工程力学天津大学答案
工程力学(天津大学)第15章答案
第 十五 章 压杆稳定思 考 题15−1 在§15−2 中对两端铰支细长压杆,按图a 所示的坐标系及挠曲线形状,推导出了欧拉公式22r c lEI πF试问如分别取图b ,c ,d 所示的坐标系及挠曲线形状时,挠曲线微分方程及所得到的F c r 公式与图a 情况下得到的结果是否相同? 15−2 欧拉公式在什么范围内适用?如果把中长杆误认为细长杆应用欧拉公式计算其临界力,会导至什么后果? 15−3 图示8种截面形态的细长压杆,如果各方向的支承条件相同,问压杆失稳时会在哪个方向弯曲?(a)(b)(c)(d)思考题 15−1图思考题15−3图15−4 两根压杆的材料、长度与杆端的支承条件均相同,横截面面积也相同,但其中一个为圆形截面,另一个为正方形截面,问哪一根杆能够承受的压力较大? 15−5 若两根压杆的材料相同且柔度相等,这两根压杆的临界应力是否一定相等,临界力是否一定相等?15−6 由两个型号相同的不等边角钢组成的中心受压杆件,有下面两种布置方案,在两端约束条件相同的情况下,哪种布置合理,为什么?17−7 与上题类似由两个型号相同的等边角钢组成的中心受压杆件,图中的两种布置方案,哪种布置合理,为什么?15−8 为什么在选择压杆的截面时,必须采用试算方法?习题15−1 图示各杆的材料和截面均相同,试问哪根杆能够承受的压力最大,哪根最小?解:对于材料和截面面积均相同的压杆,柔度λ越大,临界力F c r 越小,因而压杆越容易失稳,亦即能够承受的压力最小。
根据ilμλ=,由于各杆的截面均相同,因此只需比较各杆的计算长度l μ即可(a ) m l 551=⨯=μ (b ) m l 9.477.0=⨯=μ(a)(b)(c)(d) (e)(f)习题15−1图(a) (b)思考题 15−7 图(a) 思考题 15−6 图(b)(c ) m l 5.495.0=⨯=μ (d ) m l 422=⨯=μ (e ) m l 881=⨯=μ(f ) 上、下两段分别计算,临界力应取较小者,而计算长度l μ应取较大者上段 m l 5.255.0=⨯=μ 下段 m l 5.357.0=⨯=μ经比较可得,杆(f )能够承受的压力最大,杆(e )能够承受的压力最小。
工程力学(天津大学)第14章答案
第十四章 组合变形习 题14−1 截面为20a 工字钢的简支梁,受力如图所示,外力F 通过截面的形心,且与y 轴成φ角。
已知:F =10kN ,l =4m ,φ=15°,[σ]=160MPa ,试校核该梁的强度。
解:kN.m 104104141=⨯⨯==Fl M kN.m;58821510kN.m;65991510.sin φsin M M .cos φcos M M y z =⨯===⨯==查附表得:33cm 531cm 237.W ;W y z ==122.9MPa Pa 109122105311058821023710569966363=⨯=⨯⨯+⨯⨯=+=--....W M W M σy y z z max[]σσmax <,强度满足要求。
14−2 矩形截面木檩条,受力如图所示。
已知:l =4m ,q =2kN/m ,E =9GPa ,[σ]=12MPa ,4326'= α,b =110mm ,h =200mm ,2001][=lf。
试验算檩条的强度和刚度。
z解:kN.m 442818122=⨯⨯==ql M kN.m;789143264kN.m;578343264.sin φsin M M .cos φcos M M y z ='⨯==='⨯== m ...W ;m ...W y z 42421003341102206110333722011061--⨯=⨯⨯=⨯=⨯⨯=MPa 329Pa 1032910033410789110333710578364343......W M W M σy y z z max=⨯=⨯⨯+⨯⨯=+=-- []σσmax <,强度满足要求。
m...sin EI φsin ql f m...cos EI φcos ql f y y zz 33943433943410931411022012110938443264102538451003492201101211093844326410253845--⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==mm ..f f f y z 4517104517322=⨯=+=-20012291<=l f ,所以挠度满足要求。
工程力学(天津大学)第11章答案
工程力学(天津大学)第11章答案第十一章 梁弯曲时的变形习 题11−1 用积分法求下列简支梁A 、B 截面的转角和跨中截面C 点的挠度。
解:(a )取坐标系如图所示。
弯矩方程为:x lM M e=挠曲线近似微分方程为:x lM y EI e -=''积分一次和两次分别得:C x lMy EI e +-='22,(a ) D Cx x lM EIy e ++-=36 (b) 边界条件为:x =0时,y =0,x =l 时,y =0, 代入(a )、(b)式,得:0,6==D l M C e梁的转角和挠度方程式分别为:)62(12l M x l M EI y e e +-=',)66(13lx M x l M EI y e e +-= 所以:EIl M y l EI M θEI l M θe C e B e A 16,3,62=-==(b )取坐标系如图所示。
AC 段弯矩方程为:)20(11lx x lM M e≤≤=BC段弯矩方程为:)2(22l x lM x l M M e e≤≤-=两段的挠曲线近似微分方程及其积分分别为:((习题xAC 段:11x lM y EI e-='' 12112C x lM y EI e +-=', (a ) 1113116D x C x lM EIy e ++-= (b) BC 段:e eM x lM y EI +-=''22 22222C M x lM y EI e e ++-=', (c ) 22223226D x C x M x lM EIy e e +++-= (d) 边界条件为:x 1=0时,y 1=0,x 2=l 时,y 2=0, 变形连续条件为:2121212y y y y lx x '='===,时, 代入(a )、(b)式、(c )、(d)式,得:,8D 0,2411,2422121l MD l M C l M C e e e==-==, 梁的转角和挠度方程式分别为:AC 段:)242(121l M x l M EI y e e +-=',)246(11311lx M x l M EI y e e +-= BC 段:)24112(12222l M x M x l M EI y e e e -+-=',)8241126(12222322l M lx M x M x l M EI y e e e e +-+-=所以:0,24,24===C eB e A y l EIM θEI l M θ11−2 用积分法求下列悬臂梁自由端截面的转角和挠度。
天津大学工程力学习题答案
3-10 求图示多跨梁支座A 、C 处的约束力。
已知M =8kN ·m ,q =4kN/m ,l =2m 。
解:(1)取梁BC 为研究对象。
其受力如图(b)所示。
列平衡方程 (2)取整体为研究对象。
其受力如图(c)所示。
列平衡方程3-11 组合梁 AC 及CD 用铰链C 连接而成,受力情况如图(a)所示。
设F =50kN ,q =25kN/m ,力偶矩M =50kN ·m 。
求各支座的约束力。
F BkN1842494902332,0=⨯⨯===⨯⨯-⨯=∑ql F ll q l F M C C B kN624318303,0=⨯⨯+-=+-==⨯-+=∑ql F F l q F F F C A C A ymkN 32245.10241885.10405.334,022⋅=⨯⨯+⨯⨯-=+⨯-==⨯⨯-⨯+-=∑ql l F M M l l q l F M M MC A C A A解:(1)取梁CD 为研究对象。
其受力如图(c)所示。
列平衡方程(2)取梁AC 为研究对象。
其受力如图(b)所示,其中F ′C =F C =25kN 。
列平衡方程F C(b)(c)´CkN 25450252420124,0=+⨯=+==-⨯⨯-⨯=∑M q F M q F MD D CkN 25450256460324,0=-⨯=-==-⨯⨯+⨯-=∑M q F M q F MC C D)kN(25225225250222021212,0↓-=⨯-⨯-='--==⨯'-⨯⨯-⨯+⨯-=∑CA C A BF q F F F q F F MkN150225425650246043212,0=⨯+⨯+='++==⨯'-⨯⨯-⨯-⨯=∑CB CB AF q F F F q F F M6−1作图示杆件的轴力图。
解:在求AB 段内任一截面上的轴力时,在任一截面1−1处截断,取左段为脱离体(图c ),并设轴力F N1为拉力。
工程力学(天津大学)第15章答案..
第 十五 章 压杆稳定思 考 题15−1 在§15−2 中对两端铰支细长压杆,按图a 所示的坐标系及挠曲线形状,推导出了欧拉公式22r c lEI πF试问如分别取图b ,c ,d 所示的坐标系及挠曲线形状时,挠曲线微分方程及所得到的F c r 公式与图a 情况下得到的结果是否相同? 15−2 欧拉公式在什么范围内适用?如果把中长杆误认为细长杆应用欧拉公式计算其临界力,会导至什么后果? 15−3 图示8种截面形态的细长压杆,如果各方向的支承条件相同,问压杆失稳时会在哪个方向弯曲?(a)(b)(c)(d)思考题 15−1图思考题15−3图15−4 两根压杆的材料、长度与杆端的支承条件均相同,横截面面积也相同,但其中一个为圆形截面,另一个为正方形截面,问哪一根杆能够承受的压力较大? 15−5 若两根压杆的材料相同且柔度相等,这两根压杆的临界应力是否一定相等,临界力是否一定相等?15−6 由两个型号相同的不等边角钢组成的中心受压杆件,有下面两种布置方案,在两端约束条件相同的情况下,哪种布置合理,为什么?17−7 与上题类似由两个型号相同的等边角钢组成的中心受压杆件,图中的两种布置方案,哪种布置合理,为什么?15−8 为什么在选择压杆的截面时,必须采用试算方法?习题15−1 图示各杆的材料和截面均相同,试问哪根杆能够承受的压力最大,哪根最小?解:对于材料和截面面积均相同的压杆,柔度λ越大,临界力F c r 越小,因而压杆越容易失稳,亦即能够承受的压力最小。
根据ilμλ=,由于各杆的截面均相同,因此只需比较各杆的计算长度l μ即可(a ) m l 551=⨯=μ (b ) m l 9.477.0=⨯=μ(a)(b)(c)(d)(e)(f)习题15−1图(a) (b)思考题 15−7 图(a) 思考题 15−6 图(b)(c ) m l 5.495.0=⨯=μ (d ) m l 422=⨯=μ (e ) m l 881=⨯=μ(f ) 上、下两段分别计算,临界力应取较小者,而计算长度l μ应取较大者上段 m l 5.255.0=⨯=μ 下段 m l 5.357.0=⨯=μ经比较可得,杆(f )能够承受的压力最大,杆(e )能够承受的压力最小。
工程力学(天津大学)第4章答案
M z 230.95 0.707 Mo 326.60
4-6 轴AB与铅直线成 角,悬臂CD垂直地固定在轴上,其长为a,并与铅直面zAB成 角,如图所示。如在点D作用铅直向下的力P,求此力对轴AB的矩。 解:力P对轴AB的矩为 z B
M AB P sin sin a Pa sin sin
M o (F ) M 2 x (F ) M 2 y (F ) M 2 z (F ) 230.952 (230.95) 2 326.60N m M cos( M o , i ) x 0, Mo
cos( M o , j ) cos( M o , k ) My Mo 230.95 0.707, 326.60
B
D A
B J y
F x
C
解:取矩形平板为研究对象,其上受一汇交于D点的空间汇交力系作用,连 接DH、DI、DJ,如图b所示。列平衡方程
F F F
y
0,
AH BH FB 0 AD BD AH BH , AD BD, FA FA
FA FB
1 2
x
0,
z
100 100 5
1 5
100
0.3 100 13 100 5 3 1 300 0.1 200 0.3 13 5 51.78 N m 200 M y M y ( F ) F1 0.2 F2 0.1 100 13 2 100 0.2 300 0.1 13 36.64 N m 300 200 M z M z ( F ) F2 0.2 F3 0.3 100 13 100 5 3 2 300 0.2 200 0.3 13 5 103.59 N m
天津大学版工程力学习题答案_第六章
习 题6−1作图示杆件的轴力图。
解:在求AB 段内任一截面上的轴力时,在任一截面1−1处截断,取左段为脱离体(图c ),并设轴力F N1为拉力。
由平衡方程求出:kN 201N =F同理,可求得BC 段任一截面上的轴力(图d )为kN 204020N2-=-=F求CD 段内的轴力时,将杆截开后取右段为脱离体,并设轴力F N 3为拉力(图e )。
由kN002525,0N3N3==+--=∑F F Fx同理,可得DE 段内任一横截面上的轴力F N 4为(图f )kN 254N4==F F按轴力图作图规则,作出杆的轴力图(图g )。
6−2 作图示杆件的轴力图。
已知:F =3kN 。
解:取图示脱离体,并由对应的脱离体平衡求出轴力分别为:30040040kN20kN 25kN(a )N2 F (b )(c ) (d )(e )20F N 图(kN )(g )习题6−1图(f )作轴力图6−3 设在题6−1中杆件的横截面是10mm 20mm 的矩形,试求各杆件截面上的应力值。
解:由习题6-1解知杆件各段轴力,其对应的应力分别为:6−4 图示一圆周轴CD 与套管 AB 紧密配合。
现欲用力F 将轴自套管内拔出。
设轴与套管间的摩擦力q (按单位面积计)为常数。
已知q 、a 、b 及d ,试求:(1) 拔动轴CD 时所需的F值;(2) 分别作出轴CD 和套管 AB 在F 力作用下的轴力图。
解:(1)F 应等于轴与套管间的摩擦力,即 F=q πdb(2)轴CD 与套管的轴力图如图b 6−5在图示结构中,所有各杆都是钢制的,横截面面积均等于3×10-3mm2,力F =100kN 。
求各杆的应力。
解:求各杆的轴力,取B 节点为脱离体,由节点平衡FF轴力图q πdbq πdb图b取C 节点为脱离体,有求各杆应力6−6图示一三角架,由两杆AB 和BC 组成,该两杆材料相同,抗拉和抗压许用应力均为[σ],截面面积分别为A 1和A 2。
工程力学(天津大学)第11章答案
第十一章 梁弯曲时的变形习 题11−1 用积分法求下列简支梁A 、B 截面的转角和跨中截面C 点的挠度。
解:(a )取坐标系如图所示。
弯矩方程为:xlM M e=挠曲线近似微分方程为:xlM y EI e-=''积分一次和两次分别得:Cxl My EI e +-='22, (a )DCx xlMEIy e++-=36 (b)边界条件为:x =0时,y =0,x =l 时,y =0, 代入(a )、(b)式,得:0,6==D l M Ce梁的转角和挠度方程式分别为:)62(12l M xlMEIy e e+-=',)66(13lx M xlMEIyee+-=所以:EIlM y l EIMθEIl M θe C eB e A 16,3,62=-==(b )取坐标系如图所示。
AC 段弯矩方程为:)20(11l x x lM M e≤≤=BC段弯矩方程为:)2(22l x l Mx lM M ee≤≤-=两段的挠曲线近似微分方程及其积分分别为:(a)(b)习题11−1图xAC 段:11x lM y EI e-=''12112C x l My EI e+-=', (a ) 1113116D x C x lMEIye++-= (b)BC 段:eeMx lM y EI +-=''2222222C Mx l My EI ee++-=', (c )22223226D x C x M x lMEIye e+++-= (d)边界条件为:x 1=0时,y 1=0,x 2=l 时,y 2=0, 变形连续条件为:2121212y y y y l x x '='===,时,代入(a )、(b)式、(c )、(d)式,得:,8D 0,2411,2422121l M D l M C l MC eee==-==,梁的转角和挠度方程式分别为:AC 段:)242(121l M x lMEIy e e+-=',)246(11311lx Mx lMEIy ee+-=BC 段:)24112(12222l M x M x lMEIy e e e-+-=',)8241126(12222322l M lx M x M x lMEIy e eee+-+-=所以:0,24,24===C eB e A y l EIMθEIl M θ11−2 用积分法求下列悬臂梁自由端截面的转角和挠度。
工程力学(天津大学)第12章答案
第十二章 用能量法计算弹性位移习 题12−1 两根杆拉伸刚度均为EA ,长度相同,承受荷载如图所示,分布荷载集度q =F/l ,试求这两根杆的应变能,并作比较。
解:EAl F V 221=,EA l F dx EA l )qx (dx EA l F V l l N622202022===⎰⎰ 213V V =12−2 试求图示受扭圆轴内所积蓄的应变能,杆长为l ,直径为d ,材料的剪变模量为G 。
解:4320420232163222Gdl m dx d πGl )mx (dx GI l T V l lP ===⎰⎰ 12−3 试计算下列梁内所积蓄的应变能,略去剪力的影响。
习题12−2图解:(a )先求支座反力: ql F ,ql F RB RA 8381==以A 为坐标原点,x 1以向右为正,AC 段的弯矩方程为:118x qlM = 以B 为坐标原点,x 2以向左为正,BC 段的弯矩方程为:22222183qx x ql M -= 梁的变形能为:EIl q dx EI )qx qlx (dx EI )qlx (dx EIMdx EI M V l l l l 153601722183282252202222202120222021=-+=+=⎰⎰⎰⎰(b) 以B 为坐标原点,x 以向左为正,AB 段的弯矩方程为:306x lq M =梁的变形能为:EIl q dx EI )l x q (dx EI M V l l 504262520023002===⎰⎰ (c) 以B 为坐标原点,x 以向左为正,AB 段的弯矩方程为:Fx M )x (M +=梁的变形能为:EIl F EI MFl EI l M dx EI )Fx M (dx EI M V l l6222232220202++=+==⎰⎰ (d) 先求支座反力: ,ql F RA 83=以A 为坐标原点,x 1以向右为正,AB 段的弯矩方程为:21112183qx x ql M -= (0≤x 1≤l )以C 为坐标原点,x 2以向左为正,BC 段的弯矩方程为:22221qx M -=(0≤x 2≤l /2) 梁的变形能为:EIl q dx EI )qx (dx EI )qx qlx (dx EIMdx EI M V l ll l12803221221832252220222102211202221=-+-=+=⎰⎰⎰⎰12−4 试求图示结构中的弹性变形能。
423002[工程力学] 天津大学考试 参考资料答案
工程力学复习题参考的答案 天津大学1、利用对称性,计算下图所示各结构的内力,并绘弯矩图。
解:取半结构如图(a)所示,为2次超静定结构。
再取半结构的基本体系如图(b)所示,基本方程为1111221P 2112222P 00X X X X δδ∆δδ∆++=⎧⎪⎨++=⎪⎩ 系数和自由项分别为119EIδ=,1221552EIδδ==,223613EIδ=,1P 13603EI ∆=,2P 1900EI∆=解得17.04kN X =-,214.18kN X =-。
原结构弯矩图如图(f)所示。
C BA10kN/m4m3m4mCBA10kN/m2X1X1X=1112X=133710kN/m80807.04202030.4230.4230.4230.4226.326.31(b) 基本体系M图(c)(a) 半结构PM(e)M图(kN·m)(f)2M图(d)图(kN·m)2、用结点法或截面法求图示桁架各杆的轴力。
解:(1)判断零杆(12根)。
(2)节点法进行内力计算,结果如图。
3、分析如图所示体系的几何构造。
解:从A点开始依次去掉二元体,可知为几何不变体系且无多余约束。
4、试求图示刚架在水压力作用下C、D两点的相对水平位移,各杆EI为常数。
解:(1)作荷载作用下弯矩图:在C、D两点加一对反向的单位水平力,并作弯矩图如下:则:5、某条形基础,宽B=2m ,埋深d=1m 。
基底附加压力p=100kPa ,基底至下卧层顶面的距离Z=2m ,下卧层顶面以上土的重度3/20m kN =γ,经修正后,下卧层地基承载力设计值kPa f 110=,扩散角 22=θ,试通过计算,验算下卧层地基承载力是否满足要求?(4.0tan =θ) 解:kPa d cz 60203)2(=⨯=⨯+=γσ kPa Z b b p z 6.554.02222100tan 20=⨯⨯+⨯=⨯+⨯=θσf kPa z cz >=+=+6.115606.55σσ,故不能满足要求。
工程力学(天津大学)第6章答案
考虑微段的静力平衡,有 [A(x) + dA(x)]⋅[σ] = A(x)[σ] +ρA(x)dx dA(x)[σ] =ρA(x)dx 设桥墩顶端截面( x = 0)的面积为A0 ,对上式积分,得x 截面的面积为
F
F
F
5m
15m
5m
5m
(a)
(b)
(c)
习题 6 − 14 图
解:(1)采用等截面石柱
结构如图a 所示,设柱的横截面面积和长度分别为A 、l ,底部截面轴力最
大,为
强度条件为
于是有
所用石料体积为 2、采用三段等长度的阶梯石柱
结构如图b 所示,按从上到下顺序,设各段横截面面积和长度分别为A1 , l 1 , A2 , l 2 和 A3 , l 3 。显然,各阶梯段下端截面轴力最大,分别为
(2)由强度条件确定许用荷载
F A
B 60º
所以许用荷载为[F]=21.6kN。
C
60º
F
6 − 16 图示结构由刚性杆 AB 及两弹性 杆 EC 及 FD 组成,在 B 端受力 F 作用。两弹性
习题 6 − 15 图
杆由相同材料所组成,且长度相等、横截面面 积相同,试求杆 EC 和 FD 的内力。
FN1=FN2。
(2)根据题意,其位移条件为
其中,
分别为螺栓的伸长及套管的缩短,考虑 FN1=FN2,可计算出
将
代入得
(3) 螺栓横截面的应力为拉应力
天津大学版工程力学习题答案_第三章
习 题D o n e (略)3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b) (c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。
天津大学版工程力学习题答案第二章1
D o n e (略)2−1分别用几何法和解析法求图示四个力的合力。
已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。
解: (一) 几何法用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。
从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。
(二) 解析法以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。
首先计算合力在坐标轴上的投影N79.68511002180103605121103N85.152100502180101605221101421R 4321R =⨯-⨯+⨯=-+==-=⨯-+⨯+⨯-=-++-==∑∑F F F F F F F F F F F y y x x然后求出合力的大小为N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F设合力F R 与x 轴所夹锐角为θ,则82881838.3785.179.68tan R R '︒====θθxy F F再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。
习题2−1图 F 1 F 2 F 4 F 3 F R 88°28′ (b) 231 1 1 1 F 1 F 2F 3 F 4 F Rθ (c) 23 1 1 1 1 F 1 F 2 F 3 F 4(a) 0 25 50kN e a b c d O y xD o n e (略) 2−2一个固定的环受到三根绳子拉力F T1 、F T2 、F T3的作用,其中F T1,F T2的方向如图,且F T1=6kN ,F T2=8kN ,今欲使F T1 、F T2 、F T3的合力方向铅垂向下,大小等于15kN ,试确定拉力F T3的大小和方向。
工程力学(天津大学)第11章答案
第十一章 梁弯曲时的变形习 题11−1 用积分法求下列简支梁A 、B 截面的转角和跨中截面C 点的挠度。
解:(a )取坐标系如图所示。
弯矩方程为:x l M M e= 挠曲线近似微分方程为:x lM y EI e-='' 积分一次和两次分别得:C x lM y EI e +-='22,(a ) D Cx x lM EIy e ++-=36 (b) 边界条件为:x =0时,y =0,x =l 时,y =0, 代入(a )、(b)式,得:0,6==D l M C e梁的转角和挠度方程式分别为:)62(12l M x l M EI y e e +-=',)66(13lx M x l M EI y e e +-= 所以:EIl M y l EI M θEI l M θe C e B e A 16,3,62=-==(b )取坐标系如图所示。
AC 段弯矩方程为:)20(11lx x lMM e ≤≤=BC段弯矩方程为:)2(22l x lM x l M M e e≤≤-=两段的挠曲线近似微分方程及其积分分别为:(a)(b)习题11−1图xAC 段:11x lM y EI e-='' 12112C x lM y EI e +-=', (a ) 1113116D x C x lM EIy e ++-= (b) BC 段:e eM x lM y EI +-=''22 22222C M x lM y EI e e ++-=', (c ) 22223226D x C x M x lM EIy e e +++-= (d) 边界条件为:x 1=0时,y 1=0,x 2=l 时,y 2=0, 变形连续条件为:2121212y y y y lx x '='===,时,代入(a )、(b)式、(c )、(d)式,得:,8D 0,2411,2422121l MD l M C l M C e e e==-==, 梁的转角和挠度方程式分别为:AC 段:)242(121l M x l M EI y e e +-=',)246(11311lx M x l M EI y e e +-= BC 段:)24112(12222l M x M x l M EI y e e e -+-=',)8241126(12222322l M lx M x M x l M EI y e e e e +-+-=所以:0,24,24===C eB e A y l EIM θEI l M θ11−2 用积分法求下列悬臂梁自由端截面的转角和挠度。
工程力学(天津大学)第13章答案
习 题 解 答13−1 木制构件中的单元体应力状态如下图,其中所示的角度为木纹方向与铅垂线的夹角。
试求:〔l 〕平行于木纹方向的切应力; 〔2〕垂直于木纹方向的正应力。
解: 由图a 可知MPa0MPa,6.1,MPa 2.0=-=-=x y x τσσ〔1〕平行于木纹方向的切应力:那么由公式可直接得到该斜截面上的应力MPa1.0)]15(2sin[26.12MPa 97.1)]15(2cos[26.1226.121515=-⨯+-=-=-⨯+-+--=--τσ 〔2〕垂直于木纹方向的正应力MPa1.0)752sin(26.12MPa 527.1]752cos[26.1226.127575-=⨯+-=-=⨯+-+--=τσ 由图b 可知MPa 25.1,0,0-===x y x τσσ〔1〕平行于木纹方向的切应力:那么由公式可直接得到该斜截面上的应力MPa08.1)]15(2cos[25.12cos MPa625.0)15(2sin 25.12sin 1515-=-⨯⨯-==-=-⨯=-=--αττατσx x〔2〕垂直于木纹方向的正应力MPa08.1)752cos(25.12cos MPa625.0)752sin(25.12sin 7575=⨯⨯-===⨯⨯=-=αττατσx x13−2 应力状态如图一所示〔应力单位为MPa 〕,试用解析法计算图中指定截面的正应力与切应力解:〔a 〕 MPa 20MPa,10,0MPa 3-===x y x τσσ那么由公式可直接得到该斜截面上的应力MPa 习题13−1图(a)(b)MPa10)42cos(20)42sin(210302cos 2sin 2MPa40)42sin(20)42cos(21030210302sin 2cos 22=⨯⨯-⨯⨯-=+-==⨯⨯+⨯⨯-++=--++=ππατασστππατασσσσσααx y x x yx yx〔b 〕 MPa20MPa,10,0MPa 3===x y x τσσ那么:MPa21.21)5.222cos(20)5.222sin(210302cos 2sin 2MPa93.12)5.222sin(20)5.222cos(21030210302sin 2cos 22=⨯⨯+⨯⨯-=+-==⨯⨯-⨯⨯-++=--++=ατασστατασσσσσααx y x x yx y x 〔c 〕60MPa15MPa,20,MPa 10-====ατσσx y x那么:习题13−2图(c)(b)(a)(d)习题13−3图(a)(b)MPa17.3)]60(2cos[15)]60(2sin[220102cos 2sin 2MPa49.30)]60(2sin[15)]60(2cos[22010220102sin 2cos 22-=-⨯⨯+-⨯⨯-=+-==-⨯⨯--⨯⨯-++=--++=ατασστατασσσσσααx yx x yx y x 13−3应力状态如下图〔应力单位为MPa 〕,试用图解法〔应力圆〕计算图中指定截面的正应力与切应力。
工程力学(天津大学)第3章答案
习 题3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b)(c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 组合变形习 题14−1 截面为20a 工字钢的简支梁,受力如图所示,外力F 通过截面的形心,且与y 轴成φ角。
已知:F =10kN ,l =4m ,φ=15°,[σ]=160MPa ,试校核该梁的强度。
解:kN.m 104104141=⨯⨯==Fl M kN.m;58821510kN.m;65991510.sin φsin M M .cos φcos M M y z =⨯===⨯==查附表得:33cm 531cm 237.W ;W y z ==122.9MPa Pa 109122105311058821023710569966363=⨯=⨯⨯+⨯⨯=+=--....W M W M σy y z z max[]σσmax <,强度满足要求。
14−2 矩形截面木檩条,受力如图所示。
已知:l =4m ,q =2kN/m ,E =9GPa ,[σ]=12MPa ,4326'= α,b =110mm ,h =200mm ,1][=f。
试验算檩条的强度和刚度。
z解:kN.m 442818122=⨯⨯==ql M kN.m;789143264kN.m;578343264.sin φsin M M .cos φcos M M y z ='⨯==='⨯== m ...W ;m ...W y z 42421003341102206110333722011061--⨯=⨯⨯=⨯=⨯⨯=MPa 329Pa 1032910033410789110333710578364343......W M W M σy y z z max=⨯=⨯⨯+⨯⨯=+=-- []σσmax <,强度满足要求。
m...sin EI φsin ql f m...cos EI φcos ql f y y zz 33943433943410931411022012110938443264102538451003492201101211093844326410253845--⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==mm ..f f f y z 4517104517322=⨯=+=-20012291<=l f ,所以挠度满足要求。
14−3 一矩形截面悬臂梁,如图所示,在自由端有一集中力F 作用,作用点通过截面的形心,与y 轴成φ角。
已知:F =2kN ,l =2m ,φ=15°,[σ]=10MPa ,E =9GPa ,h/b =1.5,容许挠度为l /125,试选择梁的截面尺寸,并作刚度校核。
解:=M kN.m;0351154kN.m;8643154.sin φsin M M .cos φcos M M y z =⨯===⨯== []6232310106110035*********⨯=≤⨯+⨯=+=σhb .bh .W M W M σy y z z max将h/b=1.5代入上式得:mm b 113≥;则mm h 170≥。
取b=110mm;h=170mmzzm...sin EI φsin Fl f m...cos EI φcos Fl f y y zz 339333339333101381101701211093152102310711217011012110931521023--⨯=⨯⨯⨯⨯⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯⨯⨯⨯==mm ..f f f y z 0815100815322=⨯=+=-20012651<=l f ,所以挠度满足要求。
14−4 一矩形截面悬臂梁,如图所示,在梁的水平对称平面内受到集中力F 1=2kN 作用,在铅直对称平面内受到F 2=1kN 的作用,梁的截面尺寸b =100mm ,h =200mm ,E =10GPa 。
试求梁的横截面上的最大正应力及其作用点的位置,并求梁的最大挠度。
解:kN.m;422kN.m;22112=⨯===⨯==l F M l F M y z m ...W ;m ...W y z 42421033310206110676201061--⨯=⨯⨯=⨯=⨯⨯=MPa 15Pa 1015103331041067610264343=⨯=⨯⨯+⨯⨯=+=--..W M W M σy y z z max(A 点) m..EI l F f m..EI l F f y y z33933323393331110321020121101032102310420101211010321013--⨯=⨯⨯⨯⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯⨯⨯==mm ..f f f y z 2532102532322=⨯=+=-14−5 一矩形截面斜梁,受铅直荷载作用,如图所示。
已知:l =4m ,q =4kN/m ,b =110mm ,h =200mm ,试:(1) 作轴力图和弯矩图;(2) 求危险截面(跨中截面)上的最大拉应力和最大压应力值。
解:(1) 弯矩图和轴力图如图所示(2)m .kN .cos cos ql M max 936304481308122=⨯⨯⨯==kN sin sin ql N max 8304430=⨯⨯==MPa 279Pa 10279201101042011061109366323max .......A N W M σ=⨯=⨯⨯-⨯⨯⨯=-=拉MPa 639Pa 10639201101082011061109366323max .......A N W M σ=⨯=⨯⨯⨯⨯⨯==++压14−6 图示一三角形支架,横梁AB 用20a 工字钢制成,梁中间有一集中力F 作用。
已知:l =3m ,F =30kN ,α=30°,求AB 梁内的最大正应力。
设工字钢自重不计。
解:AB 梁内的最大正应力发生在梁跨中截面:kN.m 5223304141.Fl M =⨯⨯==kN 3152330kN;30=⨯===NAB NBC F F F 查附表得:23cm 57835cm 237.A ;W ==102.24MPa Pa 1024102105783510315102371052264363=⨯=⨯⨯+⨯⨯=+=--...A N W M σmax14−7 一矩形截面杆件,受力如图所示。
F 1作用在杆件的对称平面内,F 2、F 3的作用线与杆件的轴线重合。
已知:F 1=15kN ,F 2=15kN ,F 3=30kN ,l =2m ,杆件的截面尺寸:b =150mm ,h =200mm ,试求杆横截面上的最大压应力和最大拉应力。
解:杆的最大压应力和最大拉应力发生在杆的底截面。
此处弯矩值为kN.m302151=⨯==l F M MPa 513Pa 105312015010301520150611030632332c ....)(..A F F W M σmax-=⨯-=⨯⨯+-⨯⨯⨯-=++= MPa 528Pa 105282015010301520150611030632332t ....)(..A F F W M σmax=⨯=⨯⨯+-⨯⨯⨯=+-=14−8 一正方形截面杆件,边长为a ,承受轴向拉力如图所示。
现在杆件中间某处挖一个槽,槽深4a,试求:习题14−6图 习题14−7图(1)开槽前槽口处截面m m -上的最大拉应力;(2)开槽后槽口处截面m m -上的最大拉应力和最大压应力以及所在点的位置。
解:(1)开槽前2m a x a Fσ= (2)开槽后:4396943618232a A ,a a a W ,a F M ==⎪⎭⎫ ⎝⎛⋅=⋅=09698433896984332232===+=+a aFa F W M A F σ;a F a a Fa F W M A F σ--==压拉 14−9 一矩形截面柱,受力如图所示,F 1的作用线与柱轴线重合,F 2的作用线与轴线有一偏心距y F =150mm ,已知:b =120mm ,h =200mm ,F 1=80kN ,F 2=50kN ,试求柱横截面上的最大拉应力和最大压应力。
欲使柱横截面内不出现拉应力,问偏心距y F 应等于多少?此时的最大压应力为多少?解:柱底截面的弯矩值为:kN.m57150502..y F M F =⨯==MPa 7914Pa 1079142012010508020120611057632321c ....)(...A F F W M σmax-=⨯-=⨯⨯+-⨯⨯⨯-=++=MPa 963Pa 109632012010508020120611057632321t ....)(...A F F W M σmax=⨯=⨯⨯+-⨯⨯⨯=+-= 由:0201201050802012061105032321t =⨯⨯+-⨯⨯⨯⨯=+-=..)(..y A F F W M σF得:mm m .y F 870870==此时习题14−8图 m习题14−9图MPa 8510Pa 10851020120105080201206110087050632321c ....)(...A F F W M σmax-=⨯-=⨯⨯+-⨯⨯⨯⨯-=++=14−10 一砖砌的烟囱高h =50m ,自重G 1=2800kN ,烟囱底截面(1−1)外径d 1=3.5m ,内径d 2=2.5m ,受风荷载q =1.2kN/m 的作用,基础埋深h 1=5m ,基础及回填土重量G 2=1200kN ,地基的容许压应力为[σ]=0.3MPa ,试求:(1)烟囱底截面(1−1)上的最大压应力; (2)求圆形基础的直径。
解:(1)1−1截面的弯矩值为:kN.m 15005021212122=⨯⨯==.qH M MPa 1551Pa 1015514524531028005253321015006223333c ..)..(π)..(πA G W M σmax-=⨯-=-⨯--⨯⨯-=--=(2) 基础底截面弯矩值为:kN.m 1800550215021212122=⨯⨯+⨯⨯=+=..qHd qH M 由[]σσmaxc ≤得:[]σD π)(DπA G W M σm ax ≤⨯+-⨯-=--=41012002800321018002333c 解上式得:m 355.D ≥14−11 有一矩形素混凝土水坝,如图所示,试求当水位达到坝顶时,水坝底面处的最大拉应力和最大压应力。
设混凝土容重为24kN/m 3。
如果要求坝底不出现拉应力,则最大容许水深为多少?习题14−11图1−1解:坝底截面的弯矩值为:kN.m 82242212189616122....H q M max =⨯⨯⨯==MPa2170102170130102130241306110822426323c .pa ......A G W M σmax-=⨯-=⨯⨯⨯⨯-⨯⨯⨯-=--=MPa 159********30102130241306110822426323t .pa ......A G W M σmax=⨯=⨯⨯⨯⨯-⨯⨯⨯=-= 若要求坝底不出现拉应力,则由013010213024130611089613233t =⨯⨯⨯⨯-⨯⨯⨯⨯⨯=-=....h .A G W M σmax解上式得:m .h 6420=14−12 一圆形截面的曲拐,受力如图所示,已知:F =1kN , E =200GPa ,G =0.4E ,圆截面直径d =120mm ,试求自由端C 的挠度。