赵卫亚教材 第二章 思考题和课后作业
第2章思考题答案
第二章思考题2.1 瀑布模型的特点是什么?存在的优缺点有哪些?适合什么软件开发?特点:(1)阶段间的顺序性与依赖性(2)推迟实现有观点(3)质量保证的观点存在的优点:(1)强迫开发人员采用规范化的方法(2)严格规定了每个阶段必须提交的文档(3)每个阶段交出的文档必须经过验证(评审)存在的缺点:(1)如果需求不明确就就已经晚了,造成很大的返工适合什么软件开发?只适用于需求明确的软件开发2.2 快速原型的优点?怎么样体现出快速的意思?适合什么软件开发?何为快速原型:由于种种原因,在需求分析阶段得到完全、一致、准确、合理的需求说明是很困难的,在获得一组基本需求说明后,就快速地使其"实现",通过原型反馈,加深对系统的理解,并满足用户基本要求,使用户在试用过程中受到启发,对需求说明进行补充和精确化,消除不协调的系统需求,逐步确定各种需求,从而获得合理、协调一致、无歧义的、完整的、现实可行的需求说明。
又把快速原型思想用到软件开发的其他阶段,向软件开发的全过程扩展。
即先用相对少的成本,较短的周期开发一个简单的、但可以运行的系统原型向用户演示或让用户试用,以便及早澄清并检验一些主要设计策略,在此基础上再开发实际的软件系统。
优点:(1)有助于满足用户的真实需求。
(2)原型系统已经通过与用户的交互而得到验证,据此产生的规格说明文档能够正确地描述用户需求。
(3)软件产品的开发基本上是按线性顺序进行。
(4)因为规格说明文档正确地描述了用户需求,因此,在开发过程的后续阶段不会因为发现规格说明文档的错误而进行较大的返工。
(5)开发人员通过建立原型系统已经学到了许多东西,因此,在设计和编码阶段发生错误的可能性也比较小,这自然减少了在后续阶段需要改正前面阶段所犯错误的可能性。
(6) 快速原型的突出特点是“快速”。
开发人员应该尽可能快地建造出原型系统,以加速软件开发过程,节约软件开发成本。
原型的用途是获知用户的真正需求,一旦需求确定了,原型可以抛弃,当然也可以在原型的基础上进行开发。
(完整word版)应用回归分析,第2章课后习题参考答案汇总(word文档良心出品)
第二章一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答:假设1解释变量X是确定性变量,丫是随机变量;假设2、随机误差项&具有零均值、同方差和不序列相关性:E( i)=0 i=1,2,…,n2Var (i)=, i=1,2, …,nCov( E £)=0 i 工j i,j= 1,2, …,nCov(X i, i )=0 i=1,2, …,n假设4、&服从零均值、同方差、零协方差的正态分布2i~N(0, ~)i=1,2,…,n2.2考虑过原点的线性回归模型Y i= 0X i+ i i=1,2,…,nn nQ e 八(Y i -Y?)2八(Y i -?i X i)2i』i=1得: f?=M羊Xi)X^0n' (X i Y i)i dn' (X i2)i =1i d2.3 证明(2.27 式),工e i =0 ,工eXi=0。
n nQ=S:(丫-Y?)2=迟(Y i —(f?°+f?X i))2 证明: 1 1其中:丫?=児+叹e=Y-丫?即: I ^(A+AA;-l;) = 0|V^o+/?rVj-T;)A;= 0^e =0 ,乞eX i=0假设3、随机误差项&与解释变量X之间不相关:误差 $ (i=1,2,解:…)n仍满足基本假定。
求仪的最小二乘估计2.4回归方程E (Y ) = 00+ 3X 的参数①,妆的最小二乘估计与最大似然估计在什么条件下等价?给出证明。
答:由于 £ 厂N(0, ~2)i=1,2,…,n所以 Y i =场 + 0X + £~N ( [3D + [3iX i , o 2) 最大似然函数:1 nL( 0, i ,;「2)=二爲 f i (Y i ) =(2=2)』/2exp{——2、 [Y i -( o i o ,X i )]2}2 ynLn{L( o , i ,二2)}= -:帕(2二2)-2、 M -( o i o ,X i )]222<r y使得Ln (L )最大的况,瞬就是肉,0的最大似然估计值。
高中数学必修2第二章知识点+习题+答案
第二章 直线与平面的地点关系空间点、直线、平面之间的地点关系平面含义:平面是无穷延展的 2 平面的画法及表示( 1)平面的画法: 水平搁置的平面往常画成一个平行四边形,DC锐角画成 45 0 ,且横边画成邻边的 2 倍长(如图)( 2)平面往常用希腊字母α、β、γ等表示,如平面α、平α面β等,也能够用表示平面的平行四边形的四个极点或许相对ABAC 、平面 ABCD 等。
的两个极点的大写字母来表示,如平面3 三个公义:( 1)公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈ LB ∈L => LαAα ·A ∈αB ∈α公义 1 作用:判断直线能否在平面内( 2)公义 2:过不在一条直线上的三点,有且只有一个平面。
A B符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, α ·C ·使 A ∈α、 B ∈α、 C ∈α。
·公义 2 作用:确立一个平面的依照。
( 3)公义 3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
β符号表示为: P ∈α∩β => α∩β =L ,且 P ∈ LP公义 3 作用:判断两个平面能否订交的依照αL·空间中直线与直线之间的地点关系1 空间的两条直线有以下三种关系:订交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点; 异面直线:不一样在任何一个平面内,没有公共点。
2 公义 4:平行于同一条直线的两条直线相互平行。
符号表示为:设 a 、b 、 c 是三条直线a ∥ b=>a ∥ cc ∥ b重申:公义 4 本质上是说平行拥有传达性,在平面、空间这个性质都合用。
公义 4 作用:判断空间两条直线平行的依照。
3 等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a' 与 b' 所成的角的大小只由 a 、b 的相互地点来确立,与 O 的选择没关,为了简易,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, ) ;2a ⊥b ;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作④ 两条直线相互垂直,有共面垂直与异面垂直两种情况;⑤ 计算中,往常把两条异面直线所成的角转变为两条订交直线所成的角。
2020_2021学年新教材高中数学第二章平面解析几何2.1坐标法课后提升训练含解析选择性第一册
第二章平面解析几何2.1坐标法课后篇巩固提升基础达标练1。
数轴上的三点M,N,P的坐标分别为3,-1,-5,则MM⃗⃗⃗⃗⃗⃗⃗⃗⃗ +MM⃗⃗⃗⃗⃗⃗⃗⃗⃗ 等于()A。
-4 B。
4 C.12 D.-12⃗⃗⃗⃗⃗⃗⃗ +MM⃗⃗⃗⃗⃗⃗⃗⃗⃗ =MM⃗⃗⃗⃗⃗⃗⃗⃗⃗ =—1—3=—4。
2.数轴上点P(x),A(—8),B(—4),若|PA|=2|PB|,则x等于()A.0 B。
-163C.163D.0或-163|PA|=2|PB|,所以|x+8|=2|x+4|,解得x=0或-163。
3。
P(1,—2)关于A(—1,1)的对称点P’的坐标为()A.(3,4)B。
(-3,4)C.(3,-4)D。
(-3,—4)P’点坐标为(x ,y ),因为A 为PP'的中点, 所以{1+M2=-1,-2+M2=1,解得{M =-3,M =4,故P’的坐标为(—3,4)。
4。
已知平行四边形的三个顶点坐标为(3,—2),(5,2),(—1,4),则第四个顶点不是( ) A.(9,—4) B 。
(1,8) C.(-3,0)D 。
(1,-3)x ,y ),然后分情况讨论。
(1)若点(3,—2),(5,2)为平行四边形的对顶点,则有3+52=-1+M 2,-2+22=4+M 2,解得x=9,y=—4,即(9,-4);(2)若(5,2),(—1,4)为对顶点,同理可求第四个顶点为(1,8);(3)若(3,—2),(-1,4)为对顶点,同理可求第四个顶点为(—3,0)。
故选D 。
5。
在数轴上有点A (1),若点A 负向移动3个单位长度到达点B ,则MM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 。
向量MM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与以B 为起点,终点坐标为 的向量是相等向量。
A (1)负向移动3个单位长度到达B 点,所以B 点坐标为-2,则向量MM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标为-3,若以B 为起点的向量为—3,则终点坐标应为-5。
3 —56。
第二章 习题解答(11.27)
练习2.1答案详解一、选择题.1. 以下结论正确的是( ).(A )所有的零矩阵相等; (B ) 零矩阵必定是方阵; (C ) 所有的3阶方阵必是同型矩阵; (D ) 不是同型矩阵也可能相等. 解:(A )零矩阵的阶数可以不同,故(A )不正确;(B ) 按定义,零矩阵是元素全部为零的矩阵,未必是方阵,故(B )不正确; (C) 按定义,若两个矩阵的行数相等,列数也相等,则这两个矩阵同型,故(C )不正确;(D )按定义,不同型的矩阵或者行数不相等,或者列数不相等地,或者两者都不相等,故(D )不正确.故选(C ). 二、填空题.2. 某企业生产3种产品,每种产品在2014年和2015年各季度的产值(单位:万元)如下表:试作矩阵A 和B 分别表示三种产品在2014年和2015年各季度的产量.答案:181215192730263515181413A,161817152530283713201815B . 3. 已知1422y A x -⎫⎛=⎪-⎝⎭,132y B ⎛⎫= ⎪⎝⎭,B A =,则x = ,y = . 解:由定义,两个矩阵相等,当且仅当对应元素相等. 由B A =,得 423y y x -=⎧⎨-=⎩解这两个个方程,得24y x =⎧⎨=⎩.三、问答题.4. 下列矩阵哪些是方阵?哪些是三角矩阵?若是方阵,其主对角元素是什么?102100312A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 314702260001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,135013002C ⎛⎫ ⎪= ⎪ ⎪⎝⎭.答案:A 和C 均为方阵;C 为三角阵,且为三阶上三角矩阵,A 的主对角元素为1,0,2.C 的主对角元素为1,1,2.练习2.2答案详解一、选择题.1. 设矩阵A 为3行5列,矩阵B 为5行4列,矩阵C 为4行6列,则矩阵ABC 为( ).(A) 3行4列; (B) 3行6列; (C) 5行4列; (D) 5行6列. 解:由题设,A 是35⨯矩阵,B 是54⨯矩阵,B 是46⨯矩阵,则由矩阵乘法的定义和运算规律,知AB 是34⨯矩阵,从而()ABC AB C =是36⨯矩阵. 故选(B ). 2. 设三阶矩阵A 的行列式2A =,则2A -= ( ).(A )2-; (B )4-; (C )16-; (D ) 8. 解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-. 故选(C ).3. 设A 为二阶矩阵,且1-=A ,则A A = ( ).(A ) 0; (B ) 1-; (C ) 1; (D ) 2. 解:由数乘矩阵的定义和行列式的性质,有 233(1)1A A AA A ===-=-.故选(B ).4. 对任意的n 阶方阵A 、B ,总有 ( ).(A )B A B A +=+; (B )T T T B A AB =)(; (C )2222)(B AB A B A +-=-;(D )BA AB =.解:(A )不正确. 例子. 设1000,0001A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,则10000,0,0001A B ====,但100010000101A B ⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且10 1.01A B +== (B )因()TTTAB B A =,故(B )不正确. (C )因矩阵乘法不满足交换律,故2()()()()()A B A B A B A B A A B B-=--=---2222()()A BA BA B A BA AB B =---=--+222A AB B ≠-+.故(C )不正确.(D )因,AB A B BA B A ==,故AB BA =. 所以选(D ).5. 以下结论正确的是( ).(A )若方阵A 的行列式0A =, 则0A =; (B ) 若20A = 则0A =;(C ) 若A 为对称矩阵, 则2A 也是对称矩阵;(D ) 对n 阶矩阵,A B , 有22()()A B A B A B +-=-.解:(A )不正确. 例子, 设1111A ⎛⎫=⎪--⎝⎭,而11011A ==--. (B ) 设122,341αβ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 则2(1,2,4)312(2)34101T αβ⎛⎫⎪=-=⨯+-⨯+⨯= ⎪ ⎪⎝⎭,记22283(1,2,4)361201124T A βα-⎛⎫⎛⎫⎪ ⎪==-=-≠ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 从而 22()()()()00T T T T T T A βαβαβαβαβαβα====⋅⋅=故(B )不正确.(C ) 因A 对称, 故T A A =. 从而222()()T T A A A ==. 故(C )正确. (D ) 因矩阵乘法不满足交换律,故22()()()()()()A B A B A B A A B B A BA AB B +-=+-+=+-+2222A BA AB B A B =+--≠-.故(D )不正确.从而选(C ). 二、填空题.6. 已知⎪⎪⎭⎫⎝⎛=4321A ,⎪⎪⎭⎫⎝⎛=2101B ,则=AB . 答案:⎪⎪⎭⎫⎝⎛8743.7. 若A ,B 为3阶方阵,且2,2A B ==,则2A -= ,1TA B -= .解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-, 11111212TTT A BA B AB B A ---====⋅=. 8. 设1023A ⎛⎫=⎪-⎝⎭,2111B ⎛⎫= ⎪-⎝⎭,则AB = .解:1021[1(3)][2(1)11]92311AB A B ===⋅-⋅⋅--⋅=--.三、计算题.9. 对§2.1练习题2中的矩阵A 和B ,(1)计算A B 与B A ,并说明其经济意义;(2)计算1()2A B ,并说明其经济意义.解: §2.1练习题2中的矩阵为181215192730263515181413A,161817152530283713201815B .于是人 (1) 343032345260547228383228AB, 262420222242B A,A B 的经济意义表示三种产品2014年和2015年两年各季度的产量的和;B A 的经济意义表示三种产品2015年比2014年各季度产量的增加量. (2)171516171()26302736214191614A B ,其经济意义表示三种产品2014年和2015年两年各季度的平均产量.10. 设⎪⎪⎭⎫⎝⎛-=43110412A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=204131210131B ,用两种方法求()TAB . 解:(1) 13121400121134131402AB ⎛⎫ ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭ ⎪-⎝⎭⎪⎪⎭⎫⎝⎛---=6520876 所以620()75.86TAB ⎛⎫⎪=-- ⎪ ⎪-⎝⎭11. 设()1 1 12A ⎛⎫= ⎪⎝⎭,求(1)A ,(2)nA .解: (1)记11,21αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 则1(1,1)32T βα⎛⎫== ⎪⎝⎭()1111 1222T A αβ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭. (2) ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T TT Tn αβαβαβαβαβ-=个111()()3T n T n n A αβαββααβ---===111322n -⎛⎫= ⎪⎝⎭.12. 设矩阵⎪⎪⎭⎫⎝⎛=4523A ,⎪⎪⎭⎫ ⎝⎛--=3547B .求A ,B ,TA ,AB . 答案:21012=-=A ;12021=-=B ;2==A A T;2==B A AB .练习2.3答案详解一、选择题.1. 设A ,B 均为n 阶可逆矩阵,则下列各式中不正确的是( ).(A )()T T TA B A B +=+;(B ) 111()A B A B ---+=+;(C ) 111()AB B A ---=;(D ) ()T T TAB B A =.答案:B. 2. 设2011A ⎛⎫=⎪-⎝⎭,则*A =( ).(A )1120-⎛⎫ ⎪⎝⎭; (B )1012-⎛⎫ ⎪-⎝⎭; (C ) 2101⎛⎫⎪-⎝⎭; (D ) 1120-⎛⎫⎪⎝⎭. 解:1111(1)(1)1A +=-⋅-=-,1212(1)11A +=-⋅=-, 2121(1)00A +=-⋅=,2222(1)22A +=-⋅=.所以1121*12221012A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 故选(B ). 3. 设A 为3阶方阵,*A 为A 的伴随阵,A = 3,则*A = ( ).(A )31; (B )3; (C )6; (D )9. 解:1*3139.n A A --===故选(D )4. 设A 为(2)n n ≥阶方阵,且A 的行列式0A a =≠,则*A 等于( ). (A )1a -; (B )a ; (C )1n a -; (D )n a . 解:1*1.n n A A a --==故选(D )二、填空题.5. 设⎪⎪⎪⎭⎫ ⎝⎛=654032001A ,则A = ;=-1*)(A .解:(1)10023018.456A ==(2)因180A =≠|, 故由AA *= A *A =|A |E , 有**11()()A A A A E A A==,所以 *110011()23018456A A A -⎛⎫⎪== ⎪ ⎪⎝⎭. 6. 设234(,,,)A αγγγ=,234(,,,)B βγγγ=,其中234,,,,αβγγγ均为四维列向量,已知4A =,1B =,则||A B += . 解:根据分块矩阵的加法和行列式的性质,得234234234(,,,)(,,,)(,2,2,2)A B αγγγβγγγαβγγγ+=+=+ 332342342342,,,2(,,,,,,)αβγγγαγγγβγγγ=+=+332()2(41)40.A B =+=+= 三、计算题.7. 设⎪⎪⎭⎫ ⎝⎛-=4031A ,求A 的伴随阵*A .解:1111(1)44A +=-⋅=,1212(1)00A +=-⋅=, 2121(1)33A +=-⋅=-,2222(1)(1)1A +=-⋅-=-.所以1121*12224301A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 8. 判断方阵⎪⎪⎭⎫⎝⎛-=4031A 是否可逆,若可逆,试用伴随矩阵方法求出逆矩阵. 解:因04||≠-=A ,故A 可逆. 由上题结果,*4301A -⎛⎫=⎪-⎝⎭. 所以 1*1A A A -=⎪⎪⎪⎪⎭⎫⎝⎛-=410431.9. 若A为4阶方阵,2=A ,求*123)21(A A --. 解:11**1331313()222222222A A A A A A A A A -*-***-=-=⋅-=⋅- 41*44441311111()()()2.222222A A A A A -***-=-=-=-=-=-⋅= 10.设2阶矩阵⎪⎪⎭⎫ ⎝⎛=1223A ,⎪⎪⎭⎫ ⎝⎛=1110P ,矩阵B 满足关系式 P A PB *=,计算行列式B 的值.解:由已知,32011,12111A P ==-==-,所以21*21(1)1A A--==-=-,对P A PB *=两边取行列式,得*P B A P =,所以**1A P B A P===-.四、证明题.11.设矩阵A 可逆,证明*11()A A A --=.证明:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,又因为11AA-=,所以*11()A A A --=. 12. 设方阵A 满足254A A E O -+=,证明A 及3A E -都可逆,并求1-A 及1(3)A E --.证明:由254A A E O -+=得(5)4A A E E -=-,(5)4A E A E -=-,从而有 (5)4E A AE -=,(5)4E A A E -=,则A 可逆,且11(5)4A E A -=-. 由254A A E O -+=得232620A A A E E --+-=,即(3)2(3)20A A E A E E ----= 或 (3)(3)220A E A A E E ---⋅-= 即(2)(3)20A E A E E ---= 或 (3)(2)20A E A E E ---= 从而(2)(3)2A E A E E --= , (2)(3)2A E A E E --=,则3A E -可逆,且11(3)(2)2A E A E --=-.练习2.4答案详解一、选择题.1. 下列矩阵是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭. 答案:D.本题题有误,应改成1. 下列矩阵不是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭.2. 设矩阵400020003A ⎫⎛⎪ =⎪⎪⎝⎭,则1A -等于( ).(A ) 100310021004⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭;(B ) 100410021003⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (C ) 100310041002⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (D ) 100210031004⎫⎛⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 答案:B. 二、填空题.3. 设11,01A -⎛⎫=⎪⎝⎭则1(2)A -= . 解:1111(1)11A +=-⋅=,1212(1)00A +=-⋅=,2121(1)(1)1A +=-⋅-=,2222(1)1A +=-⋅=.所以1121*12221101A A A A A ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. 从而 11*11111111122(2).011222102A A A A --⎛⎫⎪⎛⎫====⎪ ⎪⎝⎭⎪ ⎪⎝⎭4. 设123456789A ⎫⎛⎪ =⎪ ⎪⎝⎭,001010100P ⎫⎛⎪ =⎪⎪⎝⎭,100001010Q ⎫⎛⎪ =⎪ ⎪⎝⎭,则100100P AQ = .解:矩阵P 是一个互换第一、三行的初等矩阵,所以它的100次方就意味着将后面的矩阵的第一、三行互换100次;矩阵Q 是一个互换第二、三列的初等矩阵,所以它的100次方就意味着将前面的矩阵的第二、三列互换100次. 所以 100100123456789PAQ A A ⎛⎫ ⎪=== ⎪ ⎪⎝⎭.三、计算题.5. 设21112112144622436979B --⎛⎫⎪-⎪= ⎪--⎪-⎝⎭,将矩阵B 化为行最简阶梯形矩阵,并指出在矩阵变换过程中哪些矩阵是行阶梯形矩阵.解: 1231221112112144622436979r r r B ↔⨯--⎛⎫⎪-⎪=→ ⎪--⎪-⎝⎭111214211122311236979B -⎛⎫⎪-- ⎪= ⎪--⎪-⎝⎭23314122311214022200553603343r r r r r r B ----⎛⎫ ⎪- ⎪→= ⎪--- ⎪--⎝⎭232421235311214011100002600013r r r r r B ⨯+--⎛⎫⎪- ⎪→= ⎪- ⎪-⎝⎭34434211214011100001300000r r r r B ↔--⎛⎫ ⎪-⎪→= ⎪- ⎪⎝⎭1223510104011030001300000r r r r B ---⎛⎫⎪-⎪→= ⎪-⎪⎝⎭其中45,B B 是行阶梯形矩阵,5B 已是行最简形矩阵.6. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1A -.解:⎪⎪⎪⎭⎫ ⎝⎛=100343010122001321),(E A 121323~r r rr --⎪⎪⎪⎭⎫ ⎝⎛------1036200125200013212123~r r r r +-⎪⎪⎪⎭⎫ ⎝⎛--------111100012520011201313225~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------111100563020231001 231()2(1)~r r ⨯-⨯-⎪⎪⎪⎪⎭⎫ ⎝⎛----11110025323010231001,所以A 可逆,且113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭. 7. 矩阵X ,使B AX =,其中A 可逆,且⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,253143B ⎛⎫⎪= ⎪⎪⎝⎭.解:解法1 因A 可逆,则AX B =,用1A -左乘上式,有11A AX AB --= ,即有1X A B -=.由题6中已经求出113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭,所以113225323533123224313111X A B --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎝⎭. 解法2 ⎪⎪⎪⎭⎫ ⎝⎛--------⎪⎪⎪⎭⎫ ⎝⎛=--1226209152052321~343431312252321),(121323r r rr B A21312322331()225(1)102141003210032~02519~02046~01023001130011300113r r r r r r r r r r ⨯--+--⨯---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭, 可见E A r~,所以1322313X A B -⎛⎫⎪==-- ⎪ ⎪⎝⎭.练习2.5答案详解一、填空题.1. 设矩阵500031021A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A .答案:1005011023⎛⎫ ⎪⎪- ⎪ ⎪- ⎪⎝⎭ 二、计算题.2. 设1000101001001201,1210104111011120A B ⎛⎫⎛⎫⎪⎪-⎪⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭,求AB . 解:把,A B 分块成12311000101001001201,1210104111011120B E E O A B B B A E ⎛⎫⎛⎫⎪⎪-⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎪--⎝⎭⎝⎭, 则1112131010120124331131B E AB A B B A B ⎛⎫⎪-⎛⎫ ⎪==⎪⎪++-⎝⎭ ⎪-⎝⎭. 3. 求矩阵1000120000410020A ⎛⎫⎪- ⎪= ⎪⎪⎝⎭的逆矩阵.解:A 可分块成121000120000410020A O A OA ⎛⎫⎪-⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪⎝⎭,其中11012A ⎛⎫= ⎪-⎝⎭,24120A ⎛⎫= ⎪⎝⎭, 求得11101122A -⎛⎫ ⎪= ⎪⎝⎭,1210212A -⎛⎫⎪= ⎪-⎝⎭,故11000110022100020012A -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪-⎝⎭.练习2.6答案详解一、选择题.1. 已知A 有一个r 阶子式不等于零,则r (A )= ( ). (A) r ; (B) 1r +; (C) r ≤ ; (D) r ≥. 答案:D.2. 设A 是n 阶方阵,若()r A r =,则( ).(A )A 中所有r 阶子式都不为零; (B ) A 中所有r 阶子式都为零; (C )A 中至少有一个1+r 阶子式不为零;(D )A 中至少有一个r 阶子式不为零. 答案:D.3. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4444333322221111A 的秩()r A =( ). (A)1; (B)2; (C)3; (D)4.解:11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 所以()1r A =. 故选(A ). 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为 ( ).(A )⎪⎪⎪⎭⎫⎝⎛000000111; (B )⎪⎪⎪⎭⎫ ⎝⎛000110111; (C ) ⎪⎪⎪⎭⎫ ⎝⎛000222111 ; (D ) ⎪⎪⎪⎭⎫ ⎝⎛333222111. 解:两个同型矩阵A 、B 等价的充要条件是:()().r A r B =显然,第二个矩阵的秩为2,而其余矩阵的秩者为1. 故选(B ).5. 设三阶矩阵A 的秩为3,则其伴随矩阵*A 的秩为( ).(A)0; (B)1; (C)2; (D)3. 解:若A 为n 阶矩阵,则*,()()1,()10,()1n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩故本题的*()3r A =,故选(D ). 二、填空题.6. 设矩阵103100030000A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则矩阵A 的秩为 .答案: ()2r A =.7. 设A 为34⨯阶矩阵,秩()2r AB =,且⎪⎪⎪⎭⎫⎝⎛-=102010102B ,则()r A = .解:因为20120101001040201002B ===≠-,所以B 可逆,从而()()2r A r AB ==.三、计算题.8. 求矩阵123235471A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩. 解:易见A 的一个二阶子式121023=-≠,又A 的三阶子式只有A ,且123123235011104710111A =-=--=--,故()2r A =.9. 求矩阵123501211156-⎛⎫ ⎪ ⎪ ⎪-⎝⎭的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵123512351235012101210121115601210000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.所以()2r A =.10. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=544744104421311024121A 的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=544744104421311024121A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→--3120108182001311024121141342r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→--0008182001311024121342421r r r r ,由于有3个非零行,因此()3r A =.11. 若12421110A λ⎛⎫⎪= ⎪ ⎪⎝⎭,为使矩阵A 的秩最小,求λ.解:12411021014,110021rA λλ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭要使得矩阵A 的秩有最小秩,则219144λλ-=⇒=. 12. 已知矩阵1123223141011523554a A =⎛⎫ ⎪⎪ ⎪⎪⎝⎭的秩为3,求a 的值.解:r 11231123112322314001122001122,10115011120111223554000630000630r a a a a a A a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------⎪ ⎪ ⎪= ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭所以6302a a -=⇒=当时矩阵的秩为3.13. 设矩阵121231041a A a b ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩为2,求,a b .解:12112112123100712207122,410720012a a a A a aa b a b a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭因为矩阵A 的秩为 2,所以10,201,2a b a b --=-=⇒=-=. 四、证明题.14. 设A 是一个n 阶矩阵, 且2A A =, 证明: ()().r A r A E n +-= 证明:因为2A A =,所以()0A A E -=,从而()()r A r A E n +-≤ ① 利用不等式()()()r A B r A r B +≤+,得()()()[()]r A r A E r A r E A +-=+--()()[()()]r A r E A r A E A =+-≥+-()r E n == ②由①、 ②,得()()r A r A E n +-=.第2章 综合练习答案详解一、基本题.1. 设方阵A 满足A A =2,则以下正确的是( ).(A )0=A ;(B) E A =; (C)0=A 或E A =; (D) 以上等式都不成立. 解:因为零因子存在,即由0AB =推不出0A =或0B =. 于是由A A =2得到()0A A E -=,故同样推不出0A =或0A E -=. 从而选取(D ).2. 设A 是p s ⨯矩阵,C 是m n ⨯矩阵,如果TAB C 有意义,则B 是( )矩阵.(A )p n ⨯; (B )p m ⨯; (C )s m ⨯ ; (D )m s ⨯.解:因为A 是p s ⨯矩阵,C 是m n ⨯矩阵,且TAB C 有意义,所以T B 必是s m ⨯矩阵,从而B 是m s ⨯矩阵. 故选(D ).3. 设A 为n 阶可逆矩阵,下列运算中正确的是( ).(A )(2)2T TA A =;(B )11(3)3A A --=;(C )111[(())][()]T T T A A ---=; (D )1()TA A -=.解:根据逆矩阵的性质,正确的选项是(A ).4.设,A B 均为n 阶矩阵,且A 可逆,则下列结论正确的是( ). (A )若0AB ≠,则B 可逆 ; (B )若0AB =,则0B =; (C )若0AB ≠,则B 不可逆; (D )若AB BA =,则B E =.解:(A )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2100B ⎛⎫= ⎪⎝⎭,则21000AB ⎛⎫=≠ ⎪⎝⎭,但2100B ⎛⎫= ⎪⎝⎭不可逆.(C )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2110B ⎛⎫= ⎪⎝⎭,则21010AB ⎛⎫=≠ ⎪⎝⎭,但2110B ⎛⎫= ⎪⎝⎭可逆.(C )不正确. 例子, 2003A ⎛⎫= ⎪⎝⎭,4005B ⎛⎫= ⎪⎝⎭,则AB BA =,但B E ≠.(B )正确. 因为A 可逆,0AB =两边左乘以1A -,得110A AB A --=,即0B =.故选(B ).5. 设3=A ,2=B ,则有( ).(A )23=TAB ; (B ) 23⨯=T AB ; (C ) 23=T AB ; (D ) 32=T AB . 解:32T T AB A B A B ===⨯. 故选(B ).6. 设B A ,均为)2(≥n n 阶方阵,则必有 ( ).(A )||||||B A B A +=+; (B ) BA AB =;(C ) ||||BA AB =; (D ) 111)(---+=+A B B A . 答案:(C ).7. 设,A B 为n 阶方阵,满足22A B =,则必有( ).(A )A B =; (B )A B =-; (C )A B =; (D )22A B =.解:例子. 设1010,0101A B ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 则22A B =,但A B ≠±,A B ≠. 故(A )、(B )、(C )都不正确. 故用排除法,只有(D )正确.事实上,由22A B =两边取行列式,得22A B =,所以22A B =. 故选(D ).8. 设A 是n 阶方阵,k 为常数,则下式中成立的是( ). (A )()A k kA nT= ; (B ) ()TTA k kA 1=; (C )()A k kA T= ; (D ) ()Ak kA T=. 解:因A 是n 阶方阵,k 为常数,所以()T T kA kA =, ().TT T n T n nkA kA k A k A k A ====故选(A ).9. 已知二阶矩阵a b A c d ⎫⎛=⎪⎝⎭的行列式1A =-, 则()1*A -=( ).(A )a b c d --⎫⎛⎪--⎝⎭; (B )a b c d ⎫⎛⎪ ⎝⎭; (C )d b c a -⎫⎛⎪ -⎝⎭; (D )db c a -⎫⎛⎪ -⎝⎭. 解:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,所以*111().1a b a b A A c d c d A ---⎛⎫⎛⎫=== ⎪ ⎪---⎝⎭⎝⎭故选(A ). 10. 设A 为n 阶可逆矩阵,0k ≠为常数,则*()kA =( ). (A ) *kA ; (B ) 1*n k A -; (C )*n k A ; (D ) n k A .解:因A 为n 阶可逆矩阵,0k ≠为常数,所以kA 可逆,且1*1()()kA kA kA-=,从而 *11*1*111()()n n n kA kA kA k A A k A A k A k k A---==⋅=⋅⋅=. 故选(B ).11. 已知02111334A -⎛⎫ ⎪= ⎪ ⎪0⎝⎭,14123130B -⎛⎫⎪=0 ⎪ ⎪-⎝⎭,求2AB BA -及TA B .解:116129352422152211218241134124335871419AB BA ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 0131413113210232651341303228TA B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-0=-- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 12. 计算下列矩阵的乘积.(1)31,2,321;(2)321231;(3)211251034034-⎛⎫-⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪-⎝⎭; (4) 212113512541-⎛⎫⎛⎫⎪⎪-- ⎪⎪⎪⎪⎝⎭⎝⎭;(5) ()111213112321222323132333,,a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭.解:(1)()31,2,321⎛⎫ ⎪ ⎪ ⎪⎝⎭13223110=⨯+⨯+⨯=. (2)()321231⎛⎫ ⎪ ⎪ ⎪⎝⎭313233212223111213⨯⨯⨯⎛⎫ ⎪=⨯⨯⨯ ⎪ ⎪⨯⨯⨯⎝⎭369246123⎛⎫ ⎪= ⎪ ⎪⎝⎭. (3)211251034034-⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭1519103-⎛⎫⎪-⎝⎭. (4)212113512541-⎛⎫⎛⎫ ⎪⎪--= ⎪⎪ ⎪⎪⎝⎭⎝⎭511⎛⎫ ⎪ ⎪ ⎪⎝⎭. (5)111213112312222321323333(,,)a a a x x x x a a a x a a a x ⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()111122133121222233131232333,,a x a x a x a x a x a x a x a x a x =++++++123x x x ⎛⎫⎪ ⎪ ⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++.13. 设1*A BA A B E -=-, *222264368A ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A 的伴随矩阵,试求矩阵B .解:1*A BA AB E -=-,在等式两边左乘A ,右乘1A -,得11*11AA BAA AA BA AEA ----=-1B A EBA E -→=-1B A BA E -→=-1B A A B E -→-=()1B A A E E -→-=*1B A A E E A ⎛⎫→⋅-= ⎪ ⎪⎝⎭()*B A E E →-= ()1*B A E -→=-, 而*122254367A E ⎛⎫ ⎪-= ⎪ ⎪⎝⎭,所以()1*1122210301B A E ---⎛⎫⎪=-=- ⎪ ⎪-⎝⎭.14. 设n 阶方阵A 满足2460A A E --=,试证A 及A E +均可逆,并求1A -及1()A E -+.证明:246A A E O --=246A A E ⇒-=(4)6A A E E ⇒-=1[(4)]6A A E E ⇒-= 所以A 可逆,且11(4)6AA E -=-;又246A A E O --=()(5)A E A E E ⇒+-=,所以A E +可逆,且1()5A E A E -+=-.15. 把下列矩阵化为行阶梯形.(1) 310211211344⎛⎫ ⎪-- ⎪⎪-⎝⎭; (2) 321312131370518---⎛⎫⎪-- ⎪ ⎪--⎝⎭. 解:(1) 310211211344⎛⎫⎪-- ⎪⎪-⎝⎭12r r ↔−−−→112131021344--⎛⎫ ⎪ ⎪ ⎪-⎝⎭ 21313r r r r --−−−→112104650465--⎛⎫⎪- ⎪ ⎪-⎝⎭32r r -−−−→ 112104650000---⎛⎫ ⎪⎝⎭; (2) 321322131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭12r r -−−−→134412131370518--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭21312,7r r r r --−−−−−→13441071195021332715------⎛⎫ ⎪⎝⎭323r r -−−−→1344107119500----⎛⎫⎪⎝⎭. 16. 利用初等变换将下列矩阵化为行最简形.(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (2) 23137120243283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭.解:(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→122420130131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭212r r -−−−→122404350131-⎛⎫⎪-- ⎪⎪-⎝⎭23r r ↔−−−→122401310435-⎛⎫ ⎪- ⎪ ⎪--⎝⎭324r r +−−−→1224013100159-⎛⎫⎪- ⎪ ⎪-⎝⎭3115r −−−→1224013130015⎛⎫⎪- ⎪- ⎪ ⎪- ⎪⎝⎭122r r -−−−→1086013130015⎛⎫ ⎪- ⎪- ⎪ ⎪- ⎪⎝⎭13238,3,r r r r +-−−−−−→610054010530015⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪- ⎪⎝⎭; (2) 23137120243283023743--⎛⎫⎪--⎪ ⎪-⎪-⎝⎭12r r ↔−−−→12024231373283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭213141232r r r r r r ---−−−→1202401111088912077811--⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭324287r r r r --−−−→12024011110001400014--⎛⎫⎪- ⎪⎪⎪⎝⎭12432r r r r +-−−−→1020201111000140000-⎛⎫ ⎪-⎪ ⎪⎪⎝⎭233(1)r r r -⨯-−−−→10202011030001400000-⎛⎫⎪-⎪⎪ ⎪⎝⎭. 17. 利用初等变换求下列矩阵的逆矩阵.(1) 123134144A ⎛⎫⎪= ⎪ ⎪⎝⎭; (2) 211112310-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 解:(1)123100(,)134010144001A E ⎛⎫⎪= ⎪ ⎪⎝⎭ 2131r r r r --−−−→123100011110021101⎛⎫⎪- ⎪ ⎪-⎝⎭ 322r r -−−−→12310011110001121⎛⎫ ⎪- ⎪ ⎪--⎝⎭23133r r r r ++−−−→120463010011001121-⎛⎫⎪- ⎪ ⎪--⎝⎭122r r -−−−→100441010011001121-⎛⎫ ⎪- ⎪ ⎪--⎝⎭, 所以1441011121A --⎛⎫⎪=- ⎪ ⎪--⎝⎭;(2) 211100112010310001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→112010211100310001-⎛⎫⎪- ⎪ ⎪-⎝⎭213123r r r r ++−−−→112010015120026031-⎛⎫ ⎪ ⎪⎪⎝⎭12322r rr r --−−−→103110015120004211----⎛⎫ ⎪ ⎪ ⎪---⎝⎭ 13(1)1()4r r --−−−→103110015120111001244⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭132335r r r r --−−−→113100244335010244111001244⎛⎫- ⎪ ⎪ ⎪- ⎪⎪ ⎪-⎪⎝⎭, 所以1211112310--⎛⎫ ⎪-= ⎪ ⎪-⎝⎭21316354211-⎛⎫⎪- ⎪ ⎪-⎝⎭. 18. 求下列矩阵方程的解.(1) 223121*********X ⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭;(2)设110011101A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,且2AX X A =+,求X .(3)021123213231334X ⎛⎫⎛⎫ ⎪-= ⎪ ⎪-⎝⎭ ⎪--⎝⎭; (4)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.解:(1)矩阵方程记为AX B =.11011~1011722312r--⎛⎫ ⎪- ⎪ ⎪⎝⎭21312~r r r r+-110110112604314--⎛⎫ ⎪- ⎪ ⎪-⎝⎭12324~r r r r -+1011701126007728---⎛⎫⎪- ⎪ ⎪⎝⎭22312(,)1101110117A B ⎛⎫⎪=-- ⎪⎪-⎝⎭23(1)7~r r ÷-÷101170112600114---⎛⎫ ⎪--- ⎪ ⎪⎝⎭1323~r r r r ++100030101200014-⎛⎫⎪-- ⎪ ⎪⎝⎭, 所以1031214X A B --⎛⎫⎪==-- ⎪ ⎪⎝⎭.(2)2AX X A =+(2)A E X A ⇒-=,(2,)A E A -=110110011011101101---⎛⎫ ⎪--- ⎪ ⎪---⎝⎭123(1)(1)(1)~r r r ÷-÷-÷-110110011011101101-⎛⎫ ⎪- ⎪ ⎪-⎝⎭3231~r r r r +-110110011011002220-⎛⎫ ⎪- ⎪ ⎪-⎝⎭23123122~r r r r r --÷100011010101001110-⎛⎫⎪- ⎪ ⎪-⎝⎭,所以1011(2)101110X A E A --⎛⎫⎪=-=- ⎪ ⎪-⎝⎭;(3)矩阵方程记为XA B =,可推出TTT A XB . 因为02312(,)2132313431T TA B -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭ 10024~010*******r -⎛⎫⎪- ⎪ ⎪-⎝⎭ ,所以, 124()1714T T TX A B --⎛⎫⎪==- ⎪⎪-⎝⎭,从而1211474X BA ---⎛⎫== ⎪-⎝⎭. (4)对矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的观察可见,矩阵010100001⎛⎫⎪ ⎪ ⎪⎝⎭是一个互换第一、二行的初等矩阵,其逆矩阵也是它本身,所以用它左乘就意味着将后面的矩阵的第一、二行互换;矩阵100001010⎛⎫⎪⎪ ⎪⎝⎭是一个互换第二、三列的初等矩阵,其逆矩阵也是它本身,所以用它右乘就意味着将前面的矩阵的第二、三列互换. 所以11010143100100201001001120010X ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭201100210143001134120010102--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.解法二:将矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭记为AXB C =,则010100(,)100010001001A E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12~r r ↔100010010100001001⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1010100001A -⎛⎫⎪= ⎪⎪⎝⎭,100100(,)001010010001B E ⎛⎫ ⎪= ⎪ ⎪⎝⎭23~r r ↔100100010001001010⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1100001010B -⎛⎫⎪= ⎪⎪⎝⎭,所以11010143100210100201001134001120010102X A CB ----⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪==-=- ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.19. 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且2AX E A X +=+,求X .解:2AX E A X +=+2AX X A E ⇒-=-()()()A E X A E A E ⇒-=-+,因001100010~010100001A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故A E -为可逆矩阵,所以1201()()()030102X A E A E A E A E -⎛⎫⎪=--+=+= ⎪ ⎪⎝⎭.二、综合题.20 . 设⎪⎪⎭⎫⎝⎛=1101A ,求所有与A 相乘可换的矩阵.解:显然与A 可交换的矩阵必为二阶方阵,设为X ,并令⎪⎪⎭⎫ ⎝⎛=d cb aX , 又 ⎪⎪⎭⎫ ⎝⎛++=d b c a b a AX , ⎪⎪⎭⎫⎝⎛++=d d c b b a XA ,由可交换条件AXXA ,可得 0b =,d a = (其中c d a ,,为任意常数),即⎪⎪⎭⎫⎝⎛=a c a X 0.21. 设2()35f x x x =-+,2133A -⎛⎫=⎪-⎝⎭,证明:()0f A =.证明:计算得2751512A -⎛⎫=⎪-⎝⎭,则有210217500()35350133151200f A E A A --⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,即()f A O =.22. 设A 为n 阶方阵,证明:(1) 若20A =, 则1()E A E A --=+; (2) 若0kA =, , 则121()k E A E A A A ---=++++.证明:(1)因为2A O =,所以22()()E A E A E A A A E A E O E -+=+--=-=-=,所以1()E A E A --=+;(2)因为kA O =,所以,21()()k E A E A A A --++++2121()()k k k E A A A A A A A --=++++-++++k E A E =-=,所以121()k E A E A A A ---=++++.23. 证明:如果A 为可逆对称阵,则1A -也是对称阵. 证明:因为A 为可逆对称阵,即有11,TA A AAA A E --===, 对第二式取转置,11()()T T T AA A A E --==,即11()()T T T T A A A A E --==,注意到,T A A =上式成为11()()T TA A A A E --== 所以11()TA A --=,即1-A 为对称矩阵. 24. 设矩阵1410,1102P D ---⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,矩阵A 由矩阵方程1P AP D -=确定,求5A . 解:由1P AP D -=,得1A PDP -=,所以5151111151()A PDP PDP PDP PDP PDP PDP PD P -------===51141014110211------⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭14141033110321133⎛⎫ ⎪---⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-- ⎪⎝⎭ 14112843443313211111233⎛⎫ ⎪-⎛⎫⎛⎫== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭-- ⎪⎝⎭.教材上答案错误,以此为准.25. 已知()111,2,3,1,,23αβ⎛⎫== ⎪⎝⎭,令TA αβ=,求n A (n Z +∈).解:计算:111(1,,)23233T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭,1112311122(1,,)2123333312T A αβ⎛⎫⎪⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭. 所以 ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T T T T n αβαβαβαβαβ-=个111111123233332133312T n n T n n A αβαβ----⎛⎫ ⎪⎪ ⎪==== ⎪⎪ ⎪⎪⎝⎭. 26. 设111222333A ⎛⎫⎪= ⎪ ⎪⎝⎭, 求100A .解:解法一:对矩阵A 的观察可得,11112222(1,1,1)3333A ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若记(1,2,3),α=(1,1,1)β=,则T A αβ=,且1(1,1,1)263T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭, 所以100()()()()()()T n T T T T T A αβαβαβαβαβαβ==100个99()()()()T T T T T αβαβαβαβαβ=个999999991116666222333T T A αβαβ⎛⎫ ⎪==== ⎪ ⎪⎝⎭. 解法二:直接计算,211111166611122222212121262226333333181818333A AA A ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪===== ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3226666A A A AA A A ===⋅= 432236666A A A AA A A ===⋅= ........................................................... 100999911166222333AA ⎛⎫⎪== ⎪ ⎪⎝⎭.27.设3阶矩阵A,B 满足关系式BA A BA A +=-61,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,求B . 解:BA A BA A +=-61⇒11116A BAA AA BAA ----=+⇒16A B E B -=+⇒16AA B A AB -=+ ⇒6B A AB =+⇒1116A B A AB A A ----= ⇒ 11)(6---=E A B ,()11300200040030,007006A A E --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭而,()-111002300100020.30011006A E B -⎛⎫ ⎪⎛⎫ ⎪⎪⎪-== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪⎝⎭则,所以 28. 设A 为3阶矩阵,且1||2A =,求1*(3)2A A --的值. 解:1*3111().24n A A--===11*111(3)22233A A A A A A A-*-**-=-=- 331111116(2)(2).1334272A A *=-=⋅-⋅=- 29. 确定参数λ,使矩阵2112121212λλλ----⎛⎫ ⎪⎪ ⎪⎝⎭的秩最小.解:222211211212103321203224λλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪-→-- ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭22222112112033033032103(1)(2)1λλλλλλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪+---+-⎝⎭⎝⎭可见,当1λ=时矩阵的秩最小为2.30. 已知A =⎪⎪⎪⎭⎫ ⎝⎛x x x 111111, 讨论A 的秩.解:211111111110111111011x x x A x x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭2111101101100(1)(1)00(1)(2)x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪⎪ ⎪-+--+⎝⎭⎝⎭所以当3)(21=-≠A r x 时,和; 当2)(2=-=A r x 时,; 当1)(1==A r x 时,.31. 试写出矩阵1001010200130000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的三种分块形式. 解:(1) ⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=210000310020101001O O D E A , 其中100010,001E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12,3D ⎛⎫⎪= ⎪ ⎪⎝⎭1(0,0,0),O =()1120⨯=O ;(2) ()10010102,,00130000A F b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0321,000100010001b F ; (3) ()12310010102,,,00130000A a a a b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0321,0100,0010,0001321b a a a .。
第2章部分习题参考解答[1]
直接利用有限长直线电荷的电场强度公式120(coscos)
4πlEρρθθερ=.
得 111003(cos30cos150)
4π2πllyyEeedLρρεε=.=..........
2120033(cos30sin30)(3)
2π8πllxyxyEeeeeLLρρεε=.+=.+..............
和
3lρ
的线电荷构成一个等边三
角形,如图题2.11所示,设
1222llρρ==,试求三角形中心的电场强度。
Oyx1E..
2E..
3E..
1lρ2lρ3lρd
图题2.11
解:根据题意建立如图题2.11所示的坐标系,三角形中心到各边的距离为
3tan3026LdL==..
328 nC/mSρ=.E..
:(1)1(2,5,5)P.;(2);
(3)。
2(2,4,5)P.
3(1,5,2)P..
解:无限大的均匀面电荷产生的电场为均匀场,利用前面的结果得
(1) 3129100001(368)102222SSSzzzzEeeeeρρρεεεε.=..+=.+.×........
0.510 (10812)10]
(17.5510)
92.4777.6794.37 kOxyzxyzxyzqqErrrrrrrreeeeeeeeeεε.
.
.
.
.
.
..
=.+...
......
.×=.+.
××+..
×=..
..........
计量经济学教程赵卫亚课后答案--资料
第二章 回归模型思考与练习参考答案2.1参考答案⑴答:解释变量为确定型变量、互不相关(无多重共线性);随机误差项零的值、同方差、非自相关;解释变量与随机误差项不相关。
现实经济中,这些假定难以成立。
要解决这些问题就得对古典回归理论做进一步发展,这就产生了现代回归理论。
⑵答:总体方差是总体回归模型中随机误差项i ε的方差;参数估计误差则属于样本回归模型中的概念,通常是指参数估计的均方误。
参数估计的均方误为 MSE ()i i b b ˆ=E ()2ˆi i b b -=D ()i b ˆ=()[]iiu 12-'χχσ 即根据参数估计的无偏线,参数估计的均方误与其方差相等。
而参数估计的方差又源于总体方差。
因此,参数估计误差是总体方差的表现,总体方差是参数估计误差的根源。
⑶答:总体回归模型 ()i i i x y E y ε+=样本回归模型i i i e yy +=ˆ i ε是因变量y 的个别值i y 与因变量y 对i x 的总体回归函数值()i x y E 的偏差;i e 为因变量y 的观测值i y 与因变量y 的样本回归函数值i yˆ的偏差。
在概念上类似于i ε,是对i ε的估计。
⑷对于既定理论模型,OLS 法能使模型估计的拟和误差达最小。
但或许我们可选择更理想的理论模型,从而进一步提高模型对数据的拟和程度。
(5)答:2R 检验说明模型对样本数据的拟和程度;F 检验说明模型对总体经济关系的近似程度。
()()()kk n R R k n Model Total k Model k m Error k Model F 111122--∙-=---=--= 由02>∂∂R F 可知,F 是2R 的单调增函数。
对每一个临界值∂F ,都可以找到一个2∂R 与之对应,当22∂>R R 时便有∂>F F 。
(6)答:在古典回归模型假定成立的条件下,OLS 估计是所有的线形无偏估计量中的有效估计量。
第二章课后作
第二章课后作业古典贸易理论【课后作业】基本概念:重商主义绝对利益相对利益相互需求生产可能性曲线消费可能性曲线交换比例相对价格特定要素模型相对劳动生产率贸易利益相互需求曲线1、对比绝对利益学说与重商主义思想的差异性。
2、A国与B国使用劳动一种生产要素生产出两种商品:小麦和布,单位小麦和布的劳动生产率(小时/单位产品表示)分别有以下三种情况:势与绝对劣势。
(2)依据绝对利益学说,在I、II、III情况下,A国与B国是否发生贸易?3、依据第3题提供的资料,结合比较优势理论,分析I、II、III情况下A国与B国是否发生贸易?4、当一国在某一商品上具有比较优势时,是否在此商品上它必定有绝对优势?为什么?反之,当一国在某一商品上具有绝对优势时,是否在此商品上它必定具有比较优势?为什么?5、设本国单位葡萄酒的国内均衡价格为10美元,均衡产量为1000单位;国际葡萄酒价格为8美元,本国将进口400单位葡萄酒;本国单位小麦的国内均衡价格为2美元,均衡产量为1200单位,国际小麦价格为2.8美元,本国将出口300单位小麦。
试计算本国进口葡萄酒和出口小麦所产生的贸易利益分别是多少?6、假设A国和B国在酒、布、刀具、小麦和玉米等5种产品的劳动生产率(小时/单位)分别为下表所示:试分析:I:当A国工资为每小时4美元,B国工资为每小时8美元,A国与B国将分别进出口何种产品?II:当B国工资为每小时上升为10元时,两国各生产何种产品?复习参考题1.根据下面两个表中的数据,确定(1)贸易前的相对价格;(2)比较优势型态。
表1 X、Y的单位产出所需的劳动投入Y 2 12 表2 X、Y的单位产出所需的劳动投入A BX Y 104552.假设A、B两国的生产技术条件如下所示,那么两国还有进行贸易的动机吗?解释原因。
表3 X、Y的单位产出所需的劳动投入A BX Y 42843.证明如果一国在某一商品上具有绝对优势,那么也必具有比较优势。
北师大版高中数学必修第二册课后习题 第二章 2.1 向量的加法
§2 从位移的合成到向量的加减法2.1 向量的加法 课后篇巩固提升基础达标练1.在平行四边形ABCD 中,AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ 等于( ) A.AC⃗⃗⃗⃗⃗ B.CA⃗⃗⃗⃗⃗ C.BD⃗⃗⃗⃗⃗ D.DB⃗⃗⃗⃗⃗ABCD 为平行四边形,故AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ .故选A.A.AB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =0B.AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗C.AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ D.0+AB⃗⃗⃗⃗⃗ =0AB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =0,A 正确;AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,由向量加法知B 正确;AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,不满足加法运算法则,C 错误;0+AB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,D 错误.故选AB.3.(多选)如图,在平行四边形ABCD 中,下列计算正确的是( ) A.AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ B.AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DO ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ D.AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,故A 正确;AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DO ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DO ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ ≠OA ⃗⃗⃗⃗⃗ ,故B 不正确;AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,故C 不正确;AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0,故D 正确.故选AD.4.(多选)已知点D,E,F 分别是△ABC 的边的中点,则下列等式中正确的是( )A.FD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =FA ⃗⃗⃗⃗⃗B.FD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =0C.DE ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗D.DA ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =FD⃗⃗⃗⃗⃗,DA ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =DF ⃗⃗⃗⃗⃗ ≠FD ⃗⃗⃗⃗⃗ .故选ABC.5.如图,在矩形ABCD 中,AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =( )A.AB⃗⃗⃗⃗⃗ B.AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗D.BD⃗⃗⃗⃗⃗,AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ .故选B.6.AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ = ,|AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ |= .AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0.|AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ |=0.0 7.化简: (1)BC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ; (2)DB ⃗⃗⃗⃗⃗ +CD⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ; (3)AB ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ .BC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ ; (2)DB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗ =0; (3)AB ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF⃗⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =0. 能力提升练1.如图所示,在正六边形ABCDEF 中,若AB=1,则|AB ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗ +CD⃗⃗⃗⃗⃗ |=( )A.1B.2C.3D.2√3,可知FE ⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ,所以|AB ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |=2.故选B.2.(浙江诸暨中学高一期中)化简:(AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )+(BO ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+OM ⃗⃗⃗⃗⃗⃗ = .AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )+(BO ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+OM ⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+MB ⃗⃗⃗⃗⃗⃗ +(BO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +(MB ⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ +0=AC ⃗⃗⃗⃗⃗ .⃗⃗⃗ 3.如图,在△ABC 中,D,E 分别是AB,AC 上的点,F 为线段DE 延长线上一点,DE ∥BC,AB ∥CF,连接CD,那么(在横线上只填一个向量): (1)AB ⃗⃗⃗⃗⃗ +DF⃗⃗⃗⃗⃗ = ;(2)AD ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ = ; (3)AD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FC⃗⃗⃗⃗ = .,因为四边形DFCB 为平行四边形,由向量加法的运算法则得:(1)AB ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ . (2)AD ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ . (3)AD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ .⃗⃗⃗ AB ⃗⃗⃗⃗⃗ AC⃗⃗⃗⃗⃗ 4.已知|OA ⃗⃗⃗⃗⃗ |=|a|=3,|OB⃗⃗⃗⃗⃗ |=|b|=3,∠AOB=60°,求|a+b|.,因为|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=3,∠AOB=60°,所以四边形OACB 为菱形,连接OC,AB,则OC ⊥AB,设垂足为D.因为∠AOB=60°,所以AB=|OA⃗⃗⃗⃗⃗ |=3.所以在Rt △AOD 中,OD=3√32. 所以|a+b|=|OC ⃗⃗⃗⃗⃗ |=3√32×2=3√3.素养培优练如图,已知D,E,F 分别为△ABC 的三边BC,AC,AB 的中点,求证:AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗ =0.AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ ,由题意可知EF ⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗ =FA⃗⃗⃗⃗⃗ . 所以AD ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗ =(AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ )+(BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ )+(CB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ ) =(AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ )+(BC⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) =(AE ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ )+0=AE ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ +FA ⃗⃗⃗⃗⃗ =0.。
(人教版)七年级数学第二章课后习题与答案
七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。
行驶速度分别是x 千米/时和y 千米/时,3小时后两车相距多少千米?(6)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ; (5)y x 33-; (6)50-6x;P60 3.填表整数-15ab 224a b5yx 32 43x 2-42242a b b a +-系数次数项数解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数2 43 3 4项数33p60 4.设教室里座位的行数是m ,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位? (2)教室里座位的行数是每行座位的32,教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。
p60 5.三个植树队,第一队植数x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42颗,当x 为下列各值时,求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示,如果圆孔的半径是r ,三角尺的厚度是h ,这块三角尺的体积v 是多少?若a=6 cm,r=0.5 cm ,h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元,按成本增加22%定出价格,每件销售多少元?后来因库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解:a+0.22a,(a+0.22a)×0.85,(a+0.22a)×0.85-ap61 8.设n表示人员一个整数,利用含n的式子表示:(1)任意一个数的偶数;(2)任意一个数的奇数.解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n各队呢?解:3,6,10,21n)(np61 10.观察下图并填表;梯形个数 1 2 3 4 5 6 ...... n图形周长5a 8a 11a 14a解:17a, 20a, 23a,..., (3n+2)aP61 11,如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1),当n=5,7,11时,S是多少?解:S=3n-3,当n=5,7,11时,S=12,18,30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x;(3) -b+0.6b-2.6b; (4) m-2n+m-2n;解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x(3) -b+0.6b-2.6b= -3b (4) m-2n+m-2n=2m-22np71 2,计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 61)=321-x (3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式,再求值:)245(45x -22x x x +-+++)(, 其中x=-2.解:化简得:2x +9x+1 代入x=-2得,-13p71,5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数,计算这两个数的和;(2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数,计算这两个数的差.解:(1)5a +4,2a -3,7a +1; (2)7x +3,-2x -5,9x +8.p 71,6.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积的少5公顷。
计量经济学教程赵卫亚课后答案
第二章 回归模型思考与练习参考答案2.1参考答案⑴答:解释变量为确定型变量、互不相关(无多重共线性);随机误差项零的值、同方差、非自相关;解释变量与随机误差项不相关。
现实经济中,这些假定难以成立。
要解决这些问题就得对古典回归理论做进一步发展,这就产生了现代回归理论。
⑵答:总体方差是总体回归模型中随机误差项i ε的方差;参数估计误差则属于样本回归模型中的概念,通常是指参数估计的均方误。
参数估计的均方误为 MSE ()i i b b ˆ=E ()2ˆi i b b -=D ()i b ˆ=()[]iiu 12-'χχσ 即根据参数估计的无偏线,参数估计的均方误与其方差相等。
而参数估计的方差又源于总体方差。
因此,参数估计误差是总体方差的表现,总体方差是参数估计误差的根源。
⑶答:总体回归模型 ()i i i x y E y ε+=样本回归模型i i i e yy +=ˆ i ε是因变量y 的个别值i y 与因变量y 对i x 的总体回归函数值()i x y E 的偏差;i e 为因变量y 的观测值i y 与因变量y 的样本回归函数值i yˆ的偏差。
在概念上类似于i ε,是对i ε的估计。
⑷对于既定理论模型,OLS 法能使模型估计的拟和误差达最小。
但或许我们可选择更理想的理论模型,从而进一步提高模型对数据的拟和程度。
(5)答:2R 检验说明模型对样本数据的拟和程度;F 检验说明模型对总体经济关系的近似程度。
()()()kk n R R k n Model Total k Model k m Error k Model F 111122--∙-=---=--= 由02>∂∂R F 可知,F 是2R 的单调增函数。
对每一个临界值∂F ,都可以找到一个2∂R 与之对应,当22∂>R R 时便有∂>F F 。
(6)答:在古典回归模型假定成立的条件下,OLS 估计是所有的线形无偏估计量中的有效估计量。
计量经济学教程赵卫亚课后答案
第二章 回归模型思考与练习参考答案2.1参考答案⑴答:解释变量为确定型变量、互不相关(无多重共线性);随机误差项零的值、同方差、非自相关;解释变量与随机误差项不相关。
现实经济中,这些假定难以成立。
要解决这些问题就得对古典回归理论做进一步发展,这就产生了现代回归理论。
⑵答:总体方差是总体回归模型中随机误差项i ε的方差;参数估计误差则属于样本回归模型中的概念,通常是指参数估计的均方误。
参数估计的均方误为 MSE ()i i b b ˆ=E ()2ˆi i b b -=D ()i b ˆ=()[]iiu 12-'χχσ 即根据参数估计的无偏线,参数估计的均方误与其方差相等。
而参数估计的方差又源于总体方差。
因此,参数估计误差是总体方差的表现,总体方差是参数估计误差的根源。
⑶答:总体回归模型 ()i i i x y E y ε+=样本回归模型i i i e yy +=ˆ i ε是因变量y 的个别值i y 与因变量y 对i x 的总体回归函数值()i x y E 的偏差;i e 为因变量y 的观测值i y 与因变量y 的样本回归函数值i yˆ的偏差。
i e 在概念上类似于i ε,是对i ε的估计。
⑷对于既定理论模型,OLS 法能使模型估计的拟和误差达最小。
但或许我们可选择更理想的理论模型,从而进一步提高模型对数据的拟和程度。
(5)答:2R 检验说明模型对样本数据的拟和程度;F 检验说明模型对总体经济关系的近似程度。
()()()kk n R R k n Model Total k Model k m Error k Model F 111122--•-=---=--= 由02>∂∂RF 可知,F 是2R 的单调增函数。
对每一个临界值∂F ,都可以找到一个2∂R 与之对应,当22∂>R R 时便有∂>F F 。
(6)答:在古典回归模型假定成立的条件下,OLS 估计是所有的线形无偏估计量中的有效估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
一、上课讲解的例题,请先自行练习
1.根据某国1980-1993年的数据,得到如下回归结果。
(GNP 为国民生产总值,亿元;M
为货币供应量,百万园;s 和t 分别为估计量的标准差和t 检验值。
ˆ787.478.09 ( ) (0.22) (10.0) ( )
t t G N P M s t =-+==- 要求 (1)完成空缺的数字
(2)在5%的显著性水平上是否接受零假设 (3)M 的参数的经济学含义是什么?
2、假设某研究者基于100组三年级的班级规模(CS )和平均测试成绩(TestScore )数据估计的OLS 回归为:
(20.4) (2.21) (1))
求回归斜率系数
的95%的置信区间。
(2)在5%的显著水平下检验,班级规模是否会显著的影响平均测试成绩。
(双边检验,写出原假设和备择假设,以及检验的过程)
(3)若某班有22个学生,则班级平均测试成绩的预测值是多少。
(4)班级去年有19各学生,而今年有23各学生,则班级平均测试成绩变化的预测值是多少? (5)100各班级的样本平均班级规模为21.4,则这100各班级的样本平均测试成绩是多少? (6)100各班级的测试成绩样本标准差是多少?
3、下面的方程是Biddle and Hamermesh (1990)研究中所用模型的简化,这项研究要考察工作与休息之间的替代关系。
模型设定如下:
Sleep=μββββ++++age edu work 3210
其中sleep 和 work 分别表示每周休息和工作的时间(以分钟计),edu 表示接受教育的程度(以接受教育的年数来表示),age 表示年龄。
利用调查的706个样本回归上述模型,估计结果如下(括号内的数字表示参数估计量的标准误差,σˆ表示回归标准差):
sleep=3638.25-0.148work-11.13edu+2.20age
(112.3) (0.02) (5.88) (1.45)
2
R =0.11 σˆ= 419.4
请回答如下问题(注:计算过程保留小数点后2位数)
(1)解释系数的意义。
(2)计算被解释变量的总离差平方和、调整的拟合优度2
R、方程显著性检验的F统计量。
(3)对回归方程进行整体显著性检验。
(4)年龄越大,休息的时间越多吗?给定5%的检验水平,可以得出什么结论?如果检验水平为10%呢?对此应作何解释?
(5)工作时间与休息时间存在替代关系,那么多工作1分钟是否意味着少休息1分钟呢?
(检验水平位5%)
4、以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:
099 .0
)
046
.0(
)
22
.0(
)
37
.1(
05
.0
)
log(
32
.0
472
.0
2
2 1
=+
+ =
R
X X
Y
其中括号中为系数估计值的标准差。
(1)解释log(X1)的系数。
如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?
(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?
二、课后作业和思考题
1、在中国粮食生产函数中,根据理论和经验分析,影响粮食生产(Y)的主要因素有:
农业化肥施用量(X
1),粮食播种面积(X
2
),成灾面积(X
3
),经过逐步回归后选定下列模型。
回归结果见下表
Dependent Variable: Y
Method: Least Squares
Sample: 1983 2000
Included observations: 18
Variable Coefficie Std. Error t-Statisti Prob.
C -11978.18 14072.92 -0.851151 0.4090
X1 5.255935 0.268595 0.0000
X2 0.408432 3.348522 0.0048
X3 0.054533 -3.568637 0.0031 R-squared 0.979593 Mean dependent var 44127.11 Adjusted R-squared S.D. dependent var 4409.100 S.E. of regression 694.0715 Akaike info
criterion
16.11616 Sum squared resid 6744293. Schwarz criterion 16.31402 Log likelihood -141.0454 F-statistic
Durbin-Watson stat 1.528658 Prob(F-statistic) 0.000000
要求:
(1)请把空格处的数据补齐
(2)请把残差平方和RSS写出________________________________
(3)随机干扰项的标准差
^
是多少?__________________________
(4)在α=0.05前提下,各个系数的显著性检验结果?(请写出详细的假设检验过程)(5)写出对应的样本回归方程 _________________________________
2、书上P66 :2.1
3、书上P67:2.10;2.11;2.12;2.13;2.15
4、书上P322-P323 :实验一,实验二。