一元线性回归分析教程文件
计量经济学【一元线性回归模型——回归分析概述】
四、随机误差项的涵义
随机误差项是在模型设定中省略下来而又集体的
影响着被解释变量 Y 的全部变量的替代物。涵义如
下: 1、在解释变量中被忽略的因素的影响; 2、变量观测值观测误差的影响; 3、模型关系的设定误差的影响; 4、其它随机因素的影响。 设定随机误差项的主要原因: 1、理论的含糊性; 2、数据的欠缺; 3、节省的原则。
➢ 例如:
二、总体回归函数(方程)PRF Population regression function
由于变量间统计相关关系的随机性(非确定性),回归 分析关心的是根据解释变量的已知或给定值,考察被解 释变量的总体均值,即当解释变量取某个确定值时,与 之统计相关的被解释变量所有可能出现的对应值的平均 值。
样本回归函数的随机形式:
其中 为(样本)残差(Residual),可看成是随机误差项 的 的具体估计值。由于引入随机项,称为样本回归 模型。
总体回归线与样本回归线的基本关系
例2.1:一个假想的社区是由60户家庭组成的总体,要
研究该社区每月家庭消费支出Y 与每月家庭可支配收入 X 的关系;即知道了家庭的每月收入,预测该社区家庭
每月消费支出的 (总体) 平均水平。为达到此目的,将该 60户家庭划分为组内收入差不多的10组,以分析每一收 入组的家庭消费支出。
表2.1 某社区家庭每月收入与消费支出调查统计表
回归分析是研究因果相关,也就是有因果关系的相关关 系;既然回归分析是研究变量之间的因果关系,因此回归 分析对变量的处理方法存在不对称性,也就是说,回归分 析将变量区分为被解释变量和解释变量,其中被解释变量 是“结果”,解释变量是“原因”,并且回归分析方法认为作 为“原因”的解释变量属于非随机变量,作为“结果”的被解 释变量为随机变量;也就是说,作为“原因”的解释变量取 确定值时,作为“结果”的被解释变量取值是随机的。
第二章2.2一元线性回归分析
ˆ β1 ~ N ( β1 ,
∑x
σ2
2 i
)
ˆ β 0 ~ N (β 0 ,
∑ n∑ x
X i2
2 i
σ 2)
22
随机误差项u的方差σ 随机误差项 的方差σ2的估计 的方差
σ2又称为总体方差 总体方差。 总体方差
23
由于随机项ui不可观测,只能利用残差ei (ui的 估计)的样本方差,来估计ui的总体方差σ2 。 样本方差? 样本方差? 可以证明,σ2的最小二乘估计量 最小二乘估计量为: 可以证明 最小二乘估计量
= β1 + P lim(∑ xi µ i / n) P lim(∑ xi2 / n)
xi µ i
2 i
∑x
)
样本协方差? 样本协方差?
Cov ( X , µ ) 0 = β1 + = β1 + = β1 Q Q
21
四、参数估计量的抽样分布及随机项方 差的估计
ˆ ˆ 、 1、参数估计量 β 0 和 β 1 的概率分布
Yi = β0 + β1 X i + ui
i=1
Y为被解释变量,X为解释变量,β0与β1为待估 待估 参数, 随机项。 参数 u为随机项。 随机项
2
回归分析的主要目的是要通过样本回归函数 回归分析的主要目的 (模型)SRF尽可能准确地估计总体回归函数 (模型)PRF。 估计方法有多种,其中最广泛使用的是普通最 普通最 估计方法 小二乘法(ordinary least squares, OLS)。 小二乘法 为保证参数估计量具有良好的性质,通常对模 型提出若干基本假设。 实际这些假设与所采用的估计方法紧密相关。
2
1 X2 = + n ∑ x2 i
第9章 一元线性回归分析
9.1.2相关关系的类型
从涉及的变量数量看
简单相关 多重相关(复相关)
从变量相关关系的表现形式看
线性相关——散点图接近一条直线(左图) 非线性相关——散点图接近一条曲线(右图)
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2
11
10.8 10.6 10.4 10.2 10
若在定距变量分布不满足正态性的条件,可将定距变 量降级为定序变量
如要研究考试中学生交卷的名次是否与成绩有关,
交卷名次与考试名次之间的关系
交卷名 次
1 2 3 4
5
6
7
8
9
10
11
12
考试成 绩
94 74 74 60 68 86 92 60 78 74
78
64
参阅《统计学在经济和管理中的应用》
2 i i 2 i i
__
^
__
^
2
总离差平方和
回归平方和
残差平方和
判定系数定义:
r
2
(Y Y ) (Y Y )
i i
^
2 2
判定系数的特点
判定系数是非负的统计量; 判定系数取值范围: 0 r 2 在一元线性回归中,判定系数在数值上是
独立性意味着对于一个特定的 x 值,它所对应的ε与其他 x 值所对应的ε不相关 对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关
回归方程
描述因变量y的期望值如何依赖于自变量x的方程称为回归方程。
E( y) b0 b1 x
估计的回归方程
(estimated regression equation)
用spss软件进行一元线性回归分析
step2:做散点图
给散点图添加趋势线的方法: • 双击输出结果中的散点图 • 在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了 “拟合线” • 拟合方法选择“线性”,置信区间可以选95%个体,应用
step3:线性回归分析
从菜单上依次点选:分析—回归—线性 设置:因变量为“年降水量”,自变量为“纬度” “方法”:选择默认的“进入”,即自变量一次全部进入的方法。 “统计量”:
step4:线性回归结果
【Anova】 (analysisofvariance方差分析) • 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。 当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果sig. > 0.05,说明二者 之间用当前模型进行回归没有统计学意义,应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回 归模型是有统计学意义的,可以继续看下面系数分别检验的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验, 在多元回归中这两者是不同的。
• 勾选“模型拟合度”,在结果中会输出“模型汇总”表 • 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: • 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 • 在本例中我们勾选95%的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
利用spss进行一元线性回归
step1:建立数据文件 打开spss的数据编辑器,编辑变量视图
(09)第9章 一元线性回归(2011年)
变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体 变量之间的关系?
9-9 *
9.1 变量间的关系 9.1.1 变量间是什么样的关系?
统计学 STATIS TICS
函数关系
(第四版) 1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 3. 各观测点落在一条线上
y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素 对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 0 和 1 称为模型的参数
9 - 30 *
统 计 学 数据分析 (方法与案例)
作者 贾俊平
统计学 STATIS TICS
(第四版)
统计名言
不要过于教条地对待研究的结果, 尤其当数据的质量受到怀疑时。
——Damodar N.Gujarati
9-2 *
第 9 章 一元线性回归
9.1 9.2 9.3 9.4 变量间关系的度量 一元线性回归的估计和检验 利用回归方程进行预测 用残差检验模型的假定
9-7
*
第 9 章 一元线性回归
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度
第15讲 一元线性回归分析
n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析
x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n
一元线性回归分析
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
教案13相关分析与回归分析一元线性回归分析
2、理论分析:影响各地区城市居民人均消费支出的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入。从理论上说可支配收入越高,居民消费越多,但边际消费倾向大于0,小于1。
3、建立模型:
参数估计:
4、模型检验:
(1)经济意义检验:估计的解释变量的系数为0.7585,说明城镇居民人均可支配收入每增加1元,人均年消费支出平均将增加0.7585元。这符合经济理论对边际消费倾向的界定。
教学内容
第六章相关分析与回归分析
一元线性回归分析
课次/学时
13/2
教学目的要求
掌握回归分析法的思路和流程;
掌握一元线性回归模型;
教学重点
利用一元线性回归模型进行变量间因果关系分析
教学难点
一元线性回归模型在实际生活中的应用
教学内容、设计与时间安排:
A.课程导入:(5分钟)
提问:总体回归方程和总体回归模型有何区别?
思考题与作业
1、经济意义检验
主要检验参数估计量的符号和大小是否与经济理论与经济实际相符合,能否解释经济现象,即是否有经济意义。
2、变量的显著性检验
3、拟合优度检验
五、经济预测(20分钟)
1、点预测
2、区间预测
C.案例分析:(15分钟)
改革开放以来,随着中国经济的快速发展,居民的消费水平也不断增长。但全国各地区经济发展速度不同,居民消费水平也有明显差异。为了分析什么是影响各地区居民消费支出的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
答案:总体回归方程描述的是解释变量和被解释变量平均之间确定的函数关系,给出解释变量的值可以得到被解释变量均值;总体回归模型是总体回归函数的随机形式,分为确定性和随机性两部分。
第章线性回归分析详解演示文稿
上式表明:y的变化可由两部分解释:第一,由解释
变量x的变化引起的y的线性变化部分,即y=β0+β1x; 第二,由其他随机因素引起的y的变化部分,即ε。 β0 、β1 都是模型中的未知参数,β0为回归常数,β1为 y对x回归系数(即x每变动一个单位所引起的y的平
一元二乘估计:
多元二乘估计(略)
第十一页,共52页。
9.3回归方程的统计检验
拟合优度检验 回归方程的显著性检验
回归系数的显著性检验 残差分析
第十二页,共52页。
9.3.1回归方程的拟合优度检验
用于检验样本数据点聚集在回归线周围的密集程度, 从而评价回归线对样本数据的代表程度。 思想:因变量y(儿子身高)取值的变化受两个因素
第二十九页,共52页。
第二、计算残差的自相关系数 自相关系数用于测定序列自相关强弱,其取值范围 -1~+1,接近1表明序列存在正自相关
第三十页,共52页。
第三、DW(durbin-watson)检验
DW检验用于推断小样本序列是否存在自相关的方法。其原 假设为:总体自相关系数ρ与零无显著差异。采用统计量 为:
的影响:自变量x(父亲身高)不同取值的影响,其 他因素(环境、饮食等)的影响。
可表示如下:
因变量总变差 = 自变量引起的 + 其他因素引起的 即因变量总变差= 回归方程可解释的+不可解释的 即,因变量总离差平方和SST =回归平方和 SSA + 剩余平
方和SSE
第十三页,共52页。
图示:
y y i
素对 y 的影响造成的。
第十五页,共52页。
一、一元线性回归方程
拟合优度的检验采用R2统计量,称为判定系数
第九章 回归分析(一元线性回归)(1)
将表中各对数据描在坐标平面上得图
数 据 和 拟 合 直 线
这样的图称为观测数据的散点图。 从图上可以看出,随着温度x的升高, 某化学过程的生产量y的平均值也在增加, 它们大致成一直线关系,但各点不完全在一 条直线上,这是由于y还受到其它一些随机 因素的影响。
温度 xi
为了研究某一化学反应过程中温度 x 对产
品得率 Y 的影响. 测得数据如下:
C 100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
得率 yi %
为了研究这些数据所蕴藏的规律性, 将温度 x i 作 为横坐标,得率 y i 作为纵坐标, 在 xoy 坐标系中作 散点图 从图易见, 虽然这些点是散乱的, 但大体上散布在 某条直线附近, 即该化学反应过程中温度与产品
回归分析正是研究预报变量之变动对响 应变量之变动的影响程度,其目的在于根据 已知预报变量的变化来估计或预测响应变量 的变化情况。
“回归(regression)”名称的由
来:
回归名称的由来要归功于英国统计学F.高尔顿 (F.Galton:1822~1911),他把这种统计分析方法 应用于研究生物学的遗传问题,指出生物后代有回 复或回归到其上代原有特性的倾向。高尔顿和他的 学生、现代统计学的奠基者之一K.皮尔逊 (K.Pearson:1856~1936)在研究父母身高与其 子女身高的遗传问题时,在观察了1078对夫妇后, 以每对夫妇的平均身高作为x,取他们的一个成年儿 子的身高为y,将结果绘成散点图后发现成一条直线。 计算出回归方程为
一元线性回归教案
一元线性回归教案引言一元线性回归是统计学中非常重要的一种回归分析方法。
它能够通过建立一个线性模型,根据自变量的值来预测因变量的值。
本教案将介绍一元线性回归的基本概念、原理和应用场景,并通过示例演示如何进行一元线性回归分析。
目录1.什么是一元线性回归?2.一元线性回归的原理3.数据的处理与准备4.拟合一元线性回归模型5.模型评估与预测6.应用案例分析7.总结1. 什么是一元线性回归?一元线性回归是指只有一个自变量和一个因变量的线性回归模型。
它的数学表达式为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是模型的参数,ε是误差项。
一元线性回归的目标是找到最合适的β0和β1,使得模型对观测数据点的拟合程度最优。
2. 一元线性回归的原理一元线性回归的原理基于最小二乘法,即通过最小化观测值与模型预测值之间的差异来确定模型的参数。
最小二乘法可以通过求解正规方程来获得最优的参数估计值。
3. 数据的处理与准备在进行一元线性回归分析之前,需要对数据进行处理和准备。
这包括数据清洗、变量选择和数据可视化等步骤。
本节将介绍常用的数据处理方法,以及如何选择适当的自变量和因变量。
4. 拟合一元线性回归模型拟合一元线性回归模型是通过最小二乘法来确定模型的参数估计值。
本节将介绍如何使用Python中的scikit-learn库来拟合一元线性回归模型,并分析模型的拟合结果。
5. 模型评估与预测在拟合一元线性回归模型之后,需要对模型进行评估和预测。
本节将介绍常用的评估指标,如均方误差(MSE)和决定系数(R-squared),以及如何使用模型进行预测。
6. 应用案例分析本节将通过一个实际的数据集来展示一元线性回归的应用场景。
通过分析数据集中的自变量和因变量之间的关系,我们可以建立一元线性回归模型,并对模型进行评估和预测。
7. 总结本教案从一元线性回归的基本概念和原理开始,通过示例和实践对一元线性回归进行了详细讲解。
第二章 一元线性回归模型
∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。
第二章 一元线性回归分析基础
加,消费增加,但消费的增长低于收入的增长,即消
费对收入的弹性小于1。它的数学表述为
Y X
0
Y X
1,
Y X
Y X
其中Y为消费额,X为收入。
该线性方程描述了消费与收入之间的确定关系,即给定 一个收入值,可以根据方程得到一个唯一确定的消费值。 但实际上消费与收入间的关系不是准确实现的。
原因:入随机误差项,将变量之间的关系用一个线性 随机方程来描述,用随机数学的方法来估计方程中的 参数,这就是线性回归模型的特征,也就是线性计量 经济学模型的特征。
二、一元线性回归模型
单方程线性回归模型的一般形式为
Yi 1 2 X2i 3 X3i k Xki ui ,i 1,2, ,n 其中Y为被解释变量,X 2 ,X 3 , ,X n 为解释变量。
化。
如果误差项的方差不同,那么与其对应的观测值Yi的可 靠程度也不相同。这会使参数的检验和利用模型进行预 测复杂化。而满足同方差假设,将使检验和预测简化。
假设3 表示不同的误差项之间互相独立,同时,不同的 被解释变量在统计上也是互相独立的。即
Cov(Yi, Yj)= E(Yi-E(Yi)) (Yj-E(Yj))= E(uiuj)=0, i≠j 假假设设4,自通动常满X足i为,确即定性变量,即非随机变量,此时,该
也可以用显函数形式表示为 Y f ( X1,X 2 , ,X n )
其中最简单的形式为一元线性函数关系。
例如 当某种商品单价P固定不变,其销售收入y与销售 的商品数量x之间的关系为一元线性关系,即y = Px
如果用x,y构成的直角坐标图来表示,上式所表示的 函数关系为一条经过坐标原点的直线,所有可能的点 都在这条直线上。
Cov(ui, Xi)= E(ui-E(ui)) (Xi-E(Xi))=0,i=1,2, ……,n 假设5 随机误差项服从零均值,同方差的正态分布。即
气象统计方法 第四章 一元线性回归分析
yˆ ˆ0 ˆ1x
x
全部观测值与回归估计值的离差平方和记为
n
Q(a, b) ( yi yˆi )2 t 1
它刻画了全部观测值与回归直线偏离程度。
显然,Q值越小越好。a和b是待定系数,根 据
微积分学中的Q极值0 原理,要Q求 :0
a
b
满足上面关系的Q值最小。整理得到:
反映自变量 x 的变化对因变量 y 取值变化的影响,或 者说,是由于 x 与 y 之间的线性关系引起的 y 的取 值变化,也称为可解释的平方和。
3.残差平方和(Q)
反映除 x 以外的其它因素对 y 取值的影响,也称为 不可解释的平方和或剩余平方和。
2
n i 1
(
yi
a
bxi
)
0
n
2 i1 ( yi a bxi )xi 0
=r2
(2)回归系数b与相关系数之间的关系
b
S xy
S
2 x
Sy Sx
rxy
r与b同号。
6. 回归方程的显著性检验
U
F
1 Q
(n 2)
原假设回归系数b为0的条件下,上述统计量遵从
分子自由度为1,分母自由度为(n-2)的F分布,
若线性相关显著,则回归方差较大,因此统计量F
也较大;反之,F较小。对给定的显著性水平 ,
判决系数R2 (coefficient of determination)
1. 回归平方和占总离差平方和的比例; 2. 反映回归直线的拟合程度; 3. 取值范围在 [ 0 , 1 ] 之间; 4. R2 1,说明回归方程拟合的越好;
R20,说明回归方程拟合的越差; 5. 判决系数等于相关系数的平方,即R2
数理统计第六章第一节 一元线性回归分析
后代的身高有向身高平均值靠拢的趋向. 离开均值 越远,所受到回归的压力也越大。“回归”这个词 就由此而来。
5
输入
X1
输出
X2 …
系统
y
xp
理论模型 Y f (x1, x2 ,..., xp )
观测模型 Y f (x1, x2 ,..., xp )
6
** *
*
* **
* *
* *
*
* ** *
i 1
i 1
n
(bˆ)2 (xi x )2
i 1
S yy 2bˆSxy (bˆ)2 Sxx
由于 Sxy bˆSxx 所以 Qe Syy (bˆ)2 Sxx
18
1.3 线性假设的显著性检验
1) T检验法
对线性假设y=a+bx+进行检验,线性系数
b不应当为0 原假设 H0:b=0 备择假设 H1:b0
Qe的简单计算公式
n
Qe
yi yˆi 2 Syy (bˆ)2 Sxx
i 1
17
证明 n
n
Qe yi yˆi 2 ( yi y) ( yˆi y)2
i 1
i 1
n
(
yi
y
)
bˆ( xi
x
2
)
i 1
n
n
( yi y)2 2bˆ ( yi y)(xi x )
15
2) 2的点估计
对每一个xi,由回归方程有 yˆi aˆ bˆxi
xi处的残差为 yi yˆi
残差平方和
n
n
Qe yi yˆi 2
yi aˆ bˆxi 2
i 1
i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析是研究变量之间相关关系的统计学方法,它描述的是变量间不完 全确定的关系。回归分析通过建立模型来研究变量间的这种关系,既可以用于 分析和解释变量间的关系,又可用于预测和控制,进而广泛应用于自然科学、 工程技术、经济管理等领域。本文尝试用一元线性回归分析方法为微生物生长 与温度之间的关系建模,并对之后几年的情况进行分析和预测。
值,若 F> Fα(1,n-2)时,拒绝 H0,表明回归效果显著;若 F≤Fα(1,n-2),接
受 H0,此时回归效果不显著。
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品资料
2 一元回归分析法的应用
2.1 分析实例 某微生物的生长天数与当年三月上旬平均气温的数据如表 1 所示,分析三
月上旬平均温度与微生物生长之间的关系。
常假定 E(εi)=0,Var(εi)=σ2 各 εi 相互独立且服从正态分布。回归分析就是根据样
本观察值寻求 0, 1的估计 ˆ0 , ˆ1 ,对于给定 x 值, 取 Yˆ ˆ0 ˆ1x ,作为
E(Y ) 0 1x 的估计,利用最小二乘法得到 0, 1的估计 ˆ0 , ˆ1 ,其中
ˆ
0
ˆ1
一元线性回归分析论 文
精品资料
一元线性回归分析的应用
——以微生物生长与温度关系为例
摘要:一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的 预测方法。应用最小二乘法确定直线,进而运用直线进行预测。本文运用一元 线性回归分析的方法,构建模型并求出模型参数,对分析结果的显著性进行了 假设检验,从而了微生物生长与温度间的关系。 关键词:一元线性回归分析;最小二乘法;假设检验;微生物;温度
Lxx Lyy
全线性相关,| r |=0 时表示不存在线性相关;0< | r |≤0.3 为微弱相关,0.3< | r
|≤0.5 时为低度相关,0.5< | r |≤0.8 为显著相关,0.8<
从总体中随机抽取一个样本,根据样本的数据导出的线性回归方程由于受
Model 1
R 计算=1 0.771
表 2 全回归模式
R Square
Adjusted R Square
Std,Error of the Estimate
0.595
0.544
1.167
表 2 中 R 为相关系数,R Square 为相关系数的平方,即判定系数用来判定 线性回归的拟合程度,用自变量解释因变量的变异程度(所占比例); Adjusted R Square 为调整后的判定系数,Std,Error of the Estimate 为估计标准误 差。
n
def
( yi y)2 称为关于 Y 的离差平方和,LLxxxy=
n
S( x总i
n
x)2
(yi
n
yx)i 2
2
nx
i 1
i 1
i 1 i 1
称为关于 X 与 Y 的离差积和。
相关系数r=
n
(xi x)(Yi Y )
i1
n
n
(xi x)2 (Yi Y )2
i1
i1
Lxy ,0≤ | r |≤1。| r |=1 时表示完
表 1 三月上旬温度与微生物生长天数的情况表
年份 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 温度℃ 8.6 8.3 9.7 8.5 7.5 8.4 7.3 9.7 5.4 5.5
天数 3
5
3
1
4
4
5
2
7
5
2.2 分析结果
将数据输入 SPSS 中进行运算,选择线性回归分析。分析结果如表 2 所 示。自变量是“温度”,因变量是“微生物生长天数”。
y xˆ1
n
xi yi
i1
n xy
n
xi2
2
nx
i1
。
仅供学习与交流,如有侵权请联系网站删除 谢谢2
精品资料
1.2 相关系数
def
上述回归方程存在一些计算相关系数。设 LLxXxX=
n
n
(xi x)2 ,称x为i2 关 n于x2 X 的
i 1
i 1
离差平方和;LS总yy=
到抽样误差的影响,所确定的变量之间的线性关系是否显著,以及按照这个模
型用给定的自变量 X 估计因变量 Y 是否有效,必须通过显著性检验才可以作出
结论,通常所用的检验方法是 F 检验。
线性回归模型 Y 0 1x , ~ N(0, 2 ) 可知,当 1 0 时,就认为 Y 与 x
之间不存在线性回归关系,故需检验如下假设: H0 : 1 0, H1 : 1 0 ,
n
n
n
n
S总 ( yi y)2 = ( yi yˆi )2 ( yˆi y)2 为总偏差平方和,令 S回 ( yˆi y)2 ,
i 1
i 1
i 1
i 1
S 剩
n i 1
(yi
yˆi ) 2 。当
H0 为真时,取统计量
F
S回 S剩(n 2)
~
F(1, n 2)
,由给定显著
性水平 α,查表得 Fα(1,n-2),根据实验数据 (x1, y1),(x2, y2),,(xn, yn ) 计算 F 的
表 4 回归模型系数表
Model Unstandardized Coefficients Standardized Coefficients
B
Std.Error
Beta
Constant 10.911
2.078
温度
0.889
0.259
0.771
t
Sig
5.250 0.001 3.428 0.009
从上面的分析结果可知,三月份的平均温度与微生物生长天数关系极为密
1 一元线性回归分析法原理
1.1 问题及其数学模型 一元线性回归分析主要应用于两个变量之间线性关系的研究,回归模型模
型为 Y 0 1x ,其中 0, 1为待定系数。实际问题中,通过观测得到 n 组数
据(Xi,Yi)(i=1,2,…,n),它们满足模型 yi 0 1xi i (i=1,2,…,n)并且通
仅供学习与交流,如有侵权请联系网站删除 谢谢4
精品资料
Model Sum of Squares
Regression
16.003
Residual
10.897
Total
26.900
表 3 方差分析表
df
Mean Square
F
1
16.003
11.478
8
1.362
9
Sig 0.009
由表 3 可以看出 F 值为 11.748,显著性概率为 0.009,表明回归极显著。