二次函数中考复习课件-刘超华
合集下载
二次函数复习课说课课件刘老师
(2)求这两个交点间的距离(用关于a的 表达式来表达);
(3)a取何值时,两点间的距离最小?
一般式:y=ax2+bx+c
解析式 顶点式:y=a(x-h)2+k
数
结合 性质
形
y
系数与图象的关系
二次函数的增减性 二次函数与不等式 或方程的关系
图象
x
第二十二章 《二次函数》复习
说课内容
1 2 3 4
教材分析 学情分析 教法学法 教学过程
1、地位与作用
二次函数是在学习了一次函数和 一元二次方程的基础上进行的, 二次函数的图像和性质体现了数 形结合的思想,也为高中学习一元 二次不等式和圆锥曲线奠定基础。
是中考中的重点和难点。
2、教学目标
知识与技能: (1)理解二次函数的概念和基本形式; (2)掌握二次函数的图象和性质; (3)会确定图象的顶点、开口方向和对称轴,并能解决 实际问题。
1、如果一个二次函数的图象经过(0,0)(-1,-1)(1,9) 三点,试求这个二次函数的解析式.
2、已知一条抛物线过(0,5)点, 顶点坐标为(1,3), 求二次函数解析式.
归纳: 选择恰当形式, 利于快速求解
图象与a、b、 c、△ 的正负 关系
图象特点 和性质
二次函数与不等 式或方程的关系
2
3
4x
-3
-4
判断二次函数的增减性的关键是什么? 以对称轴为分界线,左右增减性相反
y
4
3
2
1
y
-4 -3 -2 -1 -1 o 1 2 3 4 x
-2
4
-3
3
-4
2
1
观察图象:当x____时,y随x的 增大而减小;当x____时,y随x 的增大而增大;函数值y有最__ 值,是______
(3)a取何值时,两点间的距离最小?
一般式:y=ax2+bx+c
解析式 顶点式:y=a(x-h)2+k
数
结合 性质
形
y
系数与图象的关系
二次函数的增减性 二次函数与不等式 或方程的关系
图象
x
第二十二章 《二次函数》复习
说课内容
1 2 3 4
教材分析 学情分析 教法学法 教学过程
1、地位与作用
二次函数是在学习了一次函数和 一元二次方程的基础上进行的, 二次函数的图像和性质体现了数 形结合的思想,也为高中学习一元 二次不等式和圆锥曲线奠定基础。
是中考中的重点和难点。
2、教学目标
知识与技能: (1)理解二次函数的概念和基本形式; (2)掌握二次函数的图象和性质; (3)会确定图象的顶点、开口方向和对称轴,并能解决 实际问题。
1、如果一个二次函数的图象经过(0,0)(-1,-1)(1,9) 三点,试求这个二次函数的解析式.
2、已知一条抛物线过(0,5)点, 顶点坐标为(1,3), 求二次函数解析式.
归纳: 选择恰当形式, 利于快速求解
图象与a、b、 c、△ 的正负 关系
图象特点 和性质
二次函数与不等 式或方程的关系
2
3
4x
-3
-4
判断二次函数的增减性的关键是什么? 以对称轴为分界线,左右增减性相反
y
4
3
2
1
y
-4 -3 -2 -1 -1 o 1 2 3 4 x
-2
4
-3
3
-4
2
1
观察图象:当x____时,y随x的 增大而减小;当x____时,y随x 的增大而增大;函数值y有最__ 值,是______
中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
2024年中考第一轮复习 二次函数的图象与性质 课件
∵顶点坐标为(m,-m+1),且顶点与 x 轴的两个交点构成等腰直角三角形,
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2
∴
>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴
-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与
x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2
∴
>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴
-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与
x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代
中考二次函数复习课件
值 a<0
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
《二次函数》中考总复习PPT课件
y
o
x
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
01
x
02
y
03
o
04
快速回答:
03
y
02
x
01
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
04
o
快速回答:
典型例题1. 如图,是抛物线y=ax2+bx+c的图像,则①a 0;②b 0;c 0;a+b+c 0; a-b+c 0;b2-4ac 0;2a-b 0;
当 时,是二次函数;
当 时,是一次函数;
当 时,是正比例函数;
驶向胜利的彼岸
驶向胜利的彼岸
2,函数 当m取何值时,
A
4、无论m为任何实数,二次函数y=x2-(2-m)x+m 的图像总是过点 ( ) A.(1,3) B.(1,0) C.;b+c
当x=-1时,y=a-b+c
a <0,b <0,c>0
- 与-1比较
与x轴交点个数
令x=1,看纵坐标
令x=-1,看纵坐标
令x=2,看纵坐标
令x=-2,看纵坐标
A
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
B
x
C
o
D
y
快速回答:
A
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
B
中考二次函数复习课件【优质PPT】
x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
备战 中考数学基础复习 第13课 二次函数的图象与性质课件ppt(40张ppt)
B.2个
C.3个
D.4个
变式1.(2020·遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直 线x=-1,下列结论不正确的是 ( C ) A.b2>4ac B.abc>0 C.a-c<0 D.am2+bm≥a-b(m为任意实数)
变式2.(2020·枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.
第13课 二次函数的图象与性质
【知识清单】 一、二次函数的概念及其关系式 1.二次函数的概念:形如___y_=_a_x_2+_b_x_+_c___(a,b,c是常数,a≠0)的函数. 2.二次函数的解析式: (1)一般式:___y_=_a_x_2+_b_x_+_c_(_a_≠__0_)___. (2)顶点式:y=a(x-h)2+k(a≠0),其顶点坐标是___(_h_,_k_)___. (3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2为抛物线与x轴两个交点的横 坐标.
5.(2020·宁波)如图,在平面直角坐标系中,二次函数y=ax2+4x-3图象的顶点是 A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).
(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围. (2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应 的二次函数的表达式.
【解析】(1)把B(1,0)代入y=ax2+4x-3, 得0=a+4-3,解得a=-1, ∴y=-x2+4x-3=-(x-2)2+1,∴A(2,1), ∵对称轴x=2,B,C关于x=2对称, ∴C(3,0),∴当y>0时,1<x<3. (2)∵D(0,-3), ∴点D平移到A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的表达 式为y=-(x-4)2+5.
二次函数复习(共36张PPT)
y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
2024年中考数学一轮复习课件--二次函数的图象和性质(70张PPT)
y0≤y1<y2,则m的取值范围是( B )
A.m<-3
B.m>-3
C.m≤-3
D.m≥-3
类型二 二次函数解析式的确定及图象的平移
9.把函数y=-3x2的图象向右平移2个单位,再向下平移1个单
位,得到的图象解析式为( A )
2
2
A.y=-3(x-2) -1
B.y=-3(x+2) -1
C.y=-3(x-1)2+2
时 , y 随 时 , y 随
x的增大 x 的 增 大
减小
增大
而
; 而
;
顶点式:y=a
(x-h)2+k(a,
h, k是常数,
a≠0)
在 对 称
轴
右
增 侧 , 即
减 当 x > h
性 时,y随x
的 增 大
而 增大
在 对 称
轴右侧,
即当x>h
时,y随x
的 增 大
而 减小
交点式:y=a
一般式:y=ax +bx+c
5.(2023·杭州)设二次函数y=a(x-m)(x-m-k)(a>0,
m,k是实数),则( A )
A.当k=2时,函数y的最小值为-a
B.当k=2时,函数y的最小值为-2a
C.当k=4时,函数y的最小值为-a
D.当k=4时,函数y的最小值为-2a
6.(2023·福建质检)二次函数y=ax2-2ax+c(a>0)的图象过
①抛物线翻折的本质为抛物线的翻折→抛物线上点的翻折→关
注抛物线的开口,并对顶点进行翻折→抛物线顶点式;
②将抛物线y=a(x-h)2+k沿着直线x=m(或y=k)翻折,
其解题策略与沿着坐标轴翻折一致,同学们不妨一试.
A.m<-3
B.m>-3
C.m≤-3
D.m≥-3
类型二 二次函数解析式的确定及图象的平移
9.把函数y=-3x2的图象向右平移2个单位,再向下平移1个单
位,得到的图象解析式为( A )
2
2
A.y=-3(x-2) -1
B.y=-3(x+2) -1
C.y=-3(x-1)2+2
时 , y 随 时 , y 随
x的增大 x 的 增 大
减小
增大
而
; 而
;
顶点式:y=a
(x-h)2+k(a,
h, k是常数,
a≠0)
在 对 称
轴
右
增 侧 , 即
减 当 x > h
性 时,y随x
的 增 大
而 增大
在 对 称
轴右侧,
即当x>h
时,y随x
的 增 大
而 减小
交点式:y=a
一般式:y=ax +bx+c
5.(2023·杭州)设二次函数y=a(x-m)(x-m-k)(a>0,
m,k是实数),则( A )
A.当k=2时,函数y的最小值为-a
B.当k=2时,函数y的最小值为-2a
C.当k=4时,函数y的最小值为-a
D.当k=4时,函数y的最小值为-2a
6.(2023·福建质检)二次函数y=ax2-2ax+c(a>0)的图象过
①抛物线翻折的本质为抛物线的翻折→抛物线上点的翻折→关
注抛物线的开口,并对顶点进行翻折→抛物线顶点式;
②将抛物线y=a(x-h)2+k沿着直线x=m(或y=k)翻折,
其解题策略与沿着坐标轴翻折一致,同学们不妨一试.
二次函数复习课课件
对称变换
总结词
对称变换是指二次函数的图像关 于某条直线进行对称。
详细描述
对称变换包括关于x轴、y轴或原点 对称。在对称变换过程中,二次函 数的开口方向、顶点和对称轴等性 质可能发生变化。
举例
将二次函数$f(x) = x^2 - 2x$的图 像关于x轴对称,得到新的函数$f(x) = (-x)^2 - 2(-x) = x^2 + 2x$。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。 抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该对称轴 上,坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
详细描述
顶点式是二次函数的一种特殊形式,它通过完全平方的形式简化了函数表达式 ,使得函数图像的顶点和对称轴更加直观。顶点式在解决与二次函数顶点相关 的问题时非常有用。
交点式
总结词
二次函数的交点式为y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
详细描述
交点式是二次函数的一种特殊形式,它通过将函数表示为两个一次因式的乘积, 突出了函数与x轴的交点。交点式在解决与二次函数与x轴交点相关的问题时非常 有用。
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在 平面坐标系中沿x轴或y轴方向移
动。
详细描述
平移变换包括向左或向右移动图 像,以及向上或向下移动图像。 在平移过程中,二次函数的开口 方向、顶点和对称轴等性质保持
(新)初三数学中考复习二次函数的应用复习课PPT幻灯片(32页)
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
三、典型例题分析
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
➢ 认识从函数角度看二次方程、不等式的联系 ➢ 抛物线与直线交点是关键点。
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】 (新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
人教版-数学-九年级上册-新版九年级数学上册 二次函数的应用 推荐课件
(1) y = x2+x-2 (2) y = x2 - 6x +9
y=x2-x+1
y=x2-6x+9
(3) y = x2 – x+ 1
y=x2+x-2
O
x
人教版九年级下册第26章《二次函数》
第六课时 二次函数的应用
解:
(1)抛物线y x2 x 2与x轴有两个公共点,它的横坐标 2, 1 , 当x取公共点的横坐标时,函数的值是0.由此得出方程x2 x 2 0 根是 x1 2, x2 1. (2)抛物线y x2 6x 9与x轴有一个公共点,这点的横坐标是3.当 x 3时,函数的值是0.由此得出方程x2 6x 9 0有两个相等的 实数根 x1 x2 3. (3)抛物线y x2 x 1与x轴没有公共点,由此可知,方程 x2 x 1 0没有实数根.
➢检查求得的最大值或最小值对应的自变量的值必 须在自变量的取值范围内 。
人教版九年级下册第26章《二次函数》
第六课时 二次函数的应用
1、某旅行社组团去外地旅游,30人起组团, 每人单价800元.旅行社对超过30人的团给予优惠, 即旅行团每增加一人,每人的单价就降低10元.你 能帮助分析一下,当旅行团的人数是多少时,旅行 社可以获得最大营业额?
人教版九年级下册第26章《二次函数》
第六课时 二次函数的应用
【思考3】猜一猜:所围成矩形面积的最大值大概是多少?
【思考4】你能求出篱笆所围成的矩形的最大面积吗?
分析:先写出S与x的函数关系,再求出使S最大
x
的x的值.
30-x
解:设一边长为x m , 则另一边为(30-x)m. 依题意,得
S x(30 x) x2 30 x (x 15)2 225 (0< x<30)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
B
c
o
·
y
x
A
o
x
A、a>0,b=0,c>0,△>0 C、a>0,b=0,c<0,△>0
C B、a<0,b>0,c<0, =0
△
y
D、a<0,b=0,c<0,△<0
o
x
熟练掌握a,b, c,△与抛物线图象的关系 (上正、下负) (左同、右异)
(2011江苏宿迁,8,3分)已知二次函数y=ax2+bx+c (a≠0)的图象如图,则下列结论中正确的是( D ) A.a>0 B.当x>1时,y随x的增大而增大 C.c<0 D.3是方程ax2+bx+c=0的一个根
Q
(0,3)
(-3,0)
(1,0)
Q(-1,2)
(3) 设抛物线的对称轴与 x轴交于点M ,问在对称 轴上是否存在点P,使△CMP为等腰三角形?若 存在,请直接写出所有符合条件的点P的坐标; 若不存在,请说明理由. 作MC的垂直平分线与对 称轴有一个交点(MC为底 边)。 以M为圆心,MC为半径画 弧,与对称轴有两交点;以 C为圆心,MC为半径画弧, 与对称轴有一个交点(MC 为腰)。
x
练习:已知二次函数的图象如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0
1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。
∴当 m 2 时,是二次函数。
m2 2 1 m2 m 2 0 (2)若是反比例函数,则 且
∴当 m 1 时,是反比例函数。
25 1 (—,— 4 ) 二次函数y=x2-x-6的图象顶点坐标是__________ 2 1 x=— 对称轴是_________。 2
二次函数的解析式:
2
练习: 1、二次函数y=ax2+bx+c(a≠0)的图象如图 所示,则a、b、c的符号为( ) A、a<0,b>0,c>0 B、a<0,b>0,c<0 C、a<0,b<0,c>0 D、a<0,b<0,c<0 2、二次函数y=ax2+bx+c(a≠0)的图象 如图所示,则a、b、c的符号为( ) A、a>0,b>0,c=0 B、a<0,b>0,c=0 C、a<0,b<0,c<0 D、a>0,b<0,c=0 3、二次函数y=ax2+bx+c(a≠0)的图象如图 所示,则a、b、c 、 △的符号为( )
(2)已知抛物线 y=x2 – 8x +c的顶点在 x轴 16 上,则c=____.
(3)一元二次方程3x2+x-10=0的两个根是 x1= -2 ,x2=5/3, 那么二次函数y=3x2+x-10 (-2、0)(5/3、0) 与x轴的交点坐标是____.
7、二次函数的综合运用
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形 状相同,顶点在直线x=1上,且顶点到x轴的距离为5, 请写出满足此条件的抛物线的解析式. 解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同 a=1或-1 又 顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 展开成一般式即可.
顶点式 y=a(x-h)² +k
(a≠0)
对称轴:直线x=h 顶点:(h,k)
一般式
y=ax² +bx+c
b 2 4ac b 2 a( x ) 2a 4a
b , 2a b 4ac b 2 顶点坐标是: 2a , 4a 对称轴为:直线 x
二次函数的图象: 是一条抛物线
顶点式
3、已知抛物线与x 轴的两个交点(x1,0)、 y=a(x-x1)(x-x2) (x2,0),通常设解析式为_____________ (a≠0)
交点式或两根式
1、根据下列条件,求二次函数的解析式。
(1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ;
a=-2,b=4,c=0
4、a,b,c符号的确定
a决定开口方向和大小:a>0时开口向上, a
(上正、下负)
a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧 a、b异号时对称轴在y轴右侧 a,b (左同、右异) b=0时对称轴是y轴
c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴 c=0时抛物线过原点 c (上正、下负) c<0时抛物线交于y轴的负半轴
a>0,开口向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
b 4ac b 2 当x 时, y最小值为 2a 4a
b 4ac b 2 当x 时, y最大值为 2a 4a
△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点 △=0时抛物线与x轴有一个交点 2 △= b -4ac △<0时抛物线与x轴没有交点
△
二次函数y=ax2+bx+c(a≠0)的几个特例: y 1)、当x=1 时,y= a+b+c >0
2)、当x=-1时, +bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
由a,b和c的符号确定
由a,b和c的符号确定
条件:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
3 1、y=-x² y x 3 , y=100-5x² , ,y=3x² +5, -2x³ x
2
2 其中是二次函数的有____个。
2,函数 y (m m 2) x
2
m2 2
当m取何值时,
(1)它是二次函数? (2)它是反比例函数? 2 2 (1)若是二次函数,则 m 2 2 且m m 2 0
x
3)、当x=2时, y= 4a+2b+c >0
4)、当x=-2时, y= 4a-2b+c <0
5)、b² -4ac 6)、2a+b
> 0.
0.
b 1 b2a 2a b 0 2a
<
例2:如图所示,二次函数y=ax2+bx+c的图像开口向上,图像经 过点(-1,2)和(1,0)且与y轴交于负半轴. (1)问:给出五个结论:①a>0;②b>0;③c>0;④a+b+c=0; ⑤a-b+c<1.其中正确的结论的序号是 ( ①④⑤ ) (2)问:给出四个结论:①abc<0;②2a+b>0;③a+c=1; ④a> 1 .其中正确的结论的序号是( ②③④ )
左加右减,上加下减
引申:y=2(x+3)2-4
y=2(x+1)2+2
6、二次函数与一元二次方程的关系
判别式: b2-4ac 二次函数 y=ax2+bx+c (a≠0) 图象 一元二次方程 ax2+bx+c=0 (a≠0)的根
有两个不同的 解x=x1,x=x2
与x轴有两个不 b2-4ac>0 同的交点 (x1,0) (x2,0)
5、抛物线的平移法则
练习 ⑴二次函数y=2x2的图象向下 平移 3 个单位可得 到y=2x2-3的图象; 二次函数y=2x2的图象向右 平移 3 个单位可得到 y=2(x-3)2的图象。 ⑵二次函数y=2x2的图象先向左 平移1 个单位, 再向 上 平移 2 个单位可得到函数y=2(x+1)2+2的 图象。
二次函数复习与练习课
钦州市灵山县平山中学 刘超华
二次函数一般考点:
1、二次函数的定义 2、二次函数的图象及性质 3、求二次函数的解析式 4、a,b,c符号的确定 5、抛物线的平移法则 6、二次函数与一元二次方程的关系 7、二次函数的综合运用
1、二次函数的定义
定义:y=ax² +bx+c ( a 、b 、 c 是常数, a ≠ 0 )
(2)解:∵抛物线与x轴相交时 x2-2x-8=0
c
A P B x
解方程得:x1=4, x2=-2 ∴AB=|4-(-2)|=6 而P点坐标是(1,-9),PC=|-9|=9
S=1/2 AB×PC=
(1)如果关于x的一元二次方程 x2-2x+m=0有两个 1 相等的实数根,则m=____,此时抛物线 y=x21 2x+m与x轴有____个交点.
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2、已知二次函数y=ax2+bx+c的最大值 是2,图象顶点在直线y=x+1上,并且图 象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x