2017-2018年浙江省杭州市西湖区八年级(上)期末数学试卷及答案

合集下载

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。

2017-2018学年度上学期期末考试八年级数学试卷1

2017-2018学年度上学期期末考试八年级数学试卷1

浙教版2017-2018学年度上学期期末考试八年级数学试卷1(时间:120分钟 满分:120分 )一、用心选一选(每小题3分,共30分)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 2.下列命题是真命题的是( )A.若两个角相等,则它们是对顶角B.如果a b >,a c >,那么b c> C.两边和其中一边的对角对应相等的两个三角形全等 D.全等三角形的面积相等3.如图在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,若BCBD则点D 到AB 的 距离是()A.1B. 2C.D. 4.下列图象中,以方程240y x --=的解为坐标的点组成的图象是选项中的( ) +5.下列判断正确的是( )A. 35a a ->-B. a a ≥C.a a >- D. 2a a >6.等腰三角形一腰上的中线把这个三角形的周长分成1︰2两部分,已知这个三角形周长为36cm ,则个等腰三角形的底边为( )cm.A.4B.10C.20D.4或207.已知不等式:①2x -<-;②5x >;③2x <;④22x -<-,从这四个不等式中取两个,构成正整数解是3的不等式组是()A.①与②B.②与③C.③与④D.①与④ 8.在函数13y x =-中,自变量的取值范围是( ) A. 3x ≥- B. 3x ≥-且3x ≠ C. 3x ≥且3x ≠- D. 3x ≠-A. B. C. D.第3题图9. 将一次函数213y x =-+的图象,先向左平移3个单位长度,再向下5个单位长度,得到的函数解析式为( ) A. 26y x =-- B. 22y x =-- C. 27y x =-+ D. 23y x =-+ A.第一、二、三象限 B. 第二、三、四象限 C. 第一、三、四象限 D. 第一、二、四象限距离相等,则可选择的地址有 处. m解集为______.18.如图,在△ABC 中,FD 、EG 分别是AB 、AC 的垂直平分线,分别交BC 于点D 、E ,若BC =17cm,则△ADE 的周长是 .19.如图,△ABC ≌△ABE ≌△ADC ,若∠1︰∠2︰∠3=28︰5︰3,则∠α的度数是 .20. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4)点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为28时,m= .第17题图第18题图 第19题图三、专心答一答(共60分)21. (6分)请在下图方格中画出三个以AB 为腰的等腰三角形ABC .(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C 在格点上;3、只需画出图形即可,不写画法;4、标上字母,每漏标一个扣1分.)23. (9分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-16>0. 解:∵x 2-16=(x +4)(x -4), ∴(x +4)(x -4)>0.由有理数的乘法法则“两数相乘,同号得正”,有 (1)4040x x +>⎧⎨->⎩或(2)4040x x +<⎧⎨-<⎩24. (9分)如图,在等腰△ABC 中,点D 是AB 上任一点,AE ⊥CD ,垂足为E ,CH ⊥AB ,垂足为H , 交A E 于点G .(1)若AG =CD ,求证:∠ACB =90°; (2)BD 与CG 相等吗?请说明理由.第22题图第24题图25.(10分)如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是 2 000小时,照明效果一样.(1)根据图象分别求出l 1、l 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)26.(8分)如图已知一块四边形草地ABCD ∠A=60°,∠B =∠D =90°,AB =28米,CD =16米,求这块草地的面积.第25题图 第27题图。

浙江省杭州市西湖区2018学年第一学期期末八年级数学试卷及答案

浙江省杭州市西湖区2018学年第一学期期末八年级数学试卷及答案

2018学年第一学期八年级期末教学质量调研数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2.答题前,必须在答题卷上填写校名,班级,姓名,座位号.3.不允许使用计算器进行计算,凡题目中没有要求取近似值的,结果中应保留根号或π.一.选择题(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.在圆周长的计算公式C =2πr 中,变量有( )A. C ,πB. C ,rC. C ,π,rD. C ,2π,r2.点P 在第二象限且到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A.(-3,4)B.(3,-4)C.(-4,3)D.(4,-3)3.下列命题是真命题的是( )A. 相等的角是对顶角B. 一个角的补角是钝角C. 如果ab =0,那么a +b =0D. 如果ab =0,那么a =0或 b =0 4. 已知A (x 1,3),B (x 2,12)是一次函数y =-6x +10的图象上的两点,则下列判断正确的是( )A .x 1< x 2B .x 1> x 2C .x 1= x 2D .以上结论都不正确 5. 若a b >,则下列各式中一定成立的是( )A .ma mb >B .22c a c b >C .11a b ->-D .22(1)(1)c a c b +>+6. 已知△ABC 的三边为a ,b ,c ,下列条件能判定△ABC 为直角三角形的是( )A. a :b :c =B. a :b :c =C. a :b :c =2:2:3D. a :b :c7. 不等式组2312x x -≥-⎧⎨-≥-⎩的解为( )A. 5x ≥B. 1x ≤-C. 15x -≤≤D. 5x ≥或1x ≤-8. 如图,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且△ABC 的面积为16,则△BEF 的面积是( )A.2B.4C.6D.89. 若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =-cx -a 的图象A B C D10. A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,使从A 到B的路径AMNB 最短的是(假定河的两岸是平行线,桥与河岸垂直)( )(BM 垂直于a ) (AM 不平行BN ) (AN 垂直于b ) (AM 平行BN )A B C D二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11. 已知一个直角三角形的两直角边长分别是1和2,则斜边长为 .12. 在平面直角坐标系中,把点A (-10,1)向上平移4个单位,得到点A ′,(第8题)则点A ′的坐标为________.13. 等腰三角形两边长分别是2和7,则它的周长是________.14. 三角形的三个内角分别是75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是________.15. 三个非负实数a ,b ,c 满足a +2b =1,c =5a +4b ,则b 的取值范围是_________,c 的取值范围是_________.16. 如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若∠BDC =m °, ∠BGC =n °,则∠A 的度数为__________(用 m ,n 表示).三.解答题(本题有7个小题,共66分) 解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17. (本题满分6分)已知,等腰三角形的周长为24cm ,设腰长为y (cm ),底边长为x (cm ).(1)求y 关于x 的函数表达式.(2)求x 的取值范围.18. (本题满分8分)如图,已知,∠B =∠E =Rt ∠,AB =AE ,∠1=∠2.求证:∠3=∠4.19. (本题满分8分)如图,已知,在Rt △ABC 中,∠C =Rt ∠,BC =6,AC =8. 用直尺与圆规作线段AB 的中垂线交AC 于点D ,连结DB . 并求△BCD 的周长和面积.(第18题) (第16题)20. (本题满分10分)已知直线y =kx +b (0)k ≠经过点A (3,0),B (1,2).(1)求直线y =kx +b 的函数表达式.(2)若直线y =x -2与直线y =kx +b 相交于点C ,求点C 的坐标.(3)写出不等式kx +b >x -2的解.21. (本题满分10分)某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22. (本题满分12分)如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠BCE =150°,∠ABE =60°.(1)求∠ADB 的度数.(2)判断△ABE 的形状并证明.(3)连结DE ,若DE ⊥BD ,DE =6,求AD 的长.23.(本题满分12分)平面直角坐标系xOy 中,一次函数16y x =-+的图象与x 轴,y 轴分别交于点A ,B . 坐标系内有点P (m ,m -3).(1)问:点P 是否一定在一次函数16y x =-+的图象上? 说明理由.(2)若点P 在△AOB 的内部(不含边界),求m 的取值范围.(3)若26(0)y kx k k =->,请比较12y y ,的大小.(第22题)西湖区2018学年第一学期八年级期末教学质量调研数学参考答案评分标准1112.(-10,5) ; 13.16;14.80°,130°;15.16.(2n -m ) °. (本题共7小题,共66分)17.(本题满分6分)(1)由题意可得2y +x =24,即y 分(2) ∵x >0, y >0, 2y >x ,解得0<x <12. -----3分18.(本题满分8分)证明:∵∠1=∠2,∴AC =AD , -----3分在△ABC 与△AED 中,∠B =∠E =Rt ∠,AB =AE ,AC =AD ,∴Rt △ABC ≌Rt △AED (HL ) -----3分∴∠3=∠4. -----2分19.(本题满分8分)(1)结论:直线DE 就是所求作的图形(图略) -----2分 (2)由中垂线性质可得BD =AD ,即CBD C Δ= CB +BD +DC =CB +AD +DC =CB +AC , ∵AC =8,BC =6,∴CBD C Δ=8+6=14, -----3分设AD =BD =x ,即2226(8)x x =+-, -----1分分 ∴CBD S Δ= -----1分 20.(本题满分10分)(1)由题意得3k +b=0,k +b =2,解得k =-1,b =3 -----2分∴直线AB 的解析式是y =-x +3. -----2分(2)由-x +3=x -2, -----1分C 的坐标为 -----2分 -----3分 21.(本题满分10分)(1)设租用甲种货车x 辆,则租用乙种货车(16-x )辆,根据题意得,18x +16(16-x )≥266,10x +11(16-x )≥169,----2分解得:5≤x ≤7. ----1分所以有3种租车方案:方案一:租用甲种货车5辆,租用乙种货车11辆;方案二:租用甲种货车6辆,租用乙种货车10辆;方案三:租用甲种货车7辆,租用乙种货车9辆. ----3分(2)设租用甲种货车x 辆,则租用乙种货车(16-x )辆,总费用为y 元,由题意得,(3)y =1600x +1200(16-x )=400x +19200,∵k =400>0,y 随x 的增大而增大, ∴用方案一,费用最少,即租用甲种货车5辆,租用乙种货车11辆,费用为y =400×5+19200=21200(元) -----4分22.(本题满分12分)(1)∵BD =BC ,∠DBC =60°,∴△DBC 是等边三角形,∴DB =DC ,∠BDC =∠DBC =∠DCB =60°,在△ADB 和△ADC 中,,∴△ADB ≌△ADC , -----2分 ∴∠ADB =∠ADC , ∴∠ADB = (360°-60°)=150° -----2分(2)△ABE 是等边三角形 -----1分∵∠ABE =∠DBC =60°,∴∠ABD =∠CBE , 在△ABD 和△EBC 中,,∴△ABD ≌△EBC ,∴AB =BE ,∵∠ABE =60°,∴△ABE 是等边三角形. -----3分(3)连结DE ∵∠BCE =150°,∠DCB =60°,∴∠DCE =90°,∵∠EDB =90°,∠BDC =60°,∴∠EDC =30°,∴EC = DE =3,∵△ABD ≌△EBC ,∴ AD =EC =3 -----4分23.(本题满分12分)(1)不一定在6y x =-+的图象上. -----1分,理由如下:∵当x =m 时,6y m =-+,当63m m -+=-时,92m =, -----1分 即①当92m =时,点P (m ,m -3)在函数6y x =-+图象上; -----1分 ②当92m ≠时,点P (m ,m -3)不在函数6y x =-+图象上. -----1分 (2)由函数6y x =-+得 A (6,0),B (0,6)∵点P 在△AOB 的内部,∴0<m <6,0<m -3<6,m -3<6m -+ -----3分 ∴3<m <29. -----1分 (3)26(0)y kx k k =->过定点A (6,0) -----1分 所以由图象可得:当x <6,y 1>y 2;当x=6,y 1=y 2;当x >6,y 1<y 2. -----3分。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年八年级数学上学期期末考试试题浙教版(1)

2017-2018学年八年级数学上学期期末考试试题浙教版(1)

全卷共4页,有三大题,25小题.满分100分,考试时间90分钟.温馨提醒:请认真审题,细心答题,相信你是最棒的!一. 选择题(每小题3分,10小题,共30分)1.在平面直角坐标系中,点(2,-3)所在的象限是………………………………( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限2.不等式32->x 的解是………………………………………………………………(▲) A. 23-<x B.23->x C.32-<x D.32->x 3.以下图形中对称轴条数最多..的是……………………………………………………( ▲)4.函数y=21+x 中,自变量x 的取值范围是………………………………………( ▲ ) A .x >﹣2 B .x ≠0 C .x >﹣2且x ≠0 D .x ≠﹣25.如图,在△ABC 中,∠A=35°,∠C=45°,则与∠ABC 相邻的外角的度数是…( ▲ )A.35°B.45°C.80°D.100°(第5题图) (第6题图)6.如图所示,在△ABC 中,AB=AC ,D 、E 分别是AC 、AB 的中点,且BD ,CE 相交于O 点, 某一位同学分析这个图形后得出以下结论: ①△BCD ≌△CBE ; ②△BDA ≌△CEA ;③△BOE ≌△COD ; ④△BAD ≌△BCD ;⑤△ACE ≌△BCE ,上述结论一定正确..的是( ▲ ) A.①②③ B.②③④ C.①③⑤ D.①③④7. 下列各组数中,不能..作为直角三角形三边长的是…………………………………( ▲ )A .1.5,2,3B .5,12,13C .7,24,25D .8,15,178.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是……( ▲ )A .13B .17C .22D .17或229. 在平面直角坐标系中,若有一点P (2,1)向上平移3个单位或.向左平移4个单位,恰 好都在直线y=kx+b 上,则k 的值是…………………………………………………( ▲ )A .21B .43C .34 D .2 10.如图,点D 是正△ABC 内的一点,DB=3,DC=4,DA=5,则∠BDC 的度数是…( ▲ )A.120°B.135°C.140°D.150°(第10题图)二.填空题(每题3分,8小题,共24分)11.小明的身高h 超过了160cm ,用不等式可表示为▲.12.命题“若a,b 互为倒数,则ab=1”的逆命题是▲.13.已知△ABC ≌△DEF ,若AB=5,BC=6,AC=8,则△DEF 的周长是▲.14.在第二象限到x 轴距离为2,到y 轴距离为5的点的坐标是▲.15.在Rt △中有一个内角为30°,且斜边和较短直角边之和为15cm ,则这个直角三角形的斜边长上的中线长为▲cm.16.已知等腰三角形的腰长为xcm ,顶角平分线与对边的交点到一腰的距离为4cm ,这个等腰三角形的面积为ycm 2,则y 与x 的函数关系式为▲.17.如图,在Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线交AB 于点E ,交BC 于点D ,若∠B=35°,则∠CAD=▲°.(第17题图) (第18题图)。

2017-2018学年浙教版八年级上数学期末综合练习数学试卷附答案

2017-2018学年浙教版八年级上数学期末综合练习数学试卷附答案

八年级数学期末综合练习试题卷(八年级数学上册,本卷满分120分)一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.已知a =3cm ,b =6cm ,则下列长度的线段中,能与a ,b 组成三角形的是(▲)A .2cmB .6cmC .9cmD .11cm 2.在平面直角坐标系中,点M (a 2+1,-3)所在的象限是(▲)A .第一象限B .第二象限C .第三象限D .第四象限3.正比例函数y =(k -2)x 中,y 随x 的增大而减小,则k 的取值范围是(▲)A .k ≥2B .k ≤2C .k >2D .k <24.不等式1-x >0的解在数轴上表示正确的是(▲)AB C D5.下列判断正确的是(▲)A .两边和一角对应相等的两个三角形全等B .一边及一锐角相等的两个直角三角形全等C .顶角和底边分别相等的两个等腰三角形全等D .三个内角对应相等的两个三角形全等6.已知a >b ,则下列四个不等式中,不正确的是(▲)A .a -3>b -3B .-a +2>-b +2C .1a >51bD .1+4a >1+4b517.已知(-1,y 1),(1.8,y 2),(-,y 3)是直线y =-3x +m (m 为常数)上的三个点,则y 1,y 2,2y 3的大小关系是(▲)A .y 3>y 1>y 2B .y 1>y 3>y 2C .y 1>y 2>y 3D .y 3>y 2>y 18.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有(▲)A .4组B .3组C .2组D .1组9.如图,直线y =3x +6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为(▲)八年级数学试题卷(第1页,共4页)A.(3,3)B.(4,3)C.(-1,3)D.(3,4)第9题图第10题图10.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R。

浙江省杭州八年级期末测试卷数学8上期末5份

浙江省杭州八年级期末测试卷数学8上期末5份

西湖区8上期末一、选择题:每小题3分,共30分1. 点()1,3A -向右平移3个单位,再向下平移3个单位,所得点的坐标为( )A .()2,0B .()2,3C .()4,6-D .()4,0-2. 若30x -<,则( )A .20x ->B .21x >-C .23x <D .1830x ->3. 有以下命题:①同旁内角互补,两直线平行;②若a b =,则a b =;③全等三角形对应边上的中线长相等:④相等的角是对顶角.其中真命题为( )A .①③B .②④C .②③D .①④4. 若函数()0y kx k =≠的图象过点()1,3P -,则该图象必过点( )A .()1,3B .()1,3-C .()3,1-D .()3,1-5. 已知点()11,A y -,()21.7,B y 在函数9y x b =-+(b 为常数)的图象上,则( )A .12y y <B .12y y >C .10y >,20y <D .12y y = 6. 解集在数轴上表示为如图所示的不等式组是( )A .54x x >-⎧⎨≥⎩B .54x x <-⎧⎨≤⎩C .54x x <-⎧⎨≥⎩D .54x x >-⎧⎨≤⎩7. 在ABC △中,若3AB =,ACBC =,则下列结论正确的是( ) A .∠B = 90°B .∠C = 90°C .ABC △是锐角三角形D .ABC △是钝角三角形8. 若一次函数y ax b =+的图象经过第一、二、四象限,则( )A .20a b +>B .0a b ->C .20a b +≥D .0a b +>9. 把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是( )A .17m <<B .34m <<C .1m >D .4m <10. 如图,AB AD =,点B 关于AC 的对称点E 恰好落在CD 上,若()0180BAD αα∠=︒<<︒,则ACB ∠的度数为( )A .45︒B .45α-︒C .12αD .1902α︒-EDCBA二、填空题:每题4分,共24分11. 平面直角坐标系中,已知(),3A a ,()2,B b ,若线段AB 被y 轴垂直平分,则a b += . 12. 在ABC △中,10AB AC ==,底边上的高为6,则底边BC 为 .13. 若一次函数()30y kx k =+≠的图象向左平移4个单位后经过原点,则k = . 14. 在Rt ABC △中,CD 是斜边AB 上的中线,80ADC ∠=︒,则A ∠= ︒. 15. 已知22x y -=,且1x >,0y <,设2m x y =+,则m 的取值范围是 .16. 如图,P 是等边ABC △外一点,把ABP △绕点B 顺时针旋转60︒到CBQ △,已知150AQB ∠=︒,()::QA QC a b b a =>,则:PB QA = .(用含a ,b 的代数式表示)三、解答题:7小题,共66分17. 在下列44⨯网格中分别画出一个符合条件的直角三角形,要求三角形的顶点均在格点上,且满足:(1)三边均为有理数; (2)其中只有一边为无理数.18. 若不等式3(2)54(1)6x x -+<-+的最小整数解为方程23x ax -=的解,求a 的值.QPCBA19. 如图,ABC △中,AB AC =,BG ,CF 分别是AC ,AB 边上的高线.求证:BG CF =.20. 在平面直角坐标系中,一次函数y kx b =+(k ,b 都是常数,且0k ≠)的图象经过点()1,0和()0,3.(1)求此函数的表达式.(2)已知点(),P m n 在该函数的图象上,且4m n +=.①求点P 的坐标.②若函数y ax =(a 是常数,且0a ≠)的图象与函数y kx b =+的图象相交于点P ,写出不等式ax kx b <+的解集.21. 如图,AD BC ∥,90A ∠=︒,E 是AB 上的点,且AD BE =,AED ECB ∠=∠.(1)判断DEC △的形状,并说明理由. (2)若3AD =,9AB =,请求出CD 的长.GFCBAE DCBA22. 在平面直角坐标系中,有()1,2A ,()3,2B 两点,另有一次函数()0y kx b k =+≠的图象.(1)若1k =,2b =,判断函数()0y kx b k =+≠的图象与线段AB 是否有交点?请说明理由. (2)当12b =时,函数()0y kx b k =+≠的图象与线段AB 有交点,求k 的取值范围. (3)若22b k =-+,求证:函数()0y kx b k =+≠图象一定经过线段AB 的中点.23. 如图,在ABC △中,AB AC =,D 为直线BC 上一动点(不与点B ,C 重合),在AD 的右侧作ACE △,使得AE AD =,DAE BAC ∠=∠,连接CE . (1)当D 在线段BC 上时,①求证:BAD CAE △≌△.②请判断点D 在何处时,AC DE ⊥,并说明理由.(2)当CE AB ∥时,若ABD △中最小角为28︒,求ADB ∠的度数.ED CBA2017学年公益8上期末一、选择题:每小题3分,共30分11. 如图,笑脸盖住的点的坐标可能为( )A .()5,2B .()2,3-C .()4,6--D .()3,4-12. 一个等腰三角形的一个外角等于110︒,这个三角形的底角为( )A .55︒B .70︒C .55︒或40︒D .70︒或55︒13. 若a b >,则下列各式中一定成立的是( )A .ma mb >B .22c a c b >C .11a b ->-D .()()2211c a c b +>+14. 已知点P 的坐标为()2,36a a -+,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .()3,3B .()3,3-C .()6,6-D .()3,3或()6,6-15. 已知点A ()1,2a b +-在第二象限,则点B (),1a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限16. 等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则顶角等于( )A .30︒B .30︒或150︒C .120︒或150︒D .30︒或120︒或150︒17. 八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线L 将这八个正方形分成面积相等的两部分,则该直线L 的解析式为( )A .5182y x =+B .7182y x =+C .7162y x =+D .3142y x =+18. 已知一次函数y ax b =+的图象经过二、三、四象限,且与x 轴交于点()2,0-,则不等式ax b >的解集为( )A .2x >-B .2x <-C .2x >D .2x <19. 如图,直线142y x =+与x 轴、 y 轴分别交于点A 和点B ,点C ,D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A .()3,0-B .()2,0-C .3,02⎛⎫- ⎪⎝⎭D .5,02⎛⎫- ⎪⎝⎭20. 在ABC △中,60A =︒∠,BE ,CD 分别为AC ,AB 边上的高,F 是BC 边上的中点,则下列说法:(1)EF FD =;(2)::AE AB AD AC =;(3)DEF △是正三角形;(4)BD CE BC +=;(5)若45ABC =︒∠,则BD =,正确的是( ) A .(1)(2)(3)(4) B .(1)(2)(3)(5)C .(1)(2)(4)(5)D .(1)(3)(4)(5)二、填空题:每题4分,共24分24. 已知点P ()2,3-关于y 轴的对称点坐标为 .25. 已知一次函数()44y m x m =-+-,当m 时,y 随x 的增大而增大.26. 将一副三角尺如图所示叠放在一起,若14cm AB =,则阴影部分的面积是 2cm .27. 如果关于x 的不等式50x m -≤的正整数解仅为1,2,那么适合这个不等式m 的取值范围是 . 28. 已知直角坐标系中,有等腰ABC △,其中两个顶点的坐标分别为()1,0A ,()4,4B ,第三个顶点C 在x 轴上,则C 点的坐标为 .29. 如图1,AB CD ∥,E 时直线CD 上的一点,且30BAE ∠=︒,P 是直线CD 上的一动点,M 是AP 的中点,直线MN AP ⊥且与CD 交于点N ,设BAP x ∠=︒,MNE y ∠=︒,请你根据图2直接估计当100y =时,x = .FEDCBA E45°30°FDC BA三、解答题:7小题,共66分30. (1)解不等式:()3213317x x +->;(2)解不等式组:74252154x x x x -<+⎧⎨-<-⎩并把解集在数轴上表示出来.31. 已知ABC △的三边长均为整数,ABC △的周长为奇数.(1)若6AC =,2BC =,求AB 的长; (2)若7AC BC -=,求AB 的最小值.32. 在一次研究型学习活动中,同学们发现了一种直角三角形的作法,方法是(如图所示):画线段AB ,分别以点A 、B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点C ,连结AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 的延长线于D ,连结DB .则ABD △就是直角三角形,请证明此作法的正确性.图2图1CE N PD MBADCBA33. 一次函数1y kx k =-+(k 为常数且0k ≠).(1)若点1,42⎛⎫- ⎪⎝⎭在一次函数1y kx k =-+的图象上,求k 的值;(2)当13x -≤≤时,函数有最大值4,请求出k 的值.34. 商场销售某种品牌的空调和电风扇:(1)已知购进8台空调和20台电风扇共需17400元,购进10台空调和30台电风扇共需22500元,求每台空调和电风扇的进货价;(2)已知空调标价为2500元/台,电风扇标价为250元/台,若商场购进空调和电风扇共60台,并全部打八折出售,设其中空调的数量为a 台,商场通过销售这批空调和电风扇获得的利润为w 元,求w 和a 之间的函数关系式;(3)在(2)的条件下,若这批空调和电风扇的进货价不超过45300元,此时获得的最高利润是多少?35. 在等腰直角ABC △中,90ACB ∠=︒,P 是线段BC 上一点(与点B 、C 不重合),连接AP ,延长BC至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示); (2)求证:QA QM =;(3)用等式表示线段BM 与PQ 之间的数量关系,并证明.36. m 为何负整数时,函数1L :151424m y x =-++与函数2L :2233my x =-+的交点位于第四象限. (1)求出这个负整数m 的值;(2)求出两直线与x 轴所围成的三角形的面积; (3)求直线1L 关于y 轴对称的直线解析式;(4)求出把直线2L 沿北偏东30︒方向平移2个单位后的函数解析式.滨江区8上期末一、选择题:每小题3分,共30分21. (2017学年滨江区8上期末1)下列图形中是轴对称图形的个数是( )A .2B .3C .4D .522. (2017学年滨江区8上期末2有意义的x 的取值范围是( )A .2x ≠B .2x >C .2x ≥D .2x ≤23. (2017学年滨江区8上期末3)对于函数21y x =-,下列说法正确的是( ) A .它的图象过点()1,0 B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当1x >时,0y >24. (2017学年滨江区8上期末4)已知ABC △中,AB AC =,BD ,CE 都是ABC △的角平分线,10BD =,则CE 的值为( )A .52B .5C .10D .2025. (2017学年滨江区8上期末5)若点(),1P a b -,()2,Q a 关于原点对成,则a b -=( )A .1B .3C .1-D .5-26. (2017学年滨江区8上期末6)下列两个三角形一定全等的是( ) A .有两边和一角对应相等 B .两直角三角形的一个锐角对应相等C .三个角对应相等D .两直角三角形的斜边和一条直角边对应相等27. (2017学年滨江区8上期末7)若a b >成立,则下列不等式成立的是( ) A .am bm > B .am bm <C .a m b m >D .()()2211a m b m --<--28. (2017学年滨江区8上期末8)下列命题是真命题的是( ) A .定理都是真命题B .命题一定是正确的C .不正确的判断就不是命题D .判定一个命题是否正确,不用通过推理证明的29. (2017学年滨江区8上期末9(),P x y 在( ) A .直线y x =上B .直线y x =-上C .直线y x =或直线y x =-上D .坐标系原点上30. (2017学年滨江区8上期末10)如图,已知ABC △中,3AC =,4BC =,90C =︒∠,过点C 作CD AB ⊥于点D ,作点A 关于直线CD 的对称点E ,过点E 作EF BC ⊥于F ,作点B 关于直线EF 的对称点G ,则CG 的长为( )A .95B .4425C .3425D .74二、填空题:每题4分,共24分37. (2017学年滨江区8上期末11)两个不等式的解表示在同一数轴上如图,则这两个不等式组成的不等式组的解为 .38. (2017学年滨江区8上期末12)“对顶角相等”的逆命题是 .39. (2017学年滨江区8上期末13)若等腰三角形的两边长分别是4和6,则它的周长是 . 40. (2017学年滨江区8上期末14)如图,在直角坐标系中,平行于x 轴的线段AB 上所有的点的纵坐标是1-,横坐标x 的取值范围是15x ≤≤,则线段AB 上的任意一点的坐标可以用“()(),115x x -≤≤”表示.按照类似这样的规定,如图所示的线段CD 上任意一点的坐标可以表示为 .41. (2017学年滨江区8上期末15)如图,在ABC △中,90C ∠=︒,3AC =,2BC =,BC ∥x 轴,点A ,B 都在直线8y kx =+上,点A 的横坐标是3-,则k 的值为 .42. (2017学年滨江区8上期末16)如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且CD AE =,AD ,BE 相交于点F ,若BD m =,FD n =,BF p =,则m ,n ,p 之间满足的等量关系式为 .GFEDCBA三、解答题:7小题,共66分 43. (2017学年滨江区8上期末17)(1(2)解不等式组()32421152x x x x ⎧+-≥⎪⎨-+<⎪⎩,并将它的解集在数轴上表示出来.44. (2017学年滨江区8上期末18)如图,已知线段a ,b ,c .(1)用直尺的圆规作ABC △,使BC a =,AC b =,AB c =(保留作图痕迹,不写作法); (2)若(1)中5a =,12b =,13c =,求ABC △边AB 上的中线CD 的长.45. (2017学年滨江区8上期末19)如图,AB AC AD ==,连结BC ,CD ,BD .(1)若130BAC ∠=︒,50CAD ∠=︒,求BCD ∠的度数;(2)若BAC α∠=,CAD β∠=,猜想BCD ∠的度数,并且证明你的结论.FEDCBA cb a DCBA46. (2017学年滨江区8上期末20)商场销售A ,B 两种商品,A 种商品的进价为60元,B 种商品的进价为40元,A 种商品的销售单价为100元,B 种商品的销售单价为60元.(1)商场很快售完A ,B 两种商品共20件.如果设A 商品为x 件,商场获得的利润为y 元,请求出y 关于x 的函数关系式;(2)由于需求量大,商场决定再一次购进A ,B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于800元,那么商场至少需购进多少件A 种商品?47. (2017学年滨江区8上期末21)如图,在Rt ABC △和Rt ADE △中,AB AC =,AD AE =,连结BE ,CD .(1)求证:BE CD =;(2)BE 与CD 之间的位置关系是什么?请说明理由.48. (2017学年滨江区8上期末22)已知:()0,2A ,()3,3B -,()2,1C --.(1)求ABC △的面积;(2)设点P 在y 轴上,且ABP △与ABC △的面积相等,求点P 的坐标.EDCBA49. (2017学年滨江区8上期末23)已知A ,B 两地相距20千米,每天早上七点有一辆公交车甲从A 地出发去往B 地,同时有一辆公交车乙从B 地出发往A 地,甲、乙两车在距A 地10千米内的路上行驶的速度都是a 千米/小时,在距B 地10千米内路上的速度都是b 千米/小时(a b <),两车到达目的地停留10分钟马上又返回,并且不断的在A ,B 两地之间往返行驶(假设公交车中途停靠时间都忽略不计),自行车爱好者小明于早晨七点骑自从车以20千米/小时的速度从A 地出发去往B 地,到达B 地后马上返回,假设小明出发后行驶的时间为x 小时,小明离B 地的距离为1y 千米,公交车甲离B 地的距离为2y 千米,公交车乙离B 地的距离为3y 千米,1y 和2y 关于x 的图象如图1,1y 和3y 关于x 的图象如图2,P ,Q ,R 三点的坐标分别是:11,024P ⎛⎫ ⎪⎝⎭,7,1012Q ⎛⎫ ⎪⎝⎭,3,204Q ⎛⎫⎪⎝⎭.(1)根据图象及题意求出a ,b 的值;(2)根据图1求小明和公交车甲出发后第一次相遇之前他们相距3公里的时刻x 的值(在A 地同时出发的那时刻不算第一次相遇);(3)调整小明的速度,能够保证小明从A 地到B 地又回到A 地,他和公交车乙刚好在途中(除A ,B 两地外)相遇5次,请直接写出小明速度的取值范围.图2图1上城区8上期末一、选择题:每小题3分,共30分31. 下列各点中,是第四象限的点是( )A .(1,2)B .(1,2)-C .(1,2)--D .(1,2)-32. 若a b <,则下列各式中一定成立的是( )A .11a b -<-B .22a b >C .a b -<-D .22ac bc <33. 已知线段2cm a =,3cm b =,下列长度的线段中,能与a ,b 组成三角形的是( )A .1cmB .3cmC .5cmD .7cm34. △ABC 的三个内角∠A ,∠B ,∠C 满足::1:2:3A B C =∠∠∠,则这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形35. 已知一次函数()22y m x =--,要使函数值y 随着自变量x 的增大而增大,则m 的取值范围是( )A .2m ≥B .2m >C .2m ≤D .2m <36. 下列曲线反映了变量y 与变量x 之间的关系,其中y 是x 的函数的是( )37. 对于命题“如果12=90︒∠+∠,那么12≠∠∠”,能说明它是假命题的反例是( )A .1=45︒∠,2=45︒∠B .1=46︒∠,2=54︒∠C .1=2=50︒∠∠D .1=47︒∠,2=43︒∠38. 对于函数25y x =-+,下列表述:①图象一定经过()2,1-;②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x 每增加1,y 的值减小2;⑤该图象向左平移1个单位后的函数表达式是24y x =-+,正确的是( )A .①③B .②⑤C .②④D .④⑤39. 若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 取值范围( )A .3m >B .3m <C .3m ≤D .3m ≥40. 如图,ABC △中,90C =︒∠,AC BC =,AD 平分CAB ∠交BC 于点D ,DE AB ⊥于点E ,有下列说法:①CD BE =;②112.5ADB =︒∠;③AC CD AB +=;④若DEB △的面积为1,点P 是边AB 上的中点,则ADP △的面积为 )A .①②③B .①②④C .②③④D .①②③④C.A.二、填空题:每题4分,共24分50. 函数11y x =-中,自变量x 的取值范围是 .51. 在△ABC 中,=25A ︒∠,=45C ︒∠,则与∠B 相邻的外角的度数为 .52. 小雨在广场喷泉的北偏西30°方向,距离喷泉70米处,那么喷泉在小雨的 处. 53. 一次知识竞赛一共有22道题,答对一题得5分,不答得0分,答错一题扣2分,小明有二题没答,成绩超过75分,则小明至多答错了 道题.54. 等腰三角形一腰长为5,一边上的高为4,则底边长为 .55. 如图1所示,在A ,B 两地之间有汽车C 站,客车由A 地驶往C 站,货车由B 地驶往A 地,两车同时出发,匀速行驶,图2是客、货两车离C 站的路程1y 、2y (千米)与行驶时间x (小时)之间的函数关系图象.有下列说法: ① AB 之间距离为720千米.② 客车速度比货车每小时快20千米.③ E 点表示两车相遇,其坐标为453600,77⎛⎫⎪⎝⎭.④ 两车相距60千米时,客车行驶了6小时.其中正确的是 (填序号).三、解答题:7小题,共66分56. 解下列不等式(组),并把解集在数轴上表示出来.(1)426x -<;(2)()12123324xx x x +⎧≤+⎪⎨⎪-->-⎩.EDCBAA57. (1)如图,已知ABC △顶点在正方形格点上,每个小正方形的边长都为1.写出ABC △各顶点的坐标;(2)画出ABC △关于y 轴的对称图形111A B C △.58. 某游乐园门票的价格为每人100元,20人以上(含20人)的团队票8折优惠.(1)一旅游团共有18人,你认为他们买18张门票,还是多买2张(买20张)购团体票更便宜? (2)如果旅游团不足20人,那么人数达到多少人时购买团队票比购买普通门票更便宜?59. 如图,已知CA CB =,点E ,F 在射线CD 上,满足BEC CFA ∠=∠,且180BEC ECB ACF ∠+∠+∠=︒.(1)求证:BCE CAF △≌△;(2)试判断线段EF ,BE ,AF 的数量关系,并说明理由.DAFECB60. 点(),P x y 在第一象限,且8x y +=,点A 的坐标为()6,0.设OPA △的面积为S .(1)求S 关于x 的函数表达式及自变量x 的取值范围; (2)当点P 的横坐标为5时,试求OPA △的面积; (3)试判断OPA △的面积能否大于24,并说明理由.61. 如图,已知ACB △和ECF △中,90ACB ECF ==︒∠∠,AC BC =,CE CF =,连结AE ,BF 交于点O .(1)求证:ACE BCF △≌△; (2)求AOB ∠的度数;(3)连结BE ,AF ,求证:()22222BE AF AC CE +=+.FEOCBA62.在平面直角坐标系中,O是坐标原点,点A的坐标是()0,8-,点P是直线AB-,点B的坐标是()6,0上的一个动点.(1)求直线AB的函数表达式;(2)如果在x轴上有一点Q(点O除外),且APQ△全等,请写出满足条件的点Q的所有△与AOB坐标;(3)点M在直线2x=-上,且使得ABM△为等腰三角形,请写出满足条件的点M的坐标.萧山区8上期末一、选择题:每小题3分,共30分41. 下列微信、QQ 、网易CC 、易信四个聊天软件的图标中,是轴对称图形的是( )A .B .C .D .42. 用不等号连接“()2a b - 0”,应选用( )A .>B .<C .≥D .≤43. 如图,在ABC △中,90ACB ∠=︒,点D ,E 是BC 上两点,连接AD ,AE ,则图中钝角三角形共有( )A .1个B .2个C .3个D .4个44. 正比例函数y kx =的图像经过二、四象限,则比例系数k 的值可以为( )A .3-B .0C .1D .345. 点()6,3先向下平移5个单位,再向左平移3个单位后的坐标为( )A .()1,0B .()3,8C .()9,2-D .()3,2-46. 在平面直角坐标系中,已知点1,22P t t ⎛⎫- ⎪⎝⎭在第二象限,则t 的取值范围在数轴上可表示为( )47. 如图,在ABC △中,120BAC ∠=︒,点D 是BC 上一点,BD 的垂直平分线交AB 于点E ,将ACD△沿AD 折叠,点C 恰好与点E 重合,则B ∠等于( )A .18︒B .20︒C .25︒D .28︒48. 给出下列命题:①两边及第三边上的高线对应相等的两个三角形全等;②腰上的高线和底边对应相等的两个等腰三角形全等;③斜边上的中线及一锐角对应相等的两个直角三角形全等.其中属于真命题的是( )ED CBADCBA11EDCBAA .①②B .①③C .②③D .①②③49. 如图,在ABC △中,90ABC ∠=︒,30BAC ∠=︒;在ADC △中,90ADC ∠=︒,45DAC ∠=︒,连接BD ,则ADB ∠等于( )A .60︒B .70︒C .75︒D .80︒50. 已知2a b +=,2b a ≤,那么对于一次函数y ax b =+,给出下列结论:①函数y 一定随x 的增大而增大;②此函数图象与坐标轴所围成的三角形面积最大为43,则下列 判断正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都正确D .①②都错误二、填空题:每题4分,共24分63. 如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(),4e 和(),3g ,则“炮”的位置可表示为__________.64. 已知x y >,且()()22m x m y -<-,则m 的取值范围是 .65. 如图,点D ,E ,F 分别是ABC △三条边的中点,设ABC △的面积为S ,则四边形CDEF 的面积为 .66. 若()11,A x y 、()22,B x y 是一次函数()12y a x =+-图象上不同的两点,记()()1212m x x y y =--,则当0m <时,a 的取值范围是 .67. 已知直线1l :24y x =-+与直线2l :()0y kx b k =+≠相交于点M ,且直线2l 与x 轴的交点为()2,0A -.(1)若点M 的坐标为()1,2,则k 的值为 ;DCBA 54321ih g f e d c b a 炮卒相砲師馬仕FE CBA(2)若点M 在第一象限,则k 的取值范围是 . 68. 在ABC △中,11AB =,13AC =.(1)若ABC △是以AC 为底边的等腰三角形,则ABC △的周长为 . (2)若ABC △的面积为66,则△ABC 的周长为 . 三、解答题:7小题,共66分69. 解不等式(组):()()312121223x x x x ⎧->-⎪⎨+≥⎪⎩,并写出它的整数解.70. 已知y 是关于x求此一次函数的表达式及a ,m 的值.71. 如图,已知α∠和线段a .用直尺和圆规作等腰ABC △,使底角B α∠=∠,底边BC a =.(不写作法,保留作图痕迹).αa72. 已知三条线段的长分别为a ,1a +,2a +.(1)当3a =时,证明这三条线段可以组成一个直角三角形; (2)若这三条线段可以组成一个三角形,求a 的取值范围.73. 如图,平面直角坐标系内有一ABC △,且点(2,4)A ,(1,1)B ,(4,2)C .(1)画出ABC △向下平移5个单位后的111A B C △;(2)画出ABC △先向左平移5个单位再作关于轴对称的222A B C △,并直接写出点22A B 的坐标.74. 如图①,公路上有A ,B ,C 三个车站,一辆汽车从A 站以1v 匀速驶向B 站,达到B 站后不停留,以速度2v 匀速驶向C 站,汽车行驶路程y (千米)与行驶时间x (小时)之间的函数图象如图②所示. (1)求1v ,2v 的值;(2)若汽车在某一段路程内刚好用50分钟行驶了60千米,求这段路程开始时x 的值; (3)设汽车距离B 的路程为S (千米),请直接写出S 关于x 之间的函数表达式.A图2图175. 如图1,ABC △和ADE △都是等边三角形,M ,N 分别是BE ,CD 的中点,易证:CD BE =,AMN△为等边三角形.(1)当ADE △绕点A 旋转至如图2的位置时,上述结论是否仍然成立?若成立,请证明:若不成立,请说明理由;(2)若2AB AE =,且当ADE △绕点A 旋转至图3位置时,即点E 恰好在AC 上时,试求ADE △,ABC △,AMN △的面积之比.图3图2图1ABCDEM N AB CD E MNN MEDC B A。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

2017-2018第一学期浙教版八年级数学期末试卷

2017-2018第一学期浙教版八年级数学期末试卷

………○……:___________班级:__…○…………线………绝密★启用前 2017-2018第一学期浙教版八年级数学期末试卷 张,要平心静气,不要急于下结论;下笔时,要把字写得规矩些,让自己和老师都看得舒服些,祝你成功!一、单选题(计36分) 1.(本题3分)点P ()3,1m m +-在x 轴上,则m 的值为( ) A. 1 B. 2 C. -1 D. 0 2.(本题3分)在△ABC 中,AB=AC ,BD 为△ABC 的高,如果∠BAC=40°,则∠CBD 的度数是( ) A. 70° B. 40° C. 20° D. 30° 3.(本题3分)在下列条件中①∠A +∠B =∠C ②∠A ﹕∠B ﹕∠C =1﹕2﹕3 ③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C 中,能确定△ABC 为直角三角形的条件有( ) A .5个 B .4个 C .3个 D .2个 4.(本题3分)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 A .0k >,0b > B .0k <,0b < C .0k >,0b < D .0k <,0b > 5.(本题3分)把点A (-2,1)向右平移3个单位长度,再向上平移2个单位长度后得到点B ,点B 的坐标是( ) A .(1,3) B .(-5,3) C .(1,-3)D .(-5,-1) 6.(本题3分)如图,∠BAD =∠BCD =90°,AB =CB ,据此可以证明△BAD ≌△BCD ,证明的依据是 ( )………外………………○…………○……A. AASB. ASAC. SASD. HL7.(本题3分)已知关于x的不等式组()324213x xa xx--≤⎧⎪⎨+>-⎪⎩的解集是13x≤<,则a=( )A.1B.2C.0D.-18.(本题3分)如图,画△ABC中AB边上的高,下列画法中正确的是()9.(本题3分)一直角三角形的两边长分别为3和4,则第三条边的长为()A.5 B.5 C.7 D.5或710.(本题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A.(63,32) B.(64,32) C.(63,31) D.(64,31)11.(本题3分)如图,点A、B的坐标分别为(-5,6)、(3,2)则三角形ABO的面积为()A. 12B. 14C. 16D. 1812.(本题3分)如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点()………○………学校:______…装…………○………二、填空题(计27分) 13.(本题3分)已知P 1(a ,-1)和P 2(2,b )关于原点对称,则(a+b )2016=. 14.(本题3分)已知△ABC 为等腰三角形,其面积为30,一边长为10,则另两边长是. 15.(本题3分)如图中的螺旋由一系列直角三角形组成,则第n 个三角形的面积为. 16.(本题3分)如图,△ABC 绕点A 旋转后与△ADE 完全重合,则△ABC ≌△_______,那么两个三角形的对应边为__ ___,__ ___,___ __,对应角为____ __,___ ___,___ ____. 17.(本题3分)直线y =2x +2沿y 轴向下移动6个单位长度后,与x 轴的交点坐标为_______ 18.(本题3分)如图所示,在△ABC 中,∠B=90°,AB=3,AC=5,线段AC 的垂直平分线DE 交AC 于D 交BC 于E ,则△ABE 的周长为. 19.(本题3分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是。

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

2017-2018学年浙教版八年级数学上专题测试及期末复习试卷(附答案)

2017-2018学年浙教版八年级数学上专题测试及期末复习试卷(附答案)

小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D.证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC , ∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM.在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM.∵MD ⊥AB ,ME ⊥AC ,∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC.在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.解:BC =BE +CD.证明:在BC 上截取BF =BE ,连结OF. ∵BD 平分∠ABC , ∴∠EBO =∠FBO. 又∵BO =BO , ∴△EBO ≌△FBO.∴∠EOB =∠FOB.∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A)=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°. ∵CE 平分∠DCB ,∴∠DCO =∠FCO.又∵CO =CO ,∴△DCO ≌△FCO.∴CD =CF.∴BC =BF +CF =BE +CD.4.(德州中考)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG.先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF.类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC>AB ,求证:AB +AC>2AD>AC -AB.证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD.又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC(SAS ). ∴AB =CE.∵AC +CE>2AD>AC -CE ,∴AB +AC>2AD>AC -AB.【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连结DF. ∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED ,∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM至点N,使MN=AM,连结BN,∵M为BC中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二) 等腰三角形中的分类讨论类型1 对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°; ②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.类型2 对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边. 2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得⎩⎨⎧x +12x =9,12x +y =12或⎩⎨⎧x +12x =12,12x +y =9.解得⎩⎨⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上,∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°. 故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒. 解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254cm .则t =2542=258(秒);②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm ,则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ),BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形.(3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ. ∴BQ =AQ.∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ).∴CE =BC 2-BE 2=3.6 cm .∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D )A .252cmB .152cm C .254cmD .154cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为(B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为(B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32,解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103.∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是(C )A .A ⇒B ⇒C ⇒G B .A ⇒C ⇒G C .A ⇒E ⇒GD .A ⇒F ⇒G10.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m .(精确到0.01 m )第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中,⎩⎨⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM ,∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中,⎩⎨⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD ,∴△ACE ≌△BDF(ASA).类型2翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.5.如图,△ABC ,△CDE 是等边三角形,B ,C ,E 三点在同一直线上.(1)求证:AE =BD ;(2)若BD 和AC 交于点M ,AE 和CD 交于点N ,求证:CM =CN ; (3)连结MN ,猜想MN 与BE 的位置关系,并加以证明. 解:(1)证明:∵△ABC 和△DCE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠BCD =∠ACE =120°.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD ,∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN.在△BCM 和△ACN 中,⎩⎨⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN ,∴△BCM ≌△ACN(ASA ). ∴CM =CN.(3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE. 6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎨⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB . 7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l , ∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF.在△CBD 和△CAF 中,⎩⎨⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB).∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② 解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x3>x -1;②解:由①,得x ≤1.由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.② 解:解不等式①,得x >52.解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3).去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1.解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52.解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球? 解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80. 答:每个足球和每个篮球的售价分别为50元、80元. (2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303.∵z 取整数,∴z 最大可取43.答:最多可买43个篮球.3.2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质.根据题意,得x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. (4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七) 一次函数的图象与性质类型1 一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y =kx(k<0)的图象可能是(C )2.(怀化中考)一次函数y =kx +b(k ≠0)在平面直角坐标系中的图象如图所示,则k 和b 的取值范围是(C )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <0第2题图 第3题图3.(江山期末)已知一次函数y =kx +b 的图象如图所示,则下列语句中不正确的是(B )A .函数值y 随x 的增大而增大B .当x >0时,y >0C .k +b =0D .kb <04.已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是(C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为(B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m <0,n >0, 所以m -n<0.所以m 2-|m -n|=-m +m -n =-n.(2)因为一次函数y =mx +n 的图象从左往右逐渐下降, 所以y 随x 的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a >b.类型2 一次函数图象上点的坐标特征8.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)9.一次函数y =5x -2的图象经过点A(1,m),如果点B 与点A 关于y 轴对称,那么点B 所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限10.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-3x +2上,则y 1,y 2,y 3的大小关系是(A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 3>y 1D .y 3>y 2>y 111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是(C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为(B )A .y =-43x -4B .y =43x -4C .y =43x +4D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎨⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎨⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八) 一次函数与方程、不等式的综合应用类型1 一次函数与一元一次方程的综合应用 1.方程2x +12=0的解是直线y =2x +12(C )A .与y 轴交点的横坐标B .与y 轴交点的纵坐标C .与x 轴交点的横坐标D .与x 轴交点的纵坐标2.已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是(C )A B C D3.一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为(A )A .x =-1B .x =2C .x =0D .x =3第3题图 第4题图4.如图,已知直线y =3x +b 与y =ax -2的交点的横坐标为-2,则关于x 的方程3x +b =ax -2的解为x =-2. 5.已知方程3x +9=0的解是x =-3,则函数y =3x +9与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,9).类型2 一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(B )A .⎩⎪⎨⎪⎧x =-2y =-4B .⎩⎪⎨⎪⎧x =-4y =-2 C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解(B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2B .⎩⎪⎨⎪⎧y =-x +3y =3x -5C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +18.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是(C )A .y =x +9与y =23x +223B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52.∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎪⎨⎪⎧y =2x -1,y =52x 的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10. ∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5.答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是(D )A .x <0B .x >0C .x <2D .x >2第12题图 第14题图 13.对于函数y =-x +4,当x >-2时,y 的取值范围是(D )A .y <4B .y >4C .y >6D .y <614.如图,函数y =2x -4与x 轴、y 轴分别交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是(C )A .x <-1B .-1<x <0C .0<x <2D .-1<x <215.(杭州开发区期末)一次函数y =kx +b(k ≠0)的图象如图所示,当y <0时,自变量x 的取值范围是(A )A .x <-2B .x >-2C .x >2D .x <2第15题图 第16题图16.(绍兴五校联考期末)直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b<k 2x +c 的解集为x<1.17.已知函数y 1=kx -2和y 2=-3x +b 相交于点A(2,-1).(1)求k 、b 的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x 取何值时有:①y 1<y 2;②y 1≥y 2;(3)利用图象求出:当x 取何值时有:①y 1<0且y 2<0;②y 1>0且y 2<0. 解:(1)k =12,b =5.图象略.(2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0.②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是(A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为(D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是(B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.。

杭州市八年级(上)期末数学试卷含答案

杭州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在直角坐标系中,已知点在第四象限,则A. B. C. D.2.下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是A. B. C. D.3.已知y关于x成正比例,且当时,,则当时,y的值为A. 3B.C. 12D.4.一个三角形的两条边长分别为3和7,则第三边的长可能是A. 3B. 7C. 10D. 115.不等式组的解集为A. B. C. D. 无解6.将以点,为端点的线段AB向右平移5个单位得到线段,则线段的中点坐标是A. B. C. D.7.已知,则下列不等式中不成立的是A. B. C. D.8.如图,中,,,,将折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为A. 3B. 4C. 5D. 69.在平面直角坐标系xOy中,点M,N,P,Q的位置如图所示.若直线经过第一、三象限,则直线可能经过的点是A. 点MB. 点NC. 点PD. 点Q10.如图,在中,于点E,于点D;点F是AB的中点,连结DF,EF,设,,则A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.点关于x轴的对称点的坐标为______.12.用不等式表示“a的2倍与3的差是非负数”:______.13.如图,在中,AD是高,AE是角平分线,若,,则______度.14.若,是直线上不同的两点,记,则函数的图象经过第______象限.15.如图,数轴上A点表示数7,B点表示数5,C为OB上一点,当以OC、CB、BA三条线段为边,可以围成等腰三角形时,C点表示数______.16.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示妈妈从家出发______分钟后与小婷相遇;相遇后妈妈回家的平均速度是每分钟______米,小婷家离学校的距离为______米.三、解答题(本大题共7小题,共56.0分)17.解不等式组并写出它的整数解.18.判断下列命题的真假,若是假命题,请举出反例;若是真命题,请给出证明.若,则;三个角对应相等的两个三角形全等.19.如图,,,垂足分别为D,E,BE和CD相交于点O,,连AO,求证:≌ ;.20.已知y是x的一次函数,且当时,;当时,.求这个一次函数的表达式;求当时y的取值范围.21.格点在直角坐标系中的位置如图所示.直接写出点A,B,C的坐标和的面积;作出关于y轴对称的.22.如图,在平面直角坐标系xOy中,直线:与y轴交于点直线:与直线交于点,与y轴交于点C.求m的值和点C的坐标;已知点在x轴上,过点M作直线轴,分别交直线,于D,E,若,求a的值.23.已知是等边三角形,点D是BC边上一动点,连结AD如图1,若,,求AD的长;如图2,以AD为边作,分别交AB,AC于点E,F.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD是的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD是的角平分线,构造的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明一种方法即可小聪在小明的基础上继续进行思考,发现:四边形AEDF的面积与AD长存在很好的关系.若用S表示四边形AEDF的面积,x表示AD的长,请你直接写出S与x 之间的关系式.答案和解析1.【答案】A【解析】【分析】直接利用第四象限内点的坐标特点分析得出答案.此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.【解答】解:点在第四象限,.故选:A.2.【答案】D【解析】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.根据轴对称图形的概念求解即可.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】B【解析】解:设,当时,,,解得,,当时,.故选:B.先利用待定系数法求出,然后计算对应的函数值.本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为,然后把一个已知点的坐标代入求出k即可.4.【答案】B【解析】解:根据三角形的三边关系,得第三边应,而.下列答案中,只有7符合.故选:B.根据三角形的三边关系“任意两边之和第三边,任意两边之差第三边”,进行分析求解.此题考查了三角形的三边关系.5.【答案】C【解析】解:不等式组的解集为,故选:C.根据“大小小大中间找”可确定不等式组的解集.本题主要考查不等式的解集,解题的关键是掌握确定不等式组解集的口诀.6.【答案】B【解析】【分析】先求得线段AB的中点坐标,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减求解可得.本题主要考查坐标与图形的变化平移,解题的关键是掌握平移变换下点的坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.【解答】解:线段AB的中点坐标为,则线段的中点坐标是即,故选:B.7.【答案】C【解析】解:A、,,正确,不合题意;B、,,正确,不合题意;C、,,原式错误,符合题意;D、,,正确,不合题意;故选:C.直接利用不等式的基本性质分别判断得出答案.此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.8.【答案】B【解析】解:是AB中点,,,折叠,,在中,,,,故选:B.由折叠的性质可得,根据勾股定理可求DN的长,即可求BN的长.本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.9.【答案】A【解析】解:直线经过第一、三象限,直线平行直线,且经过,观察图象可知直线不经过点N、P、Q,直线经过点M,故选:A.根据直线的位置,利用排除法即可解决问题.本题考查一次函数图象上的点的坐标特征、一次函数的性质、正比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【答案】B【解析】解:于点E,于点D;,点F是AB的中点,,,,,,,,,故选:B.由垂直的定义得到,根据直角三角形的性质得到,,根据等腰三角形的性质得到,,于是得到结论.本题考查了直角三角形的性质,等腰三角形的性质,三角形的内角和,正确的识别图形是解题的关键.11.【答案】【解析】解:点关于x轴的对称点的坐标为:.故答案为:.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点关于x 轴的对称点的坐标是得出即可.此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.12.【答案】【解析】解:由题意得:.故答案为:.首先表示出a的2倍与3的差为,再表示非负数是:,故可得不等式.此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,要抓住题目中的关键词“非负数”正确选择不等号.13.【答案】40【解析】解:是高,,,,是角平分线,,.故答案为:40根据三角形的内角和得出,再利用角平分线得出,利用三角形内角和解答即可.本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于是解题的关键.14.【答案】一、三、四【解析】解:,是直线上不同的两点,,,,函数的图象经过第一、三、四象限,故答案为:一、三、四将点A,点B坐标代入解析式,可得,,可得,即可求解.本题考查了一次函数图象上点的坐标特征,一次函数性质,熟练运用一次函数性质是本题的关键.15.【答案】2或或3【解析】解:数轴上A点表示数7,B点表示数5,,以OC、CB、BA三条线段为边围成等腰三角形时,若,则,所以C点表示数为3,若,所以C点表示数为2,若,则,所以C点表示数为,故答案为:2或或3.根据等腰三角形的两边相等进行解答即可.本题考查了等腰三角形两边相等的性质,注意分类讨论得出是解题关键.16.【答案】;60 2100;【解析】解:当时,,故妈妈从家出发8分钟后与小婷相遇,当时,,相遇后分钟小婷和妈妈的距离为1600米,米分,相遇后妈妈回家的平均速度是每分钟60米;米,小婷家离学校的距离为2100米.故答案为:8;60;2100.由当时,,可得出妈妈从家出发8分钟后与小婷相遇;利用速度路程时间结合小婷的速度,可求出小婷和妈妈相遇后,妈妈回家的速度为60米分;根据路程小婷步行的速度,即可得出小婷家离学校的距离.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.【答案】解:,由得,由得,故不等式组的整数解为:,它的整数解有3,4,5,6.【解析】分别求出各不等式的解集,再求出其公共解集,再其公共解集内找出符合条件的x的整数解即可.本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.18.【答案】解:若,则是假命题,例如:,,,但;三个角对应相等的两个三角形全等是假命题,例如:两个边长不相等的等边三角形不全等.【解析】根据乘方法则举例即可;根据全等三角形的概念、等边三角形的性质举例.本题考查的是命题的真假判断,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.19.【答案】证明:,,,在和中,,≌ .≌ ,,,,.【解析】根据AAS证明 ≌ 即可;利用角平分线的判定定理证明即可;本题考查全等三角形的判定和性质,角平分线的判定定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:设一次函数解析式为,根据题意得,解得,所以这个一次函数的表达式为;当时,,所以当时y的取值范围为.【解析】利用待定系数法求一次函数解析式;先计算出时的函数值,然后根据一次函数的性质求解.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.21.【答案】解:由图知,,,的面积为;如图所示,即为所求.【解析】由图可得三顶点的坐标,再根据割补法求解可得;分别作出点A,B,C关于y轴的对称点,再首尾顺次连接即可得.此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22.【答案】解:把点代入得,,点C的坐标为:;由得,直线的解析式为:,过点M作直线轴,分别交直线,于D,E,,,,,或.【解析】把点代入即可得到结论;由得到直线的解析式为,过点M作直线轴,分别交直线,于D,E,得到,,列方程即可得到结论.本题考查了两条直线相交或平行,正确的识别图象是解题的关键.23.【答案】解:如图,过点A作于点G,,,,是等边三角形,,,,,在中,,在中,想法1:如图,过点A作于点M,作,交DE的延长线于点H,平分,,,,,,,且,,且,, ≌想法2:如图,延长DE至N,使,,,, ≌,,,,,,且,,,,如图,由中想法1可得 ≌ ,,,四边形四边形,,,,,,,≌,.四边形四边形【解析】由等边三角形的性质可求,,,由勾股定理可求AG,AD的长;想法1:过点A作于点M,作,交DE的延长线于点H,由角平分线的性质可得,由“AAS”可证 ≌ ,可得;想法2:延长DE至N,使,由“SAS”可证 ≌ ,可得,,由四边形内角和为,可得,可得;.由想法1可得四边形四边形本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。

2017-2018第一学期浙教版期末教学质量监测八年级数学试卷

2017-2018第一学期浙教版期末教学质量监测八年级数学试卷

绝密★启用前 2017-2018第一学期浙教版期末教学质量监测 八年级数学试卷温馨提示:亲爱的考生,你好!本次试卷共25题,满分120分,考试试卷100分钟,请你认真审题,仔细答卷,相信你是最棒的。

A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位 D. 向下平移3个单位 2.(本题3分)AD 是△ABC 的高,下列能使△ABD ≌ACD 的条件是( ) A .BD=AC B .∠B=45° C .∠BAC=90° D .AB=AC 3.(本题3分)y 与x 成正比,当x=2时,y=8,那么当y=16时,x 为( ) A .4 B .﹣4 C .3 D .﹣3 4.(本题3分)不等式组⎩⎨⎧≥-+125523x x 的解在数轴上表示为( ) 5.(本题3分)如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ). A B 0 1 2 C 0 1 2 D……订………线※※内※※答※※题……A.30° B.100°C.50° D.80°6.(本题3分)下面的图形中,不是轴对称图形的是()A B C D7.(本题3分)如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A. BD=CDB. DE=DFC. ∠B=∠CD. AB=AC8.(本题3分)一架 2.5 米的梯子,斜立在一竖直的墙上,这时梯足距墙底端 0.7 米,如果梯子的顶端沿墙下滑 0.4 米,那么梯足将滑出( )A. 0.9 米B. 1.5 米C. 0.5 米D. 0.89.(本题3分)已知坐标平面内点M( a, b )在第三象限,那么点N( b, -a )在()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.(本题3分)如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2= B1A2,连结A2B2按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,,∠An+1BnBn+1=θn,则θ2015-θ2014的值为()A.20141802α+B.20141802α-C.20151802α+D.20151802α-二、解答题(计58分)○…………外…………………考号:_________………内…………○…………装…………………○…11.(本题4分)关于x 的不等式组,1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是________. 12.(本题4分)如图,有A ,B ,C 三点,如果A 点用(1,1)来表示,B 点用(2,3)表示,则C 点的坐标的位置可以表示为13.(本题4分)如图,点B ,E ,C ,F 在一条直线上,AB ∥DE ,AB =DE ,BE =CF ,AC =6,则DF =________ 14.(本题4分)(2015秋•重庆校级期中)某农舍的大门是一个木制的矩形栅栏,它的高为4m ,宽为3m ,现需要在相对的顶点间用一块木棒加固,木板的长为. 15.(本题4分)点P (﹣3,6)关于y 轴的对称点的坐标是______. 16.(本题4分)三角形一个外角小于与它相邻的内角,这个三角形是________ 三角形(锐角、直角、钝角) 17.(本题4分)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 mm . 18.(本题4分)(2014•淮阴区校级模拟)如图,已知函数y=3x+b 和y=ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x+b >ax ﹣3的解集是.…………○…………※※请※※不※…○…… 三、填空题(计32分)(1)431132x x +--> (2)203{11434x x x-<-≤-20.(本题8分)在边长为1的网格纸内分别画边长为 , 10, 17的三角形,并计算其面积.…………装…校:___________姓名:_○…………订…………21.(本题8分)已知一次函数的图象经过点(3,6)与点(21,21 ),求这个函数的解析式.22.(本题8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个..小正方形,使阴影部分....成为轴对称图形.23.(本题8分)如图,已知∠1=∠2,AC=AD,求证:∠3=∠4.Array24.(本题9分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该种水果的进价为8元/千克,下面是他们在活动结束后的对话:小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)x )的函数关系式;(6之间存在一次函数关系.求y(千克)与x(元)(0分)………订…………___________考号:_________………○……………………○… 25.(本题9分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图像如图所示.(1)根据图像,分别写出当0≤x ≤20与x >20时。

浙教版2017-2018学年八年级(上)期末测试(含答案)

浙教版2017-2018学年八年级(上)期末测试(含答案)

期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列命题是假命题的是( C )A .如果a ∥b ,b ∥c ,那么a ∥cB .直角三角形的两个锐角互余C .长方形有四条对称轴D .-40是不等式2x <-8的一个解2.下列图案中,是轴对称图形的是( B )A B C D 3.在平面直角坐标系中,点P (1,-2)关于y 轴对称的点的坐标是 ( B )A .(1,2)B .(-1,-2)C .(-1,2)D .(-2,1)4.把不等式组⎩⎪⎨⎪⎧x >-1,x +2≤3的解集表示在数轴上,下列选项正确的是( B )A B C D5.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( D )A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC6.已知点(k ,b )为第四象限内的点,则一次函数y =kx +b 的图象大致是( B )A B C D7.如图,在△ABC 中,∠ACB =90°,D 在BC 上,E 是AB 的中点,A D 、CE 相交于F ,且AD =DB .若∠B =20°,则∠DFE 等于( D )A.30°B.40°C.50°D.60°第7题图第8题图8.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A =∠ABE,AC=5,BC=3,则BD的长为( A )A.1 B.1.5 C.2 D.2.59.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( C ) A.3 B.4 C.3或5 D.3或4或510.一次长跑中,当小明跑了1 600米时,小刚跑了1 400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为( C )A.2 000米B.2 100米C.2 200米D.2 400米二、填空题(每小题4分,共24分)11.在Rt△ABC中,∠C=90°,∠A=70°,则∠B=20°.12.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.13.边长为214.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.第14题图第16题图15.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为120°或20°.16.(嵊州期末)如图,在平面直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C B在x轴上移动,点C也随之移动,则点C移动所得图象的表达式是三、解答题(共66分)17.(6分)解下列不等式或不等式组:(1)2x -3≤5(x -3); (2)⎩⎪⎨⎪⎧x -2(x -3)>4,x 2-(x +1)≤2-x.解:x ≥4. 解:x <2.18.(8分)如图,已知AB =CD ,DE ⊥AC ,BF ⊥AC ,垂足分别是点E ,F ,AE =CF .求证:AB ∥CD .证明:∵DE ⊥AC ,BF ⊥AC , ∴∠DEC =∠BF A =90°. ∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △AFB 和Rt △CED 中,⎩⎨⎧AB =CD ,AF =CE ,∴Rt △AFB ≌Rt △CED (HL ). ∴∠A =∠C .∴AB ∥CD .19.(8分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)在直角坐标系中画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)在直角坐标系中将△ABC 向左平移4个单位长度得△A 2B 2C 2,画出△A 2B 2C 2;(3)若点D (m ,n )在△ABC 的边AC 上,请分别写出△A 1B 1C 1和△A 2B 2C 2 的对应点D 1和D 2的坐标.解:(1)如图所示. (2)如图所示.(3)D 1(m ,-n )和D 2(m -4,n ).20.(10分)如图,在△ABC 中,∠C =2∠B ,D 是BC 上的一点,且AD ⊥AB ,点E 是BD 的中点,连结AE .(1)求证:∠AEC =∠C ;(2)若AE =6.5,AD =5,则△ABE 的周长是多少?解:(1)证明:∵AD ⊥AB , ∴△ABD 为直角三角形. 又∵点E 是BD 的中点, ∴AE =12BD =BE .∴∠B =∠BAE ,∠AEC =∠B +∠BAE =2∠B . 又∵∠C =2∠B ,∴∠AEC =∠C .(2)在Rt △ABD 中,AD =5,BD =2AE =2×6.5=13. ∴AB =BD 2-AD 2=132-52=12.∴△ABE 的周长为AB +BE +AE =12+6.5+6.5=25.21.(10分)(杭州六校联考)数学课本上一次函数新课后有这样一道设计题,为节约用水,某市居民生活用水按阶梯式水价计费,将居民的每月生活用水水价,分为三个等级:一级:20吨及以下,二级:21~30吨(含30吨),三级:31吨及以上,以下是王聪家水费发票的部分信息(注:居民生活用水水价=居民生活自来水费+居民生活污水处理费).自来水总公司水费专用发票发票联 (计费时间:2016—01—01至2016—01—31)为2.4元/吨,31吨及以上为3.5元/吨;(2)若王聪家2月份的月用水量为x (吨)(21<x ≤30),应付水费为y 元,求y 关于x 的函数表达式;(3)已知2016年2月份王聪家所缴的水费为55.20元,请你计算王聪家该月份的用水量为多少吨.解:(2)y =36+2.4(x -20)=36+2.4x -48=2.4x -12,即y 关于x 的函数表达式为y =2.4x -12(21<x ≤30).(3)从以上信息知,用水量为30吨时,水费为36+10×2.4=36+24=60(元), 而55.2<60,所以2月份用水量小于30吨,将y =55.2代入(2)中函数表达式, 得2.4x -12=55.2,解得x =28.答:王聪家该月份的用水量为28吨.22.(12分)如图,△ABC 中,AB =AC ,BE ⊥AC 于E ,且D 、E 分别是A B 、AC 的中点.延长BC 至点F ,使CF =CE .(1)求∠ABC 的度数; (2)求证:BE =FE ;(3)若AB =2,求△CEF 的面积.解:(1)∵BE ⊥AC 于E ,E 是AC 的中点, ∴△ABC 是等腰三角形,即AB =BC . 又∵AB =AC ,∴△ABC 是等边三角形. ∴∠ABC =60°.(2)证明:∵CF =CE , ∴∠F =∠CEF ,∵∠ACB =60°=∠F +∠CEF , ∴∠F =30°.∵△ABC 是等边三角形,BE ⊥AC , ∴∠EBC =30°. ∴∠F =∠EBC . ∴BE =FE .(3)过E 点作EG ⊥BC ,∵BE ⊥AC ,∠EBC =30°,AB =BC =2, ∴BE =3,CE =1=CF . 在△BEC 中,EG =CE·BE BC =32,∴S △CEF =12×1×32=34.23.(12分)(杭州六校联考)如图,已知函数y =x +1的图象与y 轴交于点A ,一次函数y =kx +b 的图象经过点B (0,-1),并且与x 轴以及y =x +1的图象分别交于点C 、D .(1)若点D 的横坐标为1,求D 点的坐标和直线BD 的表达式;(2)求四边形AOCD 的面积(即图中阴影部分的面积);(3)在第(1)小题的条件下,在y 轴上是否存在这样的点P ,使得以点P 、B 、D 为顶点的三角形是等腰三角形.如果存在,直接写出点P 坐标;如果不存在,说明理由.解:(1)∵点D 在直线y =x +1上,点D 的横坐标为1, ∴D (1,2).∵直线y =kx +b 经过D (1,2),B (0,-1),∴⎩⎪⎨⎪⎧b =-1,k +b =2.∴⎩⎪⎨⎪⎧k =3,b =-1.∴y =3x -1. (2)∵A (0,1),C (13,0),D (1,2).∴S 四边形AOCD =S △AOD +S △OCD =12×1×1+12×13×2=56.(3)BD =12+32=10.①当B 为顶点时,BP =BD ,P (0,10-1)或(0,-1-10); ②当D 为顶点时,DP =DB ,P (0,5);③当P 为顶点时,PD =PB ,BD 的中点为E (12,12),设过点E 垂直BD 的直线为y =-13x +b ′,点E 代入得到b ′=23.∴直线为y =-13x +23,∴点P 为(0,23).综上所述,点P 的坐标为(0,5),(0,10-1),(0,-10-1)或(0,23).。

浙教版2017-2018学年度上学期期末考试八年级数学试卷2

浙教版2017-2018学年度上学期期末考试八年级数学试卷2

浙教版2017-2018学年度上学期期末考试八年级数学试卷2(时间:120分钟 满分:120分 )一、用心选一选(本题共10小题,每小题3分,共30分)1.A.(1,0)B.(0,0)C.(1,1)D.(0,-1) 2.下列长度的三条线能组成三角形的是( )A.3cm ,4cm ,5cmB.3cm ,7cm ,3cmC.2cm ,4cm ,6cmD.4cm ,5cm ,10cm 3. 不等式2x+1≤5的解集在数轴上表示正确的是( )A. B. C. D. 4.下列命题属于真命题的是( )A.如果22b a =,那么b a =B.如果a b =,那么22b a =C.如果a b >,那么a b >D.如果b a >,则22bc ac > 5.用直尺和圆规作角的平分线,下列作法正确的是( )6.如图,已知∠A =∠D ,添加下列条件,不能..使△ABC ≌△DCB 的是( ) A .AC =DB B .∠ACB =∠DBC C .∠ABC =∠DCB D .∠ABO =∠DCO7.若等腰三角形的一个外角为80°,则其底角为( ) A.100° B.40° C.100°或40° D.80°或40°8.点),(111y x P ,),(222y x P 是一次函数34y x =--图象上的两点,若21x x <,则1y 与的大小关系是 A.21y y > B.21y y = C.21y y < D.不能确定 9.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h ; (2)A ,B 两地的路程为20km ;(3)摩托车的速度为45km /h ,汽车的速度为60km /h ; (4)汽车出发1小时后与摩托车相遇,此时距B 地40千米; (5)相遇前摩托车的速度比汽车的速度快. 其中正确结论的个数是( )A .2个B .3个C .4个D .5个2y 第6题图第9题图10.一个点在平面直角坐标系xOy 上按下面的规律进行移动,从原点P 0(0,0)开始,先向右平移1个单位到点P 1,再向上平移1个单位到点P 2,再向左平移2个单位到点P 3,再向下平移2个单位到点P 4,再向右平移3个单位到点P 5,再向上平移3个单位到点P 6,再向左平移4个单位到点P 7,再向下平移4个单位到点P 8,…,按这个规律,点P 2017的坐标是A .(-504,-504)B .(504,-504)C .(505,-504)D .(504, 504) 二、细心填一填(本题有10小题,每小题3分,共30分) 11.在ABC Rt ∆中,35.5A ∠=︒,则锐角=∠B 度. 12.函数11y x =+-x 的取值范围是 . 13.点P (23,2a a --)不可能在第 象限.14.如图,△ABD 的周长为9 cm ,BC =8cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABC 的周 长为 cm.15.已知直线4y kx =+(k 为常数)与两坐标围成的三角形面积为12,则=k .16.如图∠A =∠D =90°,点A 、B 、D 在同一直线上,AC =BD =1,AB =DE =3,则△CBE 的面积为 . 17.如图在△ABC 中,直线DE 分别交AB 、AC 于点D 、E ,若12230∠+∠=︒,则A ∠= 度.18.规定两数a 、b 通过“△”运算,得到4ab ,即a △b =4ab ,例如2△6=4×2×6=48,若无论x 是什么数,总有a △x =x ,则a 的值为 .19.如图,在Rt ABC ∆中,∠C=90°,AD 是∠CAB 的平分线,交CB 于点D ,若AC =3,BC =4,则点D 到 AB 的距离是.20.点P 等边△ABC 一点,AP =5,BP =13,CP =12,则∠APC = 度.第14题图第16题图第17题图第19题图第20题图三、专心答一答(本题有7小题,共60分,各小题都必须写出解答过程)21.(本题8分)(任选一题进行解答)(1)解一元一次不等式组73(4),11 5.23x xx x>-⎧⎪⎨-≥⎪⎩(2)已知关于x不等式24132m x mx+-≤的解是34x≥,求m的值.22.(本题8分)如图,在6×6方格纸中(每个小正方形的边长均为1个单位长度),有直线MN和线段AB,其中点A,B,M,N均在小正方形的格点上.按下列要求解答:(1)在方格纸中画出线段AB关于直线MN的轴对称图形CD,点A的对称点D,点B的对称点为点C,连接AD,BC;(2)求出四边形ABCD的面积.23.(本题9分)如图,在ABC∆中,AD=AC,BE=BC.(1)若∠ACB=116°,求∠ECD的度数;(2)∠ECD与∠A、∠B之间存在怎样的数量关系?24.(本题9分)如图,如图,点A在直线l:3384y x=+上,点B在x轴上,且∠ABO=30°,AB=2,以AB为一边作如图所示等边△ABC.(1)求点C的坐标;(2)将△ABC向右平移,当点C的对应点C'落在直线l上时,求平移的距离.l 第22题图第23题图第24题图25. (本题8分)求证:等腰三角形两腰上的高相等. 请按以下解题步骤完成证明过程:(1)按题意画出图形;(2)结合图形,写出已知、求证:(3)写出证明过程.26.(本题8分)某人有住房一套准备出租,他设计了甲、乙两套方案.甲方案使用者每月需缴600元租费,然后根据住房的使用面积每平方米,再付费3元;乙方案使用者不缴月租费,根据住房的使用面积每平方米,付费7.8元.若这套住房的使用面积x 平方米,甲、乙两种方案的费用分别为1y 和2y 元. (1)请分别写出1y 、2y 与x 之间的函数关系式; (2)租户应该选择哪种方案比较合算?请说明理由.27.(本题10分)如图,在平面直角坐标系中,直线l 经过点A 、B ,且O B =8,OA =6. (1)求直线l 的函数解析式;(2)若给定点M (5,0) ,存在直线l 上的两点PQ ,使得以O ,B ,Q 为顶点的三角形与△OMP 全等, 请求出所有符合条件的点P 的坐标..l 第27题图。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年浙江省杭州市西湖区八年级(上)期末数学试卷一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(0,1)C.(1,5)D.(1,1)2.(3分)不等式x﹣1>0 的解在数轴上表示为()A.B.C.D.3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4B.a=1,b=,c=2C.a=4,b=5,c=6D.a=2,b=2,c=4.(3分)对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3B.a=﹣3,b=﹣3C.a=3,b=﹣3D.a=﹣3,b=﹣25.(3分)若x+a<y+a,ax>ay,则()A.x>y,a>0B.x>y,a<0C.x<y,a>0D.x<y,a<0 6.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A.B.C.D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8B.10C.12D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10B.C.8D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44B.43C.42D.4110.(3分)关于函数y=(k﹣3)x+k,给出下列结论:①此函数是一次函数,②无论k取什么值,函数图象必经过点(﹣1,3),③若图象经过二、三、四象限,则k的取值范围是k<0,④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①②B.①③C.②③D.③④二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=.12.(4分)若不等式组的解集是﹣1<x<2,则a=.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.(4分)一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得分;若得分不低于60分者获奖,则获奖者至少应答对道题.15.(4分)关于函数y=﹣2x+1,下列说法:①图象必经过点(1,0),②直线y=2x﹣1与y=﹣2x+1相交,③当x>时,y<0,④y随x增大而减小.其中正确的序号是.16.(4分)如图,点A的坐标为(4,0),点B从原点出发,沿y轴负方向以每秒1个单位长度的速度运动,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBE,等腰Rt△ABF,连结EF交y轴于P点,当点B在y轴上运动时,经过t秒时,点E的坐标是(用含t的代数式表示),PB的长是.三、解答题(共66分)17.(6分)已知点P(a+1,2a﹣1)在第四象限,求a的取值范围.18.(8分)在平面直角坐标系中,点A(1,1),B(4,3),将点A向左平移2个单位长度,再向上平移3个单位长度得到点C.(1)写出点C的坐标;(2)画出△ABC并判断△ABC的形状.19.(10分)如图,在△ABC中,AB=AC,∠1=∠2,则△ABD与△ACD全等吗?证明你的判断.20.(10分)对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.21.(10分)如图,在平面直角坐标系中,长方形OABC的边OC=2,将过点B 的直线y=x﹣3与x轴交于点E.(1)求点B的坐标;(2)连结CE,求线段CE的长;(3)若点P在线段CB上且OP=,求P点坐标.22.(10分)如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数;(3)若∠A=∠DEF,判断△DEF是否为等腰直角三角形.23.(12分)一次函数y=kx+b的图象经过点A(0,9),并且与直线y=x相交于点B,与x轴相交于点C.(1)若点B的横坐标为3,求B点的坐标和k,b的值;(2)在y轴上是否存在这样的点P,使得以点P,B,A为顶点的三角形是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.(3)在直线y=kx+b上是否存在点Q,使△OBQ的面积等于?若存在,请求出点Q的坐标;若不存在,请说明理由.2017-2018学年浙江省杭州市西湖区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(0,1)C.(1,5)D.(1,1)【解答】解:∵点P(1,3)向下平移2个单位,∴点P的横坐标不变,为1,纵坐标为3﹣2=1,∴点P平移后的坐标为(1,1).故选:D.2.(3分)不等式x﹣1>0 的解在数轴上表示为()A.B.C.D.【解答】解:x﹣1>0,x>1,在数轴上表示为,故选:C.3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4B.a=1,b=,c=2C.a=4,b=5,c=6D.a=2,b=2,c=【解答】解:A、32+22≠42,故不是直角三角形,故本选项不符合题意;B、12+()2=22,故是直角三角形,故本选项符合题意;C、42+52≠62,故不是直角三角形,故本选项不符合题意;D、22+22≠()2,故不是直角三角形,故本选项不符合题意.故选:B.4.(3分)对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3B.a=﹣3,b=﹣3C.a=3,b=﹣3D.a=﹣3,b=﹣2【解答】解:当a=3,b=3时,a2=b2,而a=b成立,故A选项不符合题意;当a=﹣3,b=﹣3时,a2=b2,而a=b成立,故B选项不符合题意;当a=3,b=﹣3时,a2=b2,但a=b不成立,故C选项符合题意;当a=﹣3,b=﹣2时,a2=b2不成立,故D选项不符合题意;故选:C.5.(3分)若x+a<y+a,ax>ay,则()A.x>y,a>0B.x>y,a<0C.x<y,a>0D.x<y,a<0【解答】解:∵x+a<y+a,∴由不等式的性质1,得x<y,∵ax>ay,∴a<0.故选:D.6.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A.B.C.D.【解答】解:∵y=kx+k的图象与y=x的图象平行,∴k=1>0,∴一次函数y=kx+k的图象过第一、三象限,且与y轴的正半轴相交.故选:B.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8B.10C.12D.14【解答】解:∵△ABC的周长为20,∴AB的长小于10,故选:A.8.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10B.C.8D.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×4=8,在Rt△ABE中,BE=,故选:D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44B.43C.42D.41【解答】解:∵△BDE由△BCA旋转得出,∴BD=BC=12.∵∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=12.在Rt△ABC中,∠ACB=90°,AC=5,BC=12,∴AB==13,∴C△ACF +C△BDF=AC+CF+AF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42.故选:C.10.(3分)关于函数y=(k﹣3)x+k,给出下列结论:①此函数是一次函数,②无论k取什么值,函数图象必经过点(﹣1,3),③若图象经过二、三、四象限,则k的取值范围是k<0,④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①②B.①③C.②③D.③④【解答】解:①当k﹣3≠0,即k≠3时,函数y=(k﹣3)x+k是一次函数.故①结论错误;②由原解析式知(y+3x)﹣k(x+1)=0.所以,解得,即无论k取何值,该函数图象都经过点点(﹣1,3).故②结论正确;③当该函数图象经过第二、三、四象限时,k﹣3<0,且k<0,所以k<0.故③结论正确;④若函数图象与x轴的交点始终在正半轴,则(k﹣3)x+k=0,所以x=>0,解得0<k<3.故④结论错误.综上所述,正确的结论是:②③.故选:C.二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=﹣2.【解答】解:∵函数y=2x+b(b为常数)的图象经过点A(0,﹣2),∴b=﹣2,故答案为:﹣2.12.(4分)若不等式组的解集是﹣1<x<2,则a=﹣1.【解答】解:解不等式组得a<x<2∵﹣1<x<2∴a=﹣1.故答案为:﹣1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.14.(4分)一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得90分;若得分不低于60分者获奖,则获奖者至少应答对20道题.【解答】解:根据题意得:4×25﹣2×5=90(分);答:甲同学得90分;设获奖者至少应答对x道题,根据题意得:4x﹣2(30﹣x)≥6,解得:x≥20,答:获奖者至少应答对20道题;故答案为:90;2015.(4分)关于函数y=﹣2x+1,下列说法:①图象必经过点(1,0),②直线y=2x﹣1与y=﹣2x+1相交,③当x>时,y<0,④y随x增大而减小.其中正确的序号是②③④.【解答】解:①令x=1,此时y=﹣2+1=﹣1,故①错误;②两直线的一次系数不相等,故两直线必相交,故②正确;③当x>,所以y=2x﹣1>0,故③正确;④一次项系数大于0,所以y随x增大而减小,故④正确故答案为:②③④16.(4分)如图,点A的坐标为(4,0),点B从原点出发,沿y轴负方向以每秒1个单位长度的速度运动,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBE,等腰Rt△ABF,连结EF交y轴于P点,当点B在y轴上运动时,经过t秒时,点E的坐标是(﹣t,﹣t﹣4)(用含t的代数式表示),PB的长是2.【解答】解:如图,作EN⊥y轴于N,∵∠ENB=∠BOA=∠ABE=90°,∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,∴∠NBE=∠BAO,在△ABO和△BEN中,∵∴△ABO≌△BEN(AAS),∴OB=NE=BF,∴点E的坐标是(﹣t,﹣t﹣4)∵∠OBF=∠FBP=∠BNE=90°,在△BFP和△NEP中,∵,∴△BFP≌△NEP(AAS),∴BP=NP,又因为点A的坐标为(4,0),∴OA=BN=4,∴BP=NP=2.故答案是:(﹣t,﹣t﹣4);2三、解答题(共66分)17.(6分)已知点P(a+1,2a﹣1)在第四象限,求a的取值范围.【解答】解析:∵点P(a+1,2a﹣1)在第四象限,∴,解得:﹣1<a,即a的取值范围是﹣1<a.18.(8分)在平面直角坐标系中,点A(1,1),B(4,3),将点A向左平移2个单位长度,再向上平移3个单位长度得到点C.(1)写出点C的坐标;(2)画出△ABC并判断△ABC的形状.【解答】解:(1)∵将点A(1,1)向左平移2个单位长度,再向上平移3个单位长度得到点C,∴C(﹣1,4);(2)如图所示,根据勾股定理得,AB==,BC==,AC==,∴AB=AC,∵AB2+AC2=BC2=26,∴△ABC是直角三角形,∴△ABC是等腰直角三角形.19.(10分)如图,在△ABC中,AB=AC,∠1=∠2,则△ABD与△ACD全等吗?证明你的判断.【解答】解:△ABD与△ACD全等,∵AB=AC,∴∠ABC=∠ACB,∵∠1=∠2,∴∠ABC﹣∠1=∠ACB﹣∠2,BD=CD,即∠ABD=∠ACD,在△ABD与△ACD中,,∴△ABD≌△ACD(SAS).20.(10分)对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.21.(10分)如图,在平面直角坐标系中,长方形OABC的边OC=2,将过点B 的直线y=x﹣3与x轴交于点E.(1)求点B的坐标;(2)连结CE,求线段CE的长;(3)若点P在线段CB上且OP=,求P点坐标.【解答】解:(1)∵OC=2,∴C(0,2),∵四边形OABC是长方形,∴BC∥OA,∴点B的纵坐标为2,∵点B在直线y=x﹣3上,∴x﹣3=2,∴x=5,∴B(5,2);(2)∵直线y=x﹣3与x轴相交于点E,令y=0,∴x﹣3=0,∴x=3,∴E(3,0),∴CE==;(3)∵点P在线段CB上,∴P(m,2),∵OP=,∴=,∴m=﹣(舍)或m=,∴P(,2).22.(10分)如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数;(3)若∠A=∠DEF,判断△DEF是否为等腰直角三角形.【解答】解:(1)∵AB=AC,∴∠B=∠C,在△BDE和△CEF中,∵,∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;(2)∵∠DEC=∠B+∠BDE,即∠DEF+∠CEF=∠B+∠BDE,∵△BDE≌△CEF,∴∠CEF=∠BDE,∴∠DEF=∠B,又∵在△ABC中,AB=AC,∠A=50°,∴∠B=65°,∴∠DEF=65°;(3)由(1)知:△DEF是等腰三角形,即DE=EF,由(2)知,∠DEF=∠B,而∠B不可能为直角,∴△DEF不可能是等腰直角三角形.23.(12分)一次函数y=kx+b的图象经过点A(0,9),并且与直线y=x相交于点B,与x轴相交于点C.(1)若点B的横坐标为3,求B点的坐标和k,b的值;(2)在y轴上是否存在这样的点P,使得以点P,B,A为顶点的三角形是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.(3)在直线y=kx+b上是否存在点Q,使△OBQ的面积等于?若存在,请求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)当x=3时,y=x=×3=5,即B(3,5),把A(0,9),B(3,5)代入y=kx+b得到,解得.(2)由解得,即B(,),∴AB==.①以A为顶点时,P1(0,9+),P2(0,9﹣),②以B为顶点时,P3(0,),③以P为顶点时,P4(0,).(3)①当Q点在B点右侧时,设Q(a,ka+9),C(﹣,0),S△DBQ=×(﹣)×()=,∴a=,∴Q(,);②当Q在点B左侧时,设Q(a,ka+9),S△BDQ=×(﹣)×(ka+9﹣)=,a=,∴Q(,),综上所述,Q(,)或(,).。

相关文档
最新文档