢⎣⎦12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( )A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.直线360x y +-=和圆()2215x y +-=的位置关系为______.14.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为,则m =______.15.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 16.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.19.直线l 过点()2,3P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的方程为_________.20.已知直线3y ax =+与圆22280x y x ++-=相交于A ,B 两点,点()00,P x y 在直线2y x =上,且PA PB =,则0x 的取值范围为______.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程.22.如图,已知圆22:414450C x y x y +--+=及点(2,3)Q -.(1)若点(,1)P m m +在圆C 上,求直线PQ 的斜率以及直线PQ 与圆C 的相交弦PE 的长度;(2)若(,)N x y 是直线10x y ++=上任意一点,过N 作圆C 的切线,切点为A ,当切线长NA 最小时,求N 点的坐标,并求出这个最小值; (3)若(,)M x y 是圆上任意一点,求32y x -+的最大值和最小值. 23.已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P . (1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.24.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM 所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.25.已知圆心为C 的圆经过A (1,1)和B (2,-2),且圆心C 在直线l :10x y -+=上.(1)求圆心为C 的圆的一般式...方程; (2)是否存在过原点的直线l ′与⊙C 交于E 、F 两点且使EF 为直径的圆过点M (230),若存在,求出直线l ′方程,若不存在说明理由.26.已知圆C :(x +3)2+(y -4)2=16,直线l :(2m +1)x +(m -2)y -3m -4=0(m ∈R ). (1)若圆C 截直线l 所得弦AB 的长为211m 的值;(2)若圆C 与直线l 相离,设MN 为圆C 的动直径,作MP ⊥l ,NQ ⊥l ,垂足分别为P ,Q ,当m 变化时,求四边形MPQN 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.A解析:A 【分析】由y =221x y +=()0y ≥,由题知直线斜率存在,设直线l 的斜率为k ,10k -<<,设直线l 为0(y k x -=,然后根据圆的弦长公式||AB =以及圆心O 到直线l 的距离d =12AOBSd AB =,进而化简求解即可 【详解】由y =221x y +=()0y ≥,∴曲线y =x 轴上方的部分(含与x 轴的交点),由题知,直线斜率存在,设直线l 的斜率为k 若直线与曲线有两个交点,且直线不与x 轴重合,则10k -<<,∴直线l 的方程为:0(y k x -=-,即0kx y --=则圆心O 到直线l 的距离d ==直线l被半圆所截得的弦长为||AB===12AOBS d AB====令211tk=+则AOBS=,当3t4=,即21314k=+时,AOBS有最大值为12此时,21314k=+3k∴=±又10k-<<,k∴=综上所述,直线l的斜率是故答案为:A【点睛】关键点睛:通过圆的弦长公式||AB=和圆心O到直线l的距离d=得出12AOBS d AB==211tk=+,可得AOBS=,进而利用二次函数的性质求解即可,属于中档题3.B解析:B【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解. 【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+,整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6.故选:B. 【点睛】关键点睛:解决本题的关键是将题转化为直线1x +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解.4.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】||5PQ ==,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线, 所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.5.D解析:D 【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.6.C解析:C 【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果. 【详解】圆C :()()22232++-=x y ,圆心为()2,3C -,由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -,且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C. 【点睛】 关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心; (2)入(反)射光线关于反射面的对称直线即为反(入)射光线.7.C解析:C 【分析】根据题意得直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,进而得直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,再根据32m k m +=--,解不等式即可得答案. 【详解】直线l 方程变形得:(1)(322)0x y m x y +-+--=.由103220x yx y+-=⎧⎨--=⎩得4515xy⎧=⎪⎪⎨⎪=⎪⎩,∴直线l恒过点4155C⎛⎫⎪⎝⎭,,11354725ACk+==+,121154625BCk+==--,由图可知直线l的斜率k的取值范围为:116k≤-或37k≥,又32mkm+=--,∴11263mm≤--+-或3273mm-≥+-,即28m<≤或322m-≤<,又2m=时直线的方程为45x=,仍与线段AB相交,∴m的取值范围为382⎡⎤-⎢⎥⎣⎦,.故选:C.【点睛】本题解题的关键在于根据直线系方程(1)(322)0x y m x y+-+--=得直线l恒过点4155C⎛⎫⎪⎝⎭,.考查数形结合思想,运算求解能力,是中档题.8.A解析:A【分析】求出点A、B的坐标,设圆心坐标为()0,b,由AC BC=可求出圆心C的坐标,并求出圆的半径,由此可求得圆C的方程.【详解】易知,直线240x y +-=交x 轴于点()4,0A ,交y 轴于点()0,2B ,设圆心C 的坐标为()0,b ,由AC BC =2b =-,解得3b =-, 所以,圆C 的半径为325BC =--=,因此,圆C 的方程为()22325x y ++=,即为226160x y y ++-=.故选:A. 【点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.9.C解析:C 【分析】求出A 关于y 4x +=的对称点A ',根据题意,1A C '-为最短距离,求出即可. 【详解】设点A 关于4x y +=的对称点(,)A a b ',设军营所在区域为的圆心为C ,根据题意,1A C '-为最短距离,∴AA '的中点为43,22a b +-⎛⎫⎪⎝⎭,,直线'AA 的斜率为1, ∴434,22,31,4a b b a +-⎧+=⎪⎪⎨+⎪=⎪-⎩解得:7,0a b ==, ∴1716A C '-=-=,故选: C. 【点睛】本题考查点关于直线对称,点与圆心的距离,考查运算求解能力,求解时注意对称性的应用.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.12.D解析:D 【分析】易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径, 23221k k -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较: (1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.14.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线解析:1 【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案.【详解】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d ==圆心到直线l 的距离d ==,则有=1m =或-3(舍),故1m =, 故答案为:1. 【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.15.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直 解析:)1,2⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线2x 1y =--有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12=,求得2b =,或2b =-(舍去),故要求的实数b 的范围为12b <, 故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.16.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B -- 联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:222222331(0)(1)11k k k PA k k --++=-+-++, 222222331(0)(1)11k k k PB k k--++=-+-++ 2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果. 【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1.设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆. 由题意得圆C 和点M 的轨迹有公共点,∴13≤≤,解得03a ≤≤.∴实数a 的取值范围是[]0,3. 【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果.19.3x ﹣2y+12=0【详解】设A (x0)B (0y )由中点坐标公式得:解得:x=﹣4y=6由直线过点(﹣23)(﹣40)∴直线的方程为:即3x ﹣2y+12=0故答案为3x ﹣2y+12=0解析:3x ﹣2y+12=0 【详解】设A (x ,0)、B (0,y ),由中点坐标公式得:002322x y++=-=, 解得:x=﹣4,y=6,由直线l 过点(﹣2,3)、(﹣4,0),∴直线l 的方程为:320342y x -+=--+, 即3x ﹣2y+12=0. 故答案为3x ﹣2y+12=020.(﹣10)∪(02)【分析】由题意可得CP 垂直平分AB 且y0=2x0由•a =﹣1解得x0把直线y =ax+3代入圆x2+y2+2x ﹣8=0化为关于x 的一元二次方程由△>0求得a 的范围从而可得x0的取值解析:(﹣1,0)∪(0,2) 【分析】由题意可得CP 垂直平分AB ,且 y 0=2x 0.由00201x x -+•a =﹣1,解得x 0121a -=+,把直线y =ax +3代入圆x 2+y 2+2x ﹣8=0化为关于x 的一元二次方程,由△>0,求得a 的范围,从而可得x 0的取值范围. 【详解】解:圆x 2+y 2+2x ﹣8=0 即 (x +1)2+y 2=9,表示以C (﹣1,0)为圆心,半径等于3的圆.∵|PA |=|PB |,∴CP 垂直平分AB , ∵P (x 0,y 0)在直线y =2x 上,∴y 0=2x 0.又CP 的斜率等于00201x x -+,∴00201x x -+•a =﹣1,解得x 0121a -=+.把直线y =ax +3代入圆x 2+y 2+2x ﹣8=0可得,(a 2+1)x 2+(6a +2)x +1=0. 由△=(6a +2)2﹣4(a 2+1)>0,求得 a >0,或a 34-<. ∴﹣1121a -+<<0,或 0121a -+<<2. 故x 0的取值范围为 (﹣1,0)∪(0,2), 故答案为:(﹣1,0)∪(0,2). 【点睛】本题主要考查直线和圆相交的性质,不等式的性质应用,属于中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)13k =;5PE =;(2)()3,2N -,3)最大值为2+,最小值为2. 【分析】(1)通过点(,1)P m m +在圆C 上,求出4m =,推出P 的坐标,求出直线PQ 的斜率,得到直线PQ 的方程,利用圆心(2,7)到直线的距离d ,求解即可;(2)判断当NC 最小时,NA 最小,结合当NC l ⊥时,NC 最小,求出NC 的最小值,然后求解直线方程;(3)利用32MQ y k x -=+,题目所求即为直线MQ 的斜率k 的最值,且当直线MQ 为圆的切线时,斜率取最值.设直线MQ 的方程为3(2)y k x -=+,利用圆心到直线的距离求解即可.【详解】 (1)点(,1)P m m +在圆C 上,代入圆C 的方程,解得4m =,(4,5)P ∴,故直线PQ 的斜率5314(2)3k -==--.因此直线PQ 的方程为15(4)3y x -=-.即3110x y -+=,而圆心(2,7)到直线的距离5d ===所以||55PE ====.(2)NA ==∴当NC 最小时,NA 最小,又知当NC l ⊥时,NC 最小,∴NC d ==由题得过C 且与直线10x y ++=垂直的直线方程为50x y -+=,(3,2)N ∴-(3)32MQ y k x -=+, ∴题目所求即为直线MQ 的斜率k 的最值,且当直线MQ 为圆的切线时,斜率取最值.设直线MQ 的方程为3(2)y k x -=+,即230kx y k -++=.当直线与圆相切时,圆心到直线的距离d r ===两边平方,即22(44)8(1)k k -=+,解得2k=2k =+所以32y x -+的最大值和最小值分别为2+2. 【点睛】方法点睛:求最值常用的方法有:(1)函数法(利用函数的单调性求解最值);(2)导数法(利用导数求函数的单调性即得最值);(3)数形结合法(通过“数”和“形”的有机结合求解最值);(4)基本不等式法(利用基本不等式求解最值).要根据数学情景灵活选择方法解答.本题的最值就利用了数形结合的方法. 23.(1)22(4)4x y -+=;(2)y x=或4x y +=± 【分析】(1)设(),P x y ,()00,M x y ,用,x y 表示出00,x y ,把00(,)x y 代入已知圆方程化简后可得P 点轨迹方程;(2)截距均为0时,设切线y kx =,截距相等且不为0时,设切线(0)x y a a +=≠,由圆心到切线的距离等于半径求出参数即得切线方程. 【详解】解:(1)设(),P x y ,()00,M x y ,根据中点公式得008202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得00282x x y y =-⎧⎨=⎩.由220016x y +=,得22(28)(2)16x y -+=∴点P 的轨迹方程是22(4)4x y -+=.(2)当切线在两坐标轴上截距均为0时,设切线y kx =2=∴3k =±,所以切线方程为3y x =±,当切线在两坐标轴上截距相等且不为0时,设切线(0)x y a a +=≠2=,∴4a =±4x y +=±综上:切线方程为3y x =±或4x y +=± 【点睛】关键点点睛:求动点轨迹方程的方法:直接法:设曲线上动点坐标为(,)x y 后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1求直线斜率的基本方法(1) 定义法:已知直线的倾斜角为a,且a工90°,贝U斜率k = ta n a .y2 — y i⑵公式法:已知直线过两点P i(x i,y i) ,P2(X2,y2),且X i M X2,则斜率k = .X2 一X i2. 判断两直线平行的方法(1) 若不重合的直线11与12的斜率都存在,且分别为k i, k2,贝U k i= k2? 11//I 2.(2) 若不重合的直线I i与I 2的斜率都不存在,其倾斜角都为90°,则I i//l2.3. 判断两直线垂直的方法(1) 若直线I i与丨2的斜率都存在,且分别为k i, k2,贝U k i • k2=—i? I i±12.(2) 已知直线I i与12,若其中一条直线的斜率不存在,另一条直线的斜率为0,则I i 丄I 2.i. 已知两条直线I i:ax —by+ 4= 0和12:(a—i)x + y + b = 0,求满足下列条件的a, b的值.(1) I i 丄12 且I i 过点(—3,—i);(2) I i / I 2,且坐标原点到这两条直线的距离相等.[解]⑴••• Ii丄I2,a(a—i) —b = 0,①又丨i过点(一3, —i),—3a + b+4 = 0.②a= 2,解①②组成的方程组得.cb = 2.(2) I 2的斜率存在,I i / I 2 ,.直线I i的斜率存在.a--k i = k2,即二=i —a.③b又•••坐标原点到这两条直线的距离相等,I i // I 2, .11, 12在y轴上的截距互为相反数,即b = — ( 一 b ).④经检验此时的l 1与丨2不重合,故所求值为2a=- 或 3b = 2.注:已知两直线 11: A i X + By + C = 0 和 12: Ax + By + C 2= 0(1) 对于I 1//I 2的问题,先由AB — AB i = 0解出其中的字母值,然后代回原 方程检验这时的I l 和I 2是否重合,若重合,舍去.⑵ 对于丨1丄12的问题,由AiA +0解出字母的值即可.2. 直线ax + 2y — 1 = 0与直线2x — 3y — 1= 0垂直,则a 的值为()4A•- 3 B .- 3 C. 2D . 3解析:选D 由2a — 6= 0得a = 3.故选D.3. 已知直线 x + 2ay — 1 = 0与直线(a — 1)x + ay + 1 = 0平行,则a 的值为 ( )或0C. 0D . — 2解析:选A 当a = 0时,两直线的方程化为x = 1和x = 1,显然重合,不符 a 1 a 3合题意;当a ^O 时,^厂= ,解得a =-.故选A.1 2a 2、直线方程1 .直线方程的五种形式由③④联立,解得:=2,b = — 2a = _b = 2.a= 2,b = — 22.常见的直线系方程(1) 经过两条直线I仁A i X + By + C i= 0, 12 :Ax+ By + G= 0父点的直线系方程为A i x + B i y + C i+入(A2X + By + Q) = 0,其中入是待定系数.在这个方程中,无论入取什么实数,都不能得到Ax + By + C2= 0,因此它不能表示直线丨2.⑵平行直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)平行的直线系方程是Ax+ By+入=0(入工C).(3) 垂直直线系方程:与直线Ax+ By+ C= 0(A, B不同时为0)垂直的直线系方程是Bx—Ay+入=0.4. 过点A(3 , - 1)作直线I交x轴于点B,交直线I仁y二2x于点C,若| Bq 二2| AB,求直线I的方程.[解]当直线I的斜率不存在时,直线I : x = 3,••• B(3,0) , C(3,6).此时| Bq = 6, I AB = 1, |Bq 工2|AB ,•••直线I的斜率存在.设直线I的方程为y +1 = k(x-3),显然k M0且k工2.••• B3 +1 0 ,k ,-| Bq = 2| AB|,…| X B — X c | = 2| X A — X B | , 3k + 1 1 1•- 口 — k — 3= 2 k ,3k +1 1 2 3k +1 1 2 ■k^ — k — 3= k 或 T —2 — k — 3= — k , 3 1解得k =—㊁或k = 4.•••所求直线I 的方程为3X + 2y — 7 = 0或X — 4y — 7= 0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解: (1)直接法:直接选取适当的直线方程的形式,写出结果;⑵ 待定系数法:先以直线满足的某个条件为基础设出直线方程, 再由直线满足的另一个条件求出待定 系数,从而求得方程.5. 已知直线I 仁3X — 2y — 1 = 0和丨2: 3X — 2y — 13= 0,直线I 与I 1,12的距 离分别是d 1, d 2,若d 1 : d 2=2 : 1,求直线I 的方程.解:由直线丨1,I 2的方程知I 1//I 2,又由题意知,直线I 与丨1,丨2均平行(否 则d 1 = 0或d 2= 0,不符合题意).设直线I : 3x — 2y + m = 0( mr^ — 1且m^ — 13),由两平行直线间的距离公式,=—25 或 m = — 9.故所求直线I 的方程为3x — 2y — 25 = 0或3x — 2y — 9 = 0. 6. 已知直线I : 3x — y + 3= 0,求: (1)点P(4,5)关于I 的对称点;y = 2x , y + 1 = k x — 3得点C 的横坐标X c =3k + 1k — 2 .得d 1d 2=| n + 13|13又 d 1 : d 2=2 : 1,所以 | 1| = 2| m + 13|,解得 m| m + 1|⑵直线x—y — 2 = 0关于直线I对称的直线方程.解:设P(x,y)关于直线I : 3x—y+ 3= 0的对称点为P'(x',y').y — y••• k pp • ki 二―1 即x ^—x x 3二—1.① 又PP'的中点在直线3x — y + 3= 0上,—4x + 3y — 9 — ,—4x + 3y — 9 3x + 4y + 3—2= 0,化简得 7x + y + 22 = 0.三、圆的方程(1) 圆的标准方程:(x — a)2+ (y — b)2 = r 2 (2) 圆的一般方程:x 2 + y 2+ Dx + Ey + F = 0(3) 若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程 时可用相应的圆系方程加以求解:① 过两圆 C i : x 2+y 2+ Dx + E i y + F i = 0, G : x 2+y 2+ D 2x + &y + F ?= 0 交点的 圆系方程为 x 2+ y 2+ Dx + E i y + F i + 入(x 2+y 2+ Dx + Ey + F 2) = 0( X 为参数,入工 —1),该方程不包括圆G ;② 过圆C : x 2+ y 2+ Dx + Ey + F = 0与直线I : Ax + By + C = 0交点的圆系方程2 2 __________________为 x + y + Dx + Ey + F + X (Ax + By + C) = 0( X 为参数,X € R).7.在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A — 3,0),B(2,0) , C(0,— 4),经过这三个点的圆记为 M(1)求BC 边的中线AD 所在直线的一般式方程;⑵求圆M 的方程.••• 3X 22 +3 = 0.②由①②得=3x + 4y + 3(1)把x = 4, y =5代入③④得 =—2, y ' = 7,••• P(4,5)关于直线I 的对称点 P' 的坐标为(一2,7).⑵用③④分别代换x — y — 2= 0 中的x , y ,得关于I 的对称直线方程为[解]⑴法一:由B(2,0) , C(0,—4),知BC的中点D的坐标为(1 , —2).即中线AD 所在直线的一般式方程为x + 2y + 3= 0. 法二:由题意,得| AB = | Aq = 5, 则厶ABC 是等腰三角形, 所以ADL BC因为直线BC 的斜率k Bc = 2, 1所以直线AD 的斜率k AD = — 2 ,1由直线的点斜式方程,得y — 0= — 2(x + 3), 所以直线AD 的一般式方程为x + 2y + 3= 0.⑵ 设圆M 的方程为x 2 + y 2+ Dx + Ey + F = 0.将 A — 3,0) , B(2,0) , C(0 , — 4)三点的坐标分别代入方程,得5所以圆M 的方程是x + y + x + qy — 6= 0. 注:利用待定系数法求圆的方程(1) 若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件 列出关于a , b , r 的方程组,从而求出a , b , r 的值.(2) 若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据 已知条件列出关于D, E , F 的方程组,从而求出D, E , F 的值.8.以线段AB x+ y — 2 = 0(0< x < 2)为直径的圆的方程为()A. (x + 1)2+ (y + 1)2= 2B. (x — 1)2+ (y — 1)2= 2C. (x + 1)2+ (y + 1)2= 8D. (x — 1)2+ (y — 1)2= 8又A — 3,0),所以直线AD 的方程为y —0 x +3—2—0=~1+3,9 — 3D+ F = 0,4+ 2D+ F = 0,16— 4E + F =—1,5解得E = 2,F = —解析:选B直径的两端点分别为(0,2) ,(2,0),二圆心为(1,1),半径为2 故圆的方程为(x—1)2+ (y —1)2= 2.9. 已知圆C经过点A(2 , —3), B( —2,—5),且圆心在直线I : x—2y —3 =0上,求圆C的方程.解:设圆C的方程为(x —a)2+ (y—b)2= r2.2 一a + —3一b = r , a = —1,由题意,得一2— a 2+ —5— b 2= r2,解得b= —2,a —2b—3= 0,r2= 10.所以圆C的方程为(x+ 1)2+ (y + 2)2= 10.10. 求以圆C: x2+ y2—12x —2y —13 = 0 和圆Q: x2+ y2+ 12x + 16y—25= 0 的公共弦为直径的圆C的方程.解:联立两圆的方程得方程组2 2x + y —12x —2y—13= 0,2 2x + y + 12x + 16y —25 = 0,相减得公共弦所在直线的方程为4x + 3y —2= 0.4x+ 3y —2 = 0,再由2解得两圆交点坐标为(一1,2),(5,—6).2x + y —12x—2y —13 =1 •••所求圆以公共弦为直径,•••圆心C是公共弦的中点(2,—2),半径长为2厂5+ 厂2+ 一- 6—2一2= 5.2 2•••圆C的方程为(x —2) + (y + 2) = 25.四、直线与圆的位置关系1. 直线与圆位置关系的判断方法(1) 几何法:设圆心到直线的距离为d,圆的半径长为r.若dvr,则直线和圆相交;若d= r,则直线和圆相切;若d>r,则直线和圆相离.(2) 代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为△ . △= 0?直线与圆相切;△ >0?直线与圆相交;△ <0?直线与圆相离.2. 过圆外一点(X o,y o)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y —y o= k(x—X。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43 C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A.二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)平行直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)平行的直线系方程是Ax +By +λ=0(λ≠C ).(3)垂直直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)垂直的直线系方程是Bx -Ay +λ=0.4.过点A (3,-1)作直线l 交x 轴于点B ,交直线l 1:y =2x 于点C ,若|BC |=2|AB |,求直线l 的方程.[解] 当直线l 的斜率不存在时,直线l :x =3, ∴B (3,0),C (3,6).此时|BC |=6,|AB |=1,|BC |≠2|AB |, ∴直线l 的斜率存在.设直线l 的方程为y +1=k (x -3), 显然k ≠0且k ≠2. 令y =0,得x =3+1k , ∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=k (x -3),得点C 的横坐标x C =3k +1k -2.∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |,∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k , 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2). 又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3), 所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0. 注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为12 (5+1)2+(-6-2)2=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),化成一般式kx -y +y 0-kx 0=0,利用圆心到直线的距离等于半径长,解出k ;②当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),与圆的方程(x -a )2+(y -b )2=r 2联立,化为关于x 的一元二次方程,利用判别式为0,求出k .当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解. (2)利用圆的弦长公式l =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2(其中x 1,x 2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d 、圆的半径r 与弦长的一半l 2为线段长的三条线段构成直角三角形,故有l =2r 2-d 2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. (2)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交.则两圆方程相减后得到的新方程:(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x +y -2=0与圆(x -1)2+(y -2)2=1相交于A ,B 两点,则|AB |=( )A.22B.32C. 3D. 2(2)若直线x -my +1=0与圆x 2+y 2-2x =0相切,则m 的值为( ) A .1 B .±1 C .±3D. 3(3)已知圆C :(x -3)2+(y -4)2=4,直线l 过定点A (1,0). ①若l 与圆C 相切,求l 的方程;②若l 与圆C 相交于P ,Q 两点,且|PQ |=22,求此时直线l 的方程. [解析] (1)∵圆心(1,2)到直线x +y -2=0的距离d =22,∴|AB |=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m2=1,解得m =±3. 答案:(1)D (2)C(3)解:①若直线l的斜率不存在,则直线l:x=1,符合题意.若直线l的斜率存在,设直线l的方程为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到直线l的距离等于2,即|3k-4-k|k2+1=2,解得k=34,此时直线l的方程为3x-4y-3=0.综上可得,所求直线l的方程是x=1或3x-4y-3=0.②由直线l与圆C相交可知,直线l的斜率必定存在,且不为0,设直线l的方程为k0x-y-k0=0,圆心(3,4)到直线l的距离为d,因为|PQ|=24-d2=22,所以d=2,即|3k0-4-k0|k20+1=2,解得k0=1或k0=7,所以所求直线l的方程为x-y-1=0或7x-y-7=0.注:研究直线与圆位置关系综合问题时易忽视直线斜率k不存在情形,要注意作出图形进行判断.12.由直线y=x+1上的一点向圆x2-6x+y2+8=0引切线,则切线长的最小值为()A.1 B.2 2C.7 D.3解析:选C切线长的最小值在直线y=x+1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d=|3-0+1|2=22,圆的半径为1,故切线长的最小值为d2-r2=8-1=7.13.P是直线l:3x-4y+11=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形P ACB面积的最小值是()A. 2 B.2 2C. 3 D.2 3解析:选C圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.根据对称性可知四边形P ACB的面积等于2S△APC =2×12×|P A|×r=|P A|=|PC |2-r 2=|PC |2-1.要使四边形P ACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形P ACB面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫-m +12,m -12,由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。

相关文档
最新文档