实验二 matlab图形绘制
实验二MATLAB绘制图形
grid on %在所画出的图形坐标中加入栅格
绘制图形如下
50
10
1
0.8
40
10
0.6
0.4
30
10
0.2
0
1020
-0.2
-0.4
1010
-0.6
-0.8
0
10
-1
-2
0
2
-2
0
2
10
10
10
10
10
10
如果在图中不加栅格
程序如下:
clear x=logspace(-1,2);%在10^(-1)到10^2之间产生50个 对数等分的行向量 subplot(121); loglog(x,10*exp(x),'-p') subplot(122); semilogx(x,cos(10.^x))
(2)plot(x,y): 基本格式,x和y可为向量或矩阵. 1. 如果x,y是同维向量,以x元素为横坐标,以y元素 为纵坐标绘图. 2. 如果x是向量,y是有一维与x元素数量相等的矩阵, 则以x为共同横坐标, y元素为纵坐标绘图,曲线数目 为y的另一维数. 3. 如果x,y是同维矩阵,则按列以x,y对应列元素为 横、纵坐标绘图,曲线数目等于矩阵列数.
y=2*exp(-0.5*x).*cos(4*pi*x);
2
plot(x,y)
1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
1
2
3
4
5
6
7
例4 绘制曲线
t=(0:0.1:2*pi);
x=t.*sin(3*t);
y=t.*sin(t).*sin(t);
matlab数学实验
《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。
(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。
【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。
reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。
A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。
MATLAB实验报告(1-4)
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
实验二MATLAB绘图帽子哥版
实验二MATLAB绘图一、实验目的1 掌握绘制二维图形的常用函数。
2 掌握绘制三维图形的常用函数。
3 熟悉利用图形对象进行绘图操作的方法。
4 掌握绘制图形的辅助操作。
二、实验设备及预备材料:实验设备:MATLAB7.0;预备材料:(一)曲线图:Matlab作图是通过描点、连线来实现的,故在画一个曲线图形之前,必须先取得该图形上的一系列的点的坐标(即横坐标和纵坐标),然后将该点集的坐标传给Matlab函数画图。
命令格式为:plot(x,y,s)其中x,y分别表示所取点集的横纵坐标,s指定线型及颜色。
缺省时表示画的是蓝色实线。
Plot(X,Y1,S1,X,Y2,S2,……,X,Yn,Sn)表示将多条线画在一起。
例在[0,2*pi]用红线画sin(x),用绿圈画cos(x)。
解:x=linspace(0,2*pi,30);y=sin(x);z=cos(x);plot(x,y,’r’,x,z,’go’)所得图形如下图所示(二)符号函数(显函数、隐函数和参数方程)画图(1) ezplotezplot(‘f(x)’,[a,b])表示在a<x<b 绘制显函数f=f(x)的函数图;ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax])表示在区间xmin<x<xmax 和 ymin<y<ymax 绘制隐函数f(x,y)=0的函数图; ezplot(‘x(t)’,’y(t)’,[tmin,tmax])表示在区间tmin<t<tmax 绘制参数方程x=x(t),y=y(t)的函数图。
例 在[0,pi]上画y=cos(x)的图形解 输入命令:ezplot(‘sin(x)’,[0,pi])例 在[0,2*pi]上画t x 3cos =,t y 3sin =星形图解 输入命令:ezplot(‘cos(t).^3’,’sin(t).^3’,[0,2*pi])例 在[-2,0.5],[0,2]上画隐函数0)sin(=+xy e x 的图解 输入命令:ezplot('exp(x)+sin(x.*y)',[-2,0.5,0,2])(2) fplot格式:fplot(‘fun ’,lims)表示绘制字符串fun 指定的函数在lims=[xmin,xmax]的图形。
数学2-用MATLAB绘制二维-三维图形(lq)
[i,j,v]=find(A) 返回矩阵A中非零元素所在的行i,
列j,和元素的值v(按所在位置先后 顺序输出)
A=[3 2 0; -5 0 7; 0 0 1]; [i,j,v]=find(A)
i= 1 2 1 2 3 j= 1 1 2 3 3 v = 3 -5 2 7 1
[X,Y]=meshgrid(x,y) 3)根据函数表达式生成全部网格节点出对应的函数值矩阵z: z=f(X,Y) 4)顺序连接已经产生的空间点(x,y,z)绘制相应曲面: mesh(X,Y,Z) surf(X,Y,Z) shading flat %去除网格线。
例2-7画出矩形域[-1,1]×[-1,1]旋转抛物面:z=x2+y2. x=linspace(-1,1,100); y=x; [X,Y]=meshgrid(x,y); %生成矩形区[-1,1]×[-1,1]的网格坐标矩阵 Z=X.^2+Y.^2; subplot(1,2,1) mesh(X,Y,Z); subplot(1,2,2) surf(X,Y,Z); shading flat; %对曲面z=x2现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
用matlab绘制二维、三维图形
2.1二维图形的绘制
2.1.1 二维绘图的基本命令 matlab中,最常用的二维绘图命令是plot。
使用该命令,软件将开辟一个图形窗口,并 画出连接坐标面上一系列点的连线。
例2-5 采用不同形式(直角坐标、参数、极坐标),画出 单位圆x2+y2=1的图形。
分析:对于直角坐标系方程,y= 1 x2,对于参数方 程x=cost,y=sint,t[0,2 pi] ,利用plot(x,y)命令可以实现。 而在极坐标系中单位圆为r=1(1+0t),利用polar(t,r)命 令实现。
《分析软件工具(MATLAB)》实验答案
实验一(2学时):MATLAB软件集成环境使用,基本操作命令练习题1 利用基本矩阵产生3x3和15x8的单位阵,全1阵,全0阵,均匀分布的随机阵([-1,1]之间),正态分布随机阵(方差4,均值1)。
eye(3)ones(3), ones(15,8)zeros(3), zeros(15,8)-1+2*rand(3), -1+2*rand(15,8)1+2*randn(3), 1+2*randn(15,8)题2 有一矩阵a,找出矩阵中其值大于1的元素,并将他们重新排列成列向量b。
a=[1 2 1;3 1 1;4 -2 7]b=a(find(a>1))基本要求:熟悉MATLAB环境和常用命令,掌握MATLAB矩阵操作实验二(2学时):MATLAB软件绘图功能题1 试写一函数 regPolygon(n),其功能为画出一个圆心在 (0, 0)、半径为 1 的圆,并在圆内画出一个内接正 n 边形,其中一顶点位于 (0, 1)。
function regPolygon(n)t=0:pi/20:2*pi;x=sin(t);y=cos(t);plot(x,y);hold on;t=linspace(0,2*pi,n+1);x=sin(t);y=cos(t);plot(x,y);axis square;题2 请用 surf 指令来画出下列函数的曲面图:z = x*exp(-x2-y2),其中 x 在 [-2, 2] 间共等切分为 21 点,y 在 [-1, 1] 间共等切分为 21 点,所以此曲面共有 21*21=441 个点。
a. 请用预设的颜色对应表(Colormap)来画出此曲面。
b. 请以曲面的斜率来设定曲面的颜色。
c. 请以曲面的曲率来设定曲面的颜色。
基本要求:能够利用MATLAB函数绘制二维图形x=linspace(-2,2,21);y=linspace(-1,1,21);[X,Y]=meshgrid(x,y);Z=X.*exp(-X.*X-Y.*Y)subplot(2,2,1)surf(X,Y,Z)axis tightcolormap(hot)subplot(2,2,2)surf(X,Y,Z,gradient(Z))axis tightcolormap(hot)subplot(2,2,3)surf(X,Y,Z,del2(Z))axis tightcolormap(hot)实验三(2学时):MATLAB程序设计题1 写一个 MATLAB 小程序 findN01.m,求出最小的 n 值,使得 n! > realmax。
2.实验二MATLAB绘图一答案
2.实验⼆MATLAB绘图⼀答案实验⼆ MATLAB 绘图⼀1. 编程绘制y=sin(t)/t 的曲线,t 的定义域是[-10Π,10Π],绘图时加⽹格解:t=[-10*pi:0.2:10*pi];y=sin(t)./t;plot(t,y),grid on-40-30-20-10010203040-0.4-0.20.20.40.60.812. 在[0,10]之间⽤⼀张图画出y=sin(t),y1=cos(t)的曲线,y ⽤红⾊实线绘制,y1⽤蓝⾊长划线绘制,绘图时加⽹格,横纵坐标⽐例相同,横轴标明“时间”,纵轴标明“正弦、余弦”,图题“正弦和余弦曲线”,要有图例说明,且⽤⿏标拖动来标注“sin(t)”、“cos(t)”。
解: t=0:0.1:10;y1=sin(t);y2=cos(t);plot(t,y1,'r',t,y2,'b--'); title('正弦和余弦曲线'); legend('正弦','余弦')xlabel('时间t'),ylabel('正弦、余弦') grid axis squaregtext('sin(t)'),gtext('cos(t)')246810-1-0.8-0.6-0.4-0.200.20.40.60.81正弦和余弦曲线时间t正弦、余弦3. ⽤三种⽅法编程,同时在⼀张图上观察常⽤对数、⾃然对数函数在[0,10]之间的曲线,其中在两种⽅法中,常⽤对数曲线⽤⿊⾊实线绘制,⾃然对数曲线⽤红⾊“+”绘制,绘图时,MATLAB 不要提⽰“W arning ” 解⼀: t=[0.1:0.1:10]; y1=log10(t); y2=log(t);plot(t,y1,'-k'),hold on plot(t,y2,'+r'),hold off246810-2.5-2-1.5-1-0.500.511.522.5解⼆: t=[0.1:0.1:10]; y1=log10(t); y2=log(t); plot(t,[y1;y2])246810-2.5-2-1.5-1-0.500.511.522.5解三: t=[0.1:0.1:10]; y1=log10(t); y2=log(t); plot(t,y1,'-k',t,y2,'+r')246810-2.5-2-1.5-1-0.500.511.522.54.曲线y=x+2x2+3x3,x的定义域为[-3,3],在⼀张图上⽤排成⼀⾏的三幅⼦图分别显⽰该曲线:⿊⾊实线图、脉冲图、条形图,每幅图均有图题及横纵坐标轴说明解:x=[-3:0.1:3];y=x+2*x.^2+3*x.^3;subplot(1,3,1),plot(x,y,'k')title('plot(x,y)')xlabel('x'),ylabel('y')subplot(1,3,2),stem(x,y)title(' stem(x,y)')xlabel('x'),ylabel('y')subplot(1,3,3),bar(x,y)title(' bar(x,y)')xlabel('x'),ylabel('y')5.通过MATLAB的help功能⾃学如何绘制饼图,在⼀张图上分上下两幅分别绘制“通信08-1”、“通信08-2”、“电⼦08-1”、“电⼦08-2”的“MATLAB ⼤侠”⽐例为3:3:2:2的饼图和⽴体饼图,其中,“通信08-1”的饼被抽出。
2实验二+数据可视化与Matlab绘图答案
分析结果:由这 8 个图知道, 当 a,n 固定时,图形的形状也就固定了,b 只影响图形的旋转的角度; 当 a,b 固定时,n 只影响图形的扇形数,特别地,当 n 是奇数时,扇叶数就是 n,当是偶 数时,扇叶数则是 2n 个; 当 b,n 固定时,a 影响的是图形大小,特别地,当 a 是整数时,图形半径大小就是 a。 5. 绘制函数的曲线图和等高线。
运行结果:
6. 绘制曲面图形。
x cos s cos t 3 y cos s sin t 0 s , 0 t 2 2 z sin s
解:M 文件: clc; s=0:pi/100:pi/2; t=0:pi/100:3*pi/2; [s,t]=meshgrid(s,t); x=cos(s).*cos(t); y=cos(s).*sin(t); z=sin(s); subplot(1,2,1); mesh(x,y,z); subplot(1,2,2); surf(x,y,z); 运行结果有:
解:M 文件如下:
clc; x=linspace(0,2*pi,101); y=(0.5+3*sin(x)./(1+x.^2)).*cos(x); plot(x,y)
运行结果有:
2. 已知 y1=x2,y2=cos(2x),y3=y1×y2,完成下列操作: (1) 在同一坐标系下用不同的颜色和线型绘制三条曲线。 (2) 以子图形式绘制三条曲线。 (3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。 解: (1) M 文件: clc; x=-pi:pi/100:pi; y1=x.^2; y2=cos(2*x); y3=y1.*y2; plot(x,y1,'b-',x,y2,'r:',x,y3,'k--')
国家开放大学《Matlab语言及其应用》实验报告(第三章--绘制二维和三维图形)
——绘制二维和三维图形
姓名:学号:
实验名称
绘制二维和三维图形
实验目标
利用Matlab常见函数完成二维图形的绘制和图形的标注;实现三维曲线和曲面图形的绘制。
实验要求
熟悉Matlab基本绘图函数、图形处理函数,了解三维曲线和曲面图形的绘制方法。
实验步骤
1、用Matlab基本绘图函数绘制二维图形:根据已知数据,用plot函数画出正弦函数曲线,并进行相应标注。
enon
实验内容
1.二维曲线绘图
例:精细指令实例
2.三维曲线绘图
【例】三维曲线绘图基本指令演示一:plot3
t=(0:0.02:2)*pi;x=sin(t);y=cos(t);z=cos(2*t);
plot3(x,y,z,'b-',x,y,z, 'rd')三维曲线绘图(蓝实线和红菱形)
box on
legend('链','宝石')在右上角建立图例
subplot(121);
surf(x1,y1,z1);
subplot(122);
[x2,y2,z2]=sphere (30);
surf(x2,y2,z2);
clear;clf;
z=peaks;
subplot(1,2,1);mesh(z);% 透视
hidden off
subplot(1,2,2);mesh(z);%不透视
2、用三维曲线绘图基本指令plot 3绘制三维曲线图:t=0~2pi;x=sin(t);y=cos(t);z=cos(2*t);用plot3函数画出关于x,y,z的三维曲线图,并适当加标注。
MATLAB实验报告绘图
68 54 35;
45 25 12;
48 68 45;
68 54 69];
x=sum(t);
h=pie(x);
textobjs=findobj(h,'type','text');
str1=get(textobjs,{'string'});
val1=get(textobjs,{'extent'});
运行图像
4、采用模型 画一组椭圆
输入程序:th = [0:pi/50:2*pi]';
a = [0.5:.5:4.5];
X = cos(th)*a;
Y = sin(th)*sqrt(25-a.^2);
plot(X,Y),axis('equal'),xlabel('x'), ylabel('y')
title('A set of Ellipses')
oldext=cat(1,val1{:});
names={'商品一;'商品二';'商品三'};
str2=strcat(names,str1);
set(textobjs,{'string'},str2)
val2=get(textobjs,{'extent'});
newext=cat(1,val2{:});
xlable('sin(t)'),ylable('cos(t)'),zlable('t');
gridon;
输出图像
9、用MATLAB绘制饼图
(完整word)Matlab实验报告
实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境.2.学习使用图形函数计算器命令funtool及其环境。
二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。
求下列函数的符号导数(1)y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x—4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。
从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(—x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x—1)/(x—2); 求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。
MATLAB 实验二 基本操作
实验二 Matlab 基本操作(二)一 实验目的:1. 掌握矩阵方程的构造和运算方法2. 掌握基本Matlab 控制语句3. 学会使用Matlab 绘图二 实验内容1. 求解下列线性方程,并进行解的验证:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----1323151122231592127x=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0174 >> a=[7 2 1 -2;9 15 3 -2;-2 -2 11 5;1 3 2 13];b=[4;7;-1;0];x=a\b2、进行下列计算。
(1)k=∑=6322i i>>i=2:63;mysum=sum(2.^i)mysum =1.8447e+019(2)求出y=x*sin(x)在0<x<100条件下的每个峰值。
>>y='x.*sin(x)';fplot(y,[0 100]);min=fmin(y,0,100)min =54.99613、绘制下列图形。
(1)sin(1/t), -1<t<1;t=-1:0.02:1;y=sin(1./t);plot(t,y)(2)1-)7(cos 3t>> t=0:0.02:pi.*3;y=1-cos(7*t).^3;plot(t,y)4、已知系统闭环传递函数G (S ),分析系统稳定性及单位脉冲、单位阶跃响应。
22s 43206s 266)S (G s s s s s 23423+++++++=>> a=[1 3 4 2 2];b=[6 26 6 20];roots(a)ans =-1.4734 + 1.0256i-1.4734 - 1.0256i-0.0266 + 0.7873i-0.0266 - 0.7873i因为无右根,故系统稳定。
当单位脉冲输入时:>> [r p k]=residue(b,a);t=0:0.2:60;>> y1=r(1)*exp(p(1)*t)+r(2)*exp(p(2)*t)+r(3)*exp(p(3)*t)+r(4)*exp(p(4)*t); >> plot(t,y1)当输入单位阶跃函数时:>> a=[1 3 4 2 2 0];b=[6 26 6 20];[r p k]=residue(b,a);t=0:0.2:100;y2=r(1)*exp(p(1)*t)+r(2)*exp(p(2)*t)+r(3)*exp(p(3)*t)+r(4)*exp(p(4)*t)+r(5); plot(t,y2)。
matlab实验报告实验二
matlab实验报告实验二Matlab实验报告实验二引言Matlab是一种功能强大的数学软件,广泛应用于科学研究和工程实践中。
在实验二中,我们将探索Matlab的图像处理功能,并通过实际案例来展示其应用。
图像处理基础图像处理是指对图像进行数字化处理的过程,其目的是改善图像质量、提取有用信息或实现特定的应用需求。
在Matlab中,我们可以利用各种函数和工具箱来实现图像处理的各种任务,如图像增强、滤波、分割和特征提取等。
实验步骤1. 图像读取与显示在Matlab中,我们可以使用imread函数读取图像文件,并使用imshow函数将图像显示在屏幕上。
例如,我们可以读取一张名为"lena.jpg"的图像,并显示出来:```matlabimg = imread('lena.jpg');imshow(img);```2. 图像灰度化图像灰度化是将彩色图像转换为灰度图像的过程。
在Matlab中,我们可以使用rgb2gray函数将彩色图像转换为灰度图像。
例如,我们可以将上一步读取的图像转换为灰度图像:```matlabgray_img = rgb2gray(img);imshow(gray_img);```3. 图像二值化图像二值化是将灰度图像转换为二值图像的过程,其中只包含黑色和白色两种颜色。
在Matlab中,我们可以使用imbinarize函数将灰度图像二值化。
例如,我们可以将上一步得到的灰度图像二值化:```matlabbinary_img = imbinarize(gray_img);imshow(binary_img);```4. 图像平滑图像平滑是指去除图像中的噪声或细节,使得图像更加平滑和清晰。
在Matlab 中,我们可以使用imfilter函数对图像进行平滑处理。
例如,我们可以对上一步得到的二值图像进行平滑处理:```matlabsmooth_img = imfilter(binary_img, fspecial('average'));imshow(smooth_img);```5. 图像边缘检测图像边缘检测是指提取图像中物体边缘的过程,常用于目标检测和图像分割。
MATLAB实验二:二维图形与三维图形的绘制
.实验报告(201 /201 学年第学期)课程名称实验名称二维图形与三维图形的绘制实验时间年月日实验室指导教师学生姓名学号班级专业实验报告三、实验内容及原理(包括硬件原理图、算法、逻辑框图,关键代码等,可续页)(一)二维图形的绘制1、绘制二维曲线的基本函数:○1plot函数plot函数的基本调用格式为:plot(x,y);其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
例,绘制参数方程曲线。
程序如下:含多个输入参数的plot函数调用格式为:p lot(x1,y1,x2,y2,…,xn,yn);含选项的plot函数调用格式为:plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n);例,用不同线型和颜色在同一坐标内绘制曲线y=2e-0.5x sin(2πx)及其包络线。
程序如下:○2双纵坐标函数plotyyplotyy函数是MATLAB 5.X新增的函数。
它能把函数值具有不同量纲、不同数量级的两个函数绘制在同一坐标中。
调用格式为:plotyy(x1,y1,x2,y2);其中x1-y1对应一条直线,x2-y2对应另一条曲线。
横坐标的标度相同,纵坐标有两个,左纵坐标用于x1-y1数据对,右纵坐标用于x2-y2数据对。
2、绘制二维图形的其他函数在线性直角坐标系中,其他形式的图形有条形图、阶梯图、杆图和填充图等,所采用的函数分别是:bar(x,y,选项);stairs(x,y,选项);stem(x,y,选项);fill(x1,y1,选项1,x2,y2,选项2,…);例,分别以条形图、填充图、阶梯图和杆图形式绘制曲线y=2e-0.5x。
程序如下:(二)三维图形的绘制1、绘制三维曲线的基本函数plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n); 例,绘制空间曲线。
程序如下:2、绘制三维曲面的函数surf函数和mesh函数的调用格式为:surf(x,y,z,e);mesh(x,y,z,e);例,绘制两个直径相等的圆管的相交图形。
MATLABexpe2实验二题目
“MATLAB 及其在通信中的应用” 上机实验二1——矩阵操作进阶及图形绘制姓名学号班级1. 利用基本矩阵产生7*8的单位阵、全1阵、全0阵、[10 15]之间均匀分布随机矩阵。
,正态分布随机矩阵(均值4,方差为49)。
将所编程序截图,填入到下面空白处。
(10分)2. 矩阵运算:已知135221246,111357331a b ==,求矩阵c ,-7*4*10**.*T c a b a b a b a =++++1(),在MATLAB 命令窗口中编写语句,实现下述功能,将所编程序截图,填入到下面空白处。
(1) 对c 中所有元素求和赋值给SUM 。
(2) 先令矩阵d=c ,仅保留d 中主对角线上方第1条对角线元素,d 中其他元素赋值0。
(3+7=10分)1完成后以附件形式发送到。
邮件主题为“班级”加“下划线”加“姓名”加“下划线”加“实验一”,如“通信1101_姓名_实验一”,word 文件名类似,如“通信1101_姓名_实验一”。
3.编写.m程序。
利用矩阵运算,求解方程组1234123413412342410 43253322770 107829x x x xx x x xx x xx x x x+++=⎧⎪-+++=⎪⎨++=⎪⎪+-+=⎩。
(1)求出方程组的解,并保存在向量B(2)将B的转置作为行向量,对该行向量进行复制拼接,生成6*4阶矩阵的H(3)对H矩阵进行重排,生成3*8阶矩阵K,删除矩阵K的第3列,生成3*7阶矩阵J。
将所编程序和矩阵B、H、J的结果截图,填入到下面空白处。
(6+6+8=20分)4、假设有函数33a b e a --=+,其中1,1.5,2,2.5...,6a =,打开1*2排布的图形子窗口,按要求完成绘图。
子窗口1绘制图1: x 轴用a 为坐标刻度,y 轴用b 为坐标刻度,曲线颜色为绿色,类型为-*,线宽为1,加入栅格线。
加入标题“图1”。
x 轴标注 “a ” ,y 轴标注“b ” 。
MATLAB绘画实验报告
MATLAB绘画实验报告MATLAB绘画实验报告引言:MATLAB是一种强大的科学计算软件,它不仅可以进行数值计算、数据分析和模拟仿真等工作,还可以用于绘制各种图形。
在本次实验中,我将通过使用MATLAB进行绘画,探索其绘图功能的强大之处。
一、绘制基本图形首先,我使用MATLAB绘制了一些基本图形,如直线、曲线和点等。
通过设置不同的参数,我可以控制图形的形状、颜色和线条样式等。
这为我后续的绘图工作奠定了基础。
二、绘制二维图形接下来,我使用MATLAB绘制了一些二维图形,如折线图、散点图和柱状图等。
通过输入数据并选择合适的绘图函数,我可以将数据以直观的方式展示出来。
例如,我可以使用折线图来展示某个变量随时间的变化趋势,或者使用散点图来展示两个变量之间的关系。
三、绘制三维图形除了二维图形,MATLAB还可以绘制各种各样的三维图形。
我使用MATLAB绘制了一些三维曲面图和三维散点图。
通过设置坐标轴和数据,我可以将复杂的数据以立体的方式展示出来。
这对于研究三维数据的分布和趋势非常有帮助。
四、绘制动画除了静态图形,MATLAB还可以绘制动画。
我使用MATLAB编写了一些简单的动画程序,如小球的运动轨迹和图形的变换等。
通过控制时间和参数,我可以实现图形的动态变化,使得观察者可以更好地理解图形背后的规律和特点。
五、图形处理与分析MATLAB不仅可以绘制图形,还可以对图形进行处理和分析。
我使用MATLAB 对一些图形进行了平滑处理、噪声去除和边缘检测等操作。
这些图形处理技术可以帮助我们更好地理解图像中的信息,并提取出我们感兴趣的特征。
六、应用实例最后,我将MATLAB的绘图功能应用到了实际问题中。
我使用MATLAB绘制了一幅地形图,并通过设置不同的参数,展示了地形在不同条件下的变化。
这对于地质学家和地理学家来说非常有用,可以帮助他们更好地理解地球表面的形态和特征。
结论:通过本次实验,我深刻体会到了MATLAB绘图功能的强大之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二matlab图形绘制
一、实验目的
1、学习MATLAB图形绘制的基本方法;
2、熟悉和了解MATLAB图形绘制程序编辑的基本指令;
3、熟悉掌握利用MATLAB图形编辑窗口编辑和修改图形界面,并添加图形的各种标注;
二、实验原理
1.二维数据曲线图
(1)绘制单根二维曲线plot(x,y);
(2)绘制多根二维曲线plot(x,y) 当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。
当x,y是同维矩阵时,则以x,y对应列
元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)
(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)
2.图形标注与坐标控制
1)title (图形名称)
2)xlabel(x轴说明)
3)ylabel(y轴说明)
4)text(x,y图形说明)
5)legend(图例1,图例2,…)
6)axis ([xmin xmax ymin ymax zmin zmax])
3.图形窗口的分割
subplot(m,n,p)
4.三维曲线
plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)
5.三维曲面
mesh(x,y,z,c) 与surf(x,y,z,c)。
一般情况下,x ,y ,z 是维数相同的矩阵。
X ,y 是网格坐标矩阵,z 是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围。
三、实验内容及步骤
1.绘制下列曲线: (1) 2
1100
x y +=
x=0:0.02:10; y=100./(1+x.^2); plot(x,y)
title('my first plot'); xlabel('x'); ylabel('y'); grid on
截图:
(2) 2
221x e y -
=
π
x=0:0.02:10;
y=1./(2*pi).*exp(-(x.^2)./2); plot(x,y)
title('my first plot'); xlabel('x'); ylabel('y'); grid on
截图:
(3) 122=+y x 6
t=-4:0.02:4; y=4*sin(t); x=4*cos(t);
plot(x,y)
title('my first plot'); xlabel('x'); ylabel('y'); grid on
截图:
(4) ⎩
⎨⎧==3
2
5t y t x t=0:0.02:10; x=t.^2; y=5.*t.^3; plot(x,y)
title('my first plot'); xlabel('x');
ylabel('y');
grid on
截图:
2.在一个图形窗口绘制正弦和余弦曲线,要求给图形加标题“正弦和余弦曲线”,X轴Y轴分别标注为“时间t”和“正弦、余弦”,添加图例,在图形的某个位置标注“sin(t)”“cos(t)”,显示网格。
t=0:0.02:2*pi;
y2=cos(t);
y1=sin(t);
plot(t,[y1;y2])
title('my first plot');
xlabel('时间/(t)');
ylabel('正弦)/(y1),余弦/(y2)');
legend('sin(t)','cos(t)');
grid on
截图:
3.设y=1/(1+exp(-t)),-pi<=t<=pi, 在同一图形窗口采用子图形式绘制条形图、阶梯图、杆图和对数坐标图等不同图形,并对不同图形加标注说明。
t=-pi:pi/10:pi;
y=1./(1+exp(-t));
subplot(2,2,1);
bar(t,y,'r');
title('条形图');
axis([-4,4,0,1]);
subplot(2,2,2);
stairs(t,y,'b');
title('阶梯图'); axis([-4,4,0,1]); subplot(2,2,3); stem(t,y,'g');
title('杆图');
axis([-4,4,0,1]); subplot(2,2,4); semilogx(t,y,'k'); title('对数坐标图'); axis([-4,4,0,1]);
截图:
4.绘制向量x=[1 3 0.5 2.5 2]的饼形图,并把3对应的部分分离出来。
a=[1 3 0.5 2.5 2];
b=[0 3 0 0 0];
pie(a,b);
截图:
5.用hold on命令在同一个窗口绘制曲线y=sin(t),y1=sin(t+0.25) ,y2=sin(t+0.5),其中t=[0 10]。
t=0:0.001:10;
y=sin(t);
y1=sin(t+0.25);
y2=sin(t+0.5);
hold on;
plot(t,y,'r');
plot(t,y1,'b');
plot(t,y2,'g'); 截图:
6.根据1252
2
22=-+
a y a x 绘制平面曲线,并分析参数a 对其形状的影响。
syms a x y
eq=1/a^2*x^2+y^2/(25-a^2)-1; aa=[0.5:0.5:4.5,5.5:8]; [m,n]=size(aa); for i=1:n
eq1=subs(eq,a,aa(i)); ezplot(eq1,[-20 20]); drawnow
axis([-20,20,-10,10]); pause(0.5);
end
截图:
7.绘制三维圆柱螺旋线,⎪⎩
⎪
⎨⎧===t z t y t x )cos()sin(,
要求给出相应的坐标轴和标题附加标注,螺旋线为蓝色虚线。
t=0:pi/20:10*pi; x=2*(cos(t)+t.*sin(t)); y=2*(sin(t)-t.*cos(t)); z=1.5*t;
plot3(x,y,z,':b','linewidth',3) title('三维螺旋线');
xlabel('x'); ylabel('y');
zlabel('z');
截图:
8.22y x xe y z --+=,当x 和y 的取值范围均为-3到3时,用建立子窗口的方
法在同一个图形窗口中绘制出三维线图,网线图,曲面图和带渲染效果的曲面图。
[x,y]=meshgrid([-3:0.2:3]); z=x.*exp(-x.^2-y.^2); mesh(x,y,z) subplot(2,2,1)
plot3(x,y,z)
title('plot3(x,y,z)')
subplot(2,2,2)
mesh(x,y,z)
title('mesh(x,y,z)')
subplot(2,2,3)
surf(x,y,z)
title('surf(x,y,z)')
subplot(2,2,4)
surf(x,y,z)
shading interp
title('surf(x,y,z),shading interp') 截图:
实验报告提交格式:
1、实验题目
2、实验目的
3、实验内容(包括运行的结果或截图)。