实验二、 波形合成与分解

合集下载

方波的合成与分解

方波的合成与分解

综合性实验报告题目:方波的合成与分解实验课程:信号与系统学号:姓名:班级:12自动化2班指导教师:方波的分解与合成一、实验类型综合性实验二、实验目的和要求1.观察方波信号的分解。

2.用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。

3.掌握带通滤波器的有关特性测试方法。

4.观测基波和其谐波的合成。

三、实验条件实验仪器1.20M 双踪示波器一台。

2.信号与系统实验箱。

四、实验原理1. 信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1,1(T t t +内表示为:)sin cos 1(0)(t n nb t n n n a a t f Ω+Ω∑∞=+=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

AA(c)图7-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图7-1来形象地表示。

其中图7-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图7-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

图7-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。

反映各分量相位的频谱称为相位频谱。

在本实验中只研究信号振幅频谱。

周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。

测量时利用了这些性质。

从振幅频谱图上,可以直观地看出各频率分量所占的比重。

测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。

信号与线性系统实验报告2

信号与线性系统实验报告2

实验二连续系统频域分析一、实验目的1.通过观察信号的分解与合成过程,理解利用傅利叶级数进行信号频谱分析的方法。

2.了解波形分解与合成原理。

3.掌握带通滤波器有关特性的设计和测试方法。

4.了解电信号的取样方法与过程以及信号恢复的方法。

5.观察连续时间信号经取样后的波形图,了解其波形特点。

6.验证取样定理并恢复原信号。

二、实验内容1.用示波器观察方波信号的分解,并与方波的傅利叶级数各项的频率与系数作比较。

2.用示波器观察三角波信号的分解,并与三角波的傅利叶级数各项的频率与系数作比较。

3.用示波器观察方波信号基波及各次谐波的合成。

4.用示波器观察三角波信号基波及各次谐波的合成。

5.用示波器观察不同的取样频率抽样得到的抽样信号。

6.用示波器观察各取样信号经低通滤波器恢复后的信号并验证抽样定理。

三、实验仪器1.信号与系统实验箱一台2.信号系统实验平台3.信号的分解与合成模块(DYT3000-69)一块4.信号的取样与恢复模块(DYT3000-68)一块5.同步信号源模块(DYT3000-57)(选用)6.20MHz双踪示波器一台7.连接线若干四、实验原理1、信号的分解与合成任何电信号都是由各种不同频率、幅度和初始相位的正弦波跌加而成的。

对周期信号由它的傅利叶级数展开式可知,各次谐波为基波频率的整数倍。

而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无穷小,但其相对大小是不同的。

通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。

本实验采用性能较好的有源带通滤波器作为选频网络。

对周期信号波形分解的方案框图如图2-1所示。

实验中对周期方波、三角波、锯齿波信号进行信号的分解。

方波信号的傅利叶级数展开式为411()(sin sin 3sin 5)35Af t t t t ωωωπ=+++…;三角波信号的傅利叶级数展开式为2811()(sin sin 3sin 5)925A f t t t t ωωωπ=-+-…;锯齿波信号的傅利叶级数展开式为11()(sin sin 2sin 3)223A A f t t t t ωωωπ=-+++…,其中2T πω=为信号的角频率。

实验二、 波形合成与分解

实验二、 波形合成与分解

实验二 波形合成与分解1.实验目的在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。

2.实验原理根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即:)2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++=即可以用一组正弦波和余弦波来合成任意形状的周期信号。

3.实验内容(1) 方波的合成图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量合成的,本实验用图形的方式来表示它的合成。

方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=⋅=∑∞=n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。

a.只考察从 0=t s 到10=t s 这段时间内的信号。

b.画出基波分量)sin()(t t y =。

c.将三次谐波加到基波之上,并画出结果,并显示。

3/)*3sin()sin()(t t t y +=d.再将一次、三次、五次、七次和九次谐波加在一起。

9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++=e.合并从基波到十九次谐波的各奇次谐波分量。

f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。

注意“吉布斯现象”。

周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。

如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。

在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。

(2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

(3)设计分析方波、三角波频谱的分析实验,写出实验步骤,并完成实验(并比较二者频谱的特点)。

方波信号的分解与合成实验报告

方波信号的分解与合成实验报告

方波信号的分解与合成实验报告一、实验目的1.了解方波信号的特点和性质;2.学习使用傅里叶级数分解和合成方波信号;3.掌握实验仪器的使用方法和实验操作技巧。

二、实验原理1.方波信号的特点和性质方波信号是一种周期性的信号,其波形为矩形,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。

方波信号的频率是指信号在一个周期内重复的次数,单位为赫兹(Hz)。

2.傅里叶级数分解和合成方波信号傅里叶级数是将一个周期性信号分解成一系列正弦和余弦函数的和的方法。

对于一个周期为T的周期性信号f(t),其傅里叶级数表示为:f(t)=a0/2+Σ(an*cos(nωt)+bn*sin(nωt))其中,a0/2为信号的直流分量,an和bn为信号的交流分量,ω=2π/T为信号的角频率,n为正整数。

傅里叶级数合成是将一系列正弦和余弦函数的和合成为一个周期性信号的方法。

对于一个周期为T的周期性信号f(t),其傅里叶级数合成表示为:f(t)=Σ(cncos(nωt)+dnsin(nωt))其中,cn和dn为信号的傅里叶系数,n为正整数。

三、实验器材和仪器1.示波器2.函数信号发生器3.万用表4.电阻箱5.电容箱四、实验步骤1.将函数信号发生器的输出设置为方波信号,频率为1kHz,幅值为5V。

2.将示波器的输入连接到函数信号发生器的输出端口。

3.调节示波器的水平和垂直控制,使得方波信号的波形清晰可见。

4.使用万用表测量方波信号的频率和幅值,并记录数据。

5.使用电阻箱和电容箱分别改变方波信号的频率和幅值,并记录数据。

6.使用傅里叶级数分解方法,将方波信号分解成一系列正弦和余弦函数的和,并记录数据。

7.使用傅里叶级数合成方法,将一系列正弦和余弦函数的和合成为一个周期性信号,并记录数据。

五、实验结果与分析1.方波信号的特点和性质通过示波器观察方波信号的波形,可以发现其具有矩形的特点,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结
一、实验目的
本次实验的目的是:
1. 掌握信号的分解与合成原理;
2. 了解信号的合成生成方法;
3. 掌握合成信号的基本特性。

二、实验内容
本次实验的内容包括:
1. 利用MATLAB编程实现信号合成程序;
2. 信号合成程序的调试;
3. 利用合成信号产生平坦的信号;
4. 利用合成信号产生任意波形;
5. 记录下合成信号的波形并作出比较;
6. 对合成信号的结果进行分析与评价。

三、实验结果
1. 利用MATLAB编程实现信号合成程序:通过本次实验,我们可以用MATLAB编程实现一个信号合成程序,以满足任意一种信号的所需。

2. 平坦信号:利用本次实验,通过对直线段和曲线段的组合,我们可以得到一个看上去是弧形的信号,它是一个平坦信号,我们可以通过改变曲线段的个数来调整这个信号的过程。

3. 任意波形:在本次实验中,我们可以利用合成信号来得到任
意波形。

通过改变曲线段的弯曲度和曲线段的个数,我们可以得到不同波形。

4. 记录下合成信号的波形:在本次实验中,我们可以将波形记录下来,并作出比较,以确认合成出的波形的情况。

5. 对合成信号的结果进行分析与评价:本次实验中,我们可以对合成的信号进行分析与评价,以看出是否符合要求,并能够作出准确评价。

四、总结
本次实验主要是学习信号的分解和合成,及其相关原理。

信号的分解和合成主要是通过程序来实现的,在程序的帮助下,可以很容易地实现信号的分解和合成。

本次实验通过实现信号合成程序的调试,发现、记录合成的信号并作出评价的方法,让我们能够更好地了解信号的分解和合成。

信号分解与合成实验报告

信号分解与合成实验报告

信号分解与合成实验报告本次实验主要涉及信号分解和合成的过程和方法。

其中,我们研究了信号分解和合成的基本概念和原理,利用 MATLAB 软件进行信号分解和合成实验,通过实验数据和实验结果验证了信号分解和合成的正确性和实用性。

一、信号分解信号分解,是指将一个信号分解成若干个简单的成分。

常用的信号分解方法有傅里叶变换、小波变换等。

本次实验我们采用了小波变换对信号进行分解。

小波变换是一种时频分析方法,具有良好的适应性、时间分解精度高、尤其适合非平稳信号的分析。

在小波分析中,我们通过选择适当的小波函数和选取不同的分解层数,可以将信号分解为越来越细节和越来越精确的小波成分,对信号的各种特征和结构有较好的拟合和表示,从而更为深入地了解信号的内在特性。

在 MATLAB 环境下,我们通过调用 Wavelet Toolbox 中的相关函数,实现了信号分解的实验。

具体步骤为:1.加载待处理信号,使用 load 命令将信号载入 MATLAB 环境中。

2.选择所需的小波函数。

在 Wavelet Toolbox 中,提供了多种不同形态的小波函数,可根据实际需求进行选择。

3.调用 wfilters 函数进行小波滤波器设计。

该函数根据所选小波函数的性质,生成对应的离散小波滤波器系数(低通和高通滤波器系数)。

4.使用 wmulticfs 函数对信号进行小波分解。

该函数将信号分解为多个不同尺度和不同频带的小波系数,可用于分析信号中的不同成分。

5.可视化分解结果,通过图像展示各个小波系数的分布和特征,可以更直观地了解信号的结构和组成成分。

二、信号合成信号合成,是指将多个简单的信号成分重新组合起来,形成新的信号。

信号合成常用的方法有基本波形叠加法、线性组合法、窄带带通滤波法等。

在本次实验中,我们采用了基本波形叠加法为例,对信号进行合成。

基本波形叠加法,是指将一系列基本波形(如正弦波、三角波)按照一定比例组合,形成新的波形。

该方法简单易行,对于周期信号的分析具有良好的适应性。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告一、实验目的本次实验的主要目的是深入理解信号的分解与合成原理,通过实际操作和观察,掌握信号在时域和频域的特性,以及如何将复杂信号分解为简单的基本信号,并重新合成原始信号。

二、实验原理1、信号的分解任何周期信号都可以用一组正弦函数和余弦函数的线性组合来表示,这就是傅里叶级数展开。

对于非周期信号,可以通过傅里叶变换将其表示为连续频谱。

2、信号的合成基于分解得到的各个频率成分的幅度和相位信息,通过逆过程将这些成分相加,可以合成原始信号。

三、实验设备与环境1、实验设备信号发生器示波器计算机及相关软件2、实验环境安静、无电磁干扰的实验室环境四、实验内容与步骤1、产生周期信号使用信号发生器产生一个周期方波信号,设置其频率和幅度。

2、观察时域波形将产生的方波信号输入示波器,观察其时域波形,记录波形的特点,如上升时间、下降时间、占空比等。

3、进行傅里叶级数分解通过计算机软件对观察到的方波信号进行傅里叶级数分解,得到各次谐波的频率、幅度和相位信息。

4、合成信号根据分解得到的谐波信息,在计算机软件中重新合成信号,并与原始方波信号进行比较。

5、改变信号参数改变方波信号的频率和幅度,重复上述步骤,观察分解与合成结果的变化。

6、非周期信号实验产生一个非周期的脉冲信号,进行傅里叶变换和合成实验。

五、实验结果与分析1、周期方波信号时域波形显示方波具有陡峭的上升和下降沿,占空比固定。

傅里叶级数分解结果表明,方波包含基波和一系列奇次谐波,谐波的幅度随着频率的增加而逐渐减小。

合成的信号与原始方波信号在形状上基本一致,但在细节上可能存在一定的误差,这主要是由于分解和合成过程中的计算精度限制。

2、改变参数的影响当方波信号的频率增加时,谐波的频率也相应增加,且高次谐波的相对幅度减小。

幅度的改变主要影响各次谐波的幅度,而对频率和相位没有影响。

3、非周期脉冲信号傅里叶变换结果显示其频谱是连续的,且在一定频率范围内有能量分布。

信号合成与分解的信号与系统实验报告

信号合成与分解的信号与系统实验报告
7)、如有失真度测试仪,则测出外接电容C分别为0.1µf,0.01µf和1000P时的正弦波失真系数r值(一般要求该值小于3%)。
5、实验内容及实验数据记录
实验图形如下
方波图形如下
跳线连接1-2脚时输出方波如下:跳线连接2-3或3-4脚时输出方波如下:
电容值为C=0.1µf电容值为C=0.01µf
跳线连接4-5脚时输出方波如下:
福建农林大学计算机与信息学院信息工程类实验报告
系:电子信息工程专业:电子信息工程年级:2006
姓名:学号:061151091实验课程:信号与系统
实验室号:通信实验室实验设备号:信号与系统(28)实验时间:2009.12.6
指导教师签字:成绩:
实验二 用同时分析法观测方波信号的频谱
1、实验目的
1)观察方波信号的分解,并观测基波和其谐波的合成。
7.质疑、建议、问题讨论
函数信号发生器是一种常见的芯片,在很多场合都要应用到这种芯片。实验中用到的函数信号发生器能产生方波、三角波和正弦波,这三种波是现实应用用到最多的基本波形。通过本次实验我们熟悉了信号发生器的内部结构波形产生的过程,这对我们以后的学习和工作中遇到此类函数信号发生器和这几种波形的理解和应用有很大的帮助。
5)、调节电位器W302,分别观测三种输出波形(波形选择上面已介绍),有何结论?(如影响方波的占空比,那么对正弦波和三角波有何影响呢?)
6)、调节“频率调节”旋扭,记录下函数发生器输出的最高和最低频率(注意配合“频率选择”档);再调节“幅度调节”旋扭,记录下函数发生器输出的最大和最小幅度(此时配合调节电位器W305)。
当频率大幅增大时波形如下:
电容值为C=0.001µf
6.实验数据处理与分析
1、列表整理C取不同值时三种波形的频率和幅度值。

波形的合成与分解虚拟实验设计

波形的合成与分解虚拟实验设计

课题完成后应提交的文件和图表(或设计图纸) 1. 开题报告一份; 2. 设计说明书一本,即毕业论文(含中英文摘要、概述、系统分析、虚 拟实验设计,使用说明书、 设计总结, 参考文献, 并附程序全部源代码) 。 3. 虚拟实验软件一套(含源程序、打包的安装程序和软件安装、使用 说明书)。 4. 相关英文资料及译文一篇
课题任务要求: 1、 收集和阅读与虚拟实验设计的相关资料; 2、 熟悉波形分解与合成原理; 3、 熟悉波形分解与合成实验的内容和实验过程,并决定本虚拟实验的 内容; 4、 选择并决定虚拟实验设计的软件环境; 5、 设计虚拟实验并完成相关程序设计调试; 6、 撰写虚拟实验设计说明书一份(毕业设计论文); 7、 至少阅读一篇与本课题有关的外文资料,并翻译为中文,打印好附 于毕业设计说明书后
序 号 1 2 3 4 5 6 7 8 9 10
收集与文献阅读相关文献资料 翻译一篇英文文献 撰写开题报告并进行总体方案设计 编制虚拟实验程序及相关软件 调试并完善虚拟实验 总结虚拟实验设计并撰写毕业论文 修改并完善论文 准备答辩
注:1. 此表由指导教师填写; 2. 此表每个学生人手一份,作为毕业设计(论文)检查工作进度之依据; 3. 进度安排请用“一”在相应位置画出。
关键字:虚拟仪器;abVIEW软件;波形合成与分解;傅立叶级数;谐波
THE IRTUAL XPERIMENT DESIGN OF THEE WAVEFORM SYTHESIS AND DECOMPOSITION
ABSTRACT
Signal Analysis and Processing and other courses have many formulas and complex content,at the same time, School laboratory equipment is lack and difficult to adjust.All this Seriously affected and restricted the teaching effect. The LabVIEW software development platform of test system,based G language ,achieve to help students complete the numerical caluculation ,waveform synthesis and

(完整word版)波形合成与分解

(完整word版)波形合成与分解

实验二波形的合成和分解一. 实验目的1. 加深了解信号分析手段之一的傅立叶变换的基本思想和物理意义.2。

观察和分析由多个频率、幅值和相位成一定关系的正弦波叠加的合成波形.3. 观察和分析频率、幅值相同,相位角不同的正弦波叠加的合成波形.4. 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义。

二。

实验原理按富立叶分析的原理,任何周期信号都可以用一组三角函数{ , }的组合表示:也就是说,我们可以用一组正弦波和余弦波来合成任意形状的周期信号。

对于典型的方波,其时域表达式为:根据傅立叶变换,其三角函数展开式为:由此可见,周期方波是由一系列频率成分成谐波关系,幅值成一定比例,相位角为0的正弦波叠加合成的.那么,我们在实验过程中就可以通过设计一组奇次正弦波来完成方波信号的合成,同理,对三角波、锯齿波等周期信号也可以用一组正弦波和余弦波信号来合成。

三。

实验内容用前5项谐波近似合成一个频率为100Hz、幅值为600的方波。

四. 实验仪器和设备1。

计算机 1台2。

DRVI快速可重组虚拟仪器平台 1套五。

实验步骤1. 运行DRVI主程序,点击DRVI快捷工具条上的"联机注册”图标,选择其中的“DRVI采集仪主卡检测”。

2. 在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,“c:\Program Files\Depush\DRVI3。

0”,在实验目录中选择“波形合成与分解实验”,建立实验环境,如图1。

图1 波形合成与分解实验环境下面是该实验的装配图和信号流图,如图3,图中的线上的数字为连接软件芯片的软件总线数据线号,6015、6029、6040、6043为定义的四片脚本芯片的名字。

图3波形合成与分解实验装配图3。

在“波形合成与分解”实验中的频率输入框中输入100,幅值输入框中输入300,相位输入框中输入0,然后点击“产生信号"按钮,产生1次谐波,并点击“信号合成”按钮将其叠加到波形输出窗中。

物理实验教案方波的傅里叶分解与合成

物理实验教案方波的傅里叶分解与合成

方波的傅里叶分解与合成一、实验目的:1、用RLC 串联谐振方法将方波分解成基波和各次谐波,并测量它们的振幅与相位关系。

2、将一组振幅与相位可调正弦波由加法器合成方波。

3、了解傅立叶分析的物理含义和分析方法。

二、实验仪器:HLD-ZDF-II 傅立叶分解合成仪、示波器、标准电感、电容箱等。

三、实验原理:任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,即:∑∞=++=10)sin cos (21)(n n n t n b t n a a t f ωω其中:T 为周期,ω为角频率,ω=Tπ2;第一项 20a为直流分量。

所谓周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。

如图1所示的方法可以写成:h (0≤t <2T ) )(t f =-h (-2T≤t <0) 此方波为奇函数,它没有常数项。

数学上可以证明此方波可表示为:......)7sin 715sin 513sin 31(sin 4)(++++=t t t t h t f ωωωωπ∑∞=--1])12sin[()121(4n t n n h ωπ(1)周期性波形傅里叶分解的选频电路我们用RLC 串联谐振电路作为选频电路,对方波进行频谱分解。

在示波器上显示这些被分解的波形,测量它们的相对振幅。

我们还可以用一参考正弦波与被分解出的波形构成李萨如图形,确定基波与各次谐波的初相位关系。

实验线路图如图2所示。

这是一个简单的RLC 电路,其中R 、C 是可变的。

L 一般取0.1H~1H 范围。

图 1 方波当输入信号的频率与电路的谐振频率相匹配时,此电路将有最大的响应。

谐振频率0ω为:0ω=LC1即: LC f π21=这个响应的频带宽度以Q 值来表示:Q =RLω0当Q 值较大时,在0ω附近的频带宽度较狭窄,所以实验中我们应该选择Q 值足够大,大到足够将基波与各次谐波分离出来。

如果我们调节可变电容C ,在n 0ω频率谐振,我们将从此周期性波形中选择出这个单元。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在我们日常生活中无处不在。

了解信号的特性和处理方法对于电子通信、信号处理等领域有着重要的意义。

本实验旨在通过信号的分解与合成实验,深入探究信号的本质和处理技术。

一、实验目的本实验旨在通过实际操作,了解信号的分解与合成原理,并通过实验数据分析,探究不同信号类型的特点。

二、实验器材与方法1. 实验器材:示波器、信号发生器、电阻、电容、电感等。

2. 实验方法:a. 信号的分解:将复杂信号通过滤波器进行分解,观察信号的频谱特征。

b. 信号的合成:通过不同信号的叠加,合成新的信号,并观察合成信号的波形和频谱。

三、实验过程与结果1. 信号的分解a. 实验步骤:(1) 将信号发生器输出正弦波信号。

(2) 将正弦波信号输入到滤波器中。

(3) 调节滤波器的参数,观察输出信号的变化。

b. 实验结果:通过调节滤波器的参数,我们可以观察到输出信号的频率范围发生变化。

当滤波器的截止频率与输入信号的频率相等时,输出信号的幅值最大。

这说明滤波器可以将特定频率范围内的信号分离出来。

2. 信号的合成a. 实验步骤:(1) 将信号发生器输出两个不同频率的正弦波信号。

(2) 将两个正弦波信号通过电阻、电容、电感等元件进行叠加。

(3) 观察合成信号的波形和频谱。

b. 实验结果:通过调节叠加信号的幅值和相位差,我们可以观察到合成信号的波形和频谱发生变化。

当两个信号的频率相近且相位差为零时,合成信号的幅值最大。

这说明信号的合成是通过叠加各个频率分量得到的。

四、实验讨论与分析通过本实验,我们深入了解了信号的分解与合成原理,并通过实验数据分析,得出以下结论:1. 信号的分解可以通过滤波器将特定频率范围内的信号分离出来。

这为信号处理提供了重要的基础。

2. 信号的合成是通过叠加各个频率分量得到的,通过调节叠加信号的幅值和相位差,可以得到不同形态的合成信号。

3. 信号的频谱特征对于信号的分解与合成具有重要影响,通过观察频谱可以更好地理解信号的特性。

上海大学《信号分析与处理》实验指导书资料

上海大学《信号分析与处理》实验指导书资料

《信号分析与处理》实验指导书(修订版)上海大学精密机械工程系2009年4月目录DRVI可重构虚拟仪器实验平台简介 (2)实验一常用数字信号生成实验 (8)实验二典型信号波形的合成与分解实验 (11)实验三滤波器原理与应用实验 (13)附录一151DRVI可重构虚拟仪器实验平台简介1、概述DRVI的主体为一个带软件控制线和数据线的软主板,其上可插接软仪表盘、软信号发生器、软信号处理电路、软波形显示芯片等软件芯片组,并能与A/D卡、I/O卡等信号采集硬件进行组合与连接。

直接在以软件总线为基础的面板上通过简单的可视化插/拔软件芯片和连线,就可以完成对仪器功能的裁减、重组和定制,快速搭建一个按应用需求定制的虚拟仪器测量系统。

图2、虚拟仪器软件总线结构图2、软件运行双击WINDOWS桌面上的图标,或在程序组中的DRVI,就可以启动DRVI软件。

DRVI启动后点击红色箭头所示按钮从DRVI采集卡、运动控制卡,或网络在线进行注册登记,获取软件使用权限,然后就可以使用了。

图3、DRVI软件运行界面3、插接软件芯片DRVI通过在前面板上可视化插接虚拟仪器软件芯片来搭构虚拟仪器或测量实验。

插接软件芯片的过程很简单,从软件芯片表中点击需要的软件芯片,将其添加到DRVI 前面板上,然后在新插入的软件芯片上压下鼠标不放,将其拖动到合适位置。

重复上述步骤,插入其它软件芯片。

图4 用DRVI设计虚拟仪器插接在DRVI前面板上的虚拟仪器软件芯片的屏幕位置是可以移动和调整的,点击快捷工具条中的“移动软件芯片位置”图标,然后在待移动的软件芯片上压下鼠标不放,就可以将其拖动到新位置,从而实现屏幕布局的调整。

4、DRVI软件总线的概念和软件芯片的连线为实现虚拟仪器软件芯片间的数据交换,DRVI中设置了一组软件总线,包括256条Double型单变量数据线和32条Double型数组型数据线,可传输有效值等单变量数据,也可传输波形、频谱等数组数据。

方波的合成与分解

方波的合成与分解

1综合性实验报告题目:方波的合成与分解实验课程:信号与系统学号:姓名:班级:12自动化2班指导教师:方波的分解与合成一、实验类型综合性实验二、实验目的和要求1.观察方波信号的分解。

2.用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。

3.掌握带通滤波器的有关特性测试方法。

4.观测基波和其谐波的合成。

三、实验条件实验仪器1.20M 双踪示波器一台。

2.信号与系统实验箱。

四、实验原理1. 信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1,1(T t t +内表示为:)sin cos 1(0)(t n nb t n n n a a t f Ω+Ω∑∞=+=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

AA(c)图7-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图7-1来形象地表示。

其中图7-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图7-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

图7-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。

反映各分量相位的频谱称为相位频谱。

在本实验中只研究信号振幅频谱。

周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。

测量时利用了这些性质。

从振幅频谱图上,可以直观地看出各频率分量所占的比重。

测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。

信号的基本运算和波形变换【精选】

信号的基本运算和波形变换【精选】

信号的基本运算和波形变换一、实验目的1.掌握用matlab软件产生基本信号的方法.2.应用matlab软件实现信号的加、减、乘、反褶、移位、尺度变换及卷积运算。

二、实验原理(一)产生信号波形的方法利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生信号并绘出波形。

a.产生正弦波t=0:0.01:3*pi;y=sin(2*t);plot(t,y)b.产生叠加随机噪声的正弦波t=0:0.01:3*pi;y=10*sin(2*t);s=y+randn(size(t));plot(t,s)c. 产生周期方波t=0:0.01:1;y=square(4*pi*t);plot(t,y)d. 产生周期锯齿波t=(0:0.001:2.5);y=sawtooth(2*pi*30*t);plot(t,y),axis([0 0.2 -1 1])e.产生Sinc函数x=linspace(-5,5);y=sinc(x);plot(x,y)f.产生指数函数波形x=linspace(0,1,100);y=exp(-x);plot(x,y)(二)信号的运算1.加(减)、乘运算要求二个信号序列长度相同.例t=0:0.01:2;f1=exp(-3*t);f2=0.2*sin(4*pi*t);f3=f1+f2;f4=f1.*f2;subplot(2,2,1);plot(t,f1);title('f1(t)');subplot(2,2,2);plot(t,f2);title('f2(t)');subplot(2,2,3);plot(t,f3);title('f1+f2');subplot(2,2,4);plot(t,f4);title('f1*f2');2.用matlab的符号函数实现信号的反褶、移位、尺度变换.由f(t)到f(-at+b)(a>0)步骤:b)at f(b)f(at b)f(t f(t)位位位位位位+-−−→−+−−→−+−−→−例:已知f(t)=sin(t)/t,试通过反褶、移位、尺度变换由f(t)的波形得到f(-2t+3) 的波形.syms t;f=sym('sin(t)/t'); %定义符号函数f(t)=sin(t)/t f1=subs(f,t,t+3); %对f 进行移位f2=subs(f1,t,2*t); %对f1进行尺度变换f3=subs(f2,t,-t); %对f2进行反褶subplot(2,2,1);ezplot(f,[-8,8]);grid on;% ezplot 是符号函数绘图命令subplot(2,2,2);ezplot(f1,[-8,8]);grid on;subplot(2,2,3);ezplot(f2,[-8,8]);grid on;subplot(2,2,4);ezplot(f3,[-8,8]);grid on;(注:也可用一条指令:subs(f,t,-2*t+3)实现f(t)到f(-2t+3)的变换)(三) 卷积运算Y=conv(x,h)实现x,h 二个序列的卷积,假定都是从n=0开始.Y 序列的长度为x,h 序列的长度之和再减1. 1、二个方波信号的卷积.y1=[ones(1,20),zeros(1,20)];y2=[ones(1,10),zeros(1,20)];y=conv(y1,y2);n1=1:length(y1);n2=1:length(y2);L=length(y)subplot(3,1,1);plot(n1,y1);axis([1,L,0,2]);subplot(3,1,2);plot(n2,y2);axis([1,L,0,2]);n=1:L;subplot(3,1,3);plot(n,y);axis([1,L,0,20]);2、二个指数信号的卷积.t=0:0.01:1;y1=exp(-6*t);y2=exp(-3*t);y=conv(y1,y2);l1=length(y1)l2=length(y2)l=length(y)subplot(3,1,1);plot(t,y1);subplot(3,1,2);plot(t,y2);t1=0:0.01:2;subplot(3,1,3);plot(t1,y);三、实验内容1.自选二个简单的信号,进行加、乘、卷积运算.2.自选一个简单的信号进行反褶、平移、尺度变换运算.四、实验要求1.预习实验原理;2.对实验内容编写程序(M 文件),上机运行;3.绘出运算或变换后信号的波形.五、思考题1. Matlab 的仿真特点2. conv 卷积的函数实现与理论值之间的关系。

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。

题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。

振荡电路采用晶振自振荡并与74LS04 结合,产生6MHz 的方波源。

分频电路采用74HC164 与74HC74分频出固定频率的方波,作为波形合成的基础。

滤波采用TI公司的运放LC084,分别设置各波形的滤波电路。

移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结果造成影响。

关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesiscircuitAbstract:The design consists of a square wave oscillator circuit,divider circuit, filter circuit, phase shift circuits, addition circuits, measurement display circuit. Subject of the request of the point frequency of the various parameters of processing, production of a phase shifter circuit consisting of adders, will have the 10KHz and 30KHz sinusoidal signal as the fundamental and third harmonic, synthesis of a wave amplitude 5V, similar to square wave waveform. Since the oscillating crystal oscillation circuit combined with the 74LS04 to produce a square wave source 6MHz. Frequency circuit 74HC164 and the 74HC74 divider out of a fixed frequency square wave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively, set the waveform of the filter circuit. Phase-shifting circuit in the main processing phase in the filtering process deviations, to avoid prejudicing the outcome of the waveform synthesis.Keywords:Square-wave oscillator circuit Frequency and filter Phase-shifting circuit1.课题技术指标基本要求对一个特定频率的方波进行变换并产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波。

信号波形合成实验报告

信号波形合成实验报告

信号波形合成实验电路之马矢奏春创作摘要:本设计包括方波振荡电路,分频电路,滤波电路,移相电路,加法电路,丈量显示电路.题目要求对点频率的各参数处置,制作一个由移相器和加法器构成的电路,将发生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形.振荡电路采纳晶振自振荡并与74LS04 结合,发生6MHz 的方波源.分频电路采纳74HC164与74HC74分频出固定频率的方波,作为波形合成的基础.滤波采纳TI公司的运放LC084,分别设置各波形的滤波电路.移相电路主要处置在滤波过程中相位的偏差,防止对波形的合成结果造成影响.关键词:方波振荡电路分频与滤波移相电路加法器Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHzand 30KHzsinusoidal signal as the fundamental and third harmonic, synthesis of a waveamplitude 5V, similar to square wave waveform. Since the oscillating crystaloscillation circuit combined with the 74LS04 to produce a square wave source 6MHz.Frequency circuit74HC164 and the 74HC74 divider out of a fixed frequency squarewave, as a basis for waveform synthesis. Filtering using TI's op LC084, respectively,set the waveform of the filter circuit. Phase-shifting circuit in the main processingphase in the filtering process deviations, to avoid prejudicing the outcome of thewaveform synthesis. Keywords:Square-wave oscillator circuit Frequency and filter Phase-shiftingcircuit1.课题技术指标1.1 基本要求对一个特定频率的方波进行变换并发生多个分歧频率的正弦信号,再将这些正弦信号合成为近似方波.设计制作一个特定频率的方波发生器,并在这个方波上进行需要的信号转换,分别发生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后发生目标信号为10KHz近似方波(如下图).1.2 附加要求利用方波发生器进行信号转换后的10KHz、30KHz和50KHz的正弦波进行频率合成,合成后发生目标信号为10KHz近似三角波.2.系统设计2.1 设计任务设计制作一个电路,能够发生多个分歧频率的正弦信号,并将这些信号再合成为近似方波和其他信号.电路示意图如图1 所示:2.2 系统框图3.1 信号发生器电路方案一:数控振荡器(NCO)发生时间离散和幅度离散的正弦信号和余弦信号,在模拟调制中,利用NCO 可以直接发生调频信号(FM),虽然结合FPGA 可以完成调频信号的输出,可是数控振荡器(NCO)的平台搭建需要时间.方案二:采纳非门与晶振组合成形成正反馈电路发生正反振荡,其中采纳的6MHZ 的晶振是起滤波作用.只有6MHZ 频率的脉冲信号容易通过该正反馈电路,其它频率的信号被抑制.故电路暗示为只有6MHZ 的方波信号.该电路输出稳定,容易搭建.方案三:锁相环CD4046.CD4046是通用的CMOS锁相环集成电路,具有电源电压范围宽(为3V-18V),输入阻抗高(约100MΩ),静态功耗小的特点.发生的方波信号频率满足设计需要,而且波形理想.故本设计采纳该方法实现方波振荡电路.综上,选取方案二.方案一:采纳单片机与FPGA 结合,省去许多分立的逻辑集成电路,使电路的集成性和可靠性年夜年夜提高.另编程简单容易实现,且容易实现并可以发生固定频率的波形,并省去分频电路,是电路简化.可是FPGA 平台的搭建占用时间太长,晦气于实现.方案二:分频电路采纳逻辑元件74164、7474、7404搭建而成.电路如下图所示:振荡电路所发生的频率为6MHz 的方波送到74164构成10分频电路,输出频率为600KHz 的方波.频率为600KHz 的方波再经74164构成10 分频,输出频率为60KHz、占空比50%的方波.频率为600KHz 的方波再经7416412分频,获得频率为50KHz、占空比50%的方波.同时60KHz 的方波经过7474二分频输出30kHz、占空比50%的方波.60KHz再经74164六分频获得10KHz 的信号分频电路如下图所示.采纳方案二.方案一:采纳LC 或RC 无源滤波,电路图如图6 所示,电路简单,参数易于计算.但滤波效果差,而本题目只要给指定频率的波形滤波,而且达不到题设要求.可以根据中心频率公式:来匹配R、C 的参数.图6 无源RC 低通滤波器方案二:采纳TI 公司提供的TLC084运算放年夜器,搭建一个带通有源滤波器电路图如图7 所示采纳方案二.信号经滤波后获得完整的正弦波.调幅电路采纳运放组成的反相输入比例放年夜器.电路如下图11 所示.比例放年夜器的主要作用是调节基波、3 次波和5 次波的峰峰值.相关环节电路原理相同.为了发生包括10kHz 为基波、30kHz 为3 次波和50kHz 为5 次波合成一个近似方波,采纳运放组成的信号调幅、叠加电路.波形幅度为5V,调幅、加法电路如下图所示.调幅、加法电路当R = 2 R = 3 R = F R 时,就是三个信号的叠加.对与合成方波,加法起的运算为对与合成三角波,加法起的运算为为了获得三角波,需要把30kHz 的3 次波和50kHz 的5 次波进行反相.反相器用运放组成的反相端输入的1:1 比例放年夜器来实现.采纳TL084运算放年夜器搭建一个反相电路如下图经过方案比力与论证,最终确定的系统组成框图如图16 所示.其中利用晶振、74LS04 发生振荡方波,74LS390 和CD4566 进行分频,获得题目中所要求的各频率信号.滤波器电路分别对10K、30K、50K 设计相应的参数电路,利用TL084搭建有源滤波器.整体电路见附录1.5. 系统测试结果5.1、测试仪器与设备表4.1.1 测试用仪器与设备仪器名称型号数量双通道数字示波器DS1022C1合成信号发生器NDY-EE14101数字万用表TY3601直流稳压电源DF1731SC2A1计算机联想PC 机15.2、系统试验结果5.2.2 基波10KHz、丈量峰峰值6±0.01V 实测波形图19 基波10KHz、丈量峰峰值6±0.01V 实测波形195.2.3 三次波30KHz、丈量峰峰值2±0.01V 实测波形如图20图20 三次波30KHz、丈量峰峰值2±0.01V 实测波形5.2.4 五次波50KHz、丈量峰峰值1.2±0.03V 实测波形如图21图21 五次波50KHz、丈量峰峰值1.2±0.03V 实测波形5.2.5 基波10KHz、丈量峰峰值6V 与三次波30KHz、丈量峰峰值2V 叠加后实测波形如图22图22 基波10KHz、丈量峰峰值6V 与三次波30KHz、丈量峰峰值2V 叠加后实测波形5.2.5 基波10KHz、丈量峰峰值6V 与三次波30KHz、丈量峰峰值2V 及五次波50KHz、丈量峰峰值1.2V 叠加后实测波形图23 基波10KHz、丈量峰峰值6V 与三次波30KHz、丈量峰峰值2V 及五次波50KHz、丈量峰峰值1.2V 叠加后实测波形相减及五次波50KHz、丈量峰峰值0.24V 叠加后实测波形.相减及五次波50KHz、丈量峰峰值0.24V 叠加后实测波形.经过测试分析测试基本都到达了要求,10K与30K的分频滤波比力理想但也存在一些误差如频率不是很稳定振幅不够精确等尤其是在多阶滤波部份存在许多干扰在硬件搭接时要尽量减少信号成份电路导线的介入这样会是波形发生衰减方便于后续部份的测试.在这个部份如果采纳集成芯片会年夜年夜降低误差提高精准度与稳定性.为了增强可调性最好采纳滑动变阻器与可调电阻.运放TL0842只计数器741644只反相器74041只触发器74741只硅晶体6MHz1只电位器51k6只导线若干电阻若干双通道数字示波器DS1022C1合成信号发生器NDY-EE14101数字万用表TY3601直流稳压电源DF1731SC2A1计算机联想PC 机1第一次做控制类型的题目开始着手时没有头绪很年夜一部份需要从网上获取资料从同学那里也获得了很多的帮手.在确定了各个模块的电路设计后调试的过程中又遇到了很多麻烦波形的幅值不够频率不稳定等.从后来的测试中总结了很多经验.本次设计的信号波形合成实验电路完成了基本部份和发挥部份的要求.本设计主要让我们掌握了信号发生电路的设计方法掌握了信号合成电路的设计方法.固然调试的时候也是一个重点让我们收获很多这其中就分硬件和软件两部份硬件需要我们注意电路设计问题对电路进行不竭地调试与改进.软件调试方面这其中包括法式的编写检验.所以一次好的设计不单要学习基础知识而且要注意各方面的细节.这次设计使我们各方面都获得了一定的熬炼.参考文献:4.高吉祥,黄智伟,丁文霞. 数字电子技术[M]. 北京:电子工业出书社,2003年,第1版5. 邹其洪黄智伟高嵩.电工电子实验与计算机仿真[M].北京:电子工业出书社,2003年,第1版。

实验二-方波信号的分解与合成及相位、幅度对波形合成的影响

实验二-方波信号的分解与合成及相位、幅度对波形合成的影响

实验二方波信号的分解与合成及相位、幅度对波形合成的影响(4学时)一 、实验目的1 、通过观察方波信号的分解与合成过程,理解利用傅利叶级数进行信号频谱分析的方法。

2 、了解频率失真和相位失真对方波信号合成波形的影响。

3、 加深理解相位对波形合成中的作用。

4、 加深理解幅值对波形合成的作用。

二 、实验内容1、通过观察方波信号的分解与合成过程,进一步理解信号的频谱分析方法。

2、了解频率失真和相位失真对方波信号合成波形的影响。

3、加深理解相位对波形合成中的作用。

4、加深理解幅值对波形合成的作用。

三、实验原理说明2.1电信号的分解任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。

对周期信号由它的傅里叶级数展开可知,各次谐波为基波频率的整数倍。

而非周期信号包含了从零到无穷大的所有频率成分,每一频率成分的幅度均趋向无限小。

如图4-1所示方波信号的傅里叶级数展开式为)5sin 513sin 31(sin 4)( +++=t t t At f ωωωπ (2-1)其中为方波信号的角频率。

Tπω2=图2-1 方波信号由式(2-1)可知,方波信号中只含奇次谐波的正弦分量。

通过一选频网络可以将方波信号中所包含的各次谐波分量提取出来。

本实验采用有源带通滤波器作为选频网络,共5路。

各带通滤波器的B W =2Hz ,如图2-2所示。

将被测信号加到选频网络上,从每一带通滤波器的输出端可以用示波器观察到相应频率的谐波分量。

本实验采用的被测信号为100Hz 的方波,通过各滤波器后,可观察到1、3、5次谐波,如图2-3。

而2、4次谐波在理想情况下应该无输出信号,但实际上方波可能有少量失真以及受滤波器本身滤波特性的限制而使偶次谐波分量未能达到理想的情况。

方波激励方波基波方波三次谐波方波五次谐波图2-3 方波的1、2、3次谐波实验电路图2.2.1电路框图由双运放LM324组成带通滤波电路(B W约2Hz)和射随器;三极管9013组成移相电路,起到相位补偿的作用。

波形合成与分解

波形合成与分解

武汉大学教学实验报告电子信息学院专业 2012年 12 月 26 日实验名称指导教师
姓名年级学号成绩
图示方波既是一个奇对称信号,又是一个奇谐信号。

根据函数的对称性与傅里叶系数的关系可知,它可以用无穷个奇次谐波分量的傅里叶级数来表示
选取奇对称周期方波的周期T = 0.02s,幅度E = 6,请采用有限项级数替代无限项级数来逼近该函数。

分别取前1、2、5 和100 项有限级数来近似,编写程序并把结果显示在一幅图中,观察它们逼近方波的过程。

3).周期对称三角信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 波形合成与分解
1.实验目的
在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。

2.实验原理
根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即:
)2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++=
即可以用一组正弦波和余弦波来合成任意形状的周期信号。

3.实验内容
(1) 方波的合成
图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量
合成的,本实验用图形的方式来表示它的合成。

方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=⋅=∑∞
=n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。

a.只考察从 0=t s 到10=t s 这段时间内的信号。

b.画出基波分量)sin()(t t y =。

c.将三次谐波加到基波之上,并画出结果,并显示。

3/)*3sin()sin()(t t t y +=
d.再将一次、三次、五次、七次和九次谐波加在一起。

9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++=
e.合并从基波到十九次谐波的各奇次谐波分量。

f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。

注意“吉布斯现象”。

周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。

如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。

在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。

(2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

(3)设计分析方波、三角波频谱的分析实验,写出实验步骤,并完成实验(并比较二者频谱的特点)。

4.实验报告要求
简述实验目的及原理,按实验步骤附上相应的信号波形曲线,总结实验得出的主要结论。

相关文档
最新文档