第六章脱硫塔设计
脱硫塔图纸
脱硫塔图纸1. 脱硫塔的介绍脱硫塔是一种常用的环保设备,用于去除燃煤电厂等工业生产过程中产生的二氧化硫(SO2)等有害气体。
其工作原理是通过喷射洗涤液和气体之间的接触作用,将二氧化硫从气体中吸收到洗涤液中,从而实现气体的脱硫处理。
本文将介绍脱硫塔的图纸设计。
2. 脱硫塔图纸的设计要求脱硫塔的图纸设计需要满足以下要求:2.1 结构设计脱硫塔的结构设计应合理,确保设备的稳定性和安全性。
图纸中需要标注脱硫塔的主要构件,包括进气口、出气口、洗涤液喷淋系统、填料层等。
此外,还需要考虑脱硫塔的支撑结构和连接方式,确保设备能够承受正常工作条件下的负载。
2.2 尺寸设计脱硫塔的尺寸设计需要考虑处理气体的流量、洗涤液的流量以及处理效果等因素。
图纸中需要标注脱硫塔的高度、直径、进出口尺寸等重要尺寸参数,确保设备能够满足设计要求。
2.3 材料选择脱硫塔常用的材料包括不锈钢、碳钢等。
图纸中需要标注脱硫塔的材料选择,确保设备能够满足抗腐蚀、耐高温等特殊要求。
3. 脱硫塔图纸的制作流程脱硫塔图纸的制作流程一般包括以下几个步骤:3.1 确定设计要求首先需要根据实际需求确定脱硫塔的设计要求,包括处理气体的流量、处理效果等。
这些设计要求将直接影响脱硫塔的结构设计和尺寸设计。
3.2 进行结构设计根据设计要求,进行脱硫塔的结构设计。
可以借助计算机辅助设计(CAD)软件进行三维模型的绘制,确保设备的结构合理。
3.3 进行尺寸设计根据设计要求和结构设计,进行脱硫塔的尺寸设计。
通过计算或模拟分析,确定设备的高度、直径和进出口尺寸等重要参数。
3.4 选择合适的材料根据脱硫塔的工作环境和要求,选择合适的材料。
可以进行材料强度和耐腐蚀性能的分析,确保设备的稳定性和使用寿命。
3.5 绘制图纸根据结构设计、尺寸设计和材料选择,开始进行脱硫塔图纸的绘制。
使用Markdown文本格式进行绘制,可以方便地添加注释、标注和表格等内容。
3.6 审查和修改完成图纸绘制后,进行审查和修改。
煤气脱硫塔如何设计及其设计参数
煤气脱硫塔如何设计及其设计参数我们国家的锅炉大多数是以煤为燃料的,大家都知道燃煤锅炉会产生大量的二氧化硫,煤气中的硫大部分以H2S的形式存在的,H2S经煤气燃烧后会转化为二氧化硫,如果排到空气中的二氧化硫超标的话会形成酸雨,会严重危害人类的健康和生活环境。
另一方面,二氧化硫对陶瓷、高岭土等行业的最终产品质量影响也是较大的,鉴于以上因素,咱们国家对燃煤锅炉二氧化硫的排放是有标准的,规定其二氧化硫的排放浓度不能超过900mg/m3。
所以控制燃煤锅炉二氧化硫的排放成为环保行业的一个重要指标。
煤气脱硫塔正好控制了燃煤锅炉二氧化硫的排放,使得到净化的干净烟气排到大气当中。
煤气脱硫塔如何设计及其设计参数1、煤气脱硫方法发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。
所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分H2S都是必须要脱除的。
煤气脱硫塔的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。
在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。
冷煤气脱硫塔大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。
2、干法脱硫塔技术煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。
2.1氧化铁脱硫塔技术最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。
脱硫塔选型与设计
烟气脱硫工艺主要设备吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x2,x1为喷淋塔石灰石浆液进出塔时的SO2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m2﹒h)W 液相空塔质量流速,kg/(m2﹒h)y1×=mx1, y2×=mx2 (m为相平衡常数,或称分配系数,无量纲)k Y a为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)k L a为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
脱硫塔制作方案
脱硫塔制作方案引言脱硫塔是一种用于减少工业废气中二氧化硫(SO2)排放的设备。
本文档旨在提供一个脱硫塔制作方案,以供参考和实施。
背景随着工业化进程的加快和环保意识的提高,减少工业废气中有害气体的排放量成为必要的环保要求。
二氧化硫是一种有害气体,它会产生酸雨并对环境和人体健康造成损害。
脱硫塔作为一种较为成熟的脱硫技术,广泛应用于煤电、化工、钢铁等行业。
设计目标本脱硫塔制作方案的设计目标是高效减少工业废气中二氧化硫的排放量,并确保设备的安全运行和可靠性。
以下是具体的设计要求和目标:1.二氧化硫的去除效率达到90%以上;2.设备结构紧凑,占地面积尽量小;3.能够适应不同规模的工业生产需求;4.减少排放物的二次污染。
设备设计1. 脱硫塔结构脱硫塔的结构主要包括塔体、进料装置、喷淋系统、排气装置和废液处理系统。
•塔体:采用高强度耐腐蚀材料制造,确保设备的长期稳定运行。
•进料装置:将工业废气引入脱硫塔中,确保废气的充分接触和二氧化硫的吸收。
•喷淋系统:通过喷淋喷嘴将脱硫液体均匀喷洒在废气上,实现二氧化硫的吸收。
•排气装置:将经过脱硫后的废气排放到大气中。
•废液处理系统:对脱硫液进行处理,去除其中的固体颗粒和有机物质。
2. 脱硫工艺脱硫塔采用湿式烟气脱硫工艺。
具体工艺步骤如下:1.工业废气经过预处理后进入脱硫塔的进料装置。
2.进料装置将废气引导到塔体顶部,并与喷淋系统中的脱硫液体接触。
3.喷淋系统将脱硫液体均匀喷洒在废气上,形成脱硫液膜。
4.废气中的二氧化硫与脱硫液反应生成硫酸。
同时,脱硫液中的固体颗粒和有机物质被吸收和溶解。
5.经过脱硫后的废气从塔体的顶部排放出去,达到净化效果。
6.废液经过废液处理系统的处理后,用于循环再利用或进行安全处理和排放。
3. 辅助设备为了保证脱硫塔的稳定运行,还需要配备以下辅助设备:•电气控制系统:用于监控和控制整个脱硫塔的运行状态,包括进料、喷淋、排气和废液处理等。
•温度和压力传感器:用于监测脱硫塔内部的温度和压力变化,以便及时调整参数和处理异常情况。
第六章 脱硫塔设计
第六章脱硫塔设计现代化的烟气脱硫脱硫塔的设计必须满足以下几个准则:(1)低能耗,与低“液气”比有关;(2)低压降,与脱硫塔内部的优化设计有关;(3)高流速,与“投资”和“运行费用”的优化有关;(4)高SO2去除率、低的设备/系统维护率,与化学反应行为的优化有关;(5)高“液滴”分离率,避免下游设备垢污沉积和腐蚀;(6)低成本。
脱硫塔内的流体力学特性为复杂的气液二相流,这种复杂的逆流两相流给放大准则和测量带来很大的难度。
几乎每套装置都需度身定制,对一些特殊环节不进行验证就很难保证系统具有高度可靠性、经济性和一次投入成功率。
但是,FGD装置庞大,一般小型试验很难解决问题,大型试验又使得一般工程在财力和时间上无法接受。
早期,需要模拟实际工况的几何尺寸和流动条件才能初步确定放大准则,然后对放大准则进行判读并将其应用于实际工况。
近年来,随着计算流体力学、化学反应动力学等领域的发展,对脱硫塔设计技术的研究更加深入。
例如,对脱硫塔进行CFD模拟,在工作站上可以对不同的FGD设计进行测试并优化,这可能是了解真实流动状态和FGD脱硫效率的唯一途径。
此外,脱硫塔为薄壁结构,塔体上分布各种类型的加强筋,矩形开孔尺寸大、塔内件复杂,有时塔体外形不规则,依靠手工对喷淋塔进行流场和力学计算是非常困难的,使得人力计算很难进行。
目前,大多采用现代流场分析软件和力学分析软件(如FLUENT6.0和ANSYS9.0)进行流场分析和力学分析。
脱硫塔的流场分析和力学分析是脱硫塔优化设计的基础。
第一节脱硫塔结构设计脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计,是取得脱硫塔最优化性能的重要先决条件。
需要指出的是,精准的设计应在两相流和传质以及力学分析的基础上,结合实践经验进行。
一、脱硫塔结构定性设计1.塔的总体布置如图6-1所示,一般塔底液面高度h1=6 m~15m;最低喷淋层离入口顶端高度h2=1.2~4m;最高喷淋层离入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m;除雾器离最近(最高层)喷淋层距离应≥1.2 m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m。
大气污染控制工程课程设计——脱硫塔
《大气污染控制工程》课程设计学院:生态与环境学院专业班级:环境工程年级:学号:姓名:指导教师:完成日期:目录摘要 (1)1. 背景介绍 (2)1.1. 硫氧化物污染 (2)1.2. 燃煤脱硫技术 (3)1.2.1. 燃烧前脱硫 (3)1.2.2. 燃烧中脱硫 (3)1.2.3. 燃烧后脱硫 (3)1.3. 湿法脱硫技术 (3)1.3.1. 石灰石/石膏湿法脱硫 (3)1.3.2. 氧化镁法脱硫 (4)1.3.3. 双碱法脱硫 (4)1.3.4. 氨法脱硫 (4)1.3.5. 海水脱硫 (4)2. 石灰石/石膏湿法脱硫技术 (5)2.1. 主要特点 (5)2.2. 反应原理 (5)2.2.1. 吸收剂的反应 (5)2.2.2. 吸收反应 (5)2.2.3. 氧化反应 (6)2.2.4. 其他污染物 (6)2.3. 工艺流程 (7)3. 设计任务与目的 (8)3.1. 任务 (8)3.2. 目的 (8)3.3. 设计依据 (8)4. 脱硫系统的设计 (9)4.1. 脱硫系统设计的初始条件 (9)4.2. 初始条件参数的确定 (9)4.2.1. 处理风量的确定 (9)4.2.2. 燃料的含S率及消耗量 (10)4.2.3. 进气温度的确定 (10)4.2.4. SO2初始浓度的确定 (10)4.2.5. SO2排放浓度的确定 (10)5. 脱硫系统的设计计算 (11)5.1. 参数定义 (11)5.2. 脱硫系统的组成及主要设备选型 (12)5.2.1. SO2吸收系统 (12)5.2.2. 烟气系统 (18)5.2.3. 石灰石浆液制备系统 (20)5.2.4. 石膏脱水系统 (21)6. 参考文献 (25)摘要石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。
脱硫塔设计
1、 筒体壁厚计算(所选材料为Q235B )。
筒体承受内压[]c t c p D p i-⨯=φσδ2 式中 δ:计算厚度 mmc p :计算压力 157.6a MPφ:焊接接头系数 φ=0.85 []tσ:设计温度下的材料许用应力157.6a MP ,在工作压力下材料的许用应力为157.6a MPi D :筒体内径 3000mm工作压力Pw=1010.353毫米汞柱=1010.353×13.6×9.8=0.135MPa ,所以设计压力P=1.1Pw=0.1485MPa ,Pc=P=0.1485MPa[]mm p D p c t c i 07.2.148505.806.157230001485.02=-⨯⨯⨯=-⨯=φσδ由《塔器设计技术规定》中有关规定,mm 6.51000/22800min =⨯=δ,所以mm 6.5=δ。
负偏差 mm C 8.01=腐蚀裕量 mm C 22=名义厚度为mm C C n 4.821=++=δδ,做塔设备时综合考虑取mm n 12=δ.2、塔顶处封头壁厚计算(所选材料为Q235B )选用半顶角为α=45°的折边锥型封头,由公式[]αcos 12cc t c p D p -=φσδ 式中 Dc —锥壳计算内直径,mmδ—锥壳计算厚度,mmα—锥壳半顶角,(°)。
mm 03.245cos 11485.05.806.157230001485.0=︒⨯-⨯⨯⨯=δ因mm 6.5min =δ,所以mm 6.5=δ。
名义厚度为mm C C n 4.821=++=δδ,选取锥形封头壁厚与筒体的壁厚相同,mm n 12=δ,由《化工设备机械基础》表8-30查得,公称直径为2800mm 的折边锥形封头,H=0.562×2800=1573.6mm ,直边高度为mm h 25=。
3、各管管径的计算1)半水煤气进口u :半水煤气流速,取u =14 m/sVs :半水煤气流量,Vs=16866.57 m 3/h m u d i 65.01414.3360057.1686643600V s 4=⨯⨯⨯=⋅⋅⋅==∴π 管子规格:φ720×8mm管法兰:HG20592-97 法兰 PLDN700-0.6 RF2)半水煤气出口u :半水煤气流速,取u =13 m/sVs :半水煤气流量,Vs=16866.57 m 3/h m u d i 68.01314.3360057.1686643600V s 4=⨯⨯⨯=⋅⋅⋅==∴π 管子规格:φ720×8mm管法兰:HG20592-97 法兰 PLDN700-0.6 RF3)人孔的设计由《化工设备设计全书》中关于人孔的有关规定,选取人孔公称直径DN=500mm ,公称压力PN=1.0外伸接管规格:φ530×8mm管法兰:HG20592-97 法兰 PLDN500-1.0 RF人孔手柄:选用φ20mm 圆钢4)脱硫液进口u :脱硫液流速,取u =1m/sV h :脱硫液流量,V h =333m 3/h m u d i 343.0114.3360033343600V h 4=⨯⨯⨯=⋅⋅⋅==∴π 管子规格:φ400×4mm管法兰:HG20592-97 法兰 PLDN400-0.6 RF5)脱硫液出口u :脱硫液流速,取u =1 m/sV h :脱硫液流量,V h =333 m 3/h m u d i 343.0114.3360033343600V h 4=⨯⨯⨯=⋅⋅⋅==∴π 管子规格:φ400×4mm管法兰:HG20592-97 法兰 PLDN400-0.6 RF6)排净口设计根据工艺计算数据,综合考虑各因素,选取排净口公称直径DN=80mm ,公称压力PN=1.0MPa 管子规格:φ89×4mm管法兰:HG20592-97 法兰 PLDN80-1.0 RF7)液位计口设计选取公称直径DN=20mm ,公称压力PN=1.0MPa管子规格:φ25×2mm管法兰:HG20592-97 法兰 PLDN20-1.0 RF。
脱硫塔设计 (2)
脱硫塔设计1. 引言脱硫技术是指通过化学、物理或生物方法将燃烧烟气中的二氧化硫(SO2)排放物去除的过程。
脱硫塔是脱硫系统的核心设备之一,用于对燃烟气中的二氧化硫进行吸收和去除。
本文将介绍脱硫塔的设计原理、主要组成和操作要点。
2. 设计原理脱硫塔的设计原理基于吸收剂与燃烟气中的二氧化硫之间的反应。
常见的脱硫塔设计原理包括湿法石膏法、氧化法和碱液吸收法。
其中,湿法石膏法是最常用和成熟的脱硫技术,本文将以湿法石膏法为例进行介绍。
湿法石膏法的脱硫反应方程式如下:SO2 + CaCO3 + 1/2O2 + H2O -> CaSO4·2H2O + CO2根据上述反应方程式,可知二氧化硫在湿法石膏法中首先与氧气和水反应生成硫酸,然后与石膏反应生成硫酸钙二水合物,并同时生成二氧化碳。
因此,脱硫塔的设计要考虑到这一反应过程。
3. 主要组成脱硫塔的主要组成包括吸收塔、喷嘴、底板、进气口、出口管道以及循环泵等。
吸收塔是脱硫塔的核心部件,其内部结构包括填料层、液流层和气流层。
填料层用于增大接触面积,提高反应效率;液流层用于吸收剂的循环;气流层用于燃烟气的顺畅通过。
喷嘴通常位于吸收塔的顶部,用于将吸收剂喷洒到填料层上。
喷嘴设计应考虑均匀喷洒、耐腐蚀、防堵塞等因素。
底板位于吸收塔的底部,起到收集液流和分配液流的作用。
底板的设计对于液流分布的均匀性和塔内流体动力学的影响很大。
进气口是燃烟气进入脱硫塔的通道,通常位于吸收塔的顶部。
进气口的设计要考虑到燃烟气的流速、温度和颗粒物的浓度等因素。
出口管道用于将处理过的烟气排放到大气中。
出口管道的设计要满足排放标准,并考虑到防腐蚀、防结露等问题。
循环泵用于将饱和吸收液回流到吸收塔,确保吸收剂的稳定循环。
循环泵的性能和选型对于脱硫塔的运行效率和成本有重要影响。
4. 操作要点脱硫塔的操作要点主要包括吸收剂的选择与配置、进气温度和湿度的控制、液流分配的调整和循环泵的运行监控等。
烟气脱硫吸收塔设计
烟气脱硫吸收塔设计烟气脱硫吸收塔设计摘要在概述我国烟气脱硫技术现状,介绍了一些国外的烟气脱硫技术的基础上分析了我国燃煤锅炉烟气脱硫技术的发展前景。
本文针对设计任务书中所给出的烟气含量和脱硫要求,结合我国烟气脱硫的技术现状选择了顺应吸收塔发展潮流的喷淋塔作为设计对象来实现石灰石-石膏湿法烟气脱硫,主要设计吸收塔部分。
本设计用于小型机组的烟气脱硫,这套工艺采用了脱硫、除尘和就地强制氧化同时完成的高性能化组合塔型。
设计塔内烟气的流速为3 m?s-1 ,液气比为18 L?m-3,钙硫比为1.04。
喷淋塔主体、除雾器和再热器依次垂直布置,这样塔的整体布局将会更加紧凑,占地面积较小。
采用价廉易得的石灰石为原料,脱硫产物石膏品质优良,可代替天然石膏使用。
采取了回收与抛弃兼容的处理方法。
本文还介绍了湿式石灰石-石膏烟气脱硫工艺的各个子系统,大致确定了本工艺中选用各子系统的的处理流程、装置和设备。
并对所设计的烟气脱硫工艺进行了技术经济分析。
关键词:湿法烟气脱硫,喷淋塔,石灰石-石膏法ABSTRACTAfter summarizes the flue gas desulphurization technical present situation of our country,also introduces some overseas technologies of flue gas desulphurization. This thesis analyzed developing prospect of the flue gas desulphurization technologies of our country. The spray scrubber, which is the developing trend of absorption tower ,is designed for CaCO3-CaSO4 wet flue gas desulphurization in this paper according to the composition of the fume gas and the desulphurization request. The major mission of the paper is design of the absorber.The system is fit for small-sized unit in thermal .Thetechnology uses the high-performance integral spray scrubber, in which the function of desulphurization、dedusting and forced oxidation on the spot are possessed simultaneously. The designed velocity of flue gas in countercurrent sect ion is 3 m?s-1. The liquid/gas ratio is 18 L?m-3 and Ca/S ratio is 1.04. Spray tower, mist eliminator, reheaters are arranged one on top of another vertically, therefore the tower area layout of it is more compact and the occupied land area is smaller. The raw material is limestone because of its low-price, the product-gypsum is reliable enough to take the place of natural gypsum. The treatment of part of the gypsum being recovered and part being abandoned was adopt.This thesis introduces the subsystems of the WFGD technology and ascertains the technological process、devices and equipments of every subsystem approximately. And also carries out economical and technical analyze of the WFGD system designed.KEY WORDS:wet flue gas desulphurization(WFGD),spray scrubber,limestone-gypsum technology目录前言 1第1章脱硫方案的选择以及塔体选型 61.1 脱硫方案的选择 61.2 塔型选择 61.3 氧化方式的选择[9] 71.4 石灰石-石膏法WFGD的工艺原理 81.4.1石灰石-石膏法WFGD反应机理 81.4.2 SO2的吸收 10第2章石灰石-石膏法WFGD系统概述 112.1 典型工艺流程 112.2 工艺设备布置 122.3 脱硫风机的布置 13第3章喷淋塔的设计计算 153.1 设计初值 153.1.1 燃煤数据分析 153.1.2 烟气状态 163.2吸收塔喷淋区设计 163.2.1吸收区内径和塔截面积 173.2.2 喷淋塔吸收区喷淋层 183.2.3 喷浆管的设计 193.2.4 喷淋层的雾化喷嘴 193.2.5 喷雾管道的设计与布置 213.2.6喷淋塔烟气入口、出口及多孔托盘 223.3喷淋塔氧化区的设计 243.3.1持液槽 243.3.2喷淋塔氧化槽的隔板 253.3.3 喷淋塔持液槽的搅拌器和挡板 263.3.4喷淋塔氧化区的氧化管道(空气分布器) 27 3.3.5喷淋塔氧化风机 283.4喷淋塔除雾区的设计 293.5泵的选型 303.5.1 循环泵选型 303.5.2 排出泵选型 313.6 塔体的高度设计 323.6.1 持液槽 323.6.2 连接区 333.6.3 吸收区 333.6.4 除雾区 333.6.5 吸收塔总高 343.7喷淋塔主要技术经济指标 34第4章子系统分述 354.1 烟气热交换系统 354.2石灰石浆制备系统 384.3 SO2吸收系统 394.4石膏制备及处置系统 424.5废水处理系统 444.6公共系统 45第6章可*性分析 46第7章脱硫系统经济分析 47第8章结论 48致谢 49参考文献 50英语科技论文 52文献翻译 61前言煤炭为我国的第一能源。
脱硫塔塔体设计分析
脱硫塔塔体设计分析摘要:在脱硫系统中包含了最为重要的非标设备——脱硫塔,针对脱硫塔的设计所涉及内容丰富。
所以本文中分析了脱硫塔塔体的基本构成,并对其塔体具体设计方案进行了全盘分析。
关键词:脱硫塔;塔体设计;基本构成;高度;喷淋层;除雾器脱硫塔属于脱硫系统中的塔体附属设备,它关乎脱硫系统是否能过长期高效率稳定运行。
在对脱硫塔塔体进行设计过程中,首先需要了解脱硫塔塔体的基本构成。
1.脱硫塔塔体的主要构成介绍脱脱硫塔塔体中所包含的分支构成内容颇多,其中就包括了浆液氧化区、SO2除区等等。
而主要设备则包含了搅拌器、喷淋层、除雾器。
在脱硫塔塔体设计过程中需要考虑多点内容,其中就包括了风、雪、地震等诸多荷载问题,同时对塔体附件自身重量进行分析,确保脱硫效率有所提升。
在脱硫塔塔体设计过程中,还需要对塔体高度、喷淋层、除雾器等等进行设计,分析其中的设计技术要点[1]。
1.脱硫塔塔体设计要点分析如上文所述,脱硫塔塔体设计要点内容丰富,下文就结合3点来谈:1.脱硫塔塔体高度的设计要点分析吸收区、喷淋区、除雾区等等脱硫塔塔体高度设计涉及多点内容,例如SO2都需要考虑其高度设计问题。
首先看SO吸收区的塔体高度设计,这一高度设计2的吸收以及排放指标。
就吸收区域而言需要分析其会直接影响到脱硫操作中SO2塔体高度,确保区域内传统高度计算到位,其中所涉及到的关键指标就包括了传质单元高度、传质单元数等等。
在结合实际SO吸收区展开分析过程中,需要对2区域内的烟道入口顶端高度进行设计,其最低高度应该设计为2~4m左右。
其次看喷淋区高度设计,它需要根据离心式喷头分析确定喷雾试验相关技术指标,在满足压头情况基础上了解喷淋区域层间距离变化,进而调整喷雾效果。
一般来说,还需要对层间距离进行设计选取,一般设计选取范围应该在1.5~2.5m 以内。
而喷淋层的高度设计应该同时考虑其最上层与最下层喷淋层、除雾层之间距离,大约控制在1.5m以内,且设置3层为最佳。
砖厂脱硫塔设计方案
砖厂脱硫塔设计方案根据您给出的题目,我将为您撰写砖厂脱硫塔设计方案。
【设计方案】砖厂脱硫塔一、背景介绍随着环保要求日益提高,砖厂等工业企业需要采取措施降低烟气中的二氧化硫(SO2)排放量。
脱硫塔作为一种常见的污染治理设备,经过专业设计和合理运行可以有效减少污染物排放。
本设计方案旨在为砖厂设计一个高效可行的脱硫塔。
二、设计目标1.达到国家相应环保标准要求,使SO2排放浓度降至合理范围内。
2.降低运行成本,提高处理效率,保证装置长期稳定运行。
3.利用可再生资源,减少对环境的影响。
三、设计方案1. 脱硫塔的选型:针对砖厂烟气特性和硫磺含量高的特点,选择合适的脱硫塔类型。
例如,湿法脱硫系统可以有效吸收二氧化硫,在石膏中形成硫酸盐沉淀物,从而实现脱硫效果。
2. 设计脱硫塔的高度和直径:根据砖厂排放量和气流特性,设计合适的脱硫塔高度和直径,以确保充分接触时间和脱硫效果。
3. 喷嘴和喷淋系统的设计:选择高效的喷嘴和喷淋系统,确保烟气和脱硫剂充分接触,提高脱硫效率。
4. 清洁系统的设计:设计合理的清洁系统,及时清除脱硫过程中产生的沉积物,保证设备的长期稳定运行。
5. 废气处理系统的设计:设计完善的废气处理系统,确保排放达标。
可以采用吸收液回收再利用、脱硫废液稀释等方式,降低处理成本,减少对环境的影响。
四、运行和维护1. 建立完善的运营管理制度,确保设备按照设计要求正常运行,监测处理效果和废气排放情况,定期维护保养设备。
2. 培训操作人员,提高其对脱硫塔设备的操作技能和环保意识,确保安全运行。
五、经济效益分析1. 有效减少SO2排放量,避免环境罚款和声誉损失。
2. 利用可再生资源,降低脱硫剂和能源成本。
3. 提高砖厂的绿色形象,增强竞争力。
六、风险评估和对策1. 风险:脱硫塔设备故障、脱硫效果不理想。
对策:建立健全的监测和预警机制,及时处理设备故障并进行维护,保证脱硫效果。
七、结论根据砖厂的特点和环保要求,本设计方案提供了一套脱硫塔设计方案,通过合适的设备选型、喷嘴和喷淋系统的设计以及废气处理系统的完善,可以有效降低SO2排放量,满足国家环保标准,保证砖厂的可持续发展和环境保护。
大气脱硫塔课程设计
大气脱硫塔课程设计一、教学目标本节课的教学目标是让学生了解大气脱硫塔的工作原理、结构及其在环保领域的应用。
具体目标如下:1.知识目标:–了解大气脱硫塔的基本原理和结构;–掌握大气脱硫塔的分类及各自的特点;–了解大气脱硫技术在我国的应用现状及发展趋势。
2.技能目标:–能够分析不同类型的大气脱硫塔的优缺点;–能够运用所学知识对实际问题进行初步的分析和解决。
3.情感态度价值观目标:–增强学生对环境保护的认识,提高环保意识;–培养学生热爱科学、勇于创新的精神。
二、教学内容本节课的教学内容主要包括以下几个部分:1.大气脱硫塔的基本原理和结构;2.大气脱硫塔的分类及各自的特点;3.大气脱硫技术在我国的应用现状及发展趋势。
三、教学方法为了提高教学效果,本节课将采用以下几种教学方法:1.讲授法:用于讲解大气脱硫塔的基本原理、结构和分类;2.案例分析法:通过分析实际案例,使学生更好地理解大气脱硫技术的应用;3.讨论法:引导学生探讨大气脱硫技术的发展趋势及其对环保的意义。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:提供相关理论知识;2.参考书:为学生提供更多的学习资料;3.多媒体资料:通过图片、视频等形式,形象地展示大气脱硫塔的原理和应用;4.实验设备:为学生提供实践操作的机会,加深对知识的理解。
五、教学评估为了全面、客观地评估学生的学习成果,我们将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与度、提问回答等情况,评估学生的学习态度和理解程度;2.作业:布置相关的练习题,评估学生对知识的掌握情况;3.考试:安排一次期中考试,测试学生对大气脱硫塔知识的了解和应用能力。
六、教学安排本节课的教学安排如下:1.教学进度:按照教材的章节安排,逐步讲解大气脱硫塔的相关知识;2.教学时间:共安排2课时,每课时45分钟;3.教学地点:教室。
七、差异化教学我们将针对学生的不同学习风格、兴趣和能力水平,实施差异化教学:1.对于 visual learners,通过图片、视频等多媒体资料,形象地展示大气脱硫塔的原理和应用;2.对于 auditory learners,通过讲解、讨论等方式,让学生更好地理解大气脱硫塔的知识;3.对于 kinesthetic learners,安排实验操作,让学生亲身体验大气脱硫过程。
脱硫塔整体施工方案设计
脱硫塔整体施工方案设计一、项目背景随着环保意识的不断增强和环境保护法规的不断完善,大气污染治理成为当前社会关注的热点之一。
脱硫塔作为烟气脱硫处理的核心设备之一,具有净化烟气、降低二氧化硫排放浓度的重要作用。
针对某工业企业的脱硫工程,本文将设计一个脱硫塔的整体施工方案。
二、工程概述脱硫塔整体施工方案的目标是在确保施工质量和安全的前提下,合理利用资源、控制成本,按照施工进度完成工程任务。
该项目为新建脱硫工程,主要施工内容包括脱硫塔本体的安装和调试、脱硫剂输送系统的搭建、以及与其他设备的联接等。
三、施工步骤1. 脱硫塔本体安装1.根据设计图纸,对施工现场进行勘测和测量,确定脱硫塔的安装位置。
2.准备施工所需的工具和设备,包括吊装设备、脚手架等。
3.按照脱硫塔的安装顺序,进行模块组装。
注意安装顺序和安装方向,以确保安装的准确性。
4.安装完成后,进行初步固定,并进行整体调整和检查,确保脱硫塔的垂直度和水平度符合要求。
5.在脱硫塔顶部安装防护设施,确保工作人员的安全。
2. 脱硫剂输送系统的搭建1.根据设计要求,搭建脱硫剂输送系统,包括输送管道和输送装置等。
2.选择合适的输送设备,如螺旋输送机、气力输送系统等,根据现场条件进行安装和调试。
3.对输送系统进行试运行,并进行调整和优化,确保脱硫剂的均匀输送和稳定运行。
3. 与其他设备的联接1.根据工艺要求和设计图纸,安装与其他设备的连接接口,如烟气进口管道、烟气出口管道等。
2.对接口进行密封处理,并进行漏气测试,确保连接的密封性和安全性。
3.完成连接后,进行联网测试和调试,确保与其他设备的协同运行。
四、质量控制措施在脱硫塔整体施工过程中,为了确保施工质量和安全,需要采取以下措施: 1. 施工前制定详细的施工方案和质量控制计划,并组织施工人员进行培训和安全教育。
2. 设置监测点位,对施工过程中的关键参数进行监测和记录,包括塔体垂直度、水平度、密封性等。
3. 对施工现场进行定期巡视和检查,及时发现和处理安全隐患和质量问题。
烟气脱硫塔设计
烟气脱硫塔设计一、塔的总体布置烟气量按220000m3/h,进口SO2为3000mg/m3,脱硫后≤200mg/m31、塔径确定:对于逆流型喷淋塔,烟气流速为3-4.5m/s,按3.5m/s计算脱硫塔内操作温度为50度,烟气流量校正为:220000*(273+50)/(273+20)=242525.6m3/h塔径为(242525.6/3600/3.5/0.785)1/2=4.95m塔径取:5m烟气流速校正为:3.43m/s2、吸收区高度吸收区高度h1一般指烟气进口水平中心线到喷淋层中心线的距离。
容积吸收率的定义为:含有二氧化硫的烟气通过喷淋塔,塔内喷淋浆液将烟气中的SO2浓度降低到符合排放标准的程度,将此过程中塔内总的二氧化硫吸收量平均计算到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷—平均容积吸收率。
经验值:容积吸收率为5.6-6.5 kg/(m3.h),取6吸收区高度:h=1.5*220000*0.003/(5*5*0.785)/6=8.4m 取:m在吸收区,喷淋层布置一般为2-6层,层间距0.8-2m。
本设计方案喷淋层设为4层,层间距2m。
3、烟气进口高度:根据工艺要求,进出口流速(一般为12m/s-30m/s)确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形进口流速取:15m/s进口烟气温度按130°,烟气流量校正:220000*(273+130)/(273+20)=302594m3/h烟气进出口宽度占塔内径的60%~90%。
本设计取入口宽度为内径的60%, L=5000*0.6=3000进口高度:302594/3600/15/3=2m4、烟气出口直径:出口流速取:15m/s出口烟气温度按50°,烟气流量校正:242525.6m3/h出口直径:(242525.6/3600/15/0.785)1/2=2.4m5、塔底储浆量、高度确定浆池容量V 1的计算表达式如下:11L V Q t G=⨯⨯ 式中:L/G —液气比,取12L/m 3;Q —烟气标准状态湿态容积,m 3/h ,Q=220000m3/h ; t 1—浆液停留时间,4~8min ,取t 1=4min=240s 。
湿法填料式吸收塔脱硫塔设计
湿法脱硫塔设计一般吸收塔的结构如下图2-2:图2-2 填料料式吸收塔结构示意图1—气体出口;2—液体分布器;3—壳体;4—人孔;5—支承与液体分布器之间的中间加料位置;6—壳体连接法兰;7—支承条;8—气体入口;9—液体出口;10—防止支承板堵塞的整砌填料;11—液体再分布器;12—液体入口包括塔体(筒体,封头)、填料、填料支承、液体分布器、除雾器等。
5.4.1引言根据前人的研究成果,我们可得出以下结论[11]:(1) 萘醌法用于脱除沼气中硫化氢时,对吸收液的组成进行适当改进, 可以使脱硫率达到99 %~99.5 %(2) 吸收和再生操作都可以在常温、常压下进行。
(3) 吸收液的适宜配方为:Na2CO3 为2.5 % ,NQS浓度为1.2 mol/m3 ,FeCl3 浓度为1.0 % ,EDTA 浓度为0.15 % ,液相pH 值8.5~8.8 ,吸收操作的液气比(L/ m3) 为11~12[3]。
5.4.2 吸收塔的设计(分子栏目)( 1 号图1 张)根据前期计算沼气产气量为60.83 m3沼气/h。
设定沼气的使用是连续性的, 缓冲罐设置成容纳日产气量的 1/12,为 121.66 m 3; 吸收塔处理能力 121.66 m 3沼气 /h在沼气成分中甲烷含量为 55%~ 70%[12]、二氧化碳含量为 28%~44%、,因 此近似计算沼气的平均分子密度为 1.221 ㎏/ m 3 ,惰性气( CH4、CO2)的平均 分子量为25.8,混合气量的重量流速为 121.66 1.221 9.8 ≈1456kgf/h, 硫化氢平 均含量为 0.6%,回收 H 2S 量为 99%。
1. 浓度计算硫化氢总量硫化氢吸收量惰气量硫化氢在气相进出口的摩尔比为:Y1= 0.257 =0.004458.58硫化氢在进口吸收剂中的浓度为 X 2=0设出口吸收剂中硫化氢浓度为 8%, 则硫化氢在出口吸收剂中的摩尔比 X1= 8/17=0.009292/18由此可计算出吸收剂的用量:kgf/h1456 0.006 =8.736kgf/h ,8.736=0.257kmol/h348.736 0.99 =8.649 kgf/h ,8.649=0.254 kmol/h341520-8.736=1511.26 kgf/h , 1511.2625.8=58.58kmol/hY2= 0.257 0.254 58.58=0.000051L m VY 1 Y 2 X 1 X 258.580.0044 0.000510.0092 0=27.7kmol/h=27.7*18=498.6根据混合气的物性算得:气相重度v =5.2kgf/ m3 硫化氢在气相中的扩散系数:D G=0.0089 ㎡/h3液相重度L =998kgf/m3;液相粘度L =7.85 10 5 kgf?s/㎡表面张力=0.0066kgf/m;溶剂在填料表面上的临界表面张力 C =0.0034kgf/m2. 塔径计算气相平均重量流率1456 1456 8.649 =1451.68 kgf/h液相平均重量流率498.6 498.6 8.649 =502.92 kgf/hV= D 2u4(2-1)V=121.66 m3沼气/h=0.0338 m3沼气/s , u取0.5m/s;所以,代入式(2-1)中得3.14 2121.66 D 20.54得D=0.293m , 取D=0.3m3. 填料高度计算填料高度Z=H OG*N OG[4]传质单元数:用近似图解法求得:N OG=4.25(1) 因H2S 在吸收剂中的溶解过程,可看作气膜控制过程,按传质系数公式得:1=3.01kmol/ ㎡ h*at=0.8793600 0.785 0.45 0.45=0.608,k G G v3600 G g 3a G g vD GB ad2k G RTaD G(2-2)式中 B —常数,对一般填料a — 填料比表面积G—气相粘度d —填料尺寸,选用 25mm 金属矩鞍环v—气相重度B=5.23D G —硫化氢在气相中的扩散系数aDGBRTG V1451.68 Gv=2 =5.71kg/㎡ s3600 0.785 0.325.710.76=197.22194 1.58 10 6 9.813600 G gVD G0.713600 1.58 10 6 9.81 3=1.06 5.2 0.008922ad 2194 0.025 2 =0.04253600 G g 3vD Gad2194 0.0089 5.23 197.22 1.06 0.04250.082 3252 0.05G L 2 a0.8792 194 99829.81=1.741502.92(2)G L =0.750.00340.750.00661.194a w=194{1-exp[-1.45 0.608 1.194 1.741 0.144 ]}23=44.998m 2 /m 3Ky=ky=Pk G =11.53 3.01=34.70kmol/㎡ h填料高度:Z H OG N OG 0.53 4.25 2.25 m考虑到填料塔上方还要安装液体分布器和除雾器等设备,选取填料塔高度 为 4.0m 。
脱硫塔设计要求
脱硫塔设计要求1. 引言脱硫塔是燃煤电厂中用于去除煤烟中二氧化硫(SO2)的设备,其设计和运行对环境保护和工艺效果具有重要影响。
本文档旨在提供脱硫塔设计的基本要求,以确保设备高效运行并达到环保标准。
2. 设计要求脱硫塔的设计应满足以下要求:2.1 排放标准脱硫塔的设计应使得煤烟中二氧化硫的排放浓度低于国家或地方规定的标准限值。
需要根据当地法规和环境保护要求确定具体的排放要求。
2.2 除尘效率脱硫塔应具备良好的除尘效率,确保去除煤烟中的颗粒物达到国家或地方规定的标准限值。
应采用合适的除尘设备,如静电除尘器、旋风除尘器等,以保证达到预期除尘效果。
2.3 设备稳定性脱硫塔的设计应保证设备具有良好的稳定性和可靠性。
需要选择耐腐蚀性能好的材料,考虑设备的热胀冷缩和受力情况,合理设计结构,以减少设备运行中的故障和维护次数。
2.4 运行能耗脱硫塔的设计应尽量减少能源消耗,提高运行的能效比。
需要选用节能型设备和技术,优化系统的运行参数,合理利用余热等。
同时,应进行经济性分析,确保设计的合理性和经济性。
2.5 生产能力脱硫塔的设计应满足燃煤电厂的产能要求,确保设备能够满足生产需要。
3. 设计流程脱硫塔的设计流程应包括以下步骤:3.1 参数获取和分析根据燃煤电厂的实际情况,获取相关参数,如煤烟流量、二氧化硫浓度、煤种和品质等。
对这些参数进行分析,以确定设计所需的基本数据。
3.2 技术方案选择根据参数分析结果,选择合适的脱硫技术方案。
可根据实际情况考虑干法脱硫、湿法脱硫或半干法脱硫等技术方案。
3.3 设备选型和布置根据选定的技术方案,进行设备选型和布置,确保设备的有效运行。
3.4 设计计算与优化进行设计计算和优化,确定脱硫塔的主要尺寸和参数。
3.5 绘制图纸和编制文档根据设计结果,绘制脱硫塔的平面图、剖面图和装配图,并编制相应的设计文档。
3.6 审查和改进进行设计方案的审查,对需要改进的地方进行修改,并进行多次优化,确保设计方案的合理性和可行性。