开关电源原理与设计 连载13 正激式变压器开关电源
正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
开关电源的原理与设计

开关电源的原理与设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各种电子设备中。
本文将介绍开关电源的原理与设计。
二、开关电源的原理开关电源的基本原理是利用开关管(MOS管)的导通和截止来控制电源输出。
其主要由输入滤波电路、整流电路、变换电路、输出电路和控制电路等组成。
1. 输入滤波电路输入滤波电路的作用是将交流电转换为稳定的直流电。
它由电容和电感构成,通过对电流的整流和滤波作用,使得输出电压平稳。
2. 整流电路整流电路主要由二极管桥整流电路组成,将交流电转换为脉冲直流电。
二极管桥整流电路具有整流和滤波功能,可以将交流电转换为脉动较小的直流电。
3. 变换电路变换电路是开关电源的核心部分,主要由开关管、变压器和输出电感组成。
开关管的导通和截止控制了电源的输出电压,变压器用于提高或降低电压。
通过开关管的开关动作,可以实现高效率的电能转换。
4. 输出电路输出电路由输出电容和负载组成,用于稳定输出电压并提供给负载使用。
输出电容的作用是存储能量,平稳输出直流电压。
5. 控制电路控制电路主要由控制芯片和反馈电路组成,用于监测和控制输出电压。
控制芯片通过反馈电路不断调整开关管的导通和截止,以保持输出电压的稳定。
三、开关电源的设计开关电源的设计需要考虑输入电压、输出电压、输出功率、效率和稳定性等因素。
1. 输入电压根据应用场景的不同,可以选择不同的输入电压范围。
常见的输入电压有220V交流电和110V交流电。
2. 输出电压输出电压是开关电源设计的关键参数之一,需根据实际需求确定。
常见的输出电压有5V、12V、24V等。
3. 输出功率输出功率是开关电源能够提供的最大功率,需根据负载的功率需求确定。
需要注意的是,输出功率不能超过开关电源的额定功率。
4. 效率开关电源的效率是指输出功率与输入功率的比值,通常以百分比表示。
较高的效率意味着更少的能量损耗,可提高整个系统的能量利用率。
5. 稳定性开关电源的稳定性是指输出电压的稳定性,即在负载变化或输入电压波动时,输出电压的变化情况。
正激式开关电源变压器参数的计算

开关电源原理与设计(连载16)正激式开关电源变压器参数的计算星期二, 05/05/2009 - 20:13 —陶显芳1-6-3-2.正激式开关电源变压器参数的计算正激式开关电源变压器参数的计算主要从这几个方面来考虑。
一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。
关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
1-6-3-2-1.正激式开关电源变压器初级线圈匝数的计算图1-17中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。
当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。
根据电磁感应定理:e1 = L1di/dt = N1dф/dt = Ui ——K接通期间(1-92)式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。
其中磁通量ф还可以表示为:ф= S×B (1-93)上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。
把(1-93)式代入(1-92)式并进行积分:(1-95)式就是计算单激式开关电源变压器初级线圈N1绕组匝数的公式。
式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯),Br为变压器铁心的剩余磁感应强度(单位:高斯),Br一般简称剩磁,τ=Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒),一般τ取值时要预留20%以上的余量,Ui为工电压,单位为伏。
正激式变压器开关电源工作原理

正激式变压器开关电源工作原理正激式变压器开关电源工作原理正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
1-6-1.正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。
在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。
我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。
因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。
图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。
其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。
关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。
正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。
因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。
反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
正激式变压器开关电源工作原理

正激式变压器开关电源工作原理
在磁储能阶段,输入电压先经过整流滤波电路得到DC电压,然后进入开关管的控制电路。
通过开关管的控制,使得开关管在合适的时机打开和关闭。
当开关管闭合时,输入电源的电流通过原边绕组,产生一定的能量储存在磁场中。
同时,在开关管打开时,能量从磁场中释放出来,通过反向变压器作用在辅助绕组上。
在变压器关闭阶段,当开关管断开时,输入电源的电流停止流动,辅助绕组上的能量通过变压器作用,在次级绕组上形成输出电压。
此时,输出端的整流滤波电路将输出的交流电转换为直流电并进行滤波,在电容的作用下将波纹电流平滑。
在反馈调整阶段,输出电压经过反馈控制电路进行采样,与设定的参考电压进行比较。
如果输出电压高于参考电压,反馈控制电路将信号发送给开关管的控制电路,降低开关管的导通时间,降低输入电流,减小输出电压。
相反,如果输出电压低于参考电压,反馈控制电路会提高开关管的导通时间,增加输入电流,提高输出电压。
通过这种反馈调整机制,输出电压可以稳定在设定值附近。
正激式变压器开关电源的工作原理要点在于磁能的存储和释放。
通过合适的控制开关管的导通时间和阻断时间,可以实现能量的储存和释放,从而实现输出电压的控制和稳定。
此外,正激式变压器开关电源还具有一些特点,如输出电压隔离性好,适用于大范围的输入电压,具有过流、过载保护等功能。
总之,正激式变压器开关电源是一种常见的电源设计,其工作原理基于磁能的存储和释放,通过合适的控制和反馈机制实现输出电压的稳定和调整。
正激、反激式、双端开关电源高频变压器设计详解

一、正激式开关电源高频变压器:No待求参数项 详细公式1 副边电压Vs Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感Lso Lso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4 实际工作占空比θon 如果输出电感Ls≥Lso:θon=θonmax否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5 导通时间Ton Ton =θon /f6 最小副边电流Ismin Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7 副边电流增量ΔIs ΔIs = (Vs-0.5-Vo)* Ton/ Ls8 副边电流峰值Ismax Ismax = Ismin+ΔIs9 副边有效电流Is Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10 副边电流直流分量Isdc Isdc = (Ismin+ΔIs/2) *θon11 副边电流交流分量Isac Isac = √(Is2- Isdc2)12 副边绕组需用线径Ds Ds = 0.5*√Is电流密度取5A/mm213 原边励磁电流Ic Ic = Vp*Ton / Lp14 最小原边电流Ipmin Ipmin = Ismin*Ns/Np15 原边电流增量ΔIp ΔIp = (ΔIs* Ns/Np+Ic)/η16 原边电流峰值Ipmax Ipmax = Ipmin+ΔIp17 原边有效电流Ip Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18 原边电流直流分量Ipdc Ipdc = (Ipmin+ΔIp/2) *θon19 原边电流交流分量Ipac Ipac = √(Ip2- Ipdc2)20 原边绕组需用线径Dp Dp = 0.55*√Ip电流密度取4.2A/mm221 最大励磁释放圈数Np′ Np′=η*Np*(1-θon) /θon22 磁感应强度增量ΔB ΔB = Vp*θon / (Np*f*Sc)23 剩磁Br Br = 0.1T24 最大磁感应强度Bm Bm = ΔB+Br25标称磁芯材质损耗P Fe(100KHz 100℃ KW/m3)磁芯材质PC30:P Fe = 600磁芯材质PC40:P Fe = 45026 选用磁芯的损耗系数ωω= 1.08* P Fe / (0.22.4*1001.2)1.08为调节系数27 磁芯损耗Pc Pc = ω*Vc*(ΔB/2)2.4*f1.228 气隙导磁截面积Sg 方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29 有效磁芯气隙δ′ δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp 式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简 得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30 实际磁芯气隙δ如果δ′/lc≤0.005: δ=δ′如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp 否则 δ=δ′*Sg/Sc31 穿透直径ΔD ΔD = 132.2/√f32 开关管反压Uceo Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33 输出整流管反压Ud Ud = Vo+√2 *Vinmax*Ns/Np′34 副边续流二极管反压Ud′ Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器设计步骤:No待求参数项 详细公式1 副边电压Vs 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
开关电源的工作原理及电路图

开关电源的工作原理及电路图本文以丰富的(开关电源)案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。
随着全球对能源问题的重视,(电子)产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压(电源)虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式(稳压电源),它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的(工作原理)作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源(集成电路)中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
(控制电路)为一脉冲宽度调制器,它主要由取样器、(比较器)、(振荡器)、脉宽调制及基准电压等电路构成。
开关电源变压器原理

开关电源变压器原理开关电源变压器是一种用于电子设备中的重要元件,它能够将输入的电压通过变换实现输出电压的升降。
在现代电子设备中,开关电源变压器被广泛应用于各种电子产品中,如电视、手机充电器、电脑电源等。
那么,开关电源变压器的工作原理是什么呢?首先,我们需要了解开关电源变压器的基本结构。
开关电源变压器通常由输入端、输出端、磁芯、绕组和开关管等组成。
输入端接收交流电源,经过整流、滤波后形成直流电压,然后通过开关管的开关控制,产生高频脉冲信号,进而通过磁芯的变压作用,最终在输出端得到所需的电压。
其次,开关电源变压器的工作原理是利用了磁芯和绕组的相互作用。
当开关管导通时,输入电压通过绕组产生磁场,磁场将磁芯磁化,同时在输出端产生相应的电压;而当开关管截止时,磁芯释放储存的能量,产生反向电压,通过绕组输出到负载端。
这样,通过不断地开关控制,可以实现输入电压到输出电压的变换。
此外,开关电源变压器还具有高效、小体积、轻便等特点。
相比传统的线性电源变压器,开关电源变压器在能量转换效率上更高,可以达到90%以上,同时由于工作频率较高,所以可以使用较小的磁芯和绕组,从而实现更小体积的设计。
在实际应用中,开关电源变压器还需要配合控制电路进行精确的控制。
控制电路通过对开关管的开关频率和占空比进行调节,可以实现对输出电压的精确控制,同时还能实现过载、短路等保护功能,确保电子设备的安全稳定工作。
总的来说,开关电源变压器是一种重要的电子元件,它通过磁芯和绕组的相互作用,实现了输入电压到输出电压的变换,具有高效、小体积、轻便等特点。
在现代电子设备中发挥着不可替代的作用,是电子设备中不可或缺的组成部分。
正激式开关电源的设计讲解

7-3正激式开关电源的设计中山市技师学院曷中海由于反激式开关电源中的开关变压器起到储能电感的作用,因此反激式开关变压器类似于电感的设计,但需注意防止磁饱和的问题。
反激式在20〜100W的小功率开关电源方面比较有优势,因其电路简单,控制也比较容易。
而正激式开关电源中的高频变压器只起到传输能量的作用,其开关变压器可按正常的变压器设计方法,但需考虑磁复位、同步整流等问题。
正激式适合50〜250W之低压、大电流的开关电源。
这是二者的重要区别!7.3.1技术指标正激式开关电源的技术指标见表7-7所示。
7.3.2工作频率的确定工作频率对电源体积以及特性影响很大,必须很好选择。
工作频率高时,开关变压器和输出滤波器可小型化,过渡响应速度快。
但主开关元件的热损耗增大、噪声大,而且集成控制器、主开关元件、输出二极管、输出电容及变压器的磁芯、还有电路设计等受到限制。
这里基本工作频率f o选200kHz,则1 1T = 一 = ---------- 3 =5(isf0 200 "O3式中,T为周期,f0为基本工作频率。
7.3.3最大导通时间的确定对于正向激励开关电源,D选为40%〜45%较为适宜。
最大导通时间t O N m ax为t oNmax=T D max ( 7-24)D max是设计电路时的一个重要参数,它对主开关元件、输出二极管的耐压与输出保持时间、变压器以及和输出滤波器的大小、转换效率等都有很大影响。
此处,选D max =45%。
由式(7-24),则有电压V O更小。
图7-26 “等积变形”示意图根据式(7-25),次级最低输出电压V2min为V2 minV O V L V F Tt oN max0.5 5=I4V 2.25式中,V F取0.5V (肖特基二极管),V L取0.3V。
2•变压器匝比的计算正激式开关电源中的开关变压器只起到传输能量|的作用,是真正意义上的变压器, 绕组的匝比N为V2根据交流输入电压的变动范围160V〜235V,则V I =200V〜350V, V|min=200V ,N =V|min= 200~ 14.3V2 min 14把式(7-25)、(7-25)整合,则变压器的匝比N为V im in D maxN =V O V L V F7.3.5变压器次级输出电压的计算变压器初级的匝数N!与最大工作磁通密度B m (高斯)之间的关系为max V|minB m S 104初、次级(7-26)所以有(7-27)(7-28)式中,S为磁芯的有效截面积(mm2), B m为最大工作磁通密度。
深度解析开关电源“正激”与“反激”的工作原理与区别

深度解析开关电源“正激”与“反激”的工作原理与区别
反激式:反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
工作原理:变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来: a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。
b.当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量。
反激电路的演变:可以看作是隔离的Buck/Boost 电路:
在反激电路中,输出变压器T除了实现电隔离和电压匹配之外,还有储存能量的作用,前者是变压器的属性,后者是电感的属性,因此有人称其为电感变压器,有时我也叫他异步电感。
正激电源
正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
单端正激式:。
陶显芳老师的《开关电源设计技巧》连载

连载一:开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。
前一种工作模式多用于DC/AC逆变电源,或 DC/DC电压变换;后两种工作模式多用于开关稳压电源。
另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。
同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。
其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。
下面我们先对串联式、并联式、变压器式等三种最基本的开关电源工作原理进行简单介绍,其它种类的开关电源也将逐步进行详细分析。
1-2.串联式开关电源1-2-1.串联式开关电源的工作原理此主题相关图片如下:图1-1.jpg图 1-1-a是串联式开关电源的最简单工作原理图,图1-1-a中Ui是开关电源的工作电压,即:直流输入电压;K是控制开关,R是负载。
当控制开关K接通的时候,开关电源就向负载R 输出一个脉冲宽度为Ton,幅度为Ui的脉冲电压Up;当控制开关K关断的时候,又相当于开关电源向负载R输出一个脉冲宽度为 Toff,幅度为0的脉冲电压。
这样,控制开关K不停地“接通”和“关断”,在负载两端就可以得到一个脉冲调制的输出电压uo 。
常见的几种开关电源结构和原理

常见的几种开关电源结构和原理1.正激电路电路的工作过程:开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为 .Ø变压器的磁心复位:开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位.正激电路的理想化波形:变压器的磁心复位时间为:Tist=N3*Ton/N1输出电压:输出滤波电感电流连续的情况下: Uo/Ui=N2*Ton/N1*T磁心复位过程:2.反激电路反激电路原理图反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感.工作过程:S开通后,VD处于断态,N1绕组的电流线性增长,电感储能增加;S关断后,N1绕组的电流被切断,变压器中的磁场能量通过N2绕组和VD向输出端释放.S关断后的电压为:us=Ui+N1*Uo/N2反激电路的工作模式:电流连续模式:当S开通时,N2绕组中的电流尚未下降到零.输出电压关系:Uo/Ui=N2*ton/N1*toff电流断续模式:S开通前,N2绕组中的电流已经下降到零.输出电压高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下, ,因此反激电路不应工作于负载开路状态.反激电路的理想化波形3.半桥电路半桥电路原理图工作过程:S1与S2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压.改变开关的占空比,就可以改变二次侧整流电压ud的平均值,也就改变了输出电压Uo.S1导通时,二极管VD1处于通态,S2导通时,二极管VD2处于通态,当两个开关都关断时,变压器绕组N1中的电流为零,VD1和VD2都处于通态,各分担一半的电流.S1或S2导通时电感L的电流逐渐上升,两个开关都关断时,电感L的电流逐渐下降.S1和S2断态时承受的峰值电压均为Ui.由于电容的隔直作用,半桥电路对由于两个开关导通时间不对称而造成的变压器一次侧电压的直流分量有自动平衡作用,因此不容易发生变压器的偏磁和直流磁饱和.有任何问题都可以到〖社区事物处理〗发帖子申告,24小时内会处理.请不要发布任何人身攻击的内容,将会被修改或者删除半桥电路的理想化波形:有任何问题都可以到〖社区事物处理〗发帖子申告,24小时内会处理.请不要发布任何人身攻击的内容,将会被修改或者删除全桥电路全桥电路原理图工作过程:全桥逆变电路中,互为对角的两个开关同时导通,同一侧半桥上下两开关交替导通,使变压器一次侧形成幅值为Ui的交流电压,改变占空比就可以改变输出电压.全桥电路的理想化波形推挽电路:工作过程:推挽电路中两个开关S1和S2交替导通,在绕组N1和N’1两端分别形成相位相反的交流电压,改变占空比就可以改变输出电压.S1导通时,二极管VD1处于通态,电感L的电流逐渐上升.S2导通时,二极管VD2处于通态,电感L的电流也逐渐上升.当两个开关都关断时,VD1和VD2都处于通态,各分担一半的电流.S1和S2断态时承受的峰值电压均为2倍Ui.S1和S2同时导通,相当于变压器一次侧绕组短路,因此应避免两个开关同时导通.。
开关电源设计技巧连载十正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算正激式变压器开关电源是一种常见的电源设计方案,广泛应用于各种电子设备中。
在设计正激式变压器开关电源时,我们需要计算一些电路参数来保证电源的正常工作。
以下是正激式变压器开关电源电路参数的计算方法。
1.输入电压计算:首先,需要确定正激式变压器开关电源的输入电压范围。
一般情况下,输入电压范围是根据电源的应用场所和要求来确定的。
例如,对于工业设备,输入电压范围一般为220VAC;对于电子设备,输入电压范围一般为110VAC。
因此,需要根据输入电压范围来选择合适的变压器。
2.输出电压计算:根据电源的应用场景和要求,确定所需的输出电压。
一般情况下,正激式变压器开关电源的输出电压范围是根据设备的工作电压要求来确定的。
例如,对于一些低功率的电子设备,输出电压一般为5VDC;对于一些高功率的电子设备,输出电压一般为12VDC或者24VDC。
因此,需要根据输出电压范围来选择合适的变压器和输出电路参数。
3.开关频率计算:开关频率是指开关管的开关频率,它决定了电源的工作频率。
一般情况下,开关频率是根据设备的工作要求来确定的。
例如,对于一些需要高效节能的设备,开关频率一般选择在20kHz以上;对于一些功率较低的设备,开关频率一般选择在50kHz以上。
因此,需要根据设备的工作要求来确定开关频率。
4.输出电流计算:输出电流是指电源输出给负载的电流,它决定了电源的输出功率。
一般情况下,输出电流是根据设备的功率要求和负载电阻来确定的。
例如,对于一些低功率的电子设备,输出电流一般在1A以下;对于一些高功率的电子设备,输出电流一般在10A以上。
因此,需要根据设备的功率要求和负载电阻来确定输出电流。
5.开关管参数计算:正激式变压器开关电源中的开关管是承担开关功能的主要器件。
在选择开关管时,需要根据前面计算的电路参数来确定合适的开关管。
例如,需要根据输入电压、输出电压、开关频率和输出电流来确定开关管的导通压降、导通电阻、关断速度和功耗等参数。
正激式变换器工作原理

正激式变换器工作原理正激式变换器(Forward Converter)是一种常见的开关电源拓扑结构,广泛应用于电力电子领域。
它具有高效率、高稳定性以及较小的尺寸和重量等优点,在各种应用场合中都有着重要的地位。
本文将从工作原理的角度对正激式变换器进行详细介绍。
正激式变换器的工作原理如下:首先,输入电源将直流电压转换为交流电压,并通过变压器的绕组输入到开关管的驱动电路中。
开关管会根据控制信号的输入情况,周期性地打开和关闭,从而控制输入电源的输出。
当开关管打开时,输入电压通过变压器的绕组传递到输出负载上;当开关管关闭时,输出负载上的电流会通过变压器的绕组产生电磁感应,形成反馈信号,再经过滤波电路输出到控制电路,控制电路根据反馈信号调整开关管的状态。
正激式变换器的主要特点是能够实现电源的隔离,通过变压器的绕组可以实现输入电压和输出电压的转换。
具体来说,当开关管打开时,输入电压经过变压器的绕组传递到输出负载上,此时变压器的绕组处于磁场储能阶段;当开关管关闭时,输出负载上的电流会通过变压器的绕组产生电磁感应,形成反馈信号,再经过滤波电路输出到控制电路,控制电路根据反馈信号调整开关管的状态。
通过这种方式,正激式变换器能够实现输入电压和输出电压的隔离,并且能够提供稳定的输出电压。
在正激式变换器的工作过程中,控制电路起着重要的作用。
控制电路可以根据输出电压的变化情况来调整开关管的状态,以保持输出电压的稳定性。
常见的控制方法有脉宽调制(PWM)和脉冲频率调制(PFM)等。
在脉宽调制中,控制电路会根据输出电压的大小来调整开关管的通断时间,以保持输出电压在一定范围内的稳定。
在脉冲频率调制中,控制电路会根据输出电压的变化速率来调整开关管的开关频率,以保持输出电压的稳定。
除了控制电路,正激式变换器还包括驱动电路和保护电路等。
驱动电路用于控制开关管的通断,保证开关管能够按照预定的频率和占空比进行工作。
保护电路用于监测和保护系统的安全性,例如过流保护、过压保护和短路保护等。
正激电路设计

时磊5说-正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
1-6-1 .正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。
图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。
在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。
我们从(1-76 )和(1-77 )两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。
因此, 正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。
图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。
其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。
关于电压平均值输出滤波电路的详细工作原理,请参看“1-2 •串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。
正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。
因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3, 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对布磊5『彳 电源进行充电;另一方面,流过反馈线圈 N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场 强度恢复到初始状态。
开关电源原理与设计

开关电源原理与设计
开关电源是一种将电能转换为所需电压、电流和频率的电源设备,广泛应用于各种电子设备中。
它具有体积小、效率高、稳定性
好等特点,因此在现代电子设备中得到了广泛的应用。
本文将介绍
开关电源的工作原理和设计方法。
首先,我们来了解一下开关电源的工作原理。
开关电源主要由
输入滤波电路、整流电路、功率因数校正电路、变换电路、输出整
流滤波电路和控制保护电路等部分组成。
其中,变换电路是开关电
源的核心部分,它通过开关管的导通和关断来实现电能的转换。
在
变换电路中,一般采用开关管和变压器来实现电能的转换,通过控
制开关管的导通和关断,可以实现输出电压的调节。
其次,我们来讨论一下开关电源的设计方法。
在设计开关电源时,首先需要确定所需的输出电压和电流,然后选择合适的开关管、变压器、电容、电感等元器件。
在选择元器件时,需要考虑它们的
功率损耗、温升、效率等参数,以确保开关电源的稳定性和可靠性。
此外,还需要设计合适的控制保护电路,以确保开关电源在各种工
作条件下都能正常工作,并具有过载、短路、过压、过温等保护功能。
最后,我们来总结一下开关电源的优缺点。
开关电源具有体积小、效率高、稳定性好等优点,但也存在着电磁干扰大、设计复杂、成本高等缺点。
因此,在实际应用中,需要根据具体的应用场景来
选择合适的电源类型。
总的来说,开关电源是一种高效、稳定的电源设备,它在现代
电子设备中得到了广泛的应用。
通过本文的介绍,相信读者对开关
电源的工作原理和设计方法有了更深入的了解,希望能对读者在实
际应用中有所帮助。
正激式变压器开关电源电路参数的计算

正激式变压器开关电源电路参数的计算正激式变压器开关电源电路是一种常见的开关电源拓扑结构,其工作原理是通过对输入电压进行开关变换来实现输出电压的调整。
在计算该电路的参数时,需要考虑输入电压、输出电压、工作频率、变压器参数以及开关管参数等因素。
1. 输入电压(Vin):输入电压是指电路供电的直流电压,一般由输入端的整流电路提供。
在计算参数之前,需要先确定合适的输入电压范围。
2. 输出电压(Vout):输出电压是经过变压器变换后的直流电压,一般由输出端的滤波电路提供。
根据设计需求确定合适的输出电压。
3.工作频率(f):工作频率是指开关电源电路每秒钟切换的次数,一般在几十kHz至几MHz范围内。
根据设计需求和开关管的特性选择合适的工作频率。
4.变压器参数:变压器是正激式变压器开关电源电路的核心元件,其参数包括输入端绕组的匝数Np、输出端绕组的匝数Ns、铁芯面积A、磁通密度B等。
在计算变压器的参数之前,需要先确定变压器的输入输出电压比。
5. 开关管参数:开关管是正激式变压器开关电源电路的开关元件,其参数包括导通电阻Ron、关断电阻Roff、最大导通电流Imax等。
根据变压器参数和设计需求选择合适的开关管。
计算正激式变压器开关电源电路的参数一般分为两步:第一步是变压器的参数计算。
根据输入输出电压比和变压器的匝数关系,计算变压器的匝数比Np/Ns。
然后根据变压器的输入端电压和输出端电压,计算变压器的变比。
根据变压器的变比和输入电压,计算变压器的输入电流。
根据变压器的输入电流和输入电压,计算变压器的功率。
根据变压器的功率和铁芯面积,计算变压器的磁通密度。
第二步是开关管的参数计算。
根据变压器的输入电流、开关管的导通电阻和输出电压,计算开关管导通时的功耗。
根据开关管的导通电阻和工作频率,计算开关管导通时的热损耗。
根据变压器的输出电流、开关管的关断电阻和输入电压,计算开关管关断时的功耗。
根据开关管的关断电阻和工作频率,计算开关管关断时的热损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源原理与设计连载13 正激式变压器开关电源
1-6.正激式变压器开关电源
正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
1-6-1.正激式变压器开关电源工作原理
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。
在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。
我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。
因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。
图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。
其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。
关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。
正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。
因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。
反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过反馈线圈N3绕组中的电流正好接替原来励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过反馈线圈N3绕组中电流是由最大值逐步变化到0的。
由此可知,反馈线圈N3绕组产生的感应电动势在对电源进行充电的同时,流过反馈线圈N3绕组中的电流也在对变压器铁心进行退磁。
图1-18是图1-17中正激式变压器开关电源中几个关键点的电压、电流波形图。
图1-18-a)是变压器次级线圈N2绕组整流输出电压波形,图1-18-b)
是变压器次级线圈N3绕组整流输出电压波形,图1-18-c)是流过变压器初级线圈N1绕组和次级线圈N3绕组的电流波形。
图1-17中,在Ton期间,控制开关K接通,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,并向负载提供输出电压。
开关变压器次级线圈输出电压大小由(1-63)、(1-69)、(1-76)、(1-77)等式给出,电压输出波形如图1-18-a)。
图1-18-c)是流过变压器初级线圈电流i1的波形。
流过正激式开关电源变压器的电流与流过电感线圈的电流不同,流过正激式开关电源变压器中的电流有突变,而流过电感线圈的电流不能突变。
因此,在控制开关K接通瞬间流过正激式开关电源变压器的电流立刻就可以达到某个稳定值,这个稳定电流值是与变压器次级线圈电流大小相关的。
如果我们把这个电流记为i10,变压器次级线圈电流为i2,那么就是:i10 = n i2 ,其中n 为变压器次级电压与初级电压比。
另外,流过正激式开关电源变压器的电流i1除了i10之外还有一个励磁电流,我们把励磁电流记为∆i1。
从图1-18-c)中可以看出,∆i1就是i1中随着时间线性增长的部份,励磁电流∆i1由下式给出:
∆i1 = Ui*t/L1 —— K接通期间(1-80)
当控制开关K由接通突然转为关断瞬间,流过变压器初级线圈的电流i1突然为0,由于变压器铁心中的磁通量ф不能突变,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影
响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。
如果变压器铁心中的磁通产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。
因此,控制开关K由接通状态突然转为关断,变压器初级线圈回路中的电流突然为0时,变压器次级线圈回路中的电流i2一定正好等于控制开关K 接通期间的电流i2(Ton+),与变压器初级线圈励磁电流∆i1被折算到变压器次级线圈的电流之和。
但由于变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈的电流∆i1/n的方向与原来变压器次级线圈的电流
i2(Ton+)的方向是相反的,整流二极管D1对电流∆i1/n并不导通,因此,电流∆i1/n只能通过变压器次级线圈N3绕组产生的反电动势,经整流二极管D3向输入电压Ui进行反充电。
在Ton期间,由于开关电源变压器的电流的i10等于0,变压器次级线圈N2绕组回路中的电流i2自然也等于0,所以,流过变压器次级线圈N3绕组中的电流,只有变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈N3绕组回路中的电流i3 (等于∆i1/n),这个电流的大小是随着时间下降的。
一般正激式开关电源变压器的初级线圈匝数与次级反电动势能量吸收反
馈线圈N3绕组的匝数是相等的,即:初、次级线圈匝数比为:1 :1 ,因此,∆i1 = i3 。
图1-18-c)中,i3用虚线表示。
图1-18-b)正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组的电压波形。
这里取变压器初、次级线圈匝数比为:1 :1,因此,当次级线圈N3绕组产生的反电动势电压超过输入电压Ui时,整流二极管D3就导通,反电动势电压就被输入电压Ui和整流二极管D3进行限幅,并把限幅时流过整流二极管的电流送回供电回路对电源或储能滤波电容进行
充电。
精确计算电流i3的大小,可以根据(1-80)式以及下面方程式求得,当控制开关K关闭时:
e3 = -L3*di/dt = -Ui —— K接通期间(1-81)
i3 = -(Ui*Ton/nL1)- Ui*t/L3 —— K关断期间(1-82)
上式中右边的第一项就是流过变压器初级线圈N1绕组中的最大励磁电流被折算到次级线圈N3绕组中的电流,第二项是i3中随着时间变化的分量。
其中n为变压器次级线圈与初级线圈的变压比。
值得注意的是,变压器初、次级线圈的电感量不是与线圈匝数N成正比,而是与线圈匝数N2成正比。
由(1-82)式可以看出,变压器次级线圈N3绕组的匝数增多,即:L3电感量增大,变压器次级线圈N3绕组的电流i3就变小,并且容易出现断流,说明反电动势的能量容易释放完。
因此,变压器次级线圈N3绕组匝数与变压器初级线圈N1绕组匝数之比n最好大于一或等于一。
当N1等于N3时,即:L1等于L3时,上式可以变为:
i3 =Ui(Ton-t)/L3 —— K接通期间(1-83)
(1-83)式表明,当变压器初级线圈N1绕组的匝数与次级线圈N3绕组的匝数相等时,如果控制开关的占空比D小于0.5,电流i3是不连续的;如果占空比D等于0.5,电流i3为临界连续;如果占空比D大于0.5,电流i3为连续电流。
这里顺便说明,在图1-17中,最好在整流二极管D1的两端并联一个高频电容(图中未画出)。
其好处一方面可以吸收当控制开关K关断瞬间变压器次级线圈产生的高压反电动势能量,防止整流二极管D1击穿;另一方面,电容吸收的能量在下半周整流二极管D1还没导通前,它会通过放电(与输出电压串联)的形式向负载提供能量。
这个并联电容不但可以提高电源的输出电压(相当于倍压整流的作用),还可以大大地减小整流二极管D1的损耗,提高工作效率。
同时,它还会降低反电动势的电压上升率,对降低电磁辐射有好处。
下一次我们谈谈“正激式变压器开关电源的优缺点”。