函数单调性的判定方法
证明单调性的方法总结
证明单调性的方法总结
1. 导数法:证明函数单调递增(或递减)时,可以求出其导数,证明导数恒大于(或小于)零。
2. 差值法:如果f(x_2)> f(x_1),则我们可以构造函数g(x) = f(x) - f(x_1),证明g(x_2)> g(x_1)。
3. 归纳法:证明f(x) 在区间[a_n,a_{n+1}] 上单调递增(或递减)时,将整个区间分为n 个子区间,并依次证明这n 个子区间上f(x) 单调递增(或递减)。
4. 对偶法:证明f(x) 在区间[a,b] 上单调递增(或递减)时,可以证明其对偶函数1/f(x) 在区间上单调递减(或递增)。
5. 中值定理法:可以利用中值定理,证明f(x) 在区间上的导数恒大于(或小于)零,从而证明其单调性。
6. 极值法:如果f(x) 在某一点处有极大值或极小值,那么它在该点附近一定是单调的。
可以利用极值的存在,证明f(x) 在该区间上单调递增(或递减)。
总之,证明函数单调性的方法应当具体问题具体分析,选择合适的方法,能够提高证明效率。
函数单调性判断或证明方法
函数单调性判断或证明方法函数的单调性是指函数在定义域上的取值呈现递增或递减的趋势。
判断函数的单调性有两种常用的方法:1.利用导函数进行判断:对于函数f(x),若在一个区间上导函数f'(x)始终大于等于零(或小于等于零),则f(x)在该区间上是递增(或递减)的。
具体步骤如下:a.求出f(x)的导函数f'(x);b.列出f'(x)=0的根,即f'(x)的驻点;c.对于这些驻点,再求出它们对应的函数值,得到(f(x),f'(x))的表格;d.根据(f(x),f'(x))的表格,判断函数的递增或递减区间。
2.利用原函数进行判断:对于函数f(x),若在一个区间上f'(x)始终大于零(或小于零),则f(x)在该区间上是递增(或递减)的。
具体步骤如下:a.求出f(x)的原函数F(x),即有F'(x)=f(x);b.对F(x)进行求导得到F'(x),即二阶导函数,然后化简;c.列出F'(x)=0的根,即F'(x)的驻点;d.对于这些驻点,再求出它们对应的函数值,得到(F(x),F'(x))的表格;e.根据(F(x),F'(x))的表格,判断函数的递增或递减区间。
下面以具体的例子来说明如何利用这两种方法判断函数的单调性。
例1:对函数f(x)=x^3进行单调性判断。
a.利用导函数进行判断:f'(x)=3x^2,该函数导数恒大于零。
由此可知,f(x)=x^3在整个定义域上都是递增的。
表格示意如下:(x,f'(x))(-∞,+∞)b.利用原函数进行判断:F(x)=1/4*x^4是f(x)=x^3的一个原函数。
对F(x)进行求导得到F'(x)=x^3,该函数恒大于零。
由此可知,f(x)=x^3在整个定义域上都是递增的。
表格示意如下:(x,F'(x))(-∞,+∞)可以看出,无论是利用导函数还是原函数进行判断,都得到了相同的结论:函数f(x)=x^3在整个定义域上都是递增的。
判断单调性的5种方法
判断单调性的5种方法要判断一个函数的单调性,我们需要先了解什么是单调函数。
单调函数是指在定义域上递增或递减的函数。
递增函数是指当自变量增大时,函数值也相应增大;递减函数则是指当自变量增大时,函数值相应减小。
判断函数的单调性通常有以下5种方法:导数法、变量替换法、数列判断法、二阶导数法和作图法。
下面我将分别进行详细介绍。
一、导数法导数法是一种常用的判断函数单调性的方法,通过计算函数的导数来分析函数的变化趋势。
如果导数在定义域上始终大于0,则函数递增;如果导数在定义域上始终小于0,则函数递减。
具体步骤如下:1. 计算函数的导数,得到导函数。
2. 判断导函数的正负性,如果导函数恒大于0,则函数递增;如果导函数恒小于0,则函数递减;如果导函数的正负性不一致,则函数既不递增也不递减。
如果导函数有零点,则需要进一步进行分析。
二、变量替换法变量替换法是一种通过变量替换来判断函数单调性的方法。
该方法适用于一些无法直接通过导数法判断的函数。
具体步骤如下:1. 根据函数的形式,进行合适的变量替换,将函数化简。
2. 判断新的函数形式是否递增或递减,如果是,则原函数在相应的定义域上是单调的。
三、数列判断法数列判断法是一种适用于连续函数的判断方法,通过构造数列来判断函数的单调性。
具体步骤如下:1. 选择定义域上的一组数列,如递增、递减或交替递增递减等。
2. 将数列代入函数中,观察函数值的变化。
3. 如果函数值是递增的,则函数在这个定义域上是递增的;如果函数值是递减的,则函数在这个定义域上是递减的;如果函数值在数列中无明显的变化趋势,则函数既不递增也不递减。
四、二阶导数法二阶导数法是一种通过计算函数的二阶导数来判断函数的单调性的方法。
该方法适用于一些无法直接通过导数法判断的函数。
具体步骤如下:1. 计算函数的二阶导数。
2. 判断二阶导数的正负性,如果二阶导数恒大于0,则函数在定义域上是凹函数,且递增;如果二阶导数恒小于0,则函数在定义域上是凸函数,且递减;如果二阶导数的正负性不一致,则函数在相应定义域上既不递增也不递减。
判断单调性的5种方法
判断单调性的5种方法在数学中,判断函数的单调性是一个非常重要的问题。
单调性是指函数在定义域内的增减关系,它直接关系到函数图像的形状和性质。
因此,对于一个给定的函数,我们需要掌握一些方法来准确地判断它的单调性。
下面将介绍5种判断单调性的方法,希望能够帮助大家更好地理解和掌握这一概念。
1. 导数法。
判断函数的单调性最常用的方法之一就是使用导数。
通过求函数的导数,我们可以得到函数的增减区间,从而判断函数的单调性。
具体来说,如果函数在某个区间上的导数始终大于0(或者始终小于0),那么函数在这个区间上就是单调递增(或者单调递减)的。
这种方法在实际应用中非常方便,特别是对于一些复杂的函数,通过导数法可以比较容易地判断其单调性。
2. 一阶导数和二阶导数的关系。
除了直接使用导数判断单调性外,我们还可以通过一阶导数和二阶导数的关系来判断函数的单调性。
具体来说,如果函数在某个区间上的一阶导数大于0,而二阶导数小于0,那么函数在这个区间上就是单调递增的;反之,如果一阶导数小于0,而二阶导数大于0,那么函数在这个区间上就是单调递减的。
这种方法在一些特殊情况下非常有效,可以帮助我们更快地判断函数的单调性。
3. 利用函数的图像。
对于一些简单的函数,我们可以通过观察函数的图像来判断其单调性。
具体来说,如果函数的图像是上升的,那么函数就是单调递增的;如果函数的图像是下降的,那么函数就是单调递减的。
这种方法虽然不够精确,但在一些直观的情况下非常实用,可以帮助我们快速地判断函数的单调性。
4. 利用零点。
对于一些特殊的函数,我们可以通过求解函数的零点来判断其单调性。
具体来说,如果函数在某个区间上的零点个数为偶数,并且在这个区间的两个相邻零点处函数值的符号相反,那么函数在这个区间上就是单调递增的;反之,如果零点个数为奇数,并且在这个区间的两个相邻零点处函数值的符号相同,那么函数在这个区间上就是单调递减的。
这种方法在一些特殊的函数中非常有用,可以帮助我们更快地判断函数的单调性。
考点04 函数单调性的5种判断方法及3个应用方向(解析版)
专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。
判断函数单调性的常用方法
判断函数单调性的常用方法判断函数单调性的常用方法一、定义法设$x_1.x_2$是函数$f(x)$定义域上任意的两个数,且$x_1f(x_2)$,则此函数为减函数。
例如,证明:当$x>0$时,$x>\ln(1+x)$。
f'(x)=\frac{1}{1+x}>0$,所以$f(x)$为严格递增的。
因为$f(x)>\lim\limits_{x\to 0}-\ln(1+x)=-\ln(1+0)=0$,所以$x>\ln(1+x)$。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题。
若函数$f(x)。
g(x)$在区间$B$上具有单调性,则在区间$B$上有:⑴$f(x)$与$f(x)+C$($C$为常数)具有相同的单调性;⑵$f(x)$与$c\cdot f(x)$当$c>0$时具有相同的单调性,当$c<0$时具有相反的单调性;⑷当$f(x)。
g(x)$都是增(减)函数,则$f(x)+g(x)$都是增(减)函数;⑸当$f(x)。
g(x)$都是增(减)函数,则$f(x)\cdot g(x)$当两者都恒大于时也是增(减)函数,当两者都恒小于时也是减(增)函数。
三、同增异减法是处理复合函数的单调性问题的常用方法。
对于复合函数$y=f[g(x)]$满足“同增异减”法(应注意内层函数的值域),可令$t=g(x)$,则三个函数$y=f(t)。
t=g(x)。
y=f[g(x)]$中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;2)互为反函数的两个函数有相同的单调性;3)如果$f(x)$在区间$D$上是增(减)函数,那么$f(x)$在$D$的任一子区间上也是增(减)函数。
设单调函数$y=f(x)$为外层函数,$y=g(x)$为内层函数。
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; ⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f (x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.例1. 求函数222)(-+=x x x f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
函数单调性的判断或证明方法
函数单调性的判断或证明方法
一、判断函数单调性
1.首先要求出函数的导数,再当x取不同值时,比较变化值得正负,
若正负总变化,则函数具有单调性;
2.若存在极值点,则极值点左右两侧的切线斜率不同,极值点左右两
侧分别是函数的上函数和下函数,是函数的单调递增或单调递减;
3.画函数的图象,若图象逐渐上升或逐渐下降,则此函数称为单调函数;
4.举一反三:若函数是单调递减函数,则函数的导数是负值。
二、证明函数的单调性
1.当函数的一阶导数存在时,根据函数的单调性定理:函数f(x)在
区间(a,b)上单调,当且仅当f'(x)在该区间从-∞到+∞的变化;
2.若存在极值点,则用函数的极值定理:f(x)在(a,b)中具有极值点,当且仅当f'(x)在该区间中取0;
3.若存在拐点,则用函数的拐点定理:f(x)在(a,b)中具有拐点时,
f'(x)在该区间取任意值;
4.若极值点或拐点右边的切线斜率大于左边的切线斜率,则函数单调
递增,否则函数单调递减。
判断函数单调性常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: ⑴ f(x)与f(x)+C (C 为常数)具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D 上是增(减)函数,那么f(x)在D 的任一子区间上也是增(减)函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增.(4) 若)(x f y =减,)(x g y =增,则))((x g f y =减.例1. 求函数222)(-+=x xx f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t 内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
(完整)判断函数单调性的常见方法
判断函数单调性的常见方法一、函数单调性的定义:一般的,设函数y=f(X)的定义域为A,I∈A,如对于区间内任意两个值X1、X2,1)、当X1〈X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单调增函数,I 称为函数的单调增区间;2)、当X1>X2时,都有f(X1)〉f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。
二、常见方法:Ⅰ、定义法:定义域判断函数单调性的步骤①取值:在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2;②作差(或商)变形:作差f(X1)—f(X2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形;③定号:确定差f(X1)—f(X2)的符号;④判断:根据定义得出结论.例:已知函数f(x)=x3+x,判断f(x)在(—∞,+∞)上的单调性并证明解:任取x1、x2∈(—∞,+∞),x1<x2,则f﹙x1﹚-f﹙x2﹚=(x13+x1)— (x23+x2)=(x1—x2)+(x13-x23)=(x1-x2)(x12+x22+x1x2+1)=(x1-x2) [﹙x1+1/2x2﹚2+1+3/4x22]∵x1、x2∈(-∞,+∞),x1<x2,∴x1-x2<0,(x1+1/2x2﹚2+1+3/4x22〉0故f(x1)-f(x2)〈0,即f(x1)<f(x2)∴f(x)在(-∞,+∞)上单调递增Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):①函数y=—f(x)的单调性相反②函数y=f(x)恒为正或恒为负时,函数y=f(x)的单调性相反③在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例:判断函数y=—x+1+1/x在(0,+∞)内的单调性解:设y1=—x+1,y2=1/x,∵y1在(0,+∞)上↓,y2在(0,+∞)上↓,∴y=—x+1+1/x在(0,+∞)内↓Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数Ⅳ、分析法:复合函数单调性判断:例:判断y=1/(—2x—3)的单调性解:令u=-2x—3,∵y=1/u在(0,+ ∞)↓,在(—∞,0)↑,u(x)在(-∞,+ ∞)↓∴y=1/(-2x-3)在(0,+ ∞)↑,在(—∞,0)↓这种方法概括为“同减异增”判断函数单调性的常见方法有定义法、直接判断法、图像法、分析法……做题时要结合具体题意,找出适当的方法解题。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
判断函数单调性的方法
判断函数单调性的方法函数的单调性是指函数在定义域内是否递增或递减。
判断一个函数的单调性需要观察它的导数或增减性,下面将详细介绍判断函数单调性的方法。
一、定义函数的单调性假设函数f(x)定义在区间[a, b]上,如果对于任意的x1, x2∈[a, b],且x1<x2,有f(x1)≤f(x2),那么函数f(x)在区间[a, b]上单调递增;如果对于任意的x1, x2∈[a, b],且x1<x2,有f(x1)≥f(x2),那么函数f(x)在区间[a, b]上单调递减。
二、判断函数单调性的准则1. 函数导数法函数的导数能够反映函数的增减性,因此我们可以通过观察函数的导数来判断函数的单调性。
1.1 如果函数f(x)在区间[a, b]上的导函数f'(x)≥0,则函数在该区间上单调递增;1.2 如果函数f(x)在区间[a, b]上的导函数f'(x)≤0,则函数在该区间上单调递减;1.3 如果函数f(x)在区间[a, b]上的导函数f'(x)>0,则函数在该区间上严格单调递增;1.4 如果函数f(x)在区间[a, b]上的导函数f'(x)<0,则函数在该区间上严格单调递减。
2. 函数零点法2.1 如果函数f(x)在区间[a, b]上恒大于零,即f(x)>0,则函数在该区间上严格单调递增;2.2 如果函数f(x)在区间[a, b]上恒小于零,即f(x)<0,则函数在该区间上严格单调递减;2.3 如果函数f(x)在区间[a, b]上恒大于等于零,即f(x)≥0,则函数在该区间上单调递增;2.4 如果函数f(x)在区间[a, b]上恒小于等于零,即f(x)≤0,则函数在该区间上单调递减。
3. 函数一阶导数与二阶导数法如果函数f(x)在区间[a, b]上的一阶导数f'(x)≥0,并且在该区间上的二阶导数f''(x)>0,则函数在该区间上严格单调递增;如果函数f(x)在区间[a, b]上的一阶导数f'(x)≤0,并且在该区间上的二阶导数f''(x)<0,则函数在该区间上严格单调递减。
判断单调性的5种方法
判断单调性的5种方法单调性是数学中一个非常重要的概念,它描述了函数在定义域内的增减规律。
在学习数学的过程中,我们经常需要判断一个函数的单调性,因此掌握判断单调性的方法是十分必要的。
在本文中,我将介绍判断单调性的5种方法,希望能够帮助大家更好地理解和掌握这一概念。
方法一,利用导数。
判断函数的单调性最直接的方法之一就是利用导数。
对于函数f(x),如果在定义域内f'(x)>0,那么函数f(x)在该区间上是单调递增的;如果f'(x)<0,那么函数f(x)在该区间上是单调递减的。
当f'(x)=0时,需要额外考虑临界点处的单调性。
利用导数判断单调性是一种非常常用也非常有效的方法。
方法二,利用一阶导数的符号变化。
除了直接利用导数的大小来判断单调性外,我们还可以通过观察一阶导数的符号变化来判断函数的单调性。
具体来说,我们可以找到函数f(x)的一阶导数f'(x),然后观察f'(x)在定义域内的符号变化。
如果f'(x)在某一区间内始终大于0,则说明函数f(x)在该区间上是单调递增的;如果f'(x)在某一区间内始终小于0,则说明函数f(x)在该区间上是单调递减的。
方法三,利用二阶导数。
除了一阶导数外,我们还可以通过观察函数的二阶导数来判断单调性。
对于函数f(x),如果f''(x)>0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递增的;如果f''(x)<0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递减的。
利用二阶导数判断单调性在一些特定的函数中会更加方便和直观。
方法四,利用函数图像。
观察函数的图像也是判断单调性的一种方法。
通过观察函数的图像,我们可以直观地了解函数在定义域内的增减规律。
当然,这种方法对于一些复杂的函数可能并不太方便,但在一些简单的情况下,利用函数图像来判断单调性是非常直接和有效的。
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,假设f(x1)<f(x2),那么此函数为增函数;反知,假设f(x1)>f(x2),那么此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用根本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 假设函数f(x)、g(x)在区间B 上具有单调性,那么在区间B 上有: ⑴ f(x)与f(x)+C 〔C 为常数〕具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;⑷当f(x)、g(x)都是增(减)函数,那么f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,那么f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减〞法(应注意内层函数的值域),可令 t =g(x),那么三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,假设有两个函数单调性相同,那么第三个函数为增函数;假设有两个函数单调性相反,那么第三个函数为减函数.注:〔1〕奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;〔2〕互为反函数的两个函数有相同的单调性;〔3〕如果f(x)在区间D 上是增〔减〕函数,那么f(x)在D 的任一子区间上也是增〔减〕函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 假设)(x f y =增,)(x g y =增,那么))((x g f y =增. (2) 假设)(x f y =增,)(x g y =减,那么))((x g f y =减. (3) 假设)(x f y =减,)(x g y =减,那么))((x g f y =增.(4) 假设)(x f y =减,)(x g y =增,那么))((x g f y =减.例1. 求函数222)(-+=x xx f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t 内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
判断函数单调性的常见方法
判断函数单调性的常见方法一、函数单调性的定义:
一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2,
1)、当X1<X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单
调增函数,I称为函数的单调增区间;
2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单
调减函数,I称为函数的单调减区间。
二、常见方法:
Ⅰ、定义法:定义域判断函数单调性的步骤
①取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ②作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于
判断差的符号的方向变形;
③定号:
确定差f(X1)-f(X2)的符号;
④判断:
根据定义得出结论。
例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明解:任取x1、x2?(-∞,+∞),x1<x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)。
函数单调性的判定方法(高中数学)
函数单调性的判定方法(高中数学)
函数单调性是指一个函数在某个区间上的取值,若其在该区间内是单调递增或者单调递减,则称该函数在此区间上是单调的。
高中数学中,函数单调性的判定方法是指用来判断一个函数在某个区间上是否单调的方法。
具体的判定方法有三种:
1. 利用值域的特性判断函数单调性。
当函数的值域为实数集、实数集U∪{+∞}(或-∞)时,函数是单调递增的;当函数的值域为实数集、实数集U∪{-∞}(或+∞)时,函数是单调递减的。
2. 利用导数的大小判断函数单调性。
如果函数的导数在某个区间上都是正的,则该函数在该区间上是单调递增的;如果函数的导数在某个区间上都是负的,则该函数在该区间上是单调递减的。
3. 利用函数的图像判断函数单调性。
在函数的图像上,如果曲线的切线方向都是向上的,就说明该函数在这个区间上是单调递增的;如果曲线的切线方向都是向下的,就说明该函数在这个区间上是单调递减的。
以上就是高中数学中函数单调性的判定方法,要想正确判断一个函数在某个区间上是否单调,不仅要理解这三
种判定方法,还要结合该函数的特点,综合考虑多种因素,才能得出准确的结论。
函数单调性的判定方法最全
函数单调性的判定方法最全函数的单调性是描述函数在整个定义域上的增减趋势的特性。
判定函数单调性是数学分析中的重要内容之一,对于函数的应用和推导都有着重要的影响。
本文将介绍函数单调性的判定方法,包括函数的基本概念、单调函数的定义、单调性的判定方法以及一些特殊函数的单调性判定。
一、函数的基本概念函数是一种特殊的关系,用于将一个集合中的元素与另一个集合中的元素进行对应。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
二、单调函数的定义单调函数是指函数在定义域上的取值随自变量的增大而单调增加(或单调减少)的函数。
具体来说,如果对于定义域上的任意两个数a和b,若a<b,则有f(a)≤f(b)(或f(a)≥f(b)),则函数f(x)称为递增函数(或递减函数)。
三、单调性的判定方法1.导数判定法:对于可导函数,通过计算导数可以判断函数的单调性。
如果函数的导数恒大于零,则函数单调递增;如果导数恒小于零,则函数单调递减。
2.一阶导数和二阶导数判定法:如果函数在定义域上的一阶导数恒大于零(或恒小于零),而二阶导数恒小于零(或恒大于零),则函数单调递增(或递减)。
3.函数值比较法:对于定义域上的两个不同的数a和b,如果f(a)>f(b),则函数单调递增;如果f(a)<f(b),则函数单调递减。
4.零点判定法:如果函数在定义域上恒大于零(或恒小于零),则函数单调递增(或递减)。
5.不等式判定法:对于定义域上的任意两个数a和b,如果对于任意x∈[a,b],有f'(x)≥0,则函数单调递增;如果对于任意x∈[a,b],有f'(x)≤0,则函数单调递减。
四、特殊函数的单调性判定1.幂函数:当指数n为正偶数时,函数在整个定义域上单调递增;当指数n为负偶数时,函数在整个定义域上单调递减;当指数n为正奇数时,函数在整个定义域上单调递增;当指数n为负奇数时,函数在整个定义域上单调递减。
2.指数函数:当底数a大于1时,函数在整个定义域上单调递增;当底数a大于0且小于1时,函数在整个定义域上单调递减。
证明函数单调性的方法总结
证明函数单调性的方法总结
一、定义函数单调性
函数单调性指的是函数在区间内的变化是单调的,也就是说,函数只
有增加或减少的情况,而不会出现先增大后减少或者先减少后又增大的情况。
1、证明函数单调性的方法
(1)一阶导数法
若函数的一阶导数在区间上为正或者为负,则该函数在该区间是单调
递增或者单调递减的。
(2)二阶导数法
若函数的二阶导数在区间上为正或者为负,则该函数在该区间是单调
递增或者单调递减的。
(3)数轴变换法
对于有界函数,可以做数轴变换,以确定该函数是单调递增函数还是
单调递减函数。
(4)极限法
由极限定理可知,当其中一函数在其中一数轴上的极限存在且单调时,该函数在该数轴上是单调的。
(5)拉格朗日法
利用拉格朗日法计算函数的一阶导数,可以判断函数在其中一区间上是单调的还是不单调的。
2、证明函数单调性的几个案例
(1)一阶导数法
案例1:设函数f(x)=x^2-2x+1,若想证明它在(-oo,+oo)上是单调递减的,首先找到它的一阶导数:f'(x)=2x-2,如果对比得出f'(x)在(-oo,+oo)上均为负数,那么函数f(x)就是增减函数。
案例2:设函数f(x)=x^2+2x+1。
单调性的判断方法
单调性的判断方法在数学中,单调性是指函数在定义域内的变化趋势。
判断一个函数的单调性对于解决数学问题和理解函数的性质至关重要。
本文将介绍如何判断一个函数的单调性,以及常见的判断方法。
首先,我们来了解一下函数的单调性。
一个函数在定义域内如果满足以下条件之一,则称其具有单调性:1. 若对于任意的x1和x2(x1<x2),有f(x1)≤f(x2),则称函数f(x)在区间内是递增的;2. 若对于任意的x1和x2(x1<x2),有f(x1)≥f(x2),则称函数f(x)在区间内是递减的。
接下来,我们将介绍如何判断一个函数的单调性。
常见的判断方法有以下几种:1. 导数法。
利用导数的正负性来判断函数的单调性。
具体步骤如下:(1)求出函数的导数f'(x);(2)求出导数f'(x)的零点,即解方程f'(x)=0;(3)根据导数的正负性判断函数的单调性。
2. 函数图像法。
通过画出函数的图像来观察函数在定义域内的变化趋势,从而判断函数的单调性。
具体步骤如下:(1)绘制函数的图像;(2)观察函数图像在定义域内的变化趋势,判断函数的单调性。
3. 二阶导数法。
利用函数的二阶导数来判断函数的单调性。
具体步骤如下:(1)求出函数的二阶导数f''(x);(2)求出二阶导数f''(x)的符号,判断函数的凹凸性;(3)结合函数的凹凸性和导数的正负性来判断函数的单调性。
4. 零点法。
通过求解函数的零点来判断函数的单调性。
具体步骤如下:(1)求出函数的零点,即解方程f(x)=0;(2)根据零点的位置和函数在零点附近的变化趋势来判断函数的单调性。
以上是常见的判断函数单调性的方法,不同的方法适用于不同的函数。
在实际应用中,我们可以根据具体情况选择合适的方法来判断函数的单调性。
总之,判断函数的单调性是数学中的重要问题,掌握好判断方法对于理解函数的性质和解决数学问题至关重要。
希望本文介绍的方法能够帮助读者更好地理解和运用函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数单调性的判定方法1.判断具体函数单调性的方法对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种:1.1 定义法首先我们给出单调函数的定义。
一般地,设f 为定义在D 上的函数。
若对任何1x 、D x ∈2,当21x x <时,总有(1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数;(2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。
给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。
用单调性的定义判断函数单调性的方法叫定义法。
利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤:(1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方);(4)断号(即判断)()(21x f x f -差与0的大小);(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。
例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。
证明:设1x ,),(2+∞-∞∈x ,且21x x <,则).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=-由于043)2(22221212221>++=++x x x x x x x ,012>-x x 则0))(()()(2122211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。
例2.用定义证明函数xkx x f +=)()0(>k 在),0(+∞上的单调性。
证明:设1x 、),0(2+∞∈x ,且21x x <,则)()()()(221121x k x x k x x f x f +-+=-)()(2121x k x k x x -+-= )()(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((212121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x ,当1x 、],0(2k x ∈时021≤-k x x ⇒0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ⇒0)()(21<-x f x f ,此时函数)(x f 为增函数。
综上函数xkx x f +=)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。
此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。
用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。
在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。
1.2 函数性质法函数性质法是用单调函数的性质来判断函数单调性的方法。
函数性质法通常与我们常见的简单函数的单调性结合起来使用。
对于一些常见的简单函数的单调性如下表:函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
二次函数cbxaxy++=2),,,0(Rcbaa∈≠当0>a时,abx2-<时y单调减,abx2->时y单调增;当0<a时,abx2-<时y单调增,abx2->时y单调减。
反比例函数xky=Rk∈(且0≠k)当0>k时,y在0<x时单调减,在0>x时单调减;当0<k时,y在0<x时单调增,在0>x时单调增。
指数函数x a y =)1,0(≠>a a当1>a 时,y 在R 上是增函数;当10<<a ,时y 在R 上是减函数。
对数函数xy a log =)1,0(≠>a a当1>a 时,y 在),0(+∞上是增函数;当10<<a 时,y 在),0(+∞上是减函数。
对于一些常用的关于函数单调的性质可总结如下几个结论: ⑴.)(x f 与)(x f +C 单调性相同。
(C 为常数)⑵.当0>k 时,)(x f 与)(x kf 具有相同的单调性;当0<k 时, )(x f 与)(x kf 具有相反的单调性。
⑶.当)(x f 恒不等于零时,)(x f 与)(1x f 具有相反的单调性。
⑷.当)(x f 、)(x g 在D 上都是增(减)函数时,则)(x f +)(x g 在D 上是增(减)函 数。
⑸.当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒大于0时,)(x f )(x g 在D 上 是增(减)函数;当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒小于0时,)(x f )(x g 在D 上是减(增)函数。
⑹.设)(x f y =,D x ∈为严格增(减)函数,则f 必有反函数1-f ,且1-f在其定义域)(D f 上也是严格增(减)函数。
我们可以借助以上简单函数的单调性来判断函数的单调性,下面我们来看以下几个例子:例3.判断5)1(2log )(21323+++++=+x x x x x f x 的单调性。
解:函数)(x f 的定义域为),0(+∞,由简单函数的单调性知在此定义域内323log ,,x x x 均为增函数,因为021>+x ,012>+x 由性质⑸可得)1(221++x x 也是增函数;由单调函数的性质⑷知x x x 23log ++为增函数,再由性质⑴知函数)1(2log )(21323++++=+x x x x x f x +5在),0(+∞为单调递增函数。
例4.设函数)0()(>>++=b a b x ax x f ,判断)(x f 在其定义域上的单调性。
解:函数bx ax x f ++=)(的定义域为),(),(+∞-⋃--∞b b .先判断)(x f 在),(+∞-b 内的单调性,由题可把bx ax x f ++=)(转化为b x b a x f +-+=1)(,又0>>b a 故0>-b a 由性质⑶可得b x +1为减函数;由性质⑵可得bx b a +-为减函数;再由性质⑴可得bx ba x f +-+=1)(在),(+∞-b 内是减函数。
同理可判断)(x f 在),(b --∞内也是减函数。
故函数bx ax x f ++=)(在),(),(+∞-⋃--∞b b 内是减函数。
函数性质法只能借助于我们熟悉的单调函数去判断一些函数的单调性,因此首先把函数等价地转化成我们熟悉的单调函数的四则混合运算的形式,然后利用函数单调性的性质去判断,但有些函数不能化成简单单调函数四则混合运算形式就不能采用这种方法。
1.3 图像法用函数图像来判断函数单调性的方法叫图像法。
根据单调函数的图像特征,若函数)(x f 的图像在区间I 上从左往右逐渐上升则函数)(x f 在区间I 上是增函数;若函数)(x f 图像在区间I 上从左往右逐渐下降则函数)(x f 在区间I 上是减函数。
、例5.如图1-1是定义在闭区间[-5,5]上的函数)(x f y =的图像,试判断其单调性。
解:由图像可知:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5).其 中函数)(x f y =在区间[-5,-2),[1,3)上的图像是从左往右逐渐下降的,则函数)(x f y =在区间[-5,-2),[1,3)为减函数;函数)(x f y =在区间[-2,1),[3,5]上的图像是从往右逐渐上升的,则函数)(x f y =在区间[-2,1),[3,5]上是增函数。
例6.利用函数图像判断函数①1)(+=x x f ;②x x g 2)(=;③12)(++=x x h x 在[-3,3]上的单调性。
分析:观察三个函数,易见)()()(x g x f x h +=,作图一般步骤为列表、描点、作图。
首先作出1)(+=x x f 和x x g 2)(=的图像,再利用物理学上波的叠加就可以大致作出12)(++=x x h x 的图像,最后利用图像判断函数12)(++=x x h x 的单调性。
解:作图像1-2如下所示:由以上函数图像得知函数①1)(+=x x f 在闭区间[-3,3] 上是单调增函数;②x x g 2)(=在闭区间[-3,3]上是单调增函数;利用物理上波的叠加可以直接大致作出③12)(++=x x h x 在闭区间[-3,3]上图像,即③12)(++=x x h x 在闭区间[-3,3]上是单调增函数。
事实上本题中的三个函数也可以直接用函数性质法判断其单调性。
用函数图像法判断函数单调性比较直观,函数图像能够形象的表示出随着自变量的增加,相应的函数值的变化趋势,但作图通常较烦。
对于较容易作出图像的函数用图像法比较简单直观,可以类似物理上波的叠加来大致画出图像。
而对于不易作图的函数就不太适用了。
但如果我们借助于相关的数学软件去作函数的图像,那么用图像法判断函数单调性是非常简单方便的。
1.4复合函数单调性判断法定理1:若函数)(u f y =在U 内单调,)g(x u =在X 内单调,且集合{u ︳)g(x u =,X x ∈}U ⊂(1)若)(u f y =是增函数,)g(x u =是增(减)函数,则)]([x g f y =是增(减)函数。
(2)若)(u f y =是减函数,)g(x u =是增(减)函数,则)]([x g f y =是减(增)函数。
归纳此定理,可得口诀:同则增,异则减(同增异减) 复合函数单调性的四种情形可列表如下:情形函数 单调性 第①种情形第②种情形第③种情形第④种情形内层函数)(x g u = ↑ ↓ ↑ ↓ 外层函数)(u f y =↑↓↓↑显然对于大于2次的复合函数此法也成立。