公路线性连续性设计方法的研究

公路线性连续性设计方法的研究
公路线性连续性设计方法的研究

公路线性连续性设计方法的研究

摘要:随着我国经济的飞速发展,各省市之间通行的高速公路建设也在紧锣密鼓的进行。值得注意的是,高速公路建设过程中的路线连续性是我们在建设高速公路过程中不能忽视的重点。公路良好的连续性能够让驾驶人员在行驶过程中出现的疲劳现象,且能够给驾驶者营造良好的驾驶环境,避免出现意外。

关键词:高速公路;线性连续性;行驶速度;设计速度

1 引言

良好合理的线性连续性是一条高速公路对行驶车辆安全保障最基本的要求。随着高速公路不断的建设发展,道路安全成为大家日益关注的重要问题。虽然人为因素和自然因素都会影响道路行驶安全,但人为可控因素中,道路的线性连续性是保障道路安全行驶最关键因素。合理的线性设计能够保障驾驶人员的安全,能够使得公路建设经济合理,能够保障公路拥有较大的通行量。

2 线性连续性对道路的影响

2.1 连续性对行车安全的影响

根据对历来交通事故的统计表明,行驶过程中因为驾驶人员注意力不集中而引发的车祸占了总数据的40%以上。虽

然对于驾驶人员本身来说,疲劳驾驶、身体状况不佳等都可能造成车祸的发生。但实际调查中我们也发现,如果道路的连续性不佳,会增加驾驶人员的疲劳程度,并且在出现紧急状况时使得驾驶员没法做出及时的反应。

2.2 连续性对与道路景观的影响

现如今,道路建设除了考虑车流量和造价成本外,对于道路美学的要求也是有了明显的提升。国家发布的《线路设计规范》对于道路的建设提出了明确的说明:公路建设应该借助软件工具来对道路的景观进行相应的协调设计。从这一点也可以看出连续性的道路景观是有重要影响的。

2.3 线性连续性对道路功能的影响

根据我国的国情,国道、省道、县道等不同等级的道路对车流量以及车速的设计都是不同的。而这些道路通常都是交叉互通的。为了让这些不同等级的道路发挥各自最大的作用,必须根据具体的技术指标来进行道路的设计。从这里可以得知连续性对于不同道路的功能有着重要的影响。

3 连续性分析

3.1 行驶速度分析

行驶的连续性是指行驶速度不会发生突变的情况,对于行驶过程中的舒适度以及安全有相当重要的影响。行驶速度如果能够保持连续,则需要道路的断面拥有良好的平纵组合,要求道路线性设计拥有较高的质量。这样才能够让驾驶人员

有一个舒适、平稳的驾车环境。反之,道路的线性设计没能够达到标准,那么就容易引起道路事故的发生。

3.2 与设计速度匹配度的分析

设计速度通常是指在其他条件都能够起作用的情况下,对于车辆行驶在行驶过程中保持安全的最高行驶速度。道路的线性就是根据这一关键数据来进行设计的。理想状况下,若一条道路的整个路段都只采用一种线性指标,那么无论是驾驶人员的视野还是道路的景致都能够得到保证。但事实上,这种情况是不可能存在的。原因在于:(1)由于道路跨越的地形各式各样,不同路段的线性指标肯定不会一样。(2)由于道路的路况不同,驾驶人员的驾驶习惯不同,车辆的性能不同,这些都会使得车辆在经过不同的路段是产生不同的驾驶速度。这使得在驾驶过程中的行驶速度(用V。表示)与

道路的设计速度(用V设表示)产生了较大的差别。

总之,公路上行驶车辆的速度通常会比设计车速高。设计车速越低会使得这种差距越明显。公路的各项指标都会在确定了道路设计速度后进行设定,以配合设计速度来使道路的设计均衡。V85与V设这两者之间的协调与否,是对这一路段是否合格的重要评价指标。为保证行驶过程的稳定性,V设与V85不应有大幅的波动,否则在交叉路段或者长坡路段会增加事故发生的几率。

根据研究,车辆速度变化频率高,且变化波动超过

20km/h,则说明行驶速度不连续。V85与V设之间的差值超过20km/h就说明行驶速度不够协调。由此可见,道路的线性连续性对道路的质量起到了决定性的作用。

3.3 道路曲率分析

从平面线性的角度来看,道路通常是由急弯,缓弯,直线组成。现在使用的标准对于这三者之间的使用频率等没有明确的要求,只要设计得合理,能够满足驾驶人员的正常行驶即可。而曲率的变化是否连续是保证车辆行驶安全的重要指标,因此曲率变化的分析是相当重要的。当曲率的变化保持在一定的范围且连续时,才能够让驾驶人员平稳顺畅的驾驶,减小交通事故的发生。

3.4 纵断面分析

纵断面分析包括对直坡线的分析和竖曲线的分析。这两者在保证行驶安全,保证道路质量及减少造价成本上相当重要。其中直坡线的纵坡坡度和坡长更是如此。如果纵坡太陡,会使得车辆上坡时速度过低,下坡时速度过快,这均会使得事故的发生。而坡长对车速的影响主要来自于坡度,对坡度有增强或者减弱的效果。若坡长过长,上坡时会使得车速降低过多;在下坡时会使得车速增加过多,对刹车片的磨损增加,这些也会影响行车安全。所以,合理的纵断线性设计至关重要。

3.5 平纵组合分析

道路的线性组合能够让驾驶人员对路况做出准确的判断,保证行驶安全。若组合不合理,会使得驾驶人员误判行驶方向和上下坡路段,一来影响驾驶安全,二来会造成不必要的油耗和车辆设备消耗。

4 结语

公路的线性连续性设计是否合理安全,不能单单考虑平纵指标的高低,而应该在整体的连续性上和均衡性上着重考虑。本文将行驶速度作为设计线性连续性的基本指标,能够帮助道路建设中克服黑点路段,保证行驶的连续性,提供切实可行的设计速度方案,保障行驶的安全性。

厂矿道路设计规范(完整版)

厂矿道路设计规范(完整版) 第一章总则 第1.0.1条为使厂矿道路设计贯彻执行国家的有关方针政策,从全局出发,按厂矿企业总体规划,统筹兼顾,合理布设,并做到技术先进、经济合理、安全适用、确保质量,特制订本规范。 第1.0.2条本规范适用于新建、改建的厂矿道路设计,不适用于林区道路设计。 第1.0.3条厂矿道路宜按下列规定划分为厂外道路、厂内道路和露天矿山道路。 一、厂外道路为厂矿企业与公路、城市道路、车站、港口、原料基地、其它厂矿企业等相连接的对外道路; 或本厂矿企业(露天矿除外)分散的厂(场)区、居住区等之间的联络道路;或通往本厂矿企业(露天矿除外)外部各种辅助设施的辅助道路。 二、厂内道路为厂(场)区、库区、站区、港区等的内部道路。 三、露天矿山道路为矿区范围内采矿场与卸车点之间、厂(场)区之间行驶自卸汽车的道路;或通往附属厂(车间)和各种辅助设施行驶各类汽车的道路。 第1.0.4条厂矿道路设计,应坚持节约用地的原则,不占或少占耕地,便利农田排灌、重视水土保持和 环境保护;应贯彻因地制宜、就地取材的原则,充分利用工业副产品和废渣,降低工程造价。 第1.0.5条厂矿道路设计,应适合厂矿企业生产(包括检修、安装)和其它交通运输的需要。对厂矿基本建设期间的超限货物(大件、重件)运输,可根据具体情况,予以适当考虑。 厂矿道路等级及其主要技术指标的采用,应根据厂矿规模、企业类型、道路性质、使用要求(包括道路服务年限)、交通量(包括行人),车种和车型,并综合考虑将来的发展确定。当道路较长且沿线情况变化较大时,可按不同的等级和技术指标分段设计。 需要分期修建的厂矿道路设计,应使前期工程在后期仍能充分利用。 第1.0.6 需要改建的厂矿道路设计,应充分、合理利用原有道路、桥涵等工程。当所利用的原有道路局部 路段受条件限制不符合本规范的要求时,在经过技术经济比较和采取相应措施确保安全通行的前提下,可 对本规范规定的个别技术指标作适当变动,但应经设计审批部门批准;当原有道路不能利用而需改线时, 改线路段应按新建厂矿道路设计。

道路平面线形设计

Ch3 道路平面线形设计 【本章主要内容】 §3-1 平面线形概述 §3-2 直线 §3-3 圆曲线 §3-4 缓和曲线(3h) §3-5 平面线形的组合与衔接 §3-6 行车视距 §3-7 道路平面设计成果 【本章学习要求】 掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。 本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。

§3-1 道路平面线形概述 基本要求:掌握平面线形的概念,平面线形三要素, 了解汽车行驶轨迹对道路线形的要求。 重点:平面线形的概念。 难点:平面线形三要素。 1 平面线形的概念 平面线形—道路中线在平面上的水平投影,反映道路的走向。 2 平面线形三要素 2.1 汽车行驶轨迹 大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为: 1) 角度为0时,汽车的行驶轨迹为直线; 2) 角度不变时,汽车的行驶轨迹为圆曲线; 3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。 行驶中的汽车,其轨迹在几何性质上有以下特征: 1)轨迹是连续和圆滑的; 2)曲率是连续的; 3)曲率的变化是连续的。 直线一圆曲线一直线符合第(1)条规律 直一缓一圆一缓一直符合第(1)、(2)条规律 整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。 2.2平面线形要素 直线、圆曲线、缓和曲线称为平面线形的三要素。

§3-2 直线 基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。重点:直线的设计标准。 难点:路线方位角、转角的计算。 1 直线的特点 1.1 以最短的矩离连接两目的地; 1.2 线形简单,容易测绘; 1.3 长直线,行车安全性差; 1.4 山区、丘陵区难与地形与周围环境协调。 2 设计标准 2.1直线最大长度 1)限制理由 2)直线最大长度:20V。 2.2直线最小长度L min 1)同向曲线间的L min:6V。 其中直线很短时,形成所谓的―断背曲线‖。 2)反向曲线间的L min:2V。 考虑其超高和加宽缓和的需要,以及驾驶人员的操作方便。 3 直线的运用 3.1适用条件 1)路线完全不受地形、地物限制的平原区或山间的开阔谷地; 2)市镇及其近郊或规划耕区等; 3)长大桥梁、高架桥、隧道等路段; 4)平面交叉口附近,为争取较好的行车和通视条件; 5)双车道公路提供超车的路段。 3.2注意问题 1)不宜过长; 2)长直线上纵坡不宜过大; 3)长直线尽头不得设置小半径平曲线; 4)不宜过短。 4 直线的表达式(★补充) 已知直线上两点的坐标(X1,Y1)(X2,Y2)则直线的数学表达式为:Y-Y1 X-X1 Y2-Y1 X2-X1 两点间的直线长度:L=[(X1-X2)2+(Y1-Y2)2 ]1/2

实验十四_MATLAB的线性控制系统分析与设计说明

实验十四: MATLAB 的线性控制系统分析与设计 一.实验目的 1.熟练掌握线性系统的各种模型描述。 2.熟练掌握模型之间的转换。 二.实验容与步骤 在控制系统分析与设计中,常用状态方程模型来描述一个控制系统,状态方程通常为一阶微分方程 例如,二阶系统 可用状态方程描述如下 其中: MATLAB 的控制系统工具箱(Control System Toolbox)可以提供对线性系统分析、设计和建模的各种算法。 1.1状态空间描述法 状态空间描述法是使用状态方程模型来描述控制系统,MATLAB 中状态方程模型的建立使用ss 和dss 命令。 语法: G=ss(a,b,c,d) %由a 、b 、c 、d 参数获得状态方程模型 G=dss(a,b,c,d,e) %由a 、b 、c 、d 、e 参数获得状态方程模型 【例1】写出二阶系统u(t)ωy(t)ωdt dy(t)2ζdt y(t) d 2n 2n n 22=+ω+,当ζ=0.707,n ω=1时的状态方程。 zeta=0.707;wn=1; A=[0 1;-wn^2 -2*zeta*wn]; B=[0;wn^2]; C=[1 0]; D=0; G=ss(A,B,C,D) %建立状态方程模型 ???+=+=Du Cx y Bu Ax x &u (t)2n ωy(t)2n ωd t d y(t)n 2ζ2 d t y(t)2d =+ω+u(t)ω0x x 2ζω10x x 2n 21n 2n 21??????+????????????ω--=?? ????&&dt t dy x t y x )()(21==

a = x1 x2 x1 0 1 x2 -1 -1.414 b = u1 x1 0 x2 1 c = x1 x2 y1 1 0 d = u1 y1 0 Continuous-time model. 1.2传递函数描述法 MATLAB中使用tf命令来建立传递函数。 语法: G=tf(num,den) %由传递函数分子分母得出 说明:num为分子向量,num=[b1,b2,…,b m,b m+1];den为分母向量,den=[a1,a2,…,a n-1,a n]。 【例1续】将二阶系统描述为传递函数的形式。 num=1; den=[1 1.414 1]; G=tf(num,den) %得出传递函数 Transfer function: 1 ----------------- s^2 + 1.414 s + 1

平面线形设计要点

1.平面线形设计要点:①平面线形应直捷,连续,顺适,并与地形,地物相适应,与周围环境相协调②保持平面线 形均衡与连贯③注意与纵断面设计想协调④平曲线应有足够的长度⑤避免连续急转线形 视觉分析概念:从视觉心理出发,对道路的空间线形及其与周围自然景观和沿线建筑的协调等进行研究分析,以保持视觉的连续性,使行车具有足够的舒适感和安全感的综合设计成为视觉分析 2平、纵线形组合的基本要求:①直线与直坡线.直线与凸形竖曲线.平曲线与直坡线是常用的组合形式/②平曲线与竖曲线宜相互重合.且平曲线应稍长于竖曲线③要保持平曲线与竖曲线大小均衡④要选择适合的合成坡度 3.平、纵线形设计中应避免的组合:①避免竖曲线的顶,底部插入小半径的平曲线②避免将小半径的平曲线起初点设在或接近竖曲线的顶部或底部③避免使竖曲线顶底部与反向平曲线的拐点重合④避免小半径的竖曲线与缓和曲线重合⑤避免在长直线设置陡坡或长度短,半径小的竖曲线⑥避免出现驼峰,暗凹,跳跃等使驾驶员视线中断的线形 4.越岭区路线,沿河区路线和平原区路线的布线要点沿溪线定义:沿溪线是沿着河,溪岸布置的路线 越岭线的定义:沿分水岭一侧山坡上山脊,在适当地点穿过垭口,再沿另一侧山坡下降的路线,称为越岭线. 5.平原区路线:①正确处理道路与农业的关系②合理考虑路线与城镇的联系③处理好路线与桥位的关系④注意土壤水文条件⑤正确处理新旧路的关系⑥尽量靠近建筑材料产地 6.沿河区路线:①河岸选择②高度选择③桥位选择路线跨越主河的桥位选择:①在“s”形河段腰部跨河,以争取桥轴线与河流成较大交角②河湾附近选择有利位置跨越注意河湾水流过桥的影响,采取相应的防护措施③在与路线接近平行的顺直河段上跨河.桥头引道难以舒顺,应尽量避免④不可避免时应设置斜桥,修改桥头线形或布置一段弯桥.桥头曲线要争取较大半径.以利行车/ 7.路线跨支流的桥位选择:①从支河沟口直跨②绕进支沟上游跨越.. 越岭区路线:①垭口选择选择:1垭口高低2垭口位置3垭口两侧地形和地质条件②过岭标高的选择:1垭口及两侧的地形2垭口的地质条件3结合施工及国防考虑③展现布局的步骤:1全面观察,拟定路线走向2试坡布线3分析落实控制点,决定路线布局4详细放坡试定路线. 8.展线系数:路线长度与直线距离之比①自然展线:是以适合的纵坡,顺着自然地形,绕山嘴,侧沟来延展距离,克服高差的布线形式②回头展线:是路线沿着山坡一侧延展,选择合适地点,用回头曲线作为方向相反的回头后在回头后在山坡的布线方式③螺旋展现:是当路线收到限制,需要在某处集中提高或降低某一高度才能充分利用前后有利地形或位置,而采用的螺旋状展线方式.一般多在山脊利用山包盘旋,以隧道跨线.

(整理)道路线形设计第1

道路线形设计第1-4次作业 一、单项选择题(只有一个选项正确,共10道小题) 1. 公路工程两阶段设计是指() (A) 初步设计和技术设计 (B) 初步设计和施工图设计 (C) 技术设计和初步设计 (D) 技术设计和施工图设计 你选择的答案: B [正确] 正确答案:B 解答参考: 2. 关于汽车燃料消耗量,不正确的是() (A) 燃料消耗量与路面的强度和平整度无关 (B) 燃料消耗量与路线海拔高度有关 (C) 燃料消耗量与汽车行驶季节有关 (D) 燃料消耗量与驾驶员的技术有关 正确答案:A 解答参考: 3. 关于附着系数φ ,正确的是() (A) φ与车速无关 (B) 车速越高,φ越高 (C) 车速越高,φ越低 (D) φ与荷载无关 你选择的答案: C [正确] 正确答案:C 解答参考:

4. 在直线和半径为R的圆曲线之间设置一回旋线,其长度为L,参数为A,R、L和A单位均为m,则计算公式正确的是() (A) R+L=A (B) R-L=A (C) R?L=A2 (D) R2/L=A 你选择的答案: D [错误] 正确答案:C 解答参考: 5. 各级公路的最小合成坡度不宜小于() (A) 0.3% (B) 0.5% (C) 0.7% (D) 0.9% 你选择的答案: B [正确] 正确答案:B 解答参考: 6. 选线的第一步工作是() (A) 进行路线平、纵、横综合设计 (B) 确定所有细部控制点 (C) 解决路线的基本走向 (D) 逐段解决局部路线方案 正确答案:C 解答参考: 7. 各级公路都必须保证的视距是() (A) 超车视距 (B) 停车视距 (C) 错车视距 (D) 会车视距 你选择的答案: D [错误] 正确答案:B 解答参考:

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

公路路线设计规范2006_条文说明

公路路线设计规范 JTG D20—2006 (条文说明) 2006-07-07发布2006-10-01实施 中华人民共和国交通部发布

1 总则 1.0.1 制定规范的目的。 1.0.2 制定规范的依据。 遵照交通部要求,本次修订《公路路线设计规范》(JTJ 011—94)[以下简称《路规》(94)]工作与修订《公路工程技术标准》(JTJ 01—97)[以下简称《标准》(97)]同步进行,故本稿是根据《公路工程技术标准》(JTGB01—2003)[以下简称《标准》(2003)]所规定的公路分级、控制要素、路线和路线交叉基本要求及其主要技术指标而编制的。 在2004年召开的全国公路勘察设计工作会上确立了公路设计六点新理念,本稿遵照会议精神进行了补充、完善。其后按部公路司关于设计规范与设计细则分别编制以及交公便字[2006]162号“关于《公路路线设计规范》修改意见的函”等的要求,重新进行了调整与修改,删除了本设计规范中有关“如何做”等方面的内容。 1.0.3 规范的适用范围。 本规范适用于新建和改建公路,旅游、厂矿等专用道路可参照执行。 1.0.4 路线走廊是一种不可再生的资源,应遵照统筹规划、合理布局、近远结合、综合利用的原则予以利用。工程可行性研究阶段应慎重研究并确定公路路线走向和走廊带。路线设计应综合考虑各种相关线性工程的关系,尽早做出规划,处理好已建工程和新建工程的关系和布局。在确定公路等级时应根据公路功能,并遵循照顾发展与适度超前的原则,处理好同其他工程的关系,以合理确定公路走廊。 1.0.5 设计方案是路线设计的核心。在进行总体设计过程中,应对采用不同设计速度及其对自然环境等带来的影响进行论证。当有多种方案时,应作同等深度的技术经济比较。 1.0.6 路线选定应特别强调对工程地质等自然条件的调查,在此基础上方能进行路线线位及主要平、纵面技术指标的选定。 “沿线小区域气候”是指公路沿线由于区域地形所形成的雾区、风口、暴雨中心等。 1.0.7 加强环境保护和合理利用土地资源是重要的国策,应减少因修建公路而带来的对环境、自然景观的影响,提高公路环境质量。高速公路、一级公路应特别注重线形的视觉诱导和线形的连续性,以及同沿线环境相协调,以增进舒适和安全感。 1.0.8 路线线形设计的各单项技术指标是按相应公路等级的设计速度规定的最小值。在综合考虑各种因素后所进行的组合设计必须符合第9章线形设计的有关规定。线形设计中应根据地形、地质、技术难度及其工程量大小等具体情况进行优化。一项设计并不是各项技术指标都符合规定就是好设计;也不是各项技术指标都符合最低限度要求其工程造价就最省。因之其关键就在于设计者将各种因素综合地进行考虑,创造性地进行“各种技术指标的组合(即设计)”。设计质量与水平的高低,就在于是否能结合工程实际在高限与低限之间科学合理地选择技术指标,以及遇有特殊问题时能否作出特殊处理。 公路透视图可以是某点的路线透视图,或某路段的连续路线透视图,或采用三维模型技术制作的虚拟公路透视图等。对路线线形设计的评价与检验,可采用公路透视图以检查线形设计同沿线景观的配合与协调。 公路透视图是一种最有效、最丰富的表达语言。运用计算机生成的三维模型透视图及其图像处理技术,不仅可以更为形象地进行工程评价,同时亦可用于向公众展示项目建成后的情况,征询意见,进行沟通,帮助公众直观地理解意图并作出反应。 1.0.9 《标准》(2003)在设计上引入了运行速度的概念,要求对线形设计受地形条件或其他特殊情况限制的地段,采用运行速度进行检验,以改善技术指标或采用必要的交通安全技术、管理措施。因为运行速度考虑了公路上绝大多数驾驶者的交通心理需求,以车辆的实际运行速度作为线形设计速度,从而有效地保证了路线所有相关要素,如视距、超高、纵坡、竖曲

平面线形设计大致过程

《公路勘测规范》纸上定线规定: 1.应将有特殊要求或控制的地点,必须避绕的建筑或地质不良地带,地下建筑或管线等标注于地形图上。 2.山岭地区的越岭路线,需进行纵坡控制的地段应在地形图上进行放坡,将放坡点标示于图上。 3.在地形图上选定路线曲线与直线位置,定出交点,计算坐标和偏角,拟定平曲线要素,计算路线连续里程。 4.沿路线中线按一定桩距从图上判读其高程,点绘纵断面图。河堤、铁路、立体交叉等需要重点控制的地段或地点,应实测高程点绘纵断面图,并据以进行纵坡设计。 5.应根据路线中线线位,在地形图上测绘控制性横断面,并按纵坡设计的填挖高度进行横断面设计,作为中线横向检验和计算路基土石方数量的依据。 6.依据纸上定线的线位及实地调查资料,初步确定人工构造物的位置、交角、类型与尺寸。 7.综合检查路线线形设计及有关构造物的配合情况与合理性。线形设计可采用透视图法检验平、纵、横组合情况。 8.纸上定线后,对高填深挖地段、大型桥梁、隧道、立体交叉以及需要特殊控制的地段,应进行实地放线检验、核对,并作为各专业工程勘测调查的依据。 9.所确定的线位应总体配合恰当、工程经济合理、线形连续顺适。对需进行比较的方案,应按上述步骤方法定出线位、计算工程量,进行技术经济比较。 本次实习中三级公路设计车速30km/h,平曲线极限最小半径30m,一般最小半径65m,不设超高最小半径350m,最大纵坡8%,路基宽度7.5m,行车道宽度6.0m,路肩宽度0.75m,路拱横坡度2%,路肩横坡度3% 1.项目——新建项目 2.在新建项目后可直接应用主线平面设计功能进行路线平面设计。 应用cad打开画好的带状地形图设计——主线平面设计。通过拾取可以在图上插入交点。 注意:这时系统只为新建项目建立了一个交点,除了交点名称和交点坐标可输入之外,其他控件都处于不可用状态。

超全道路工程平面线型设计说明

一、道路平面线型概述 一、路线 道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。路线:是指道路中线的空间位置。 平面图:路线在水平面上的投影。 纵断面图:沿道路中线的竖向剖面图,再行展开。 横断面图:道路中线上任意一点的法向切面。 路线设计:确定路线空间位置和各部分几何尺寸。 分解成三步: 路线平面设计:研究道路的基本走向及线形的过程。 路线纵断面设计:研究道路纵坡及坡长的过程。

(二)平面线形要素 行驶中汽车的导向轮与车身纵轴的关系: 现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。 二、直线 一、直线的特点 1.优点: ①距离短,直捷,通视条件好。 ②汽车行驶受力简单,方向明确,驾驶操作简易。 ③便于测设。 2.缺点 ①线形难于与地形相协调 ②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。 ③易超速 二. 最大直线长度问题: 《标准》规定:直线的最大与最小长度应有所限制。 德国:20V(m)。 美国:3mile(4.38km)

我国:暂无强制规定 景观有变化≧20V;<3KM 景观单调≦20V 公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。 采用长的直线应注意的问题: 公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。 (1)直线上纵坡不宜过大,易导致高速度。 (2)长直线尽头的平曲线,设置标志、增加路面抗滑性能 (3)直线应与大半径凹竖曲线组合,视觉缓和。 (4)植树或设置一定建筑物、雕塑等改善景观。 三、直线的最小长度 直线的长度:前一个曲线终点到下一个曲线起点之间的距离。 YZ(ZH)-ZH(ZY) 之间的距离点击?工程资料免费下载 1.同向曲线间的直线最小长度 同向曲线:指两个转向相同的相邻曲线之间连以直线而形成的平面曲线 《规范》:当V≥60km时,Lmin≧6V; 当V≤40km时,参考执行

线性控制系统的设计与校正

实验十四线性控制系统的设计与校正 实验目的 二阶系统方框图如图所示 要求串联校正后系统的调节时间不超过0.1s,超调量不超过5%。实验原理 由系统框图,得 GH(s)=2000 2 G(s)=C(s) R(s) =? 2000 s2+50s+2000ωn2=2000 ωn=20√5 ζωn=25 ζ= √5 4 ≈0.559 OP%=12% T s= 4.0 25 =0.16s 模拟电路图为: 若要串联校正后系统的调节时间不超过0.1s,超调量不超过5%。

ζ≤0.7 ζω n ≥ 4.0 0.1 =40 ω n ≥57.1串联校正环节为 G c(s)=0.02s+1 Ts+1 串联校正后系统为 GH(s)= 40 s(0.02s+1) × 0.02s+1 Ts+1 = 40 s(Ts+1)ωn2= 40 2ζωn= 1 T 解得: T= 1 1.96×40 =0.012755 引入串联校正后的系统框图为 系统框图可简化为 系统阶跃响应不存在稳态误差。串联校正环节模拟电路图为:

R2=R4=xkΩ R1=R2+R4=2xkΩ C=1μF,R3=12kΩ 12x+12x+x2 =20 R1=32kΩ,R2=R4=16kΩ 引入串联校正后的系统模拟电路图为: 总结: 该方法的策略是通过添加一个与原系统极点位置相同零点和一个新的极点重新配置系统开环极点的位置,并未增加系统阶数,也未改变开环bode增益。 虽然,串联的校正环节零点在极点前面,但是,该校正与传统的相位超前校正还是有所差异的。 从出发点上讲,该方法并未严格设定目标增益穿越频率,仍按照开环极点配置的方式来考虑系统校正环节的参数,因此,无需考虑最大相位超前频率,只需考虑新的开环非零极点位置。 实验步骤 1、按照系统模拟电路图搭建原系统的模型 2、运放电压为±15V,输入正负方波的幅值为0.5V,频率为1Hz,测量输入 和输出波形,观察输出对输入的跟踪情况,以及系统的阶跃响应。 3、按照系统模拟电路图搭建控制器的模型,串联到原系统中。 4、同样的输入下测量输出波形,并与校正前的系统比较,看是否满足题目 要求,是否与仿真结果相同。 5、如果与仿真结果有差异,分析差异产生的原因,并作出调整。

城市道路线形设计

城市道路线形设计 1.前言 道路平面设计的主要内容与工作是根据城市的情况规划确定的路线大致走向与位置,在满足车辆行驶与人们出行的技术条件前提下,结合当地地形、地貌、地质和水文条件以及现状地物,因地制宜确定具体的设计和施工方向;挑选合适恰当的平曲线半径,解决转折点处的曲线衔接;要保证必须的行车视距,使路线既要符合科学技术要求,又要经济合理。城市道路线形是由直线和曲线连接而成的空间立体线形形状,即是道路中心线的空间描绘。线形设计不好的话,轻者乘客会感到不舒服,司机行驶感到麻烦,严重的话甚至会影响车辆行驶的安全性,导致造成交通事故频发。究其原因,道路设计规范只能对某些施工硬性的技术指标作出指示,如:对平曲线半径、竖曲线半径、纵坡坡度、坡长等都分别做出了相关规定,而对这些指标之间的组合之下形成的新问题以及特殊性考虑甚少,如果设计人员没有考虑到行驶车辆的安全性,那么,设计出的道路就不会是一条优秀的城市道路。因为优秀的城市线形道路,是车辆安全、迅速、舒适的行驶的首要条件。 2.道路设计中线形设计的组成因素 (1)设计人员在线形设计时除了要考虑规划红线外,还应该综合考虑到原有的建筑、道路桥梁及其他构筑物等对新路设计的影响。在不降低道路的技术标准的前提条件下对上述发生的情况尽可能采取避让、利用以及改造等手法使设计工程量降至最低。

(2)城市道路作为城市景观不可或缺的一部分,又要受到地形、地貌、地物排水和地质条件及水文条件等各项因素的制约影响。因此,在布线时应尽量让所选路线与地形地势相互协调融洽。使它既要融于自然,又要设法利用自然条件,同时还要尽量解决自然中的不利因素和影响。 (3)设计人员在线形设计时还应考虑道路路线内部平面及纵、横断面之间的协调性。它们间的组合合理性是保证道路符合技术标准的重要条件之一,要使之能达到行车快捷方便、安全舒适、便于集散的目的。 3.道路线形设计中的问题分析 3.1 平面线形 (1)小偏角 小偏角特指道路上偏角≤7°的情形。当道路出现小偏角时,平曲线的长度将被看成比实际长度短,这样容易使驾驶员产生急转弯的错觉而急忙操作方向盘,从而造成行车事故,并且偏角越小越明显。事实上,在道路线形中采用小偏角是设计中平面定线经常采用的方法,因为小偏角可以解决许多定线中遇到的困难。这种情况在城市道路设计中非常普遍的存在这。而要取消一个小偏角的话就会多出很多不必要的麻烦,甚至有时还会增加一些不必要的工程量或拆迁,增加费用。所以对于设计速度较低的道路,小偏角的存在对行车安全影响并不是很大,但是对于高速公路这类设计行驶速度比较高的道路来说设置小偏角一定要慎重考虑。

城市道路平面线形设计

第四章城市道路平面设计1 平面设计的内容 平曲线形设计2 3 行车视距 4 城市道路平面线形设计

第一节平面设计的内容—主要任务 道路线形——道路路幅中心线(又称中线)的立体形状。 道路平面线形——道路中线在水平面上的投影形状。 平面设计的主要任务: 1)根据道路网规划确定的道路走向和道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响。 2)根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系 3)对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置等要求。

第一节平面设计的内容——基本原则 平面设计的原则: 1)遵循城市道路网规划原则; 2)符合各级道路的技术指标原则; 3)处理好直线与平曲线的衔接,科学设置缓和曲线和超高、加宽等,合理行车视距并辅以适当的保护措施原则; 4)根据道路类别、等级、合理设置交叉口、沿线建筑物入口、停车场出入口、分隔带断口、公交停靠站位置等; 5)平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。

第一节平面设计的内容—基本要求 平面设计的基本要求: 1)适应汽车行驶轨迹; 汽车行驶轨迹特征——“三个连续”: ◆行车迹线是连续的,任何一点上不出现错头、折点或间断; ◆迹线的曲率是连续的,即在迹线上任何一点不出现两个曲率值; ◆轨迹线的曲率对里程或时间的变化率是连续的,轨迹线上任何一点 不出现两个曲率变化值。 2)合理确定平曲线形三要素 直线—曲率为零;圆曲线—曲率为常数;缓和曲线—曲率为变数

非线性系统作业-Backstepping设计

渤海大学硕士研究生非线性系统课程考核论文 院(系、部):工学院年级: 2013 级专业:控制理论与控制工程 姓名:郑晓龙学号: 2013080030 密封线 任课教师:刘亮 一、命题部分 考虑如下三阶严格反馈非线性系统 并且 设计状态控制器使得闭环系统是渐进稳定的,并给出一个二阶系统的数值仿真算例。 二、评分标准 1、论文排版格式(15分); 2、控制器设计过程(45分); 3、仿真算例控制器设计(25分); 4、Matlab仿真图片(15分)。 三、教师评语 ____________________________ 本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。 注3:试题、评分标准、评语尽量控制在本页。 注4:不符合规范试卷需修改规范后提交。

密封线 Backstepping控制设计 郑晓龙 提要Backstepping设计方法是针对非线性系统的一种系统化的控制器综合方法,是将Lyapunov函数的选取与控制器的设计相结合的一种回归设计方法。它通过从系统的最低阶次微分方程开始,引入虚拟控制的概念,一 步一步设计满足要求的虚拟控制,最终设计出真正的控制律。本文基于Backstepping设计方法对三阶严格反 馈非线性系统进行了控制器设计,并对结论做了仿真验证。 关键词 Backstepping 非线性系统控制 一、引言 Backstepping (逐步后推,反推)设计方法是针对不确定性系统的一种系统化的控制器综合方法,是将Lyapunov 函数的选取与控制器的设计相结合的一种回归设计方法。它通过从系统的最低阶次微分方程开始,引入虚拟控制的概念,一步一步设计满足要求的虚拟控制,最终设计出真正的控制律. Backstepping自适应控制是当前自适应控制理论和应用的前沿课题之一,近年来, 在处理线性和某些非线性系统时, 该方法在改善过渡过程品质方面展现出较大的潜力,除航空航天领域外, 在液压控制、电机控制、机器人控制、船舶控制等许多工业控制领域, 反推自适应控制的应用在国内外均有大量报道. Backstepping 方法在处理非线性控制问题方面所具有的独特的优越性,近年来引起了众多学者的极大关注。Backstepping 的基本设计思想是将复杂的非线性系统分解成不超过系统阶数的子系统,然后单独设计每个子系统的部分 Lyapunov 函数,在保证子系统具有一定收敛性的基础上获得子系统的虚拟控制律,在下一个子系统的设计中,将上一个子系统的虚拟控制律作为这个子系统的跟踪目标。相似于上个子系统的设计,获得该子系统的虚拟控制律;以此类推,最终获得整个闭环系统的实际控制律,且结合Lyapunov 稳定性分析方法来保证闭环系统的收敛性。 Backstepping 可用来设计控制方案以满足三角结构单输入单输出非线性系统的匹配条件。Backstepping 设计方法之所以受到国内外学者的极大关注,主要原因为该方法取消了系统不确定性满足匹配条件的约束,从而解决了相对复杂的非线性系统的控制问题。在现实世界中,存在大量非线性系统具有(或者可以经过微分同胚变换成)严格反馈等规范型;该方法为复杂非线系统的 Lyapunov 函数设计提供了较为简单的结构化、系统化方法,解决了一直以来具有严格反馈等结构的非线性系统稳定性分析和控制器设计的难题。自适应 backstepping 设计方法发展的初级阶段,要求系统不确定性能够线性参数化。随着神经网络与模糊系统等智能控制技术的不断发展,很好地取消了自适应 backstepping 设计所需的该约束条件,从而使得 backstepping技术获得了很大的发展空间。特别是神经网络和自适应技术的引入,极大地推广了backstepping 方法的应用。 二、基于Backstepping三阶严格反馈非线性系统控制器设计 考虑如下三阶严格反馈非线性系统 (1)

城市道路线形设计

城市道路线形设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

城市道路线形设计 1.前言 道路平面设计的主要内容与工作是根据城市的情况规划确定的路线大致走向与位置,在满足车辆行驶与人们出行的技术条件前提下,结合当地地形、地貌、地质和水文条件以及现状地物,因地制宜确定具体的设计和施工方向;挑选合适恰当的平曲线半径,解决转折点处的曲线衔接;要保证必须的行车视距,使路线既要符合科学技术要求,又要经济合理。城市道路线形是由直线和曲线连接而成的空间立体线形形状,即是道路中心线的空间描绘。线形设计不好的话,轻者乘客会感到不舒服,司机行驶感到麻烦,严重的话甚至会影响车辆行驶的安全性,导致造成交通事故频发。究其原因,道路设计规范只能对某些施工硬性的技术指标作出指示,如:对平曲线半径、竖曲线半径、纵坡坡度、坡长等都分别做出了相关规定,而对这些指标之间的组合之下形成的新问题以及特殊性考虑甚少,如果设计人员没有考虑到行驶车辆的安全性,那么,设计出的道路就不会是一条优秀的城市道路。因为优秀的城市线形道路,是车辆安全、迅速、舒适的行驶的首要条件。 2.道路设计中线形设计的组成因素 (1)设计人员在线形设计时除了要考虑规划红线外,还应该综合考虑到原有的建筑、道路桥梁及其他构筑物等对新路设计的影响。在不降低道路的技术标准的前提条件下对上述发生的情况尽可能采取避让、利用以及改造等手法使设计工程量降至最低。

(2)城市道路作为城市景观不可或缺的一部分,又要受到地形、地貌、地物排水和地质条件及水文条件等各项因素的制约影响。因此,在布线时应尽量让所选路线与地形地势相互协调融洽。使它既要融于自然,又要设法利用自然条件,同时还要尽量解决自然中的不利因素和影响。 (3)设计人员在线形设计时还应考虑道路路线内部平面及纵、横断面之间的协调性。它们间的组合合理性是保证道路符合技术标准的重要条件之一,要使之能达到行车快捷方便、安全舒适、便于集散的目的。 3.道路线形设计中的问题分析 平面线形 (1)小偏角 小偏角特指道路上偏角≤7°的情形。当道路出现小偏角时,平曲线的长度将被看成比实际长度短,这样容易使驾驶员产生急转弯的错觉而急忙操作方向盘,从而造成行车事故,并且偏角越小越明显。事实上,在道路线形中采用小偏角是设计中平面定线经常采用的方法,因为小偏角可以解决许多定线中遇到的困难。这种情况在城市道路设计中非常普遍的存在这。而要取消一个小偏角的话就会多出很多不必要的麻烦,甚至有时还会增加一些不必要的工程量或拆迁,增加费用。所以对于设计速度较低的道路,小偏角的存在对行车安全影响并不是很大,但是对于高速公路这类设计行驶速度比较高的道路来说设置小偏角一定要慎重考虑。

非线性PID控制系统的设计

非线性PID控制系统的设计 【摘要】非线性PID的设计是在非线性的基础之上,PID控制系统具有很多极其独特的优点,给我们的使用带来了很多便利和好处,为实际的的工程运用提供了强大的技术支持和模型支撑。本文分析了非线性PID控制系统设计的相关问题。 【关键词】非线性;PID;控制系统;设计 1.前言 传统的非线性PID控制系统在给我们的相关工程和实际工作提供很多便利的同时,存在不少应该改进的问题。非线性PID控制系统的巨大优势主要体现在改善传统的PID控制器时所表现出来的稳定性和快速性等方面。由于各方面技术和需要的快速发展,目前的非线性PID控制系统在使用上的局限性已经开始显现。但是,长时期以来,在工业控制的大领域里,非线性的PID控制是一种得到广泛业界认可,并且历史及其悠久,效果显著的控制方式。 2.非线性PID控制系统的特点和应用现状 PID的应用仍然是现在工程界用于实际控制的主要控制方法,在冶金、化工、轻工等行业广泛应用。非线性PID的主要特点便是结构简单、易于操作调整并且具有一定的鲁棒性。非线性PID控制系统的使用已经得到广泛推广。虽然已经有一些新的现代控制算法出现,但是非线性PID仍然是主要算法居多。只是因为现代出现的一些算法有很多缺陷,在实际应用过程中无法起到作用。长期以来的大量实践经验和事实表明这种经典的控制算法仍然具有强大的生命力,它的思想方法与当今流行的各种控制器的设计方法相比,最显著的特点是它不依赖于对象精确的数学模型,可以从根本上摆脱了工业过程建模,尤其是建立精确模型的困难。传统的非线性PID的控制方式主要属于事后控制,该控制在实践过程中出现一些问题,比如可能会引起控制回路自激震荡。也会引起瞬态互调的失真,是被控对象出现损害的几率更高,最近一段时期以来,不管是在理论上还是在技术上,非线性PID的发展质量都得以迅速提高,常规和传统的控制系统与现代新兴的方法结合在一起,已经使系统控制的质量得以大幅度提高。另外,今天的计算机技术已经得到长足发展,在技术条件上有更加有力的保障,完全可以在这些基础上设计一些非线性控制模块,并且利用这些非线性模块组合出新的合适的控制率。 3.非线性PID控制系统的参数和设计分析 通常意义上的PID的控制参数的主要内容是设置控制器的参数,并且对其不适性进行调整,在这个调整过程中使控制系统达到令人满意的程度。这个控制设计过程主的原则主要涉及到以下几个方面,积分作用、微分作用、比例作用以及稳定性指标的选择。设计的方法则主要包括凑试法、临界比例度法、衰减曲线

线性控制系统课程设计

自动控制原理 课程设计 一、课程设计题目: 线性控制系统的设计与校正 学部:机械与电气工程学部 专业:电气工程及其自动化 班级: 姓名:杨晓琨 学号: 小组成员: 制作日期:2011年12月31日 实验报告

二、课程设计内容: 在前面做过的二阶系统动态、稳态性能研究实验中,我们看到一个控制系统的动态性能、稳定性和稳态性能指标通常是矛盾的,增大系统的开环增益可以降低稳态误差,但是也会减小阻尼比,使系统的超调量和振荡加强。同样,增加开环积分环节可以提高系统型别,使输出跟踪输入的能力加强,消除某种输入信号时系统产生的误差,但是却有可能导致系统动态性能恶化,甚至不稳定。为了使控制系统同时具有满意的动态、稳态性能,就需要加入一些环节,以消除系统的某些缺陷,使之具有满意的性能。 这些加入的环节称为校正环节或校正装置,通常由一些元件或电路组成。本次课程设计的主要任务是学习如何设计一个满意的控制系统校正装置,具体内容如下: 1、拟定一个线性控制系统,确定传递函数和模拟电路,并在自动 控制原理实验箱上搭建实际电路,输入阶跃信号(用适当周期的方波信号模拟),测量系统各项动态、稳态性能指标; 2、根据工程控制的一般要求提出控制系统的性能指标要求,选择合适的方法设计校正装置,并采用Matlab软件进行仿真。然后在实验装置上搭建校正后的系统电路,再次测量阶跃输入下的动态、稳态性能指标,与校正前的系统进行比较; 3、改变校正装置的相关参数,使系统的性能指标均满足要求 三、实验条件: 测量仪器、自动控制理论实验装置、具有数据采集功能的数字示

波器、装配Matlab 等软件的计算机。 四、设计思路及步骤: 1、时域校正法 ①自行拟定一个线性控制系统,并确定其开环传递函数: ) (1.10)(20+=S K S G (1)性能指标设计要求: 阶跃输入下的稳态误差 05.0≤e rss ; 阶跃响应超调量 σp %20≤。 (2)计算开环放大系数K 的值: 由于本系统是“0”型系统,所以未加校正时,系统在阶跃响应下的稳态误差为 e rss = 11+K ; 要求:e rss 05.0≤ 则 K 20≥ ; 取 K=20。 所以,开环传递函数 )11.0(20)(20+= S S G ; 闭环传递函数 )(S φ= 201.10202++)(S =2100 2020002++S S ; 因此,W n =2100,2ξW n =20,218.02100 10==ξ; 由此可知加校正装置前系统的各项指标为 超调量:σp =21ξξπ--e %7.49497.0=≈; 调节时间:S T = n W ξ5.3=0.35s ;

道路线形设计

浅谈道路线形的设计 摘要:道路线形的设计不仅要与周围的环境相适应,而且要注意曲线之间的相互配合。在道路线形的设计中,有很多种组合方式,而好的线形设计,应起到保证线形连续、行驶安全、美观、与环境适应的重要作用。下面我们就这些方面进行详细地说明。 关键词:道路线形、线形设计、道路设计、线形 abstract: the design of road alignment should not only with the surrounding environment, but also to pay attention to curve interaction between. in the design of road alignment, have a variety of combination method, and good alignment design, should have to ensure that the linear continuous, driving safety, beautiful, and environment to adapt to the important role. below we on these aspects in detail. keywords: road alignment, alignment design, road design, line 中图分类号:u412.37文献标识码:a文章编号: 1道路线形设计一般原则 1.1道路线形应与地形相适应,与周围环境相协调。 道路不是白纸上画出来的!道路是在已有自然条件的基础上建设的人工构造物! 掌握的原则:

2019年全国注册咨询师继续教育公路路线设计规范70分

2019年全国注册咨询师公路路线设计规范试卷及答案70分 一、单选题【本题型共4道题】 1.高速公路车道数确定的依据为: A.交通量 B.交通量和地形条件 C.交通量和建设条件 D.公路功能和交通量 用户答案:[B]、[D] 得分:0.00 2.设计速度60km/h公路,一般情况可采用的最大纵坡坡度为: A.4.5% B.5.0% C.5.5% D.6.0% 用户答案:[D] 得分:10.00 3.公路服务水平分为: A.3级 B.4级 C.5级 D.6级 用户答案:[D] 得分:10.00 4.承担主要干线功能的公路,应选用: A.高速公路 B.高速公路或一级公路 C.一级公路 D.二级及二级以上公路 用户答案:[A] 得分:10.00 二、多选题【本题型共1道题】 1.以下符合平纵面线形组合设计原则的有: A.平、纵线形宜相互对应,且竖曲线宜较平曲线长。 B.长的竖曲线内不宜设置半径小的平曲线。

C.短的平曲线宜与短的竖曲线组合。 D.凸形竖曲线的顶部或凹形竖曲线的底部,不宜同反向平曲线的拐点重合。 E.半径小的圆曲线起、讫点,不宜接近或设在凸形竖曲线的顶部或凹形竖曲线的底部。用户答案:[ABCDE] 得分:0.00 [A] 错 三、判断题【本题型共4道题】 1.二级及以下公路的平面缓和曲线,一般采用三次抛物线。 Y.对 N.错 用户答案:[N] 得分:10.00 2.公路按照交通功能分为干线公路、集散公路、支线公路和乡村道路。 Y.对 N.错 用户答案:[N] 得分:10.00 3.高速公路的一般路段,应满足超车视距要求。 Y.对 N.错 用户答案:[N] 得分:10.00 4.各等级公路的几何设计,应主要满足所有设计车型的通行条件。 Y.对 N.错 用户答案:[N] 得分:10.00

相关文档
最新文档