第六章 配合物的结构和性质
配位化合物的结构和性质
2
3
sp
sp2
直线形
平面三角形
[Ag(NH3)2]+
[CuCl3]2-
4
sp3
d3s dsp2
四面体
四面体 平面正方形 三角双锥形 四方锥形
[Ni(NH3)4]2+
MnO4[Ni(CN)4]2Fe(CO)5 [TiF5]2-
5
dsp3 d4s
6
d2sp3
八面体
[Fe(CN)6]3-
6.2 价键理论
(3) 平行正方形场
在平行正方形配合物中,四个配体沿x,y轴正负方向与
中心离子接近。 在平行正方形配合物中,dx2-y2轨道的电子云极大值方向 指向配体,因此能级最高,高于Es能级;dxy 轨其也在xy平面上,所以
也要受到较大的排斥故能级也高于Es能级;dz2 轨道的能级 较低,低于Es能级;dyz和dxz轨道受到的排斥作用相同,是 简并的,能级最低。这样,在平面正方形场中,能级分裂为 四组。
由于△值通常从光谱确定,故称这个顺序为光谱化学序列。
分裂能和成对能
b) 当配体固定时,分裂能随中心离子的不同而不同,其
大小次序为:
Pt 4 Ir 3 Pd 4 Rh3 Mo3 Ru3 Co3 Cr 3 Fe 3 V 2 Co2 Ni 2 Mn2
中正负离子的静电作用;
中心离子在配体的静电作用下,使原来简并的d轨道分 裂成能级不同的几组轨道;
d电子在分裂的d轨道上重新排布,优先占据能量较低
的轨道,往往使体系的总能量有所降低,形成强场低自 旋、弱场高自旋的配合物。
二、d轨道在晶体场中的分裂
d原子轨道的角度分布图
结构化学-Ch6-复习习题-杨媛
5Es 0
3.分裂能(△o 或10Dq)(P186): 金属原子或离子的5个d轨道在球形场作用 下分裂成2个高能级eg轨道和3个低能级t2g 轨道,高能的d轨道与低能的d轨道的能量 之差即是分裂能。
Eeg=6Dq(或0.6Δ0) Et2g=-4Dq(或-0.4Δ0)
eg
6 q D
CFSE1-CFSE2=4Dq-(24Dq-2P)=-20Dq+2P
=2(-Δ0+P )<0 (Δ0 > P) ∴Co3+采用t2g6 的排布方式,低自旋,没有未 配对电子,反磁性。
P203-8. 试判断下列两组配位化合物顺磁性大小的次序: (1) A. [Co(NH3)6]3+ B. [Co(NH3)6]2+ C. [Co(NO2)6]3D. [Co(CN)6]4 A. NH3为中场配体,Co3+(d6)为强场离子,总体上 [Co(NH3)6]3+属强场配合物,d电子处于低自旋,组态为 t2g6eg0,没有未配对电子。 B. NH3为中场配体,Co2+(d7)为弱场离子,总体上 [Co(NH3)6]2+属弱场配合物,d电子处于高自旋,组态为 t2g5eg2,有3个未配对电子。 C.NO2-属于强场配体, [Co(NO2)6]3- 属强场配合物,d电 子处于低自旋,组态为t2g6eg0,没有未配对电子。 D. CN-属于强场配体, [Co(CN)6]4-属强场配合物,d电 子处于低自旋,组态为t2g6eg1,有1个未配对电子。 ∴顺磁性大小:B>D>A=C
P202-7. 已知[Co(NH3)6]2+的Δ0 < P,而[Co(NH3)6]3+的 Δ0 > P ,试解释此区别的原因,并用稳定化能推算出 二者的d电子构型和磁性。 解:Co3+比Co2+价态高,ΔCo3+ > ΔCo2+ 电子成对能不变,所以出现题目中出现情况。 [Co(NH3)6]2+中 Co2+的d7有两种排布方式: ①t2g5eg2 ② t2g6eg1 ①CFSE=-[5(-4Dq)+26Dq]=8Dq ②CFSE=-[6(-4Dq)+16Dq+3P-2P]=18Dq-P
结构化学第六章..
二、d轨道的能级分裂
配体所形成的负电场对中心d电子起作用,消除d轨道的简并。
分裂的根源:(1)d轨道具有明显的角度分布。
(2)d轨道所在的配位场不是球形对称的。
1、正八面体配位场(Oh):
在正八面体配合物中,金属离子位于八面体中心,六 个配位体分别沿着三个坐标轴正负方向接近中央离子。
z y 3 2 4 5 6 1 x
四碘合汞(ll)酸 六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬 (III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III) 四硫氰根· 二氨合铬(Ⅲ)酸铵
五、配合物和配体的分类
MLn 称单核配合物
中心原子(离子)M: MmLn 称多核配合物
M—M 称原子簇合物
配位数 5--三角双锥或四方锥形
配位数 6--八面体或三棱柱
表6.1
配位化合物 配位数 [Hg(NH3)2]2+ [Au(CN)2] [CuCN3]2Ni(CO)4 [Zn(NH3)4]2 [Ni(CN)4]2[PtCl4]2Os(CO)5
-
若干配位化合物所采取的几何构型
几何构型 直线型 直线型 平面三角形 四面体 四面体 平面正方形 平面正方形 三角双锥 对称性 配位化合物 配位数 几何构型 对称性 Dh Dh D3h Td Td D4h D4h D3h [Ni(CN)5]3[SbF5]2[CoF6]3- [Fe(CN)6]3Cr(CO)6 [ZrF7]3Re(S2C2Ph2)3 [Mo(CN)8]45 5 6 6 6 7 6 8 三角双锥 四方锥 八面体 八面体 八面体 五角双锥 三棱柱 十二面体 D3h C4v Oh Oh Oh D5h D3h D2d
配合物的结构和性质
构型畸变 Jahn-Teller畸变 畸变
38
例: [Cu(NH3)6
2+,d 9,八面体场 ] 八面体场
两种 简并态
Z轴多一个电子 拉长八面体 拉长八面体
XY平面多一个电子 XY平面多一个电子 平面
压扁八面体 压扁八面体
39
Notes: (1) 基态 无简并态 理想构型 基态,无简并态 无简并态,理想构型 (2)高能轨道上出现简并 高 (3)低能轨道上出现简并 低
电子组态: 电子组态:
(t2g)4 (eg)2
顺磁性
28
例2:[Co(NH3)6]3+ , Co3+:3d6
∆o=23000 cm-1 P= 21000 cm-1
强场低自旋
电子组态: (t2g)6
抗磁性
29
②四面体配合物 例: [CoCl4]2-
∆t 较小,高自旋态 较小,
,Co2+ : 3d7 (e)4(t2)3
3.5
配合物的结构和性质
1
3.5.1 简介
单核配合物 单核配合物 配 合 物 (中心)原子或离子 中心) 如:Cu(NH3)6Cl2 双核配合物 双核配合物 如:Mn2(CO)10 (周围)若干离子或分子 周围)
2
(4,8) net (45.6)2(410.614.84)
3
(4,6) net (44.62)2(44.610.8)
M L
作用较弱 作用较弱
21
d 轨道在平面正方形场的分裂 轨道在平面正方形场 平面正方形场的分裂
22
6Dq 1.78Dq
-2.67Dq 正四面 体场 球形场
-4Dq 正八面 体场 平面正 方形场
配合物分子结构和性质(PPT34)
02
03
有机合成
配合物可作为催化剂或反 应中间体,用于有机化合 物的合成。
无机合成
配合物可用于合成金属簇 、金属氧化物和复合物等 无机材料。
材料科学
配合物可用于制备光电材 料、磁性材料和传感器等 先进材料。
04
配合物在生活和工业中的应用
配合物在医药领域的应用
药物研发
配合物可用于药物设计和 合成,提高药物的疗效和 降低副作用。
总结
01
配合物的定义和分类
配合物是由金属离子或原子与配体通过配位键结合形成的化合物。根据
配体的性质和数目,配合物可分为单核、双核和多核配合物。
02
配合物的结构和性质关系
配合物的结构和性质密切相关。金属离子的电子构型、配体的性质和配
位数等都会影响配合物的稳定性、磁性和光学性质。
03
配合物在化学和工业领域的应用
• 配合物理论计算和实验技术的创新:随着计算化学和实验技术的发展,人们可 以更加深入地研究配合物的结构和性质。未来研究将致力于发展新的理论计算 方法和实验技术,以揭示配合物的微观结构和动态行为,为新型配合物的设计 和合成提供理论指导。
谢谢您的聆听
THANKS
配合物在化学合成、催化反应、药物设计和材料科学等领域有广泛应用
。例如,过渡金属配合物可用于催化有机合成反应,某些配合物具有抗
癌活性,可用于药物开发。
研究展望
• 新型配合物的设计和合成:随着理论计算和实验技术的发展,人们可以更加精 确地预测和设计具有特定结构和性质的配合物。未来研究将致力于设计和合成 新型配合物,以满足不同领域的需求。
配合物的几何构型
直线型
当配位数为2时,中心原子与两 个配位体形成直线型结构,如 Co(H2O)2+2。
王顺荣编高教版社结构化学习题答案第6章
(dxy)
(dz2)
(dxz,dyz) LFSE(D4h)=-[2× 0.228+2× (-0.428)+4× (-0.514)] =2.456 所以,LFSE(D4h)>LFSE(Td),即 Ni2+的低自旋配合物通常为正四方形构型。 若 Ni2+的高自旋配合物呈四面体构型,则 d 电子排布如图:
14、为什么羰基配合物中过度金属原子可以是零价(例如 Fe(CO)5) ,甚至是负 价(例如[Co(CO)4]-)? 答:CO 分子的结构为:KK(3σ)2(4σ)2(1π)4(5σ)2(2π)0 可见 CO 分子 中既有低能的 π 占有轨道----1π,又有高能的 π 空轨道----2π,CO 被占用的分子 轨道中,3σ 轨道中电子云大部分密集于 C 和 O 核之间,电子不易给出。4σ 轨道 中电子云主要集中于氧原子一侧, 由于氧的电负性较大, 电子也不易给出。 所以, 能对中心离子给予电子对而形成 σ 键的 CO 的分子轨道只有 1π 和 5σ 轨道。 在 Fe(CO)5 中,中心原子与配位体 σ 轨道,即 CO 的 5σ 轨道可形成 a1g t1u 和 eg 成键 σ 轨道,有 5 个 CO 共 10 个电子填充。这相当于配位体上的电子部分与中
结构化学第六章 配位化合物和簇合物的结构与性质习题解答
组员:林景 070601332 邱丽清 070601327 王华 070601328 林培海 070601349
黄水英 070601329 余建红 070601330 刘梅丽 070601331
1、为什么大多数配合物都有鲜艳的颜色,而四面体 Zn2+的配合物却例外? 答: 配合物中心金属原子或离子的 d 轨道分裂后,在光照下 d 电子可从能级低的 d 轨道跃迁到能级高的 d 轨道,产生 d—d 跃迁和吸收光谱。由于 d—d 跃迁对应 的光子频率在近紫外和可见光区,故过渡金属配合物通常都有颜色。Zn2+的 3d 轨道已充满电子,它通常以 sp3 杂化 轨道形成配建,无 d—d 能级跃迁,电子跃 迁只能发生在 σ—σ*之间,能级差大,在可见光的短波之外。因此,在配位化合 物一般是无色的。
配位化合物的结构与性质
配位化合物的结构与性质
配位化合物是由中心金属离子与周围的配体离子共同构成的。
它们的结构和性质对于理解和应用这些化合物具有重要意义。
结构
配位化合物的结构由中心金属离子和配体离子之间的配位键连接模式所决定。
常见的配位键连接模式包括线性、平面和立体等。
- 线性配位键连接模式:配体离子在平衡位置排列,形成一条直线连接中心金属离子。
- 平面配位键连接模式:配体离子在平衡位置排列,形成一个平面与中心金属离子相连接。
- 立体配位键连接模式:配体离子在平衡位置排列,形成一个立体结构与中心金属离子相连接。
性质
配位化合物具有一系列独特的性质,包括磁性、光学性质和化
学活性。
- 磁性:配位化合物中的中心金属离子通过与配体离子之间的
电子转移产生磁性。
它们可以表现出顺磁性或反磁性,这取决于中
心金属离子和配体离子之间的电子排列方式。
- 光学性质:一些配位化合物具有特殊的光学吸收和发射性质,可以用于制备染料、荧光标记物等。
- 化学活性:由于中心金属离子和配体离子之间的配位键的特
殊性质,配位化合物在化学反应中表现出不同的活性。
它们可以参
与配位交换反应、氧化还原反应等。
结构和性质的研究对于配位化合物的设计和合成具有重要意义。
通过了解配位化合物的结构和性质,我们可以合理设计新型配位化
合物以满足不同的应用需求。
结构化学-第六章
NH2
C
C
O
OO
O
EDTA4-乙二胺四乙酸根
乙二胺en
2020/5/8
5
二. 配位化合物结构理论
价键理论――晶体场理论――分子轨道理论――配位场理论 杂化轨道 静电作用模型 MOT处理配键 配位化合物的
VBT理论T ① 共价配键和d-s-p杂化轨道(低自旋化合物)
A: 当中心离子M固定时, 值随配体而改变
2020/5/8
19
CO≈CN–NO2– 邻蒽菲联吡啶SO32–乙二胺(en)NH3 吡啶 EDTA H2O F–OH– Cl– Br–I–
大者为强场配位体, 小者为弱场配位体。由于通常由光谱 实验确定,故称这个顺序为光谱化学序列(也称配位场强 度序列)。
2020/5/8
12
① 正八面体场
6个配位体,沿x,y,z轴接近金属原子。dz2,dx2- y2与配体的斥 力大,轨道能量上升多;dxy,dxz,dyz与配体的斥力小,轨道 能量上升少 。
接近方式如图:
z
z
z
y
x
y
x
dxz z
dyz
dxy
y
y
x
x
x
dx2-y2
dz2
2020/5/8
13
d轨道分裂为:
❖ 配位体:含有电子的烯、炔、芳香烃,与过渡金属形成配 位化合物
❖ n配位体:一个配体与n个金属原子配位
❖ n配位体:一个配体的 n个配位点与同一个金属原子配位
2020/5/8
4
H
H3C
C
CH3
C
C
O
O
乙酰丙酮
N
N
N
O
第六章III 配合物
4NH3
sp3 3d
四面体构型 键角: 键角:109°28′ °
2. 平面正方形构型 [Ni(CN)4]2实验结果: 顺磁性, 实验结果:Ni2+顺磁性,[Ni(CN)4]2- 反磁性 Ni2+:3d84s0
重 排 3d
-CN
4s
4p 3d 4s dsp2杂化 dsp2 4p
CNNi2+
-CN
CN3d
正八面体 键角90° 键角 °
杂化轨道与配合物空间构型的关系
配位数 2 3 杂化轨道类型 sp sp2 dsp2 4 sp3 正四面体 直线形 平面三角形 平面正方形 空间构型 配合物举例
[Ag(NH3)2]+ [Ag(CN)2][CuCl3]2[Cu(CN)3]2[ Cu(NH3)4]2+ Pt(Ⅱ)、Pd(Ⅱ) Ⅱ、 Ⅱ [Co(SCN)4]2Zn(Ⅱ)、Cd(Ⅱ) Ⅱ、 Ⅱ [Ni(CN)5]3Fe(CO)5 [CoF6]3Fe(CN)6]3-
解: (1) 设c(Ag+) = X Ag+ + 2NH3 X 0.10+2X ≈0.10
+ 3 2
Ag(NH3)2+ 0.10-X ≈0.10
0.10 c( Ag ( NH ) ) = = 1.1×107 Kf = 2 + 2 x ⋅ (0.10) c( Ag ){c( NH 3 )}
X=9.1×10-7 (mol·L-1) × ∵c(Ag+)·c(I-) = 9.1×10-7×0.10 = 9.1×10-8 >K sp (AgI) × × ∴有AgI↓析出 析出
c([Cu (en ) 2 ]2− ) 0.10 − x 2 Kf = = = 1.0×1021 × 2+ 2 2 c(Cu ) ⋅ c (en ) x 2 (2 x 2 )
第六章--配合物的结构和性质
• VBT的基本要点: 的基本要点: 的基本要点
和配体L之间 (A)配合物的中心离子 和配体 之间,是由中心离子提供 )配合物的中心离子M和配体 之间, 与配位数相图的空轨道来接受配体提供的孤对电子, 与配位数相图的空轨道来接受配体提供的孤对电子,形成配 位键。 位键。 有空轨道,: 3有孤对电 ,:NH 如:在[Cu(NH3)4]2+中,Cu2+有空轨道,: ( 故可以形成配位键: 子,故可以形成配位键:见P69。 。 (B)为了形成稳定的配合物,中心离子采取杂化轨道与配位 )为了形成稳定的配合物, 原子形成σ配键, 原子形成σ配键,杂化轨道的类型与配位个体的配位键型和 空间构型相对应。 P71表 空间构型相对应。见P71表。
●单核配位化合物:一个配位化合物分子(或离子)中只含有一 单核配位化合物:一个配位化合物分子(或离子) 单核配位化合物 个中心原子。 个中心原子。 ●多核配位化合物:含两个或两个以上中心原子。 多核配位化合物:含两个或两个以上中心原子。 ●金属原子簇化合物:在多核配位化合物中,若M—M之间有键 金属原子簇化合物:在多核配位化合物中, 之间有键 合称为金属原子簇化合物 金属原子簇化合物。 合称为金属原子簇化合物。 ●配位化合物是金属离子最普遍的一种存在形式。 配位化合物是金属离子最普遍的一种存在形式。 ●金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。
内轨型配合物: 内轨型配合物: 为外轨型配合物, 如[FeCN6]3- 为外轨型配合物,见P69。 。 特点: 轨道参与杂化; 特点:(n-1)d轨道参与杂化;配体的孤对电子部分 轨道参与杂化 进入中心离子的( ) 轨道中 轨道中; 进入中心离子的(n-1)d轨道中;配体一般为电负 性小的原子, 性小的原子,如C,P,因电负性小,易给出电子, ,因电负性小,易给出电子, 对中心离子的价层电子结构有强烈的影响。 对中心离子的价层电子结构有强烈的影响。因此内 轨型配位键形成时打乱了中心离子的外层电子排布。 轨型配位键形成时打乱了中心离子的外层电子排布。
第六章_配合物的合成,结构和表征
NH3 NH3
Pt
NH3 NH3
NH3 NH3
Pt
NH3 Cl
Cl NH3
Pt
NH3 Cl
2)[PtCl(NO2)NH3(MeNH2)] 三种异构体的制备:
Cl Cl Cl Pt Cl 2NO2Cl Cl Pt 2NO2 Cl
Cl Cl
Pt
NO2 Cl
2NH3 a
Cl NH3
Pt
NO2 Cl
MeNH2 MeNH2 b NH3 NH3 d Pt
1)[Cu(H2O)4]SO4.H2O = [CuSO4]+5H2O (加热) 2)2[Co(H2O)6]Cl2 = Co[CoCl4] +12H2O (加热) 粉色 蓝色 变色硅胶的原理(粉红、蓝色)
二、利用氧化还原反应合成配合物
1、金属的氧化
最好的氧化剂是O2或H2O2,不会引入杂质。 例:[Co(NH3)5Cl]Cl2的合成
三、利用催化反应制备配合物
[Co(NH3)6]Cl3的合成(多相催化)
NH3-NH4Cl-H2O
[Co(H2O)6]Cl2
O2、活性炭
[Co(NH3)6]Cl3
四、几何异构体的制备
反位效应 trans effect
在几何图形有对称中心的金属配合物中,配体有使 其反位的另一配体不稳定的效应。
例如,二价铂配合物为平面四边构型, 两条对角线的每对配体互为反位。 在某些配合物内界的取代反应中,取代反应常常发生在 反位效应较大的配体的反位位置上。
五、旋光异构体的制备
旋光异构体的制备:一般是先制备外消旋体,然后进行拆分。 例:[Co(en)3]3+旋光异构体的制备: 在过量乙二胺和催化剂活性炭存在下,对Co(II)盐进行空气氧化, 可制得外消旋[Co(en)3]3+: CoCl2 +3en [Co(en)3]Cl2
(06) 第六章 配合物的结构与性质-2
Cr(CO)6 Mn2(CO)10 Fe(CO)5 Co2(CO)8 Ni(CO)4
例 Mn2(CO)10是典型的双核羰基化合物,
•其中 Mn—Mn 直接成键。每个 Mn与5 个 CO 形成八面体 其中 直接成键。 与 个配位, 构型中的 5 个配位,第六个配位位置通过 Mn—Mn 键相互 提供一个电子, 个价电子。 提供一个电子,使每个 Mn原子周围满足 18 个价电子。 原子周围满足 •为了减少空间阻碍引起的排斥力,羰基基团互相错开。 为了减少空间阻碍引起的排斥力,羰基基团互相错开。 为了减少空间阻碍引起的排斥力
b) Pt2+的充满电子的 d 轨道和 C2H4 的π*轨道叠加成键,由Pt2+提供 d 电子成π配键。 * 以上成键方式的作用: 1. 防止由于形成σ配键使电荷过分集中到金属原子上; 2.促进成键作用。
过渡金属(M)和烯烃 和烯烃( 过渡金属 和烯烃
C
C
) 间形成 配键的情况 间形成σ-π配
★ 除乙烯外,其他的烯烃和炔烃也能和过渡金属形成配位化合物。
Co2(CO)8 的情况和 Mn2(CO)10相似。
CO的等电子体与过渡金属形成的配位化合物: ● CO的等电子体与过渡金属形成的配位化合物:
N2、NO+、CN-等和 CO 是等电子体,由于结构的相似性,它们也可 和过渡金属形成 配位化合物。 例如,在1965年,人们得到了第一个N2分子配位化合物[Ru(NH3)5N2]Cl3 ★ NO与过渡金属形成的配位化合物: NO比CO多一个电子,这个电子处在π* 轨道上,当NO和过渡金属配 位时,由于π* 轨道参与反馈π键的形成,所以每个NO分子有3个电子参 与成键。 当按照18电子结构规则计算时,由NO分子与CO分子可形成下列化 合物: V(CO)5NO , Mn(CO)4NO,Mn(CO)(NO)3, Fe(CO)2(NO)2,[Fe(NO)(CO)3]-, Co(CO)3(NO),Co(NO)3
结构化学习题解答6
[6.23] 根据磁性测定结果知, NiCl42-为顺磁性而 Ni ( CN) 42- 为 反磁性,试推测它们的几何构型。 [解]:Ni2+为(3d)8组态,半径小,其四配位化合物既可呈四面体 构型,也可呈平面正方形构型,决定因素是配体间排斥作用的 大小。若 Ni2+的四配位化合物呈四面体构型,则d电子的排布方 式为:
第六章 配合物的结构和性质
[6.3] 判断下列配位离子是高自旋型还是低自旋型,画出d电 子排布方式,说明配位离子的磁性,计算LFSE(用△0表示)。 (a) Mn(H2O)62+ (b) Fe(CN)64- (c) FeF63[解]:兹将各项结果列于下表: 配位离子 Mn(H2O)62+ Fe(CN)64FeF63-
t2 e
配合物因有未成对的 d电子而显顺磁性。若呈平面正方形, 则d电子的排布方式为:
dx2 -y 2 dxy dz2 dxz,dyz
配合物因无不成对电子而显反磁性。反之,若 Ni2+ 的四配位 化合物显顺磁性,则它呈四面体构型;若显反磁性,则它呈平面 正方形。此推论可推广到其他具有 d8组态过渡金属离子的四面体 配位化合物。 NiCl42-为顺磁性离子,因而呈四面体构型。Ni(CN)42-为反 磁性离子,因而呈平面正方形。 [6.17] 某学生测定了三种配合物的d—d跃迁光谱,但是忘记了贴 标签,请帮助他将光谱波数与配合物对应起来。三种配合物是: CoF63- , Co(NH3)63+ , Co(CN)63- 。三种光谱波数是: 3400cm-1 , 1300cm-1,2300cm-1。 [解]: d—d跃迁光谱的波数与配位场分裂能的大小成正比,而分 裂能大小与配位体的强弱及中心离子的性质有关。因此,光谱波 数与配体强弱及中心离子的性质有关。而在这三种配合物中,中 心离子及其 d 电子构型都相同,因此光谱波数只决定于各自配体 的强弱。配体强者,光谱波数大;反之,光谱波数小。据此,可 将光谱波数与配合物对应起来: CoF63Co(NH3)63+ Co(CN)631300cm-1 2300cm-1 3400cm-1
第六章配位化合物结构与性质习题答案
第六章配位化合物结构与性质习题答案6150(1) [RhCl6]3-(2) [Ni(H2O)6]2+6001分裂成两组, d22yx 和2zd处于高能级,d xy,d yz,d xz处于低能级。
6002X-为弱场配体,CN-为强场配体, NH3介于两者之间。
6003(A)6004否6005(C)6006-2△06007此结论仅在O h场中,中心离子d 电子数n=4--7 时才成立。
6008-0.4△0×6 =-2.4△06009假设填T d空隙LFSE(Td)=[4×(-0.267△)+4×0.178△] = -0.356△假设填O h空隙LFSE(Oh)=[6×(-0.4△)+2×0.6△] = -1.2△Ni2+倾向填入稳定化能大的空隙中,所以NiAl2O4为反尖晶石。
6010小6011参看《结构化学基础》 (周公度编著) p.275 6012(1) t 2g 4 e g 2(2) - 0.4△ (3) │M s │=6π2h(4) μ= 26μβ6013(D) 6014能级次序: d 22y x -最高, 2d z 次之,d xy 再次之,d yz ,d xz 最低。
理由:①因z 方向拉长,相应xy 平面上的 4 个L 靠近,所以d 22y x -能级升高,d z2能级下降; ②因为 d xy 在xy 平面内,受L 的影响大,所以d xy 能级上升,而d yz , d xz 受xy 平面上的 4 个L 排斥小,所以能级下降。
③但因z 方向上方还有 1 个L,加之2z d 的"小环"在xy 平面上,可受到L 的直接作用,所以2d z 能级高于 d xy 能级。
6015O h 点群,说明Jahn-Teller 效应为 0,按强场排:( t 2g )6(e g )0LFSE =-2.4△0 6016(B), (D) 6017否 6018(B)6019(1) [Fe(CN)6]3-: μ= [n(n+2)]1/2μβ; n1= 1[FeF6]3-: n2= 5(2) 中心离子Fe3+为d5结构,配位场为八面体场。
结构化学课件6第六章 配位化合物的结构和性质
八面体场,d轨道分裂成 eg 轨道(dz2 ,dx2-y2), t2g 轨道(dxy ,dxz ,dyz)。 将eg和t2g这两组轨道间的能量差用△o或10Dq来表 示, △o或10 Dq称为分裂能, 根据重心守恒原理, 则
2E(eg)+3E(t2g)=0 E(eg)-E(t2g)=△o 由此解得 E(eg)=0.6△o = 6Dq E(t2g)=-0.4△o =-4Dq
H2[HgI4]
K2[SiF6] K2[Co(SO4)2] [Ag(NH3)2]Cl [CrCl2(NH3)4]· 2H2O Cl· K[PtCl3NH3] [Co(NH3)5H20]Cl3
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl
四碘合汞(ll)酸
六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬(III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III)
K3[Fe(CN)6]
Fe3+:
3d5
µ =2.40
n=1
配合物的空间构型
配合物分子或离子的空间构型与配位数的 多少密切相关。 配位数
4 2 6 4 4 6 2
空间构型 直线形
四面体 平面正方形 八面体
NiCl 2 4
Ni(CN ) 2 4
例
Ag(NH3 ) 2
Fe(CN) 3 6
空间构型 例
[BeX4]2-四面体
Ni2+形成配位数为4的配合物时,既有四面体构型,也有平面正 方形构型的,前者,Ni2+采用的是dsp2杂化,后者,Ni2+采用的 是sp3 杂化。
四 配 位 的 配 平面正方形,μ=0 合 物
四面体,μ=2.83B.M.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章配合物的结构和性质一、填空题1、[Fe(CN)6]3-的LFSE=________________。
t,故LFSE为_____________。
2、[Fe(CN)6]4-中,CN-是强场配位体,Fe2+的电子排布为6g23、络化合物中的电子跃迁属d-d跃迁,用________光谱研究最为合适。
4、八面体低自旋配合物稳定化能最大的d电子数目是________。
5、铁的两种络合物:(A) Na3[Fe(CN)6],(B) Na3[FeF6],它们的摩尔磁化率大小关系为χA___χB,它们的紫外可见光谱d-d跃迁的波长大小关系为λA___λB。
6、在过渡金属络合物中,由于Jahn-Teller 效应使构型发生畸变,若为强场配位体,畸变发生在d7、d9,若为弱场配位体,发生在____________。
7、Re Re四重键中,δ键由__________轨道迭加而成(键轴为z轴)。
8、d z2sp3杂化轨道形成___________几何构型;d x2-y2sp3杂化轨道形成___________几何构型;d2sp3杂化轨道形成_________几何构型。
9、多核配位化合物中,金属原子之间直接成键的称为_____________化合物。
10、在氮分子与金属形成配位键M—N≡N时,N2的________轨道上的一对电子提供给金属原子空轨道,形成_______键,另一方面又以_______轨道与金属d轨道形成_______键,因此在N2的络合物中由于_______键的形成,使N2活化了。
11、配位场理论认为,CO,CN-等分子具有__________轨道,和金属中t2g轨道形成__________键,使分裂能增大,因而是强配位场。
二、选择题1、按配位场理论,在O h场中没有高低自旋络合物之分的组态是:·························( )A、d3B、d4C、d5D、d6E、d72、下列络合物哪些是高自旋的?:·································································( )A、[Co(NH3)6]3+B、[Co(NH3)6]2+C、[Co(CN)6]4-D、[Co(H2O)6]3+3、化合物K3[FeF6]的磁矩为5.9玻尔磁子,而K3[Fe(CN)6]的磁矩为1.7玻尔磁子,这种差别的原因是:·····························································································( )A、铁在这两种化合物中有不同的氧化数B、CN-离子比F-离子引起的配位场分裂能更大C、氟比碳或氮具有更大的电负性D、K3[FeF6]不是络合物4、[FeF6]3-络离子的磁矩为:···········································································( )A、3μBB、5μBC、2.5μBD、5.9μB5、下列配位离子中磁性最大的是:···································································( )A、[Mn(H2O)6]3+B、[Fe(H2O)6]3+C、[Fe(CN)6]4-D、[Co(NH3)6]3+E、[Cr(H2O)6]2+6、下列哪个络合物的磁矩最大?:···································································( )A、[Co(CN)6]3-B、[Mn(H2O)6]2+C、[Co(NH3)6]3+D、[Fe(CN)6]3-E、[Co(NH3)6]2+7、下列配合物中磁矩近似为2.8μB的是:(南京大学,2001)······································( )A、[Cr(CN)6]3-B、[MnF6]3-C、[NiF6]4-D、Ni(CO)48、推测下列三种络合物的d-d跃迁频率大小顺序:···············································( )(1) [Fe(H2O)6]3+(2) [Fe(H2O)6]2+(3) [FeF6]2-A、ν1>ν2>ν3B、ν1>ν3>ν2C、ν3>ν2>ν1D、ν3>ν1>ν2E、ν2>ν1>ν39、下列八面体络合物的电子结构中哪个将发生较大的畸变?·································( )A、(t2g)5(e g)2B、(t2g)3(e g)2C、(t2g)4(e g)2D、(t2g)6(e g)310、下列络合物的几何构型哪一个偏离正八面体最大?·········································( )A、[Cu(H2O)6]2+B、[Co(H2O)6]2+C、[Fe(CN)6]3-D、[Ni(CN)6]4-E、[FeF6]3-11、下列配为位离子中,哪个构型会发生畸变?···················································( )A、[Cr(H2O)6]3+B、[Mn(H2O)6]2+C、[Fe(H2O)6]3+D、[Cr(H2O)6]2+12、单核羰基络合物Fe(CO)5的立体构型为:······················································( )A、三角双锥B、四面体C、正方形D、八面体E、三角形13、四羰基镍的构型应为:··············································································( )A、正八面体B、平面三角形C、四面体D、正方形14、CO 与过渡金属形成羰基络合物时,CO 键会:··············································( )A、加强B、削弱C、不变D、断裂15、Ni(CO)4中Ni 与CO 之间形成:·····························································( )A、σ键B、π键C、σ-π键D、δ键16、络合物的光谱(d-d跃迁)一般在什么区域?····················································( )A、远紫外B、红外C、可见-近紫外D、微波17、观测[Fe(CN)6[FeF6]3-4-中Fe的3d轨道的分裂可以通过:····································( )A、核磁共振谱B、电子顺磁共振谱C、红外光谱D、微波谱E、电子吸收光谱18、下列配位离子中,配体场稳定化能最大的是:··················································( )A 、[CoCl 6]4-B 、[CoCl 4]2-C 、[CoCl 6]3-D 、[CoF 6]3-19、下列配合物离子中,分裂能最大的是:···························································( )A 、[Co(NH 3)6]2+B 、[Co(NH 3)6]3+C 、[Co(H 2O)6]3+D 、[Rh(NH 3)6]3+20、配位体 CN -,NH 3,X -在络离子光谱化学序列中的顺序是:······························( )A 、X -<CN -<NH 3B 、CN -<NH 3<X -C 、X -<NH 3<CN -D 、NH 3< X -<CN -三、问答题1、CoF 63-的成对能为 21000 cm -1,分裂能为 13000 cm -1,试写出:(1) d 电子排布 (2) LFSE 值 (3) 电子自旋角动量 (4) 磁矩2、已知[Fe(CN)6]3-,[FeF 6]3-络离子的磁矩分别为1.7B μ,5.9B μ (B μ为玻尔磁子)(1)请分别计算两种络合物中心离子未成对电子数;(2)用图分别表示中心离子 d 轨道上电子排布情况 ;(3)两种络合物其配位体所形成的配位场,是强场还是弱场?3、计算其未成对电子数目,并试推测下列络合物的磁性大小:[Fe(CN)6]4-, [Fe(CN)6]3-, [Mn(CN)6]4-, [Co(NO 2)6]3-, [Fe(H 2O)6]3+, [CoF 6]3-4、某同学测定了三种络合物d -d 跃迁光谱,但忘了贴标签,请帮他将光谱波数和络合物对应起来。