第5章波分复用光纤通信系统

合集下载

光纤通信系统的波分复用技术使用技巧

光纤通信系统的波分复用技术使用技巧

光纤通信系统的波分复用技术使用技巧光纤通信系统是当今主流的通信网络,而其中的波分复用技术是实现高容量、高速率传输的重要手段。

波分复用技术允许多个光信号利用不同的波长在光纤中传输,有效提高了光纤传输的带宽利用率。

本文将介绍光纤通信系统的波分复用技术使用技巧,包括波分复用的原理、系统构成以及一些应用实践的技巧。

首先,我们来了解一下波分复用的原理。

波分复用技术通过将不同的光信号使用不同的波长进行编码,然后在发送端将其合并为一个光信号传输,接收端再进行解复用分离,恢复出原始的多个光信号。

这样可以实现多个信号在光纤中同时传输,充分利用了光纤的带宽资源。

波分复用技术通过密集分布的波长选择器(多通道复用器和解复用器)来实现,这些设备能够高效地将不同波长的光信号进行合并和分离。

在光纤通信系统中,波分复用技术主要由两个部分构成:发送端和接收端。

在发送端,不同的光信号经过编码后被合并,然后由光发射器将其转换为相应的光信号。

发送端的波分复用设备通常包括多通道复用器和光发射器,多通道复用器用于将不同波长的光信号合并,而光发射器用于将不同波长的电信号转换为光信号。

在接收端,光信号经过解复用器分离成不同的波长和光信号,然后由光探测器转换为电信号进行后续处理。

接收端的波分复用设备通常包括解复用器和光探测器。

在实际应用中,光纤通信系统的波分复用技术使用技巧包括以下几个方面:1. 波分复用器的选择:不同的波分复用器具有不同的性能特点,例如通道数、插入损耗、波长控制精度等。

在选择波分复用器时,需要根据实际需求综合考虑各种因素,以确保性能和成本的平衡。

2. 波长分配:波分复用技术可以同时传输多个波长的光信号,波长分配是其中关键的环节。

在进行波长分配时,需要考虑各个波长之间的干扰、光纤的色散特性以及其他信号处理的要求,以最大限度地提高传输的容量和质量。

3. 光信号调制技术:光信号在光纤通信系统中需要经过调制、放大、解调等处理,光信号调制技术的选择会直接影响到系统的传输性能。

光纤通信第五章光纤线路技术原理及器件波分复用器件

光纤通信第五章光纤线路技术原理及器件波分复用器件
Dl Df
1.6nm 100G 0.8nm 50G 0.4nm 25G
光纤通信第五章光纤线路技术原理 及器件波分复用器件
光纤通信第五章光纤线路技术原理 及器件波分复用器件
Frequency Wavelength Frequency Wavelength
(THz)
(nm)
(THz)
(nm)
196.1
基于偏振干涉的光梳状滤波器
偏振干涉系统:起偏器P1、双折射晶体平行 平板及检偏器P2
FX
X
X
P1
S
Z
45°
Y
Y
P1
P2
光纤通信第五章光纤线路技术原理 及器件波分复用器件
透过起偏器的光场的振幅为A0,光通过 双折射晶体平行平板后在X、Y方向的分 量分别为
AxA0co4s5ex pj2(Lon/l) AyA0si4n5ex pj2(Len/l)
闪耀光栅剖面图
BOE1
l1 ln
l┋1
F1
ln
L1 L2 透射式二元光学波分复用器件
光纤通信第五章光纤线路技术原理 及器件波分复用器件
光纤通信第五章光纤线路技术原理 及器件波分复用器件
干涉滤波片型
采用干涉滤波片来实现不同波长的光的 分离,实现分/合波功能。
由于采用了微等离子体镀膜技术,介质 膜窄带滤光片的光学性能有了很大改善, 工艺也较为成熟。透过率高,带宽窄,
1528.77 193.1
1552.52
196.0
1529.55 193.0
1553.33
195.9
1530.33 192.9
1554.13
195.8
1531.12 195.8
ห้องสมุดไป่ตู้

第5章波分复用光纤通信系统PPT课件

第5章波分复用光纤通信系统PPT课件

S0
lim
0
D()
D(0 ) 0
dD( ) d
0
ps /(nm2
km)
ITU-T规定G.652光纤在零色散波长范围(1300 nm ≤λ0 ≤1324 nm)内的零色散斜率S0≤0.093 ps/(nm2 ·km)
(3)非线性效应
光纤折射率与光波电场强度的二阶和二阶以上的变化关 系,称为非线性效应。由于非线性折射率的存在,产生 了几种重要的非线性效应。
自相位调制(SPM)
在非线性折射率作用下,光纤中传输的强光波,其光强 波动引起了光波自身相位发生波动,从而导致光波频谱 变化的现象,称为自相位调制。
自相位调制的危害性:SPM产生的频率变化可以导致传 输光波的频谱变宽,在这种情况下就会因模内色散而使 光脉冲的时域波形展宽,引起码间干扰。
交叉相位调制(XPM)
(4)节省了光纤和光电型中继器,大大降低了建设成本 ,方便了已建成系统的扩容。
3.波分复用系统的主要特性指标
(1)信道中心波长:指每个信道内分配给光源的波长。
(2)信道带宽与信道平坦带宽:信道带宽是指每个信道 内分配给光源的波长范围;信道平坦带宽是指幅度传输 特性曲线波动范围不超过1 dB的带宽大小,用来表示带 宽的平直程度。信道平坦带宽越大,越能容纳光源波长 的微小变化。
5.2.5 干涉型波分复用器件
1.介质膜滤波式波分复用器 由多层介质薄膜构成,其中高折射率层和低折射率层交 替叠合。
多层介质膜波分复用器的优点是带宽顶部平坦,波长响 应尖锐,温度稳定性好,插入损耗低,对光信号的偏振 性不敏感,在实际系统中应用较广泛。
2.马赫-曾德尔(Mach-Zehnder)干涉式波分复用器
目前,世界上已建立了多个光纤孤子实验系统,也进行 了现场试验。但从技术成熟性来看,光纤孤子通信还远 未达到实用水平。

光纤通信系统波分复用系统WDM

光纤通信系统波分复用系统WDM
1550nm窗口的密集波分复用(DWDM): 广泛用于长距离传输
1550nm窗口的稀疏波分复用(CWDM): 用于城域网
光纤通信系统波分复用系统WDM
DWDM
Dense Wavelength Division Multiplexer ITU-T G692 信道间隔: nm量级
Dl Df
1.6nm 200GHz 0.8nm 100GHz 0.4nm 50GHz
光纤通信系统波分复用系统WDM
WDM系统的基本类型及其应用
(1)双纤单向传输
单向WDM传输是指所有光通路同时在一根光 纤上沿同一方向传送。
由于各信号是通过不同光波长携带的,因而彼 此之间不会混淆。
在接收端通过光解复用器将不同波长的信号分 开, 完成多路光信号传输的任务。
反方向通过另一光纤根通信光系统纤波分复传用系输统W的DM 原理与此相同。
简单性和波分复用器件的发展还没有完全成熟。
1995年开始,高速发展 (1)光纤色散和偏振模色散限制了10Gb/s的传输。 (2)TDM 10Gb/s面临着电子元器件响应时间的挑战。 (3)光电器件的迅速发展。
光纤通信系统波分复用系统WDM
光纤通信系统波分复用系统WDM
我国光通信的先行者武汉邮电科学研究院研制 的波分复用技术,为光网络传输提供了实现“高速 信息公路”的可能。
光纤通信系统波分复用系统WDM
主要特点
充分利用了光纤的巨大带宽 节约了大量的光纤 降低了器件的超高速要求 通道对传输信号完全透明 可扩展性好
光纤通信系统波分复用系统WDM
WDM系统的技术规范
为了引进产品和国内自行开发的产品具 有统一性,制定我国的标准十分必要。
(a)现实的需要性,以2.5Gb/s系统为例, 16波分单向就可达到40Gb/s的传输速率, 这足以满足未来几年的业务需求;

WDM原理

WDM原理

1 波分复用光传输技术1.1 波分复用的基本概念光通信系统可以按照不同的方式进行分类。

如果按照信号的复用方式来进行分类,可分为频分复用系统(FDM-Frequency Division Multiplexing )、时分复用系统(TDM-Time Division Multiplexing)、波分复用系统( WDM-Wavelength Division Multiplexing)和空分复用系统( SDM-Space Division Multiplexing)。

所谓频分、时分、波分和空分复用,是指按频率、时间、波长和空间来进行分割的光通信系统。

应当说,频率和波长是紧密相关的,频分也即波分,但在光通信系统中,由于波分复用系统分离波长是采用光学分光元件,它不同于一般电通信中采用的滤波器,所以我们仍将两者分成两个不同的系统。

波分复用是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号。

光波分复用的实质是在光纤上进行光频分复用( OFDM),只是因为光波通常采用波长而不用频率来描述、监测与控制。

随着电 -光技术的向前发展,在同一光纤中波长的密度会变得很高。

因而,使用术语密集波分复用(DWDM-Dense Wavelength Division Multiplexing),与此对照,还有波长密度较低的 WDM系统,较低密度的就称为稀疏波分复用(CWDM-Coarse Wave Division Multiplexing)。

这里可以将一根光纤看作是一个“多车道”的公用道路,传统的 TDM系统只不过利用了这条道路的一条车道,提高比特率相当于在该车道上加快行驶速度来增加单位时间内的运输量。

而使用 DWDM技术,类似利用公用道路上尚未使用的车道,以获取光纤中未开发的巨大传输能力。

1.2 WDM技术的发展背景随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。

光纤通信系统中波分复用技术的应用

光纤通信系统中波分复用技术的应用

光纤通信系统中波分复用技术的应用1.引言随着传输带宽的不断提升,我们使用的光纤通信系统中的数据传输速率也有了很大的提升。

为了充分利用光纤分布式光纤光缆中的带宽资源,波分复用技术应运而生。

波分复用技术是一种在光纤通信系统中应用非常广泛的数字光纤通信技术。

它可以通过在单个光缆上传输多路复用的光信号,从而有效提高传输带宽并节约线路资源。

本文将对波分复用技术在光纤通信系统中的应用做一个比较详细的阐述。

2. 波分复用技术波分复用技术是基于光纤光缆的数字传输技术,它结合了光波频率和分布式调制结构,将多路复用信号在单粒光缆中并行传输。

它通过蜂窝结构不同频段的激光器,发送每个多路复用信号,使每个复用信号经过不同的路径,最终在目的地的激光器头中被收集,从而实现多信息的同时传输。

波分复用技术分为单粒波分复用和多波分复用技术两种,其中单纤波分复用技术是创建多路复用信号,采用多种激光器产生多个不同频段的复用信号,利用带通滤波器和耦合器将不同频率的复用信号传输到终端设备的技术;而多波分复用技术则是利用多个离散的光波频率交替传输多路复用信号,这种技术只需要一种激光器就可以实现多路复用,可以有效的节约技术成本和安装空间。

波分复用技术可以有效的提高光纤光缆中的数据传输速率,这使它在光纤通信系统中非常有效,主要应用在宽带数据传输中。

例如WAN(Wide Area Network)、FTTN(Fiber To The Node)、FTTH(Fiber To The Home)等,它们都是通过光纤光缆进行数据传输并使用到波分复用技术。

此外,波分复用技术还可以应用于虚拟网络技术中,如移动宽带技术、VDSL(Very-high-bit-rate Digital Subscriber Line)等。

通过在单条光缆上传输多路复用信号,大大减少了宽带网络的布线成本,比采用单个光纤宽带光源技术所需要的光缆布线条数要少的多,在大容量的宽带多播网络中,波分复用技术具有不可替代的作用。

光纤知识点总结(5-9章)

光纤知识点总结(5-9章)

光纤知识点(5-9章)第五章知识点1.数字传输体制有两种:是不同的传输体制协议。

SDH(同步数字传输体制)PDH(准同步数字传输体制)2. SDH对模型的下列几个方面做了规定:(1)网络节点接口(2)同步数字体系的速率(3)帧结构。

(1)网络节点接口传输设备:光缆传输系统设备;微波传输系统设备;卫星传输系统设备。

网络节点:只有复用功能(简单);复用、交叉连接多种功能(复杂)。

(2)速率:同步传输模块:STM-N,N=1、4、16 等。

STM-1 155.520Mbit/s 155Mbit/sSTM-4622.080Mbit/s 622Mbit/sSTM-16 2488.320Mbit/s 2.5Gbit/sSTM-64 9953.280Mbit/s 10Gbit/sSTM-256 39813.12Mbit/s 40Gbit/s(3)帧结构:SDH 帧为块状帧结构,共有9 行,270 列,以字节为单位。

一个STMN 帧有9 行,每行由270×N 个字节组成。

这样每帧共有9×270×N 个字节,每字节为8 bit。

帧周期为125μs,即每秒传输8000 帧。

对于STM1 而言,传输速率为9×270×8×8000=155.520 Mb/s 。

字节发送顺序为:由上往下逐行发送,每行先左后右。

(结构图见书127页,重点)3.STM-N 帧包括三个部分:SOH、AU-PTR、PAYLOAD(结构图见书127页,重点)(1)段开销SOH:RSOH,再生段开销:1~3 行。

MSOH,复用段开销:5~9 行。

区别:监管范围不同。

如:若光纤上传输2.5G 信号,RSOH 监控STM-16 整体的传输性能。

MSOH 监控每一个STM-1 的传输性能。

(2)管理指针AU-PTR:指示净负荷PAYLOAD 中信息的起始字节位置,便于接收端从正确的位置分解出有效传输信息。

光纤思考题

光纤思考题

光纤通信第一章:1、什么是光纤通信:光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式2、光纤的主要作用是什么?引导光在光纤内沿直线或弯曲的途径传播。

Or(单模光纤的纤芯直径为4μm~10μm,适用于高速长途通信系统。

多模光纤的纤芯直径为50μm,适用于低速短距离通信系统)3、与电缆或微波等通信方式相比,光纤通信有何优缺点?光纤通信有何优点:容许频带很宽,传输容量很大 损耗很小,中继距离很长且误码率很小重量轻、体积小丶抗电磁干扰性能好泄漏小,保密性能好 节约金属材料,有利于资源合理使用or与电缆或微波等电通信方式相比,光纤通信的优点如下:(1)传输频带极宽,通信容量很大(2)由于光纤衰减小,无中继设备,故传输距离远;(3)串扰小,信号传输质量高;(4)光纤抗电磁干扰,保密性好;(5)光纤尺寸小,重量轻,便于传输和铺设;(6)耐化学腐蚀;(7)光纤是石英玻璃拉制成形原材料来源丰富4、为什么说使用光纤通信可以节省大量有色金属?5、为什么说光纤通信具有传输频带宽,通信容量大?光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一堆光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输3000多路电话,频带宽对于各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

6、可见光是人眼能看见的光,其波长范围是多少?0.39~0.76μm7、红外线是人眼能看见的光,其波长范围是多少?0.76~300μm8、近红外区:其波长范围是多少?0.76~1.5μm9、光纤通信所用光波的波长范围是多少?0.8~1.6μm10、光纤通信中常用的三个低损耗的窗口的中心波长分别是多少?0.85,1.30,1.55μm第二章:1、典型光纤由几部分组成?各部分的作用是什么?光纤由纤芯、包层和涂覆层3部分组成。

其中纤芯:纤芯位于光纤的中心部位。

光纤波分复用技术及WDM工作原理

光纤波分复用技术及WDM工作原理

λ1 λ2 λ3 λn 波 分 复 用 器
光纤 解 复 用 器
λ1 λ2 λ3
为帮助了解WDM的潜在通信容量,我们回忆一下普通单模石英光纤中光传输 损耗与波长的关系(见图1.1.3)。根据此图我们知道,在长波长波段,光纤有 两个低损耗传输窗口即1310nm和1550nm窗口。这两个窗口的波长范围分别从 1270nm 到1350nm和1480nm到1600nm,分别对应着80nm和120nm的谱宽范 围。而目前光纤通信系统中所使用的高质量的1550nm的光源,其调制后的输 出谱线宽度最大不超过0.2nm,考虑到老化及温度引起的波长漂移,给出约 0.4nm~1.6nm的谱宽富余量,应是合乎情理的。即使这样,单个系统的谱宽也 只占用了光纤传输带宽的几十分之一到几百分之一。为充分利用单模光纤的低 损耗区的巨大带宽资源,在光纤低损耗窗口采用多个相互间有一定的波长间隔 的激光器作为光源,经各光源调制的信号同时在光纤中传播,这就是WDM技 术。可以说,WDM技术使得光纤具有巨大带宽这一优点得以充分体现。以一 种工作在1550nm的窄线宽DFB激光器为例,它可在0.8nm的谱带内发射信号, 因此在1525nm~1565nm共40nm的范围内,WDM系统可传送50个信道。若每 个信道的传输速率为10Gbit/s,则系统总的传输速率即为50×10Gbit/s,比单 信道传输的容量增加了50倍。
3 WDM系统中的关DM系统对光源的要求 目前的光纤通信系统所采用的光源一般有半导体发光二极管(LED)和 半导体激光器(LD)。通过学习第一章和第三章的内容我们已经知道, LED与LD的特性有很大的不同。LED所产生的光不是单波长的光,谱 线很宽,约为50~100nm;LED的输出功率比激光器低很多;LED的最 高调制速率约为几百Mbit/s。因此,LED不适合作为WDM系统的光源。 LD输出虽然不是理想的单波长的光,但其谱线宽度却可以达到很窄。 虽然普通的F-P腔LD的谱宽约为8nm,但具有布拉格光栅的高质量的 DFB或DBR LD的谱宽可达10-3nm,即使考虑因调制而产生的啁啾所导 致的谱线展宽,其调制后的输出谱线宽度最大也不超过0.2nm。所以, 只有LD才能满足WDM系统对于光源波长的要求。另一方面,LD的调制 频率可达数Gbit/s,特别适合于高速传输系统。与此同时,LD输出的光 功率要比LED高很多,而且由于输出的光为相干光,大部分光能量很容 易被耦合进光纤中,因而信号可以传输更远的距离。

光纤通信技术:波分复用及其关键技术

光纤通信技术:波分复用及其关键技术


光纤通信技术 小 结:
小 结
1、什么是波分复用技术?
2、波分复用系统的分类 3、波分复用技术的特点 4、波分复用的关键技术
√ √

光纤通信技术 作业:
1、什么是波分复用?
作 业
2、按照信道间隔、传输方向、网络功 能及系统接口类型,分别如何分类WDM 系统?

对于运营商的应用而言,就象是敷设了许 多新光缆一样; 对于制造商而言,在10Gbit/s以上实现技术 简单、可靠; 对于系统性能而言,光无源器件比高速光 电器件可靠得多。

光纤通信技术
波分复用技术的特点
充分利用了光纤的巨大带宽资源; 可以同时传输多种不同类型的信号;
模拟信号与数字信号混合传输; 高速信号与低速信号混合传输; 话音信号与图象信号混合传输;
IP业务波分复用系统(IP over WDM)

混合业务波分复用系统

光纤通信技术
波分复用系统的分类
(5)按照信道数量分类 2波波分复用系统 4波波分复用系统
8波波分复用系统
16波波分复用系统
√ √
32波波分复用系统

光纤通信技术
波分复用系统的分类
(6)按照传输方向分类
双纤双向波分复用系统

单纤双向波分复用系统

光纤通信技术
波分复用技术的特点
节约光缆线路的投资; 接入新业务非常方便。
主要是源于波分复用信道透明 传输信号的特性,即与信号速率及 电信号调制方式无关!

光纤通信技术
波分复用技术的特点
不久的将来有关光纤通信的展望: ETDM+WDM+OTDM
40Gbit/s

光纤通信原理-波分复用技术

光纤通信原理-波分复用技术

o ITU-T 建 議 一 直 只 提 WDM 和 Multichannel system(多通道系統),避免 WDM和DWDM的區分和界定,建議檔 規範的通道間隔也只窄到50GHz。
o 目前真正實用化的光波分複用系統是 16×2.5Gbit/s,16×10Gbit/s和 32×2.5Gbit/s,32×10Gbit/s, 40×10Gbit/s。我國目前也已達到了這一 實用化水準。
o 通常使用法布-珀羅(F-P)干涉儀作為光濾波器。
o 另外還有一類是集成在LiNbO3波導上的,利用聲光或 電光效應來改變介質的折射率,從而實現對光波長選 擇的光濾波器,其中聲光效應的濾波器調諧範圍可做 到大於100nm,而電光效應的濾波器調諧範圍較小, 只能達到10nm。
o 除此之外,窄帶的光放大器對入射複用信號的選擇放 大,也可以起到光濾波器的作用。
8.4、波分複用器
波分複用器分發端合波器和收端的分 波器。合波器又稱複用器,分波器又稱 解複用器。
光波分複用器的種類很多,大致分為 四大類: o 熔維光纖型 o 介質膜干涉型 o 光柵型光波分複用器 o 陣列波導光柵(AWG)型光波分複用器
8.5、摻鉺光纖放大器(EDFA)
1、EDFA概述 摻 鉺 光 纖 放 大 器 (EDFA) 是 將 鉺間隔為25GHz 的整數信,目前優先選用的是100GHz和 50GHz 通 道 間 隔 。 G.652 或 G.655 光 纖 系 統是均勻通道間隔。G.653光纖採用非均 勻通道間隔。
(3)
o 所謂標準中心頻率指的是光波分複用系 統中每個通路對應的中心波長的頻率。
5、EDFA
EDFA具體的應用形式有以下四種。 o 線路放大(Line Amplifier) o 功率放大(Booster Amplifier) o 前置放大(Preamplifiev) o LAN放大(LAN Amplifier)

光通信中的光电子器件讲座—第五讲 现代光纤通信中的波分复用技术

光通信中的光电子器件讲座—第五讲  现代光纤通信中的波分复用技术
v r u o a r a e wo k n C i a a d i i g d v l p d b e t i d me tc c mp n e o a o s l c la e n t r s i h n , n s b n e e o e y c r n o si o a i s t o. W e p e e t t e i e a r s n h b c go n p n i l a k r u d, r c p e,s r c u e,r aia i n a d d v l pme to DM t th me a d a r a i tu t r e tt n e eo l o n fW o b h a o n b o d. Ke r s y wo d fe u n y d vs o l p e i g,i i ii n mu t l x n v l n h d v so l p e i g r q e c i ii n mu t l x n t i me d v s o l p e i g wa e e g i i i n mu t l x n i t i
维普资讯
光 通 信 中 的光 电 子 器 件 讲 座 第 五 讲 现 代 光 纤 通 信 中 的 波 分 复 用 技 术
忻向军 余重秀 张 茹 杨晓强 。 辛 雨
吴 强
( 北 京 邮 电 大 学 电 子 工 程 学 院 1
士 网 和 一 些 局 域 网 已 开 始 采 用 波 分 复 用 技 术 , 内一 些 厂 商 也 正 在 开 发 这 项 技 术 . 章 详 细 介 绍 了 波 分 复 用 技 术 国 文 的 发展 背景 、 理 、 成 形式 、 现 方案 及其 国 内外发 展情 况 . 原 组 实
关 键 词 频 分 复 用 , 分 复 用 , 分 复 用 时 波

波分复用系统原理和特点

波分复用系统原理和特点

波分复用系统(Wavelength Division Multiplexing,WDM)是一种光纤通信技术,它利用光的不同波长来传输多个独立的通信信号。

波分复用系统的原理和特点如下:原理:
波分复用系统利用光的色散特性和光纤的低损耗特性,将不同波长的光信号同时传输在同一根光纤中。

在发送端,多个光源产生不同波长的光信号,然后通过光波分复用器将这些光信号合并成一个复合的光信号。

在接收端,通过光波分复用器将复合的光信号解复用为多个不同波长的光信号,然后通过光检测器将它们转换为电信号。

特点:
(1)高容量:波分复用系统可以同时传输多个信道,每个信道可以达到几十Gb/s甚至上百Gb/s的传输速率,大大提高了通信系统的传输容量。

(2)灵活性:波分复用系统可以根据实际需求灵活地配置不同数量和不同波长的光信道,使得光纤的带宽资源得到充分利用。

(3)低损耗:光纤对不同波长的光信号具有较低的损耗,因此波分复用系统的传输损耗较小,能够实现长距离的高速传输。

(4)互通性:波分复用系统采用标准化的波长间隔,不同厂家生产的设备可以相互兼容,提高了系统的互通性和可扩展性。

(5)可靠性:波分复用系统可以实现冗余备份,即使一个通道出现故障,其他通道仍然可以正常工作,提高了系统的可靠性和稳定性。

总之,波分复用系统通过将不同波长的光信号复用在一根光纤中,实现了高容量、灵活性、低损耗、互通性和可靠性的特点,是现代光纤通信系统中常用的技术之一。

相干光正交频分复用光纤通信系统的设计与研究-毕业论文

相干光正交频分复用光纤通信系统的设计与研究-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着近几年的信息技术发展,对大容量信息的要求日益增加,有限的频带资源需要高频谱效率的通信系统。

尽管波分复用满足了大容量的传输要求,但固定的频率栅格造成了频带资源的浪费。

为了提高频谱利用率,相干光正交频分复用技术开始研究,它是一种结合了正交频分复用和相干光检测的技术,在保证了高频谱利用率,强抗干扰能力的同时又提升了系统的灵活度,大大增加了中继距离。

本文主要对相干光正交频分复用的原理和关键技术作了阐述,并研究了光纤信道对其传输性能的影响。

主要内容包括理论和仿真两个方面。

首先,理论上研究了基于正交频分复用的传输系统,从逆快速傅里叶变换/快速傅里叶变换,循环前缀切入,分析了它的高频谱利用率和高效的算法。

其次,利用商用OptiSystem软件仿真了CO-OFDM背靠背及传输系统,分析了光纤链路对CO-OFDM系统性能的影响。

关键词:相干光检测,正交频分复用,色散作者:仇佳指导老师:高明义Design and research of coherent optical orthogonal frequency division multiplexing optical communication systemAbstractWith the development of information technology in recent years, the demand for large-capacity information is increasing. The limited frequency band resources require a highly spectrum-efficient communication system. Although wavelength division multiplexing meets large-capacity transmission requirements, fixed frequency grids cause waste of frequency band resources. In order to improve the spectrum utilization, coherent optical orthogonal frequency division multiplexing technology has begun to be studied. It is a technology that combines orthogonal frequency division multiplexing and coherent optical detection to ensure high spectrum utilization and strong anti-interference ability. At the same time, the flexibility of the system is increased, and the relay distance is greatly increased. This paper mainly describes the principle and key technologies of coherent optical orthogonal frequency division multiplexing, and studies the influence of fiber channel on its transmission performance. The main content includes both theoretical and simulation aspects. First of all, the transmission system based on Orthogonal Frequency Division Multiplexing is theoretically studied. From the Inverse Fast Fourier Transform/Fast Fourier Transform, cyclic prefix cut-in, its high spectral efficiency and efficient algorithm are analyzed.Secondly, using commercial OptiSystem software to simulate the CO-OFDM back-to-back and transmission system, the influence of the optical fiber link on the performance of the CO-OFDM system is analyzed.Keywords: Coherent light detection, Orthogonal frequency division multiplexing, DispersionWritten by QiuJiaSupervised by Gao Mingyi第一章绪论1.1 引言我们生活在一个信息时代中,随着社会对于信息传递的要求日益增长,通信系统的结构也在日渐复杂和多元化。

实验6 波分复用(WDM)光纤通信系统实验99

实验6  波分复用(WDM)光纤通信系统实验99
21
示波器
CMI译码
实验内容:
• 按实验原理图进行电气实验导线、光路连接。 • 开启系统电源,用示波器观察波形。 • 调节两个光接收机的可调电位器(R257、R242),使输出 波形达到最好。
光发送机 模拟信号输入端口:P203 数字信号输入端口:P202 模拟信号输出端口:P200 数字信号输出端口:P201(IC202)
波分复用器的原理和类型
光波分复用一般应用波长分割复用器和解 复用器(也称合波/分波器)分别置于光纤两端, 实现不同光波的耦合与分离。 光波分复用器的主要类型有熔融拉锥型,介 质膜型,光栅型和平面型四种。
4
波分复用技术的特点和优势:
(1)、充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信 息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱 (1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带 宽约25THz,传输带宽充足。 (2)、具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字 信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵 活取出或加入信道。 (3)、对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率 余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系 统作大改动,具有较强的灵活性。 (4)、由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量 少,当出现故障时,恢复起来也迅速方便。 (5)、有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 (6)、系统中有源设备得到大幅减少,这样就提高了系统的可靠性。
7
P2 L21 10 log P 12
实验应采取的测量光插入损耗的方法
1310窗口 1310nm 1310窗口

光纤通信中的波分复用技术

光纤通信中的波分复用技术

光纤通信中的波分复用技术在当今信息高速传递的时代,光纤通信无疑是其中的关键角色,而波分复用技术更是让光纤通信如虎添翼。

那么,究竟什么是波分复用技术呢?它又为何如此重要?波分复用技术,简单来说,就是在一根光纤中同时传输多个不同波长的光信号,从而极大地提高了光纤的传输容量。

想象一下,一条道路原本只能让一辆车通过,现在通过巧妙的规划,可以让多辆车同时并行,大大提高了运输效率,波分复用技术在光纤通信中的作用就类似于此。

在深入了解波分复用技术之前,我们先来了解一下光通信的基本原理。

光是一种电磁波,具有不同的波长和频率。

在光纤通信中,我们通过调制光的强度、频率、相位等参数来携带信息。

而不同波长的光就像是不同的“货物”,波分复用技术就是让这些“货物”能够同时在同一条“高速公路”——光纤中运输。

波分复用技术的实现主要依靠一些关键的器件和设备。

首先是波分复用器和波分解复用器,它们就像是高速公路上的分岔口和汇合口,能够将不同波长的光信号进行合路和分离。

还有光源,需要能够稳定地发出特定波长的光,以及光放大器,用于补偿光信号在传输过程中的损耗。

波分复用技术带来的好处是显而易见的。

首先,它大大提高了光纤的传输容量。

传统的光纤通信方式每次只能传输一个光信号,而波分复用技术可以同时传输多个光信号,使得传输容量成倍数增加。

这对于满足日益增长的数据传输需求至关重要,无论是高清视频、云计算还是物联网等应用,都对通信容量提出了越来越高的要求。

其次,波分复用技术提高了频谱资源的利用率。

就像无线电频谱一样,光的波长范围也是有限的资源。

通过波分复用技术,我们能够更加充分地利用这一有限的资源,实现更多信息的传输。

此外,波分复用技术还具有灵活性和可扩展性。

我们可以根据实际需求,动态地增加或减少传输的波长数量,从而灵活地调整传输容量。

而且,随着技术的不断发展,能够支持的波长数量也在不断增加,为未来的通信发展留下了广阔的空间。

然而,波分复用技术也并非完美无缺。

波分复用技术的原理及特点

波分复用技术的原理及特点

波分复用技术的原理及特点
波分复用(Wavelength Division Multiplexing,简称WDM)技术是一种用于光纤通信系统中的技术,通过在同一光纤中传输不同波长的光信号来实现多路复用。

波分复用的原理是基于不同波长的光信号可以在同一光纤中独立传输且不互相干扰的特点。

在波分复用系统中,把不同的光信号调制到不同的波长上,并同时发送到光纤中,通过光纤传输到接收端后,再通过解调器将各个波长的光信号解调出来,恢复为原始数据。

波分复用技术的特点如下:
1. 多路复用:光纤的传输带宽可以被同时利用传输多个信道的数据,提高了传输效率和容量。

2. 高速传输:不同波长的光信号可以同时传输,实现了高速的并行传输,提高了通信系统的传输速率。

3. 灵活性:不同波长的光信号可以独立调节和控制,可以根据需要灵活配置光信号的波长和带宽。

4. 高稳定性:波分复用系统中的光信号在传输过程中相互独立,不会互相干扰或衰减,具有高稳定性和可靠性。

5. 省空间:波分复用技术可以将多个信道的光信号通过一根光纤进行传输,减少了通信设备的空间占用。

6. 高扩展性:波分复用技术可以通过增加波长来扩展通信系统的传输容量,方
便了系统的升级和扩充。

总之,波分复用技术通过利用不同波长的光信号在同一光纤中独立传输的特性,提高了光纤通信系统的传输效率和容量,是当前光纤通信领域中广泛应用的核心技术之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)光码分复用(OCDM)技术
在光域内进行码型分割复用,用不同的码型代表不同的信 道,在单根光纤、单个波长上完成多信道复用。目前,该 技术尚在研究之中。
2.微波副载波复用(SCM)技术
在发送端用基带电信号对微波信号进行幅度、频率或相位 调制,形成已调信号副载波,再将多路已调信号副载波合 起来共同对一个光源进行强度调制,然后经单根光纤传输 ;在接收端经光/电转换后用可调微波本振信号混频进行 检测。目前,SCM在有线电视系统中已经商品化。
(2)双向波分复用系统
通信两端各有N个光发送器、N个光接收器和1个合波/分波器,通 信两端共用1根光纤。2N个光发送器发送2N个不同波长的光波, 分别与对端光接收器的接收波长一致。合波/分波器可以同时完 成光波的合并或分开。1根光纤能够同时传输来自两个不同方向 的光波,可以进行双工通信,故称为单纤双向WDM传输系统 。
2.波分复用系统的基本特点
(1)充分利用光纤的低损耗带宽资源,使单根光纤的传 输容量增大几倍至几十倍以上,进一步显示了光纤通信 的巨大优势。
(2)各个载波信道彼此独立,可以互不干扰地同时传输 不同特性的信号,各种信号的合路与分路能够方便地进 行,为宽带综合业务数字网的实现提供了可能。 (3)初步解决了中继全光化问题,为全光通信网的实现 奠定了基础。 (4)节省了光纤和光电型中继器,大大降低了建设成本 ,方便了已建成系统的扩容。
(a) 四个2×2耦合器构 成一个4×4耦合器
(b) 12个2×2耦合器构 成一个8×8耦合器
5.2.4 角度色散型波分复用器件
1.光栅:在玻璃衬底上沉积环氧树脂、在其上制造光 栅线而构成。光栅是利用多缝衍射原理,使得不同波长 的同级主极大出现在观测屏的不同位置上来实现分光。 其优点是波长选择性好、信道间隔小、复用信道数多,缺 点是插入损耗较大、对光信号的偏振性较敏感。 2.棱镜:利用折射率随波长而变化的性质,使得不同波 长的光线出现在不同位置上来实现分光。 光栅和棱镜都是利用角度色散来分光, 并通过合理的结 构设计制成波分复用器件。
波副载波复用光纤传输系统、相干光通信系
统、光纤孤子通信系统的基本概念和发展状
况。
1.多信道复用光纤通信技术
(1)光波分复用(OWDM)技术
在光域内进行波长分割复用,使不同的信道占用不同的 波长,在单根光纤、多个波长上完成多信道复用,而光 信号的中继放大则用掺铒光纤放大器来实现。该技术已 经实用化。 (2)光时分复用(OTDM)技术 在光域内进行时间分割复用,使不同的信道占用不同的 时隙,在单根光纤、单个波长上完成多信道复用。由于 要在光域内对信号进行选路、识别、同步等处理,故需 要全光逻辑和存储器件,而这些器件目前尚不成熟,所 以OTDM还在研究之中。
3. 相干光通信技术
在发送端用基带电信号对光载波进行幅度、频率或相 位调制,形成已调信号光波,经单根光纤传输后,在 接收端使用本振相干光与已调信号光波混频进行相干 检测。相干光通信对光源的谱线纯度和光频率的稳定 性要求非常苛刻,其完全实用化仍有相当大的距离。
4. 光纤孤子通信技术
大功率光脉冲输入光纤时,可以产生非线性效应导致光 脉冲压縮。通过适当选择有关参数,并采用光纤放大器 来补偿光纤损耗,可使非线性压縮与光纤色散展宽相互 抵消,从而使光纤中传输的光脉冲宽度始终保持不变, 这种光脉冲称为光孤子。利用光孤子作为载波,适合超 长距离、超高速的光纤通信。 目前,世界上已建立了多个光纤孤子实验系统,也进行 了现场试验。但从技术成熟性来看,光纤孤子通信还远 未达到实用水平。
2.研磨式光纤耦合器
将两根光纤一定长度部位的包层一侧研磨抛光,将两根光纤并 排放置使研磨抛光部位面对面紧贴在一起,在它们之间涂有一 层折射率匹配液,形成耦合区,在该区域能够产生光场之间的 耦合。根据包层研磨变薄程度的不同,也可以产生光场之间的 强、弱耦合。
3.波导型光纤耦合器 (即光波导耦合器)
实用中,常将多个2×2端口光纤耦合器适当串并联起来 ,构成比较复杂的多端口光纤耦合器,称为星形耦合器
5.2.6 波分复用系统对光纤的新要求 1.制约波分复用系统的主要因素
(1)偏振模色散(PMD)
由于实际单模光纤的几何形状不完善(如横截面不圆、轴心 线不居中等)和折射率分布不对称,致使单模光纤中基模的 两个正交极化分量在光纤中传播速度不一致,产生传播时延 差,引起光脉冲展宽的现象,称为偏振模色散。PMD具有 随机变化的特性,难于用传统固定的色散补偿方法来消除它 。在10 Gb/s及更高速率的波分复用系统中,偏振模色散成 为限制系统性能的一个主要因素。 偏振模色散平均时延差为 PMD DPMD L
图5-5 光栅型波分复用器原理图
除上述普通光栅做成的波分复用器以外,还有一种阵列波 导光栅(AWG)型波分复用器。AWG的特点是结构紧凑 、信道间隔更窄,适用于多信道的大型网络节点。AWG是 一种平面光路(Planar Light-wave Circuit, PLC)器件, 是目前研究开发的热点。
(3)非线性效应
光纤折射率与光波电场强度的二阶和二阶以上的变化关 系,称为非线性效应。由于非线性折射率的存在,产生 了几种重要的非线性效应。 自相位调制(SPM)
在非线性折射率作用下,光纤中传输的强光波,其光强 波动引起了光波自身相位发生波动,从而导致光波频谱 变化的现象,称为自相位调制。 自相位调制的危害性:SPM产生的频率变化可以导致传 输光波的频谱变宽,在这种情况下就会因模内色散而使 光脉冲的时域波形展宽,引起码间干扰。
3.波分复用系统的主要特性指标
(1)信道中心波长:指每个信道内分配给光源的波长。
(2)信道带宽与信道平坦带宽:信道带宽是指每个信道 内分配给光源的波长范围;信道平坦带宽是指幅度传输 特性曲线波动范围不超过1 dB的带宽大小,用来表示带 宽的平直程度。信道平坦带宽越大,越能容纳光源波长 的微小变化。 (3)信道间隔:是指相邻信道的波长间隔。通常信道间 隔大于信道带宽。
WDM器件某一输入端口的入射光功率 插入损耗 in 10lg( )(dB) WDM器件某一输出端口的出射光功率
(6)温度稳定性: 指温度每变化1℃时的波长漂移大小 。要求在整个工作温度范围内,波长漂移应当小于信道 带宽,远小于信道间隔。
(7)偏振稳定性: 指插入损耗对光波偏振状态的敏感程 度,敏感程度越大,则输出光功率越不稳定。
5.2.2 波分复用系统的组成
1.波分复用系统的基本构成和分类
波分复用系统与普通单波长光纤通信系统一样, 也是包括光纤、光发送器、光中继器、光接收器、 信道监控和网络管理系统等。然而,从各个组成部 分的功能特性、技术含量、研制难度来看,波分复 用系统要比普通光纤通信系统复杂得多。 波分复用系统分为单向波分复用系统和双向波分复用
系统两种类型。
(1)单向波分复用系统
发送端有N个光发送器和1个合波器,接收端有N个光接收器和1 个分波器,收发两端共用1根光纤。N个光发送器发送N个不同波 长的光波,这些光波通过合波器后合并起来,耦合进单根光纤进 行传输。合并光波传送到接收端后,分波器将这N个不同波长的 光波分开,分别送给与这些波长相对应的接收器,将光波载荷的 信息提取出来。利用两套相同的单向波分复用系统才可以进行双 工通信,这需要使用两根光纤,故称为双纤单向WDM传输系统 。目前,实际的WDM系统主要采用双纤单向传输方式。
DPMD是偏振模色散系数(ps/km1/2) ,要求: DPMD≤0.5 ps/km1/2 (10 Gb/s时) 或 0.2 ps/km1/2 (40 Gb/s时)
(2)高阶色散 光纤色散与光波长的二阶和二阶以上的变化关系,称为 高阶色散。通常,用零色散波长附近范围内的色散斜率 来反映高阶色散的大小,称为零色散斜率。零色散斜率 的定义式为
5.2.5 干涉型波分复用器件
1.介质膜滤波式波分复用器
由多层介质薄膜构成,其中高折射率层和低折射率层交 替叠合。
多层介质膜波分复用器的优点是带宽顶部平坦,波长响 应尖锐,温度稳定性好,插入损耗低,对光信号的偏振 性不敏感,在实际系统中应用较广泛。
2.马赫-曾德尔(Mach-Zehnder)干涉式波分复用器 马赫-曾德尔干涉式波分复用器是利用M-Z干涉仪两个 不同长度的光路,提供相移随波长的依赖关系,使得分 别从干涉仪两个输入端口射入的两波长光线,能够从一 个输出端口射出(即合波);或者使得从干涉仪一个输 入端口射入的两波长光线,能够分别从两个输出端口射 出(即分波)。
2.几种波分复用的区别 (1)密集波分复用(DWDM)
DWDM是指频率间隔为100 GHz (相应波长间隔约为0.80 nm),信道数为8,16, 32, 40等的复用;也可以是频率间隔 为200 GHz (相应波长间隔约为1.60 nm),信道数为8,16等 的复用。 (2)粗波分复用(CWDM) CWDM是指波长间隔为20 nm (相应频率间隔约为2.50 THz),信道数为4, 8或16的复用。 (3)宽带波分复用(BWDM) BWDM是指不在同一个低损耗窗口内、具有较宽波长间隔 的两个波长的复用。 (4)光频分复用(OFDM) OFDM是指1550 nm低损耗窗口内更多波长光信号的复用 ,其频率间隔为1~10 GHz,相应波长间隔约为0.008~ 0.08 nm。
4.波分复用器件的类型
包括复用器(即合波器)和解复用器(即分波器),它 们是多信道光波合并与分开所不可缺少的重要光学器件 。复用/解复用器主要分为光纤耦合型、角度色散型、 干涉型等几种类型。
5.2.3 光纤耦合型波分复用器件 1.熔锥式光纤耦合器
将并排放置的两根或多根光纤的一定长度部位扭绞在一起,将 扭绞处逐渐烧成熔融状态,同时慢慢拉伸光纤,使扭绞部位形 成耦合区。在耦合区内各个光纤的包层变薄,纤芯彼此靠近。 根据靠近程度的不同,可以形成光场之间的强、弱耦合。以致 在一根光纤内传输的光波,很容易跑到另一根光纤内传输和输 出;或者也容易分散跑到几根光纤内传输和输出 。
相关文档
最新文档