长方体和正方体知识点汇总
(完整版)长方体和正方体知识点汇总(最新整理)
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
长正方体知识点
第一单元长、正方体知识点概括1.长方体有6个面,每个面一般都是长方形(也可能有2个相对的面是正方形);有3组相对的面,相对的面形状相同,面积相等;有12条棱,有3组相对的棱,每组棱的长度相等;有8个顶点。
2.长方体有4个长、4个宽、4个高。
3.在同一长方体中,至少有4条棱是相等的,最多有8条棱是相等的。
4.长、宽、高都相等的长方体叫做正方体(也叫做立方体)。
5.正方体是特殊的长方体。
6.长方体:(长+宽+高)×4=棱长之和棱长之和÷4-长-宽=高正方体:棱长×12=棱长之和棱长之和÷12=棱长7.长方体或正方体六个面面积的和,分别叫做长方体或正方体的表面积。
8.物体所占空间的大小,叫做物体的体积。
9.棱长1厘米的正方体,它的体积是1立方厘米,记作1cm3。
棱长1分米的正方体,它的体积是1立方分米,记作1dm3。
棱长1米的正方体,它的体积是1立方米,记作1m3. 10.长方体的体积=长×宽×高11.正方体的体积=棱长×棱长×棱长12.长方体的体积=底面积×高13.1立方米=1000立方分米1立方分米=1000立方厘米14.物体所能容纳物体的体积,叫做它们的容积。
15.计量容器内液体的多少,通常用升、毫升作单位。
16.从里面量,棱长1分米的正方体盒子的容积是1立方分米,可以容纳1升的液体。
17.容积的计算方法和体积的计算方法相同。
但是,一般要从容器的里面测量容器的长、宽、高。
18.一个正方体的棱长扩大3倍,表面积就扩大9倍,体积就扩大27倍。
第五单元因数倍数概念1.一个数的因数的个数是有限的,其中最小的因数是一,最大的因数是它本身。
2.一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
3.个位上是0、2、4、6、8的数,都是2的倍数。
4.个位上是0或5的数,都是5的倍数。
5.在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
(完整版)长方体和正方体知识点
一、知识点一:长方体和正方体的认识
6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
长方体的长、宽、高。
=(长+宽+高)×4
用字母表示:(a+b+h)×4
正方体的棱长总和= 棱长×12
用字母表示:12a
二、知识点二:长方体和正方体的表面积的计算
6个面的总面积叫做它的表面积。
=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×2
正方体的表面积= 棱长×棱长×6
用字母表示:S=6a2
6
7、1m2 =100dm2 1dm2 =100cm2
三、知识点三:长方体和正方体的体积的计算
= 长×宽×高
用字母表示:V=abh
正方体的体积= 棱长×棱长×棱长
用字母表示:V=a3
1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3
长方体或正方体的体积=底面积×高
用字母表示:V=Sh
把高级单位化成低级单位,用高级单位数乘以进率;------大乘小
把低级单位聚成高级单位,用低级单位数除以进率。
-----------小除大
四、知识点三:长方体和正方体的容积的计算
L和ml)
1L=1000ml 1L= 1dm3 1ml= 1cm3
跟体积的计算方法相同,但要从里面量长、宽、高。
长方体正方体.知识点总结
长方体的再认识一、 概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、直线垂直于平面记作:直线P Q ⊥平面ABCD ;直线平行于平面记作:直线P Q ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
正方体长方体知识点 、易错题、小升初难题
第三单元正方体和长方体知识点长方体. 正方体概念. 特征:长方体和正方体都是立体图形。
正方体是特殊的长方体。
相交于一个顶点的三条棱的长度分别叫做长方体的长. 宽. 高。
正方体都叫做棱。
(长. 宽. 高都各有4条,分别平行并且相等,正方体的棱都相等。
)各部分特征:长方体:面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
棱:有12条棱。
相对的棱长度相等。
顶点:有8个顶点。
正方体:面:有6个面都是正方形,6个面完全相同。
棱:有12条棱。
12条棱的长度相等。
顶点:有8个顶点。
棱长总和公式:长方体的棱长总和=(长+宽+高)×4 L=4(a+b+h)长=12a正方体的棱长总和=棱长×12 L正表面积:长方体或正方体6个面和总面积叫做它的表面积。
基本公式:长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)表长=a×a×6正方体的表面积=棱长×棱长×6 S表正公式延伸:①无底(或无盖):(少一个长×宽)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab S=2(ah+bh)+ab②无底又无盖:(一般烟囱)长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)体积:物体所占空间的大小叫做物体的体积。
符号:V单位:常用:立方米m3立方分米dm3立方厘米cm3不常用:立方千米 km3(描述天体星球)立方毫米mm3(微星科技)基本公式:长方体的体积=长×宽×高 V=abh正方体的体积=棱长×棱长×棱长 V=a3公式延伸:长方体或正方体底面的面积叫做底面积。
底面积=长×宽 V=sh (长. 正方体的体积都=底面积×高)容积:箱子. 油桶. 仓库等容器所能容纳物体的体积,通常叫做他们的容积。
第三单元 长方体与正方体知识归纳及练习
本题求体积用的公式是“底面积×高”,也可以说用的是“横截面积×长”。
另外对于把一个长方体截成两段,截了一次,增加了两个面,如果是截成三段,就是截了两次,增加了四个面。
也就是说每截一次,增加两个面。
10、综合运用体积单位、长度单位的知识。
将一个大的形体分成一个小的形体。
将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。
棱长是1米的正方体,它的体积是1立方米,棱长是1分米的正方体,它的体积是1立方分米,1立方米= 1000立方分米,所以能分成1000个。
顺次紧紧地排成一排,那么就能排成1000分米,1000分米= 100米。
长方体和正方体练习题一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
体积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。
6、估计下列物体的体积有多大,并填空。
教室讲台()家里冰箱()一本数学书()一支粉笔()一个苹果()课室的空间()一瓶大可乐()电脑主机()一块橡皮()7、把一个正方体切成两个完全相等的长方体,每个长方体有()顶点。
8、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm29、一个底面周长是1。
6分米的正方体鱼缸的容积是()升。
10、一个长方体中,最多有()个面面积相等,最多有()条棱长度相等。
11、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
长方体与正方体总复习
【知识点讲解】长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷123、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
4、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h= V÷a÷b正方体的体积=棱长×棱长×棱长长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高用字母表示:V=S h (横截面积相当于底面积,长相当于高)。
正方体和长方体的知识归纳
正方体和长方体的知识归纳正方体和长方体是几何学中最基本的立体几何体之一。
它们在我们生活中随处可见,具有很多共同点和不同点。
下面我将对正方体和长方体进行知识归纳,详细介绍它们的定义、性质、特点以及在我们生活中的应用。
1. 正方体正方体是指六个面都是正方形的立体图形。
它具有以下特点:形状:正方体的六个面都是相等的正方形,它们的边长相等,相邻面之间的夹角为直角。
边长:正方体的六条边长度相等。
角度:正方体的所有内角均为直角(90度)。
顶点:正方体有8个顶点,每个顶点有3个相邻面。
对角线:通过正方体的任意两个顶点都可以得到一条对角线,正方体共有4根空间对角线。
2. 长方体长方体是指六个面都是矩形的立体图形。
它具有以下特点:形状:长方体的六个面都是矩形,它们的边长不全相等,相邻面之间的夹角为直角。
边长:长方体的六条边长度不全相等。
角度:长方体的所有内角均为直角(90度)。
顶点:长方体有8个顶点,每个顶点有3个相邻面。
对角线:通过长方体的任意两个顶点都可以得到一条对角线,长方体共有4根空间对角线。
3. 正方体和长方体的共同点正方体和长方体都属于多面体,是立体几何中的基本形状。
它们都由直角矩形面组成,内角都为直角。
正方体和长方体都具有8个顶点和12条边。
它们都具有对称性,对称轴是顶点到顶点的连线。
正方体和长方体都是稳定的立方体,它们可以在不倒塌的情况下保持平衡。
4. 正方体和长方体的不同点形状:正方体的六个面都是正方形,而长方体的六个面都是矩形,边长不全相等。
边长:正方体的六条边长度相等,而长方体的六条边长度不全相等。
顶点:正方体有8个顶点,每个顶点有3个相邻面,而长方体的顶点数量和相邻面数量与正方体相同。
对角线:正方体和长方体都有4根空间对角线,但它们的长度不同。
在正方体中,对角线长度等于边长的根号2倍。
在长方体中,对角线长度等于边长的根号3倍。
5. 正方体和长方体的应用建筑:正方体和长方体是建筑设计中常用的形状,例如房屋、大厦、桥梁等。
长方体和正方体知识点及类型题总结
一,概念和定义:1,长方体:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
1,棱长:两个面相交的边叫做棱。
2,顶点:三条棱相交的点叫做顶点。
3,长宽高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2,长方体的特征: 1,有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
2,一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
3,正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
4,正方体特点: 1,有6个面,8个顶点,12条棱,12条棱长度都相等,6个面的面积都相等。
2,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5,长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
6,表面积 1,意义:长方体或正方体6个面的总面积,叫做它的表面积。
2,长方体表面积:长方体的表面积=(长×宽+宽×高+长×高)×2 字母表示S=2(ab+ah+bh)3,正方体表面积:正方体的表面积=棱长×棱长×6(任意一个面积×6),字母表示 S=a×a×64,无底(或无盖)长方体表面积= (长×宽+长×高+宽×高)×2 - 长×宽5,无底又无盖长方体表面积=(长×宽+长×高+宽×高)×2 - (长×宽)×26,没盖的正方体表面积=棱长×棱长×57,体积 1,意义:物体所占空间的大小叫做物体的体积。
2,体积单位:立方米,立方分米,立方厘米;用字母表示为:3,体积单位之间的进率:每两个相邻的体积单位之间的进率是1000.4,长方体的体积=长×宽×高=底面积×高字母表示V=abh 或 V=S h5,正方体的体积=棱长×棱长×棱长=底面积×高字母表示 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)6,特殊体积:在一个有水的容器里放入一个物体(如:石头等),水面会上升,水面上升那部分水的体积,就是物体的体积。
长方体和正方体单元整理复习
建立模型
对于复杂的问题,可以尝试建 立数学模型,以便更直观地理
解问题并找到解决方案。
多做练习
通过大量的练习,可以加深对 知识点的理解,提高解题的准
确性和效率。
06 复习策略与建议
系统回顾本单元知识点
长方体和正方体的定义与性质
理解长方体和正方体的基本概念,掌握它们的面、棱、 顶点等要素的数量关系和位置关系。
01 03
性质
02
正方体的所有面都是全等的 正方形。
长方体与正方体关系
正方体是长方体的特例,当长 方体的三组对边分别相等时, 即为正方体。
长方体和正方体都有6个面、 12条棱和8个顶点。
长方体和正方体的表面积和体 积计算公式不同,需要根据具 体形状进行区分和应用。
02 长方体和正方体表面积计 算
03 长方体和正方体体积计算
长方体体积公式推导
长方体体积公式为
$V = l times w times h$,其中 $l$ 是长度,$w$ 是宽度,$h$ 是高度。
公式推导
长方体可以看作是由 $l$ 个长度为 $w$, 高度为 $h$ 的小长方体组成,因此总 体积就是 $l times w times h$。
05 易错点与注意事项
常见易错点总结
概念混淆
学生容易混淆长方体和正方体的 概念,特别是在面对复杂图形时。
计算错误
在计算表面积或体积时,学生可能 会因为疏忽或计算不准确而导致错 误。
单位问题
在解决实际问题时,学生可能会忽 略单位换算,从而导致答案错误。
避免错误方法指导
01
02
03
明确概念
在解题前,首先要明确题 目中涉及的是长方体还是 正方体,以及它们的基本 性质。
长方体和正方体知识点汇总
长方体和正方体知识点汇总一、长方体和正方体的认识1、长方体定义:长方体是由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
面:长方体有 6 个面,相对的面完全相同。
棱:长方体有 12 条棱,相对的棱长度相等。
按长度可分为三组,每一组有 4 条棱。
顶点:长方体有 8 个顶点。
2、正方体定义:正方体是用六个完全相同的正方形围成的立体图形。
面:正方体有 6 个面,每个面都是正方形,且 6 个面完全相同。
棱:正方体有 12 条棱,12 条棱的长度都相等。
顶点:正方体有 8 个顶点。
3、长方体和正方体的关系正方体是特殊的长方体,当长方体的长、宽、高都相等时,就变成了正方体。
二、长方体和正方体的表面积1、表面积的定义长方体或正方体 6 个面的总面积,叫做它的表面积。
2、长方体表面积的计算公式:长方体的表面积=(长×宽+长×高+宽×高)× 2例如:一个长方体的长为 5 厘米,宽为 4 厘米,高为 3 厘米,其表面积为:(5×4 + 5×3 + 4×3)× 2 = 94(平方厘米)3、正方体表面积的计算公式:正方体的表面积=棱长×棱长× 6例如:一个正方体的棱长为 6 厘米,其表面积为:6×6×6 = 216(平方厘米)三、长方体和正方体的体积1、体积的定义物体所占空间的大小叫做物体的体积。
2、体积单位常用的体积单位有立方厘米、立方分米、立方米。
1 立方厘米:棱长为 1 厘米的正方体,体积是 1 立方厘米。
1 立方分米:棱长为 1 分米的正方体,体积是 1 立方分米。
1 立方米:棱长为 1 米的正方体,体积是 1 立方米。
3、长方体体积的计算公式:长方体的体积=长×宽×高例如:一个长方体的长为 6 厘米,宽为 5 厘米,高为 4 厘米,其体积为:6×5×4 = 120(立方厘米)4、正方体体积的计算公式:正方体的体积=棱长×棱长×棱长例如:一个正方体的棱长为 5 厘米,其体积为:5×5×5 = 125(立方厘米)5、体积单位的换算1 立方米= 1000 立方分米1 立方分米= 1000 立方厘米四、长方体和正方体的容积1、容积的定义容器所能容纳物体的体积,叫做它的容积。
长方体正方体知识点汇总
长方体正方体知识点汇总长方体和正方体都属于立体图形,具有一些共同和独特的特点。
下面是对长方体和正方体的综合了解和详细解释:一、长方体的定义和特点:长方体是一种有6个面的立体图形,这些面由矩形组成,且相邻面两两平行。
长方体具有以下特点:1. 面的特点:长方体有6个面,其中有3对平行面。
相邻面两两平行,且相对的面是相等的矩形。
2. 边的特点:长方体有12条边,每个顶点有3条边相交。
3. 顶点的特点:长方体有8个顶点,每个顶点都是3个面的交点。
4. 相邻面、边、顶点的关系:长方体中,两个相邻面的共用一条边,两个相邻面的共用一点,这个点同时也是四条边的端点。
5. 相对面的特点:长方体的相对面是相等的矩形,具有相同的形状和大小。
二、正方体的定义和特点:正方体是一种特殊的长方体,所有的面都是正方形,具有以下特点:1. 面的特点:正方体有6个面,都是正方形,且相邻面两两平行。
2. 边的特点:正方体有12条边,每个顶点有3条边相交。
3. 顶点的特点:正方体有8个顶点,每个顶点都是3个面的交点。
4. 相邻面、边、顶点的关系:正方体中,两个相邻面的共用一条边,两个相邻面的共用一点,这个点同时也是四条边的端点。
5. 相对面的特点:正方体的相对面是相等的正方形,具有相同的形状和大小。
三、长方体和正方体的性质:1. 体积:长方体和正方体的体积都可以通过公式V = l × w × h来计算,其中l为长,w为宽,h为高。
正方体的体积可以简化为V = a^3,其中a为边长。
2. 表面积:长方体和正方体的表面积都可以通过公式S = 2lw + 2lh + 2wh来计算,其中l为长,w为宽,h为高。
正方体的表面积可以简化为S = 6a^2,其中a为边长。
3. 对角线:长方体和正方体的对角线可以通过勾股定理来计算。
长方体的对角线长度为d = sqrt(l^2 + w^2 + h^2),正方体的对角线长度为d = sqrt(3a^2),其中l、w、h分别为长方体的长、宽、高,a为正方体的边长。
长方体、正方体的知识点
长方体、正方体的知识点长方体是一种具有六个面的立体图形,其每个面都是一个矩形。
长方体有固定的尺寸,可以根据其长、宽和高来确定。
而正方体是一种特殊的长方体,其所有的面都是相等的正方形,每个角都是直角。
1. 长方体的性质:a. 面:长方体有六个面,每个面都是一个矩形。
其中,相邻的面是平行的。
b. 边:长方体有12条边,每两条边相邻的都是平行的。
每个顶点都连接着三条边。
c. 顶点:长方体有8个顶点,每个顶点都连接着三条边。
d. 对角线:长方体的每个对面都有一条对角线,共6条对角线。
e. 体积:长方体的体积可以通过长、宽和高来计算,公式为体积=长×宽×高。
f. 表面积:长方体的表面积可以通过计算各个面的面积之和来获得,公式为表面积=2×(长×宽+长×高+宽×高)。
2. 正方体的性质:a. 面:正方体有六个面,每个面都是一个正方形。
其中,相邻的面是平行的。
b. 边:正方体有12条边,每两条边相邻的都是平行的。
每个顶点都连接着三条边。
c. 顶点:正方体有8个顶点,每个顶点都连接着三条边。
d. 对角线:正方体的每个对面都有一条对角线,共6条对角线。
e. 体积:正方体的体积可以通过边长(边长相等)来计算,公式为体积=边长×边长×边长。
f. 表面积:正方体的表面积可以通过边长(边长相等)来计算,公式为表面积=6×边长×边长。
3. 长方体和正方体的区别:a. 面形状:长方体的面是矩形,而正方体的面是正方形。
b. 边长:长方体的边长可以不相等,而正方体的边长是相等的。
c. 面积和体积计算:长方体的表面积和体积计算需要考虑长、宽、高的不同值,而正方体的面积和体积计算只需要一个边长即可。
4. 长方体和正方体的应用:a. 建筑:长方体和正方体是建筑中常见的立体图形。
很多建筑物的结构和形状可以用长方体或正方体来描述。
b. 数学问题:长方体和正方体经常在数学问题中出现,如几何形状的计算、体积和表面积的求解等。
苏教版六年级上册数学第一单元——长方体和正方体基础知识梳理
长方体和正方体基础知识梳理一、长方体和正方体的特征二、正方体的展开图(1)141型:(2)231型:(3)222型:(4)33型:三、长方体和正方体的棱长总和(1)长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4 转化:高=棱长总和÷4-长-宽(2)正方体的棱长总和=棱长×12转化:棱长=棱长总和÷12四、长方体和正方体的表面积(1)长方体的侧面积=底面周长×高(2)长方体的底面积=长×宽(3)长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2=(长+宽)×2×高+长×宽×2(4)正方体的表面积=棱长×棱长×6=棱长²×6五、长方体和正方体的体积(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长=棱长³(3)长方体(正方体)的体积=底面积×高(4)体积单位: 1m³=1000dm³ 1dm³=1000cm³ 1m³=1000000cm ³1L=1dm³ 1mL=1cm³六、物体浸没问题(1)完全浸没①物体的体积=容器底面积×水面上升(下降)的高度②水面上升(下降)的高度=物体的体积÷容器底面积③容器底面积=物体的体积÷水面上升(下降)的高度④水面现在的高度=水面原来的高度+水面上升的高度=水面原来的高度-水面下降的高度(2)不完全浸没①水的体积=容器底面积×水面原来的高度②水面现在的高度=水的体积÷(容器底面积-物体底面积)③水面上升的高度=水面现在的高度-水面原来的高度④水的体积=(容器底面积-物体底面积)×水面现在的高度七、表面涂色的正方体一个表面涂色的大正方体,棱长被平均分成n份,变成了若干个小正方体,那么:小正方体的个数:n³3面涂色的个数:82面涂色的个数:12(n-2)1面涂色的个数:6(n-2)²没有涂色的个数:(n-2)³八、表面涂色的长方体一个表面涂色的长方体,长、宽、高分别被平均分成a、b、h份,变成了若干个小正方体,那么:小正方体的个数:a×b×h3面涂色的个数:82面涂色的个数:4(a-2)+4(b-2)+4(h-2)1面涂色的个数:2(a-2)(b-2)+2(a-2)(h-2)+2(b-2)(h-2)没有涂色的个数:(a-2)(b-2)(h-2)。
(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点
第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。
可分为三组,每一组有4条棱。
还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。
每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。
正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。
每条棱的长度都相等。
正方体的长、宽、高都相等,统称棱长。
2.长方体和正方体的关系:正方体是一种特殊的长方体。
3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。
(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
长方体和正方体知识点汇总
长方体和正方体知识点汇总一、长方体和正方体的定义及性质1. 定义长方体:长方体是一种六个面都是矩形的立体图形,其中相对的两个面是长方形,其余四个面是正方形。
正方体:正方体是一种六个面都是正方形的立体图形,每个面的边长相等。
2. 性质(1)长方体的性质长方体有6个面,12条棱,8个顶点。
相对的面是长方形,其余四个面是正方形。
相邻的棱长相等,相对的棱长也相等。
长方体的对角线互相垂直,且相等。
(2)正方体的性质正方体有6个面,12条棱,8个顶点。
所有面都是正方形,边长相等。
相邻的棱长相等,相对的棱长也相等。
正方体的对角线互相垂直,且相等。
二、长方体和正方体的表面积与体积1. 长方体的表面积与体积(1)表面积长方体的表面积是指六个面的面积之和。
设长方体的长、宽、高分别为a、b、c,则长方体的表面积S为:S = 2(ab + ac + bc)(2)体积长方体的体积是指长、宽、高三个维度的乘积。
设长方体的长、宽、高分别为a、b、c,则长方体的体积V为:V = abc2. 正方体的表面积与体积(1)表面积正方体的表面积是指六个面的面积之和。
设正方体的边长为a,则正方体的表面积S为:S = 6a^2(2)体积正方体的体积是指边长的三次方。
设正方体的边长为a,则正方体的体积V为:V = a^3三、长方体和正方体的空间关系1. 长方体的空间关系长方体的底面与顶面平行,且底面与侧棱垂直。
长方体的侧面与底面垂直,且相邻侧面互相垂直。
长方体的对角线互相垂直,且相等。
2. 正方体的空间关系正方体的底面与顶面平行,且底面与侧棱垂直。
正方体的侧面与底面垂直,且相邻侧面互相垂直。
正方体的对角线互相垂直,且相等。
四、长方体和正方体的应用1. 长方体的应用长方体广泛应用于建筑设计、家具设计、包装设计等领域。
长方体的体积和表面积计算对于计算材料用量、确定空间大小等有重要作用。
2. 正方体的应用正方体在建筑设计、雕塑创作、数学建模等领域有广泛的应用。
(完整版)长方体和正方体知识点总结+练习
第二单元长方体和正方体总结一、长方体和正方体的特征:形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8一般六个面都是长方形(也有两个相对的面是正方形)。
相对的面面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8六个面都是正方形六个面的面积相等十二条棱长都相等长方体:①有6个面,相对的面完全相同;长方体放桌面上,最多只能看到3个面。
②有12条棱,相对的棱长长度相等,而且相对的棱互相平行;12条棱可以分为3组(分别为长、宽、高),每组的4条棱一样长;长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4③有8个顶点,每个顶点上的三条棱分别称为长方体的长、宽、高。
正方体:①有6个完全相同的面;正方体放桌面上,最多只能看到3个面。
②有12条长度相等的棱,每条棱的长度称为正方体的棱长;正方体的总棱长=棱长×12。
上下左后右前③有8个顶点。
练一练:1.一个长方体长、宽、高分别是10cm、7 cm、4 cm ,这个长方体的棱长和是多少厘米?(提示:根据长方体的总棱长公式计算)2.一个长方体的棱长和是160dm,其中,长是20dm,宽是8dm,它的高是多少?从一个顶点引出的三条棱的长度总和是多少?3.将一根铁丝长720厘米做成正方体,则正方体的棱长是多少厘米?二、长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。
1.法一:(1)长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)法二:前、后面:长×高×2=X左、右面:长×高×2=Y上、下面:长×宽×2=Z则长方体的表面积(有六个面)= X + Y + Z2.正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
长方体与正方体知识点总结
长方体与正方体知识点总结长方体和正方体是几何学中常见的三维立体图形。
本文将对长方体与正方体的定义、性质、公式以及应用进行总结。
一、长方体的定义与性质长方体是一种具有六个矩形面的立体图形,其中相对的面是相等的,并且每个面都是矩形。
长方体具有以下性质:1. 全面:长方体的六个面都是矩形面,每个面都是全面。
2. 全等:相对的面积相等,且相邻面是相等的。
3. 全直角:长方体的每个面都与相邻面垂直相交,形成直角。
4. 对角线相等:长方体的对角线长度相等。
5. 体对角线:长方体的一个对角线连接两个不相邻的顶点,叫做体对角线。
二、长方体的公式1. 表面积公式:长方体的表面积等于各个面积的总和,公式如下:表面积 = 2(长 ×宽 + 长 ×高 + 宽 ×高)2. 体积公式:长方体的体积等于底面积与高的乘积,公式如下:体积 = 长 ×宽 ×高三、正方体的定义与性质正方体是一种具有六个正方形面的立体图形,每个面都是正方形。
正方体具有以下性质:1. 全面:正方体的六个面都是正方形,每个面都是全面。
2. 全等:相对的面积相等,且相邻面是相等的。
3. 全直角:正方体的每个面都与相邻面垂直相交,形成直角。
4. 对角线相等:正方体的对角线长度相等。
5. 体对角线:正方体的对角线连接两个不相邻的顶点,叫做体对角线。
四、正方体的公式1. 表面积公式:正方体的表面积等于各个面积的总和,公式如下:表面积 = 6 × (边长 ×边长)2. 体积公式:正方体的体积等于边长的立方,公式如下:体积 = 边长 ×边长 ×边长五、长方体与正方体的应用由于长方体与正方体在生活与工作中广泛存在,所以它们的应用也十分广泛。
以下是一些常见的应用场景:1. 建筑领域:长方体和正方体常被用作建筑物的模型,能够帮助建筑师、设计师更好地展示建筑的外观和内部空间。
2. 包装与储物:长方体和正方体形状的箱子常被用于包装物品,方便储存和搬运。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲长方体和正方体一、长方体和正方体的认识个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形;( )-2、正方体的六个面面积一定相等;( )3、一个长方体(非正方体) 最多有四个面面积相等;( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
()11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
()'12、长方体和正方体最多可以看到3个面。
()14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
()15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
()16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
()(2)填空:1、一个长方体最多有()个面是正方形,最多有()条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是()形。
3、'4、正方体不仅相对的面相等,而且所有相邻的面(),它的六个面都是相等的()形。
5、 把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4。
正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前面和后面的彩带长度=高的长度;左面和右面的彩带长度=高的长度;…上面和下面的彩带长度=长的长度。
需要彩带的长度=高×4+长×2+宽×2+打结部分长度 20×4+30×2+10=150cm 练习:(1)看图2-6,并填空 单位:厘米这个长方体长( )厘米,宽( )厘米,高( )厘米。
由一个顶点引出的三条棱的长度和是( )厘米。
棱长总和是( )厘米。
上下两个面是( )形。
】(2)看图2-7并填空单位:厘米、这是一个( )体,正方体的棱长是( )厘米,棱长之和是( )厘米,每个面的面积是( )平方厘米。
(3)有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要( )米的铝合金。
(4)(5) 把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是( )厘米。
(7)一个长方体长 12厘米宽 8厘米高 7厘米,把它切成一个尽可能大的正方体,这个正30㎝ 20cm 20cm方体的棱长是( )。
(7)一个长方体的礼堂如图,过节时需要在四周装上成串的彩灯,每串彩灯长2m ,一共需要多少串彩灯(8) 一只鱼缸,棱长和为280cm ,其中,底面周长为50cm ,右面周长为40cm ,前面周长为50cm ,鱼缸的长、宽、高各是多少—【知识点3】确定长方体中每个面的形状以及长、宽、高分别是多少。
长方体一共有( )个面,( )面完全相同,如:前面和( )完全相同,( )和( )完全相同,( )和( )完全相同。
根据习惯我们一般认为在一个平面中水平方向的为长,垂直方向的为高。
根据这一习惯我们我们只需找到需要的面并根据习惯确定长和宽即可。
例如:如图下列长方体的后面是( )形状,长是( )宽是( );它的右面是( )形状,长是( )宽是( );下面是( )形状,长是( )宽是( )。
练习:(1)*(2)长方体展开后每个面都是什么形状展开后哪俩个面是相对的面面积相等吗上下,左右、前后各个面的长和宽分别是原长方体的什么 (2)(3)一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是( )厘米,宽是( )厘米,它的面积是( )平方厘米;最小的面长是( )厘米,宽是( )厘米,它的面积是( )平方厘米。
¥(3)一个长方体的长、宽、高分别是8、6、4米,它的前后的面的面积是( ),左右的面的面积是( ),上下的面的面积是( )。
【知识点4】经过折叠可以组合成正方体:》上下左后右30m#50m经过折叠可以组合成长方体:》练习:下列三个图形中,能拼成正方体的是()①②③【知识点5】|长方体或正方体的切割组合对棱长的影响(1)切割将长方体横向切割成两个长方体后,棱长将比原来一个长方体时增加4条长和4条宽;(棱长增加的最长)将长方体竖向切割成两个长方体后,棱长将比原来一个长方体时增加4条宽和4条高;(棱长增加的最短)将正方体沿无论沿那个方向切割成两个长方体后,棱长将比原来增加4条棱。
二、组合将两个完全相同的长方体沿上下面组合后,棱长比原来两个长方体时减少4条长和4条宽;(棱长减少的最多)!将两个完全相同的长方体沿前后面组合后,棱长比原来两个长方体时减少4条长和4条高;将两个完全相同的长方体沿左右面组合后,棱长比原来两个长方体时减少4条宽和4条高;(棱长减少的最少)将两个完全相同的正方体沿上下面组合后,棱长比原来两个正方体时减少8条棱;一次类推将三个完全相同的正方体沿上下面组合后,棱长比原来三个正方体时减少16条棱,四个组合减少24条棱,五个组合减少32条……(公式:8×(N—1))例如:将五个完全相同的正方体组合成一个长方体后,棱长和为140厘米,原来每个正方体的棱长和是多少分析:五个正方体棱长共有12×5=60条;将五个完全相同正方体组合后棱长比原来减少32条,还剩60-32=28条;[即这28条棱的长度和即为新长方体的棱长和,所以正方体一条棱的长度为:140÷28=5cm;所以一个正方体的棱长和为:5×12=60cm。
【知识点6】小正方体拼大正方体的规律由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……从中我们可以发现要用小的正方体拼出大的正方体所需要的小正方体的个数应该是一个数的立方。
这就要求我们能够熟记一些数的立方:23=8 33=27 43=64 53=125 63=216~73=343 83=512 93=729 103=1000小正方体拼大长方体的规律规律同正方体,首先观察大长方体各棱长分别是小正方体棱长的几倍,如,长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方体组成的。
练习:(1)用棱长为3厘米的小正方体拼棱长为9厘米的大正方体需要()个小正方体。
A、8个B、27个C、26个D、64个·(2)一个长方体的长宽高分别是18、12、9,如果用棱长为3的小正方拼一个这样的长方体,一共需要()块这样的小正方体。
(3)一个长方体的盒子里面长5分米,宽4分米,深3分米,放棱长为5厘米的正方体小木块共可以放()块。
二、长方体和正方体的表面积【知识点1】长方体表面积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2=(前面面积+上面面积+右面面积)×2正方体表面积=棱长×棱长×6=a×a×6=6a2-=任意一个面的面积×6前面面积=后面面积;左面面积=右面面积;上面面积=下面面积两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!练习:1、一个长方体长6厘米,宽4厘米,高3厘米。
这个长方体上下两个面的面积各是()平方厘米,前后两个面的面积各是()平方厘米,左右两个面的面积各是()平方厘米,表面积是()平方厘米。
2、判断题:长方体的表面积一定比正方体的表面积大。
( )'如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()3、把一个棱长为6米的正方体分成两个大小、形状相同的长方体,每个长方体的表面积是()㎡。
4、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米,六个面中最大的面积是()平方厘米,表面积是()平方厘米。
5、用字母表示正方体(或长方体)的表面积=();用字母表示长方体的体积公式是()。
6、下面哪些问题跟长方体表面积有关。
()A:在一个长方体木箱外面刷油漆,刷油漆的面积一共有多少平方分米B:做一个长方体的金鱼缸需要多少玻璃。
C:求一个长方形足球场需多少平方米的草皮7、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。
9、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的倍,求它的表面积。
【知识点2】长方体表面求法的变形:①②—③贴商标类型:只求四周面积。
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少④游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为10m,4m,,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖⑤抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片⑥占地面积问题:只求底面面积。
例如:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米<练习:(1)一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米(2)一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个(不计接口)(3)一个通风管的横截面是边长是米的正方形,长米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮(4)一个房间的长6米,宽米,高3米,门窗面积是8平方米。