无机非金属材料英语论文翻译
就读于无机非金属材料工程英语
就读于无机非金属材料工程英语Studying Inorganic Non-metallic Materials Engineering is quite an exciting journey. It's not just about textbooks and equations, but also about exploring the wonders of materials that shape our world.One thing I love about this field is the variety of materials we study. From ceramics to glass, from composites to semiconductors, each one has its unique properties and applications. It's fascinating to see how these materials are used in everyday products, from smartphones to spacecraft.Labs are where the magic happens. We get to experiment with different materials, mix them, heat them, and see what happens. Sometimes, it's a bit like cooking, but with science instead of spices. And when you finally create something new, it's a rewarding feeling that's hard to describe.Another cool aspect is the collaboration with other fields. Engineers, chemists, physicists we all work together to push the boundaries of what's possible. It's a reminder that science is a team sport, and no one can do it alone.Studying inorganic non-metallic materials engineering also means staying up-to-date with the latest technologies and advancements. It's exciting to see how new materials are changing the.。
无机非金属材料专业材料概论英语词汇
Chapter 1alloy 合金atomic-scale architecture 原子尺度结构(构造)brittle 脆性的ceramic 陶瓷composite 复合材料concrete 混凝土conductor导体crystalline 晶态的devitrified 反玻璃化的(晶化的)ductility (可)延(展)性,可锻性electronic and magnetic material电子和磁性材料element 元素fiberglass 玻璃钢glass 玻璃glass-ceramic 玻璃陶瓷/微晶玻璃insulator 绝缘体materials science and engineering 材料科学与工程materials selection 材料选择metallic 金属的microcircuitry 微电路microscopic-scale architecture 微观尺度结构(构造)noncrystalline 非晶态的nonmetallic 非金属的oxide 氧化物periodic table 周期表plastic 塑性的、塑料polyethylene 聚乙烯polymer 聚合物property 性能(质)refractory 耐火材料、耐火的semiconductor 半导体silica 石英、二氧化硅silicate 硅酸盐silicon 硅steel 钢structural material 结构材料wood 木材Chapter 7aluminum alloy 铝合金 gray iron 灰口铁 amorphous metal 无定形金属 high-alloy steel 高合金钢austenitic stainless steel 奥氏体不锈钢high-strength low-alloy steel 高强度低合金钢Brinell hardness number 布氏硬度值Hooke’s law 胡克定律 carbon steel 碳钢impact energy 冲击能 cast iron 铸铁 lead alloy 铅合金 Charpy test 单梁冲击试验 low-alloy steel 低合金钢cold working 冷作加工 lower yield point 屈服点下限copper alloy 铜合金 magnesium alloy 镁合金 creep curve 蠕变曲线malleable iron 可锻铸铁 primary stage 第一(初期)阶段 martensitic stainless steel 马氏体不锈钢secondary stage 第二阶段modulus of elasticity 弹性模量 tertiary stage 第三(最后)阶段 modulus of rigidity 刚性模量dislocation climb 位错攀(爬)移 nickel alloy 镍合金ductile iron 球墨铸铁 nickel-aluminum superalloy 镍铝超合金ductile-to-brittle transition temperature 韧性-脆性转变温度 nonferrous alloy 非铁合金 ductility (可)延(展)性,可锻性plastic deformation 塑性变形 elastic deformation 弹性变形Poission’s ratio 泊松比 engineering strain 工程应变precious metal 贵金属 engineering stress 工程应力precipitation-hardened stainless steel 沉淀(脱溶)硬化不锈钢 fatigue curve 疲劳曲线rapidly solidified alloy 速凝合金/快速固化合金fatigue strength (endurance limit) 疲劳强度(耐久极限) refractory? metal 耐火(高温)金属ferritic stainless steel 铁素体不锈钢 Rockwell hardness 洛氏硬度 ferrous alloy 铁基合金 shear modulus 剪(切)模量fracture mechanics 断裂机制 shear strain 剪(切)应变 fracture toughness 断裂韧性 shear stress 剪(切)应力gage length 标距(长度),计量长度,有效长度 solution hardening 固溶强化 galvanization 电镀,镀锌 steel 钢strain hardening 应变强化 white iron 白铁,白口铁superalloy 超合金 wrought alloy 可锻(锻造、轧制)合金 tensile strength 拉伸强度yield point 屈服点 titanium alloy 钛合金 yield strength 屈服强度 tool steel 工具钢Young’s modulus杨氏模量 toughness 韧性zinc alloy 锌合金 upper yield point 屈服点上限Chapter 8annealing point 退火点 linear coefficient of thermal expansion线性热膨胀系数 refractory 耐火材料borosilicate glass 硼硅酸盐玻璃expansion 膨胀 silicate 硅酸盐 brittle fracture 脆性断裂 magnetic ceramic 磁性陶瓷 silicate glass 硅酸盐玻璃 clay 粘土melting range 熔化(温度)范围 soda-lime silica glass 钠钙硅酸盐玻璃 color 颜色 modulus of rupture 断裂模量 softening point 软化点cosine law 余弦定律 network former 网络形成体specular reflection 镜面反射 creep 蠕变 netwrok modifier 网络修饰体/网络外体static fatigue 静态疲劳 crystalline ceramic 晶态陶瓷nonoxide ceramic 非氧化物陶瓷 structural clay product 粘土类结构制品diffuse reflection 漫反射 nonsilicate glass 非硅酸盐玻璃 surface gloss 表面光泽 E-glass 电子玻璃(E玻璃)nonsilicate oxide ceramic 非硅酸盐氧化物陶瓷tempered glass 钢化玻璃 electronic ceramic 电子陶瓷nuclear ceramic 核用陶瓷thermal conductivity 热传导率 enamel 搪瓷 nucleate 成(形)核 thermal shock 热震Fourier’s law 傅立叶定律 Opacity 乳浊transformation toughening 相变增韧 fracture toughness 断裂韧性 optical property 光学性质translucency 半透明Fresnel’s formula Fresnel公式 partially stabilized zirconia ??部分稳定氧化锆 transparency 透明 glass 玻璃 polar diagram 极坐标图viscosity 粘度 glass-ceramic 玻璃陶瓷/微晶玻璃pottery 陶器(制造术) viscous deformation 粘性变形glass transition temperature 玻璃转变温度 pure oxide 纯氧化物 vitreous silica 无定形二氧化硅/石英玻璃glaze 釉reflectance 反射(率) whiteware 白瓷 Griffith crack model Griffith裂纹模型 refractive index 折射率working range 工作(温度)范围intermediate 中间体/中间的Chapter 10admixture 外加剂 fiberglass 玻璃钢 metal-matrixcomposite 金属基复合材料 aggregate 聚集体fiber-reinforced composite 纤维增强复合材料particulate composite 颗粒复合材料 aggregate composite 聚集体复合材料hardwood 硬质木材 polymer-matrix composite 聚合物基复合材料 anisotropic 各向异性 hemicellulose 半纤维素portland cement 波特兰水泥 cement 水泥 interfacial strength 界面结合强度 property averaging 性能平均ceramic-matrix composite 陶瓷基复合材料 isostrain 等应变 radial cell 径向细胞 concrete 混凝土 isotress 等应力softwood 软质木材 continuous fiber 连续纤维isotropic 各向同性 specific strength 比强度discrete (chopped) fiber 不连续(短切)纤维 laminate 层状的 strength-to-weight ratio 强度质量比率dispersion-strengthened metal 弥散强化金属 lignin 木质素 whisker 晶须longitudinal cell 经向(纵向)纤维 wood 木材 woven fabric 纺织构造 E-glass 电子玻璃 matrix 基质(体)philosophy 基本原理cross over 交叉,穿过,跨越 restriction 限制(定)configuration 构造(形式),结构 align 使成一直线(一行)elongate 拉长(的)/延伸(的) aggregate 集料,粒料,骨料 chop 切 utility 效用,实用,功用 in regard for 考虑到cite 引用(证、述),援引,列举,举出(例),提到,谈到 embed 埋置,把? 嵌入(或插入) dielectric 电介质 implication 含意(义)epoxy 环氧树脂 polyester 聚酯 polyetheretherketone (PEEK) 聚醚酮醚 polyphenylene sulfide (PPS) 聚苯亚砜entrant 新到者 requisite 必需的 imitate 仿deciduous 每年落叶的,非永久的 commonality 共性,共同特点dramatic 生动的 vertically 竖直地,直立地longitudinal 经度的,纵向的 sap 树液 cellulose 纤维素 alignment 直线排列phenol-propane 苯酚-丙烷 manifest 显示,出现,显露dimension 尺寸 specify 详细说明 staggering 令人惊愕的igneous 火成的 inspection 检查,视察 interstice 空隙,裂缝 enclose 包围,封闭 entrain 混(气泡)于混凝土中entrap 截留的,夹杂的 thaw 融化(解),解冻 identify 认识,鉴定,确定 generality 一般(性),一般原则,普遍(性),通则consistent with 与? 一致 emphasis 强调,重点,重要性axially 轴向 weighted average 加权平均 elementary 基本的 reverse 相反的rigorous 严格的,严密的,精确的 bound 限度 take for granted 被忽略(视) communicate 传达,传递 deflect 偏转unless otherwise state 除非另外说明 appreciation 正确评价,鉴别 substantial 多的,大的,大量的 offset 弥补,抵消,偏移assembly 装配,组装,总成Chapter 11capacitor 电容器 electron-hole pair 电子-空穴对piezoelectric coupling coefficient 压电耦合系数ceramic 陶瓷electronic conduction 电子传导 piezoelectric effect 压电效应 charge carrier 载流子 energy band 能带polymer 聚合物charge density 电荷密度 energy band gap 能隙 positive charge carrier 正载流子 coercive field 矫顽(电)场energy level 能级PZT 锆钛酸铅 conduction band 导带 extrinsic semiconductor 非本征半导体 remanent polarization 剩余极化 conductivity 传导率Fermi function 费米函数 resistivity 电阻率 conductor 导体 Fermi level 费米能级 resistance 电阻 current 电流 ferroelectric 铁电性reverse piezoelectric effect逆压电效应 dielectric 介电性,介电体 free electron 自由电子 saturization polarization 饱和极化dielectric constant 介电常数 glass 玻璃 Seebeck potential 赛贝克(电)势 dielectric strength 介电强度 hysteresis loop (电)滞回线semiconductor 半导体 domain (电)畴 insulator 绝缘体 spontaneous polarization 自发极化 drift velocity 漂移速率intrinsic semiconductor 本征半导体 superconductor 超导体 electric permittivity 电容率,介电常数 metal 金属temperature coefficient of resistivity 电阻率温度系数 electrical conduction 电导 negative charge carrier 负载流子electrical field strength 电场强度Ohm’s law 欧姆定律 thermocouple 热(电)偶 electrically poled 电极化的 orbital 轨道transducer 变(转)换器/换能器 electron 电子paraelectric 顺电性的 valence band 价带 electron hole 电子空穴Pauli exclusion principle 泡利不相容原理 voltage 电压 commonality (特点等的)共有,共同特点,共性 in light of 按照,根据manifestation 显示,表明,表现,表现形式,现象 give way to 让路(步),退让,让位,屈服 spacing 间隔(距)abstract 抽象reciprocal 倒数的 mobility 迁移率 drift 漂移precisely 正好地 hypothetical 假(设)定的 delocalize 使离开原位 extension 扩展(充)pseudocontinuous 准连续的 nature 自然状态conductive to 有助(益)的 on the order of (数值)相当于,大约,数量级为,跟相似的accessibility 能进入(的),可得到(的) inability 无能(力) attribute to 归结于 agitation 扰动wave packet 波包(群)irregularity 不规则,无规律 reminiscent 回忆往事的,提醒的,暗示的 ultimately 最后(终)于 trace 追溯,上溯ambient 周围的(环境) tabulate 把......制成表格,列表 finite 有限的 empirical 经验的ironically 冷嘲的,具有讽刺意味的,用反语的,挖苦的,令人啼笑皆非的 synchronization 同时发生,同步cooperative 配合account for 解释,占多少比例 speculation 思索cryogenic 低温学的 appreciable 可评估的,可感知的breakdown 崩溃,击穿subsection 细分 asymmetrical 不对称的 dipole 偶极子polarization 极化 crystallographic 晶体的,晶体学的at the expense of 以…..为代价 symmetrical 对称的exaggerate 夸张(大) extrapolate 推断(知),外推induce 诱导 prefix 前缀 intriguing 引起? 的兴趣(或好奇心) stem from 由…引起的,产生(起源、归因于),出身于constrain 强迫,抑制,约束 straightforward 简单,易懂的 ensuring 确保,保证 pseudo-single crystal 准单晶consolidate 加固,使合成一体 transmitter 变送器,发射机 oscillation 振动 megahertz MHzChapter 12acceptor level 受主能级 device 元件 impurity 杂质amorphous semiconductor 无定形半导体 diode 二极管intrinsic semiconductor 本征半导体 amplifier 放大器donor level 施主能级 microcircuit 微电路 Arrhenius behavior ???Arrhenius行为dopant 掺杂剂 n-type semiconductor ??n型半导体 base 基极 drain 漏极 p-n junction? ??p-n结 carrier mobility 载流子迁移(率)electron hole 电子空穴 p-type semiconductor? p型半导体 chalcogenide 硫族(属)化物 emitter 发射极rectifier 整流器charge 电荷 energy band gap 能隙 reverse bias ?反向偏置 charge carrier ??载流子 exhaustion range 耗尽区saturation range 饱和区charge density 电荷密度 extrinsic semiconductor 非本征半导体 source 源极 chip (基)片 Fermi function 费米函数thermal activation 热激活 collector 集电极 Fermi level 费米能级 III-V compound III-V化合物compound semiconductor 化合物半导体field-effect transistor (FET) 场效应晶体管 II-VIcompound II-VI化合物 conduction band 导带 forward bias 正向偏置 transistor 晶体管conduction electron 传导电子 gate 栅极 valence band 价带 conductivity 传导率 Hall effect 霍尔效应clustered 丛生,成群 overlap 交迭activation 活化,激活 occurrence 发生,出现,事件,发生的事情 dominate 支配,占优势 semilog 半对数的ambient 周围(环境)的phosphorus 磷 plateau 平原/平台 compensation 补(赔)偿 intimate 亲密 at right angle 成直角 sideways 侧(横)向in order 整齐,状态良好,适应 on the average 平均,按平均数计算,一般地说 zinc blende 闪锌矿 counterpart 配对物threshold 开始(端),极限 photovoltaic 光电nondepletable 耗不尽的 silane 硅烷 xerography 静电复印术 photoconductive 光敏 polarization 极化herald 先驱,先兆 excess 过量的,额外的,附加的overshoot 过冲 distort 畸变,使失真Chapter 13antiparallel spin pairing 反平行(电子)对 domain (bloch) wall 畴壁 flux density 通量(磁力线)密度 eddycurrent 涡流garnet 石榴子石 Bohr magneton 玻尔磁子 electron spin 电子自旋 hard magnet 硬(永)磁铁(体) ceramic magnet 陶瓷磁铁(体)energy loss 能(量)损(失) hysteresis loop (磁)滞回线 coercive field 矫顽(磁)场 exchange interaction 交互作用induction 感应(诱导) coercive force矫顽(磁)力ferrimagnetism 铁氧体磁性,(亚)铁磁性 inverse spinel 反尖晶石diamagnetism 抗(反)磁性 ferrite 铁氧体,铁素体 Joule heating 焦耳热 domain structure 畴结构ferromagnetism 铁磁性magnetic dipole 磁偶极子 magnetic field 磁场metallic magnet 金属磁体 soft magnet 软(暂时)磁体(铁)magnetic field strength 磁场强度 paramagnetism 顺磁性 spinel 尖晶石 magnetic flux line 磁通量(力)线permanent magnet 永(久)磁体 superconducting magnet 超导磁体 magnetic moment 磁矩 permeability 导磁性(率)textured micostructure 织构 magnetism 磁性 preferredorientation 择优取向 transition metal 过渡金属magnetite 磁铁矿(石)relative permeability 相对(磁)导率 transition metal ion 过渡金属离子magnetization 磁化 remanent induction 剩余感应 YIG 钇铁石榴子石 Magnetoplumbite 磁铅石,磁铁铅矿saturation induction 饱和感应nomenclature 命名 routinely 常规,惯例 counterpart 对手 modest 小的 reversible 可逆的 traced out 探寻踪(轨)迹primitive 原始的,早期的,开始的,基本的,简单的visualize 目测,观察,设想 relativistic 相对论的aligned 排列好的 distinction (差)区别,特性tetrahedrally 四面体的 octahedrally 八面体的inventory 清单,目录 cancellation 抵(取)消traverse 在?? 上来回移动,沿? 来回移动 flunctuate 波动,涨落,起伏,动摇不定 ingot 铸模,铸块,锭 fidelity 保真 Samarium 钐 Alnico 磁钢 simultaneously 同时发生的 product? (乘)积 solenoid 螺线管 deflection 偏转interchangeably 可交(互)换的,可代替的gem 宝石 dodecahedral 十二面体的 waveguide 波导hexagonal 六方晶系的 strontium 锶 fortuitous 偶然的,幸运的 perovskite 钙钛矿availability 利用(或获得)的可能性 levitation 悬浮Chapter 1alloy 合金atomic-scale architecture 原子尺度结构(构造)brittle 脆性的ceramic 陶瓷composite 复合材料concrete 混凝土conductor? 导体crystalline? 晶态的devitrified 反玻璃化的(晶化的)ductility (可)延(展)性,可锻性electronic and magnetic material? 电子和磁性材料element 元素fiberglass 玻璃钢Chapter 11capacitor 电容器electron-hole pair 电子-空穴对piezoelectric coupling coefficient 压电耦合系数ceramic 陶瓷electronic conduction 电子传导piezoelectric effect 压电效应charge carrier 载流子energy band 能带polymer 聚合物charge density 电荷密度energy band gap 能隙positive charge carrier 正载流子glass 玻璃glass-ceramic 玻璃陶瓷/微晶玻璃insulator 绝缘体materials science and engineering 材料科学与工程materials selection 材料选择metallic 金属的microcircuitry 微电路microscopic-scale architecture 微观尺度结构(构造)noncrystalline 非晶态的nonmetallic 非金属的oxide 氧化物periodic table 周期表plastic 塑性的、塑料polyethylene 聚乙烯polymer 聚合物property 性能(质)refractory 耐火材料、耐火的coercive field 矫顽(电)场energy level 能级PZT 锆钛酸铅conduction band 导带extrinsic semiconductor 非本征半导体remanent polarization 剩余极化conductivity 传导率Fermi function 费米函数resistivity 电阻率conductor 导体Fermi level 费米能级resistance 电阻current 电流ferroelectric 铁电性reverse piezoelectric effect 逆压电效应dielectric 介电性,介电体free electron 自由电子saturization polarization 饱和极化semiconductor 半导体silica 石英、二氧化硅silicate 硅酸盐silicon 硅steel 钢structural material 结构材料wood 木材Chapter 7aluminum alloy 铝合金gray iron 灰口铁amorphous metal 无定形金属high-alloy steel 高合金钢austenitic stainless steel 奥氏体不锈钢high-strength low-alloy steel 高强度低合金钢Brinell hardness number 布氏硬度值Hooke’s law 胡克定律carbon steel 碳钢dielectric constant 介电常数glass 玻璃Seebeck potential 赛贝克(电)势dielectric strength 介电强度hysteresis loop (电)滞回线semiconductor 半导体domain (电)畴insulator 绝缘体spontaneous polarization 自发极化drift velocity 漂移速率intrinsic semiconductor 本征半导体superconductor 超导体electric permittivity 电容率,介电常数metal 金属temperature coefficient of resistivity 电阻率温度系数impact energy 冲击能cast iron 铸铁lead alloy 铅合金 Charpy test Charpy 试验 low-alloy steel 低合金钢 cold working 冷作加工 lower yield point 屈服点下限 copper alloy 铜合金magnesium alloy 镁合金creep curve 蠕变曲线malleable iron 可锻铸铁 primary stage 第一(初期)阶段 martensitic stainless steel 马氏体不锈钢 secondary stage 第二阶段 modulus of elasticity 弹性模量 tertiary(final)? stage 第三(最后)阶段 modulus of rigidity 刚性模量 dislocation climb 位错攀electrical conduction 电导 negative charge carrier 负载流子electrical field strength 电场强度Ohm’s law 欧姆定律thermocouple 热(电)偶 electrically poled 电极化的 orbital 轨道 transducer 变(转)换器/换能器electron 电子paraelectric 顺电性的 valence band 价带electron hole 电子空穴 Pauli exclusion principle 泡利不相容原理voltage 电压commonality (特点等的)共有,共同特点,共性in light of 按照,根据 manifestation 显示,表明,表(爬)移nickel alloy 镍合金ductile iron 球墨铸铁 nickel-aluminum superalloy 镍铝超合金ductile-to-brittle transition temperature 韧性-脆性转变温度 nonferrous alloy 非铁合金 ductility (可)延(展)性,可锻性 plastic deformation 塑性变形 elastic deformation 弹性变形 Poission’s ratio 泊松比 engineering strain 工程应变 precious metal 贵金属 engineering stress 工程应力 precipitation-hardened stainless steel 沉淀(脱溶)硬化不锈钢 现,表现形式,现象 give way to 让路(步),退让,让位,屈服spacing 间隔(距) abstract 抽象 reciprocal 倒数的mobility 迁移率drift 漂移precisely 正好地hypothetical 假(设)定的 delocalize 使离开原位 extension 扩展(充)pseudocontinuous 准连续的 nature 自然状态conductive to 有助(益)的 on the order of (数值)相当于,大约,数量级为,跟相似的accessibility 能进入(的),可得到(的)inability 无能(力)attribute to 归结于fatigue curve 疲劳曲线 rapidly solidified alloy 速凝合金/快速固化合金 fatigue strength (endurance limit) 疲劳强度(耐久极限) refractory? metal 耐火(高温)金属 ferritic stainless steel 铁素体不锈钢 Rockwell hardness 洛氏硬度 ferrous alloy 铁基合金 shear modulus 剪(切)模量 fracture mechanics 断裂机制 shear strain 剪(切)应变 fracture toughness 断裂韧性 shear stress 剪(切)应力 gage length 标距(长度),计量长度,有效长度 solution hardening 固溶强化 galvanization 电镀,镀锌 steel 钢 strain hardening 应变强化 agitation 扰动wave packet 波包(群)irregularity 不规则,无规律 reminiscent 回忆往事的,提醒的,暗示的ultimately 最后(终)于 trace 追溯,上溯ambient 周围的(环境) tabulate 把......制成表格,列表finite 有限的empirical 经验的ironically 冷嘲的,具有讽刺意味的,用反语的,挖苦的,令人啼笑皆非的synchronization 同时发生,同步cooperative 配合account for 解释,占多少比例 speculation 思索cryogenic 低温学的appreciable 可评估的,可感知white iron 白铁,白口铁superalloy 超合金wrought alloy 可锻(锻造、轧制)合金tensile strength 拉伸强度yield point 屈服点titanium alloy 钛合金yield strength 屈服强度tool steel 工具钢Young’s modulus 杨氏模量toughness 韧性zinc alloy 锌合金upper yield point 屈服点上限Chapter 8annealing point 退火点linear coefficient of thermal expansion线性热膨胀系数refractory 耐火材料borosilicate glass 硼硅酸盐玻璃的breakdown 崩溃,击穿subsection 细分asymmetrical 不对称的dipole 偶极子polarization 极化crystallographic 晶体的,晶体学的at the expense of 以…..为代价symmetrical 对称的exaggerate 夸张(大)extrapolate 推断(知),外推induce 诱导prefix 前缀intriguing 引起? 的兴趣(或好奇心)stem from 由…引起的,产生(起源、归因于),出身于constrain 强迫,抑制,约束straightforward 简单,易懂的ensuring 确保,保证expansion 膨胀silicate 硅酸盐brittle fracture 脆性断裂magnetic ceramic 磁性陶瓷silicate glass 硅酸盐玻璃clay 粘土melting range 熔化(温度)范围soda-lime silica glass 钠钙硅酸盐玻璃color 颜色modulus of rupture 断裂模量softening point 软化点cosine law 余弦定律network former 网络形成体specular reflection 镜面反射creep 蠕变netwrok modifier 网络修饰体/网络外体static fatigue 静态疲劳crystalline ceramic 晶态陶pseudo-single crystal 准单晶consolidate 加固,使合成一体transmitter 变送器,发射机oscillation 振动megahertz MHz Chapter 12acceptor level 受主能级device 元件impurity 杂质amorphous semiconductor 无定形半导体diode 二极管intrinsic semiconductor 本征半导体amplifier 放大器donor level 施主能级microcircuit 微电路Arrheniusbehavior ???Arrhenius行为dopant 掺杂剂瓷nonoxide ceramic 非氧化物陶瓷structural clay product 粘土类结构制品diffuse reflection 漫反射nonsilicate glass 非硅酸盐玻璃surface gloss 表面光泽E-glass 电子玻璃(E玻璃)nonsilicate oxide ceramic 非硅酸盐氧化物陶瓷tempered glass 钢化玻璃electronic ceramic 电子陶瓷nuclear ceramic 核用陶瓷thermal conductivity 热传导率enamel 搪瓷nucleate 成(形)核thermal shock 热震Fourier’s law 傅立叶定律Opacity 乳浊n-type semiconductor ??n型半导体base 基极drain 漏极p-n junction? ??p-n结carrier mobility 载流子迁移(率)electron hole 电子空穴p-type semiconductor? p型半导体chalcogenide 硫族(属)化物emitter 发射极rectifier 整流器charge 电荷energy band gap 能隙reverse bias ?反向偏置charge carrier ??载流子exhaustion range 耗尽区saturation range 饱和区charge density 电荷密度extrinsic semiconductor 非本征半导体transformation toughening 相变增韧 fracture toughness 断裂韧性 optical property 光学性质 translucency 半透明Fresnel’s formula Fresnel 公式 partially stabilized zirconia ??部分稳定氧化锆 transparency 透明glass 玻璃polar diagram 极坐标图viscosity 粘度 glass-ceramic 玻璃陶瓷/微晶玻璃pottery 陶器(制造术) viscous deformation 粘性变形 glass transition temperature 玻璃转变温度pure oxide 纯氧化物 vitreous silica 无定形二氧source 源极chip (基)片Fermi function 费米函数 thermal activation 热激活 collector 集电极 Fermi level 费米能级III-V compound III-V 化合物compound semiconductor 化合物半导体 field-effect transistor (FET) 场效应晶体管 II-VI compound II-VI 化合物conduction band 导带 forward bias 正向偏置 transistor 晶体管conduction electron 传导电子gate 栅极 valence band 价带conductivity 传导率化硅/石英玻璃glaze 釉reflectance 反射(率)whiteware 白瓷Griffith crackmodel Griffith裂纹模型refractive index 折射率working range 工作(温度)范围intermediate 中间体/中间的Chapter 9Chapter 10admixture 外加剂fiberglass 玻璃钢metal-matrix composite 金属基复合材料aggregate 聚集体fiber-reinforced composite 纤维增强复合材料particulate composite 颗粒复合材料Hall effect 霍尔效应clustered 丛生,成群overlap 交迭activation 活化,激活occurrence 发生,出现,事件,发生的事情dominate 支配,占优势semilog 半对数的ambient 周围(环境)的phosphorus 磷plateau 平原/平台compensation 补(赔)偿intimate 亲密at right angle 成直角sideways 侧(横)向in order 整齐,状态良好,适应on the average 平均,按平均数计算,一般地说zinc blende 闪锌矿counterpart 配对物threshold 开始(端),极限aggregate composite 聚集体复合材料hardwood 硬质木材polymer-matrix composite 聚合物基复合材料anisotropic 各向异性hemicellulose 半纤维素portland cement 波特兰水泥cement 水泥interfacial strength 界面结合强度property averaging 性能平均ceramic-matrix composite 陶瓷基复合材料isostrain 等应变radial cell 径向细胞concrete 混凝土isotress 等应力softwood 软质木材continuous fiber 连续纤维isotropic 各向同性specific strength 比强度photovoltaic 光电nondepletable 耗不尽的silane 硅烷xerography 静电复印术photoconductive 光敏polarization 极化herald 先驱,先兆excess 过量的,额外的,附加的overshoot 过冲distort 畸变,使失真Chapter 13antiparallel spin pairing 反平行(电子)对domain (bloch) wall 畴壁flux density 通量(磁力线)密度eddy current 涡流garnet 石榴子石Bohr magneton 玻尔磁子electron spin 电子自旋discrete (chopped) fiber 不连续(短切)纤维laminate 层状的 strength-to-weight ratio 强度质量比率dispersion-strengthenedmetal 弥散强化金属lignin 木质素whisker 晶须 longitudinal cell 经向(纵向)纤维wood 木材woven fabric 纺织构造E-glass 电子玻璃matrix 基质(体)philosophy 基本原理 cross over 交叉,穿过,跨越 restriction 限制(定) configuration 构造(形式),结构 align 使成一直线(一行) elongate 拉长(的)/延伸(的) hard magnet 硬(永)磁铁(体) ceramic magnet 陶瓷磁铁(体) energy loss 能(量)损(失) hysteresis loop (磁)滞回线 coercive field 矫顽(磁)场 exchange interaction 交互作用 induction 感应(诱导) coercive force 矫顽(磁)力 ferrimagnetism 铁氧体磁性,(亚)铁磁性 inverse spinel 反尖晶石 diamagnetism 抗(反)磁性 ferrite 铁氧体,铁素体 Joule heating 焦耳热 domain structure 畴结构 ferromagnetism 铁磁性 magnetic dipole 磁偶极子 magnetic field 磁场metallic magnet 金属磁体 soft magnet 软(暂时)磁体(铁)aggregate 集料,粒料,骨料 chop 切 utility 效用,实用,功用 in regard for 考虑到 cite 引用(证、述),援引,列举,举出(例),提到,谈到 embed 埋置,把? 嵌入(或插入) dielectric 电介质implication 含意(义)epoxy 环氧树脂polyester 聚酯 polyetheretherketone (PEEK) 聚醚酮醚 polyphenylene sulfide (PPS) 聚苯亚砜entrant 新到者requisite 必需的imitate 仿 deciduous 每年落叶的,非永久的 commonality 共性,共同特点 dramatic 生动的 magnetic field strength 磁场强度paramagnetism 顺磁性 spinel 尖晶石magnetic flux line 磁通量(力)线permanent magnet 永(久)磁体 superconducting magnet 超导磁体 magnetic moment 磁矩permeability 导磁性(率) textured micostructure 织构 magnetism 磁性preferred orientation 择优取向 transition metal 过渡金属 magnetite 磁铁矿(石) relative permeability 相对(磁)导率transition metal ion 过渡金属离子vertically 竖直地,直立地longitudinal 经度的,纵向的sap 树液cellulose 纤维素alignment 直线排列phenol-propane 苯酚-丙烷manifest 显示,出现,显露dimension 尺寸specify 详细说明staggering 令人惊愕的igneous 火成的inspection 检查,视察interstice 空隙,裂缝enclose 包围,封闭entrain 混(气泡)于混凝土中entrap 截留的,夹杂的thaw 融化(解),解冻identify 认识,鉴定,确定generality 一般(性),一般原则,普遍(性),通则consistent with 与一致emphasis 强调,重点,重要性magnetization 磁化remanent induction 剩余感应YIG 钇铁石榴子石Magnetoplumbite 磁铅石,磁铁铅矿saturation induction 饱和感应nomenclature 命名routinely 常规,惯例counterpart 对手modest 小的reversible 可逆的traced out 探寻踪(轨)迹primitive 原始的,早期的,开始的,基本的,简单的visualize 目测,观察,设想relativistic 相对论的aligned 排列好的distinction (差)区别,特性tetrahedrally 四面体的octahedrally 八面体的inventory 清单,目录axially 轴向 weighted average 加权平均 elementary 基本的reverse 相反的 rigorous 严格的,严密的,精确的bound 限度 take for granted 被忽略(视) communicate 传达,传递deflect 偏转 unless otherwise state 除非另外说明 appreciation 正确评价,鉴别 substantial 多的,大的,大量的offset 弥补,抵消,偏移 assembly 装配,组装,总成 cancellation 抵(取)消 traverse 在?? 上来回移动,沿? 来回移动 flunctuate 波动,涨落,起伏,动摇不定ingot 铸模,铸块,锭 fidelity 保真Samarium 钐Alnico 磁钢 simultaneously 同时发生的 product? (乘)积solenoid 螺线管deflection 偏转interchangeably 可交(互)换的,可代替的 gem 宝石dodecahedral 十二面体的 waveguide 波导hexagonal 六方晶系的strontium 锶fortuitous 偶然的,幸运的perovskite 钙钛矿availability 利用(或获得)的可能性levitation 悬浮application 应用mechanical property 力学性能constitute 组成stress 压力strain 应变hardness 硬度impact strength 冲击抗强度fracture toughness 断裂韧度fatigue 疲劳creep 蠕变 / 徐变ferrite 铁素体matrix 基体ductility 延展性corrosion resistance 抗腐蚀性alloying element 合金元素cast iron 铸铁brittleness 脆性spheroidal 类似球体的toughness 韧性tensile strength 抗张强度embrittling 使脆化metastable 亚稳的wear resistance 耐磨性abrasion 磨损superconducting 超导(电)的superplastic 超塑性的superalloys 超耐热合金light-sensitive 感光的elastic limit 弹性极限yield strength 屈服强度crack 裂缝crystalline 晶体elastomer 弹性体metal 金属microcrystalline 微晶的ceramic 陶瓷microstructure 微观结构chemical 化学的nano ceramic 纳米陶瓷chemical bond 化学键non-crystal 非晶体composite 复合材料composition 组成conductivity 导电性cost 成本physical property 物理性能defect structure 缺陷electron microscopy 电子显微镜engineering 工程semiconductor 半导体expansion 膨胀smart Ceramics 机敏陶瓷experiment 实验sintering 烧结fiber 纤维structure 结构synthesis 合成glass 玻璃technology 工艺temperature 温度thermal shock 热冲击inorganic 无机的thermal stability 热稳定性admixture 外加剂hydration 水化clay 粘土refractory 耐火材料reinforcement 增强sample 样品crystalline modification 晶型转化drying 干燥sand 砂polymer 聚合物thermosetting 热硬化性的thermoplastic 热塑性的organic 有机的concrete 混凝土cement 水泥brick 砖masonry 石质的calcium silicate 硅酸盐aggregate 骨料insulation 绝热coarse 粗的characterization 特性oxide 氧化物coal 煤powder 粉末process 加工furnace 熔炉formation 成型test 测试water 水alloy 合金fabrication 制备resin 树脂solder 焊接, 焊料crystal boundary 晶界torsion 扭转treatment 处理。
Inorganicnon-metallicmaterials(无机非金属材料)
Inorganic non-metallic materials(无机非金属材料)Silicon.(1) existing form;Silicon ranks second in the earth's crust, second only to silicon, and is a pro oxygen element, which in nature exists in all its common compounds, silicon and silicatesOxygen.compound formSilicon dioxide(2) atomic structureThe number of nuclear charges of silicon is located in the third periodic group of the periodic table of elementsIt is not easy to lose electrons in the reaction, it is not easy to get the electronic, mainly forming quadrivalence compounds.FourteenVI A(3) physical propertyThere are two kinds of silicon crystals and one is crystal siliconA lustrous, brittle, solid structure similar to that of melting point, hardness, and brittleness, and is a good material(4) chemical propertiesUnder normal temperature, the chemical properties of silicon are inert, and it is difficult to react with other substances except F2, hydrofluoric acid and strong alkali. The chemical equation for the reaction of silicon with NaOH isAmorphousdark grayThere is metalThere is metalhighlargeSemiconductorSi2NaOHH2O===Na2SiO32H2 increases.When heating, the reaction between silicon and nonmetal elements such as O2 and Cl2. The chemical equation of reaction between silicon and O2 is(5) industrial lawIndustrial coke is reduced to SiO2 in the electric furnace to obtain coarse silicon containing a small amount of impuritiesAfter purification of crude silicon, high purity silicon can be obtained(6) main usesSilicon can be used to make transistors, integrated circuits, solar cells, silicon rectifiers, etc., in addition, the use of silicon alloy more widely, can be used as transformers, iron core, acid resistant equipment2. silica(1) form of existence;The natural forms of SiO2 are crystalline and amorphous, collectivelyThe main ingredients are SiO2.(2) structureThe basic structural units of the a.SiO2 crystal, shown below, are tetrahedral structuresSilica, quartz, crystalIn the B. crystal, each Si atom has an oxygen atom around it, each oxygen atom has an Si atom, and the chemical formula is no SiO2 molecule in the crystal42SiO2(3) physical propertyColorless transparent crystalgreatgreatVery highInsoluble(4) chemical properties(5) main usesThe skeleton of the A. information superhighway -;B. quartz crucible, quartz glass, quartz clock and so on;An important component of the C. electronics industry, opticalinstruments;D. craft jewelryLight-guide fiber3. silicic acid (H2SiO3)(1) physical propertyThe white solid(2) chemical propertiesWeak acid: acidity is the ratio of carbonic acid to the chemical equation of NaOH solutionInstability: the heat is easy to dehydrate, and the chemical equation isInsoluble in waterweakH2SiO32NaOH===Na2SiO32H2OH2SiO3SiO2H2O(3) makingalkalinity2NaClH2SiO3 downWhite precipitateredSummary: H2SiO3 is made by reacting soluble silicate with other acids. For example, the ionic equation that reacts with a small amount of CO2 to Na2SiO3 solution is(4) use: "silica gel" can be used as catalyst carrierDesiccant4. silicate(1) conceptA composite of compounds that constitute the main constituent of the earth's crust(2) the simplest silicateNa2SiO3: soluble in water, commonly known as water solution, is the preparation of silica gel and wood fire retardant raw materialsSilicon, oxygen, and metalswater glass(3) representation of compositionThe composition is usually expressed in the form of silica and metallic oxides, which indicate the order of oxides of active metals, oxides of active metals, silica dioxide and water:Sodium silicate (Na2SiO3);Plain glass (Na2CaSi6O14)Na2O SiO2Na2O, CaO, 6SiO2(4) the use of silicateSoil fertility - soil colloids are generally negatively charged and can adsorb NH, K +Silicate products - inorganic non-metallic materials such as ceramics, glass and cementSilicate products have stable properties, high compressive strength, high hardness and high melting point. Most of them are difficult to dissolve in water5. inorganic non-metallic materialsCommon silicate products - ceramics, glass, and cement - are the most widely used inorganic non-metallic materials(1) ceramicsThe main ingredients are(2) ordinary glass;The main ingredients are, andClaySodalimestonequartz(3) cementThe main ingredients are(4) silicon containing material with special function Emery (chemical formula is SiC)Silicon steelSilicone rubberMolecular sievesClayLimestone(5) new inorganic non-metallic materials;Besides the advantages of the traditional inorganicnon-metallic materials, the new inorganic non-metallic materials also have some special structures and special functions, such as high temperature structural ceramics, bioceramics and piezoelectric ceramics1. in the water and the concentrated nitric acid hydrofluoric acid and potassium hydroxide solution in aqua regia, and silica chemical reaction (a)A.,B. IIC.,D.Analysis: silica is an acid oxide, and can react with alkali solution, not with nitric acid, hydrochloric acid and other acid reaction, but can react with hydrofluoric acid; silica insoluble in water, nor react with waterAnswer: C2. at room temperature silica is a hard solid, while carbon dioxide is a gasA. silicon is less nonmetallic than carbonB. silicon has certain non-metallic properties, while carbon is typical of non metalsC. the chemical bond between silicon and oxygen in silicon dioxide and the chemical bonds of carbon and oxygen in carbon dioxide are differentD. silicon dioxide is an atomic crystal, and carbon dioxide is a molecular crystalAnalysis: the existence of compounds at ambient temperature depends on their melting and boiling points. The melting point and boiling point of SiO2 and CO2 are different, mainly due to the difference in crystal types between the twoAnswer: D3., the manufacture of solar cells requires high-purity silicon, industrial production of high-purity silicon is usually achieved by the following reactions:In the narrative of the above two reactions, the error is ()A. two reactions are replacement reactionsB. reaction is endothermic reactionC. two reactions are reversible reactionsD. two reactions are redox reactionsAnalysis: (1) the reaction is reverse; exothermic reaction is inevitable; endothermic reaction is inevitable; the condition is different; it can not be called reversible reactionAnswer: CComparison of 1. carbon and siliconComparison of 2.CO2 and SiO2[example 1] for group IV group A elements, the following statement is incorrect ()In A.SiO2 and CO2, covalent bonds are between Si and O, between C and OThe outermost electrons of B.C, Si and Ge are 4, and the outer electron number is 8Both C.CO2 and SiO2 are acidic oxides and react with calcium oxide under certain conditionsThe main elements are the valence of D. and 4 + 2I need to carefully analyze the key features of a fourth A elements CO2, SiO2 atomic structure and solve the problems, and then based on the structure determines the nature of analysis, but also pay attention to the common points of CO2, SiO2 and the nature of the differences.The outermost electron number of C is 2, Ge the number of valence electrons is 18, so B is not correct.CO2 and SiO2 are covalent compounds, acidic oxide, so A and C correctly. The main valence IV A group elements as + 4 valence and valence of 2, D is correct.Answer: B1. the following is true about carbon and siliconA. and its oxides can react with NaOH solutionB. its simple substance can react with O2 when it is heatedC. its oxides are soluble in water and produce the corresponding acidD., carbon and silicon, two elements, two kinds of simple substanceAnalysis: CO with NaOH solution reaction; SiO2 can not dissolve in water, does not generate the corresponding acid; diamond, graphite and other carbon allotropes, silicon crystal silicon and amorphous silicon, so there are a variety of elements.Answer: B2. the following statement is incorrectBoth A.SiO2 and CO2 are acidic oxides and can react with NaOH solutionsB.SiO2 does not react with any acidC.SiO2 and CO2 can react with CaO under certain conditionsD.SiO2 is insoluble in water, while CO2 reacts with water to form H2CO3Resolution: SiO2 is an acid oxide, but reacts with HF solution to form SiF4 and H2O.Answer: B1. silicic acid and its saltsThey can be shrunk intermolecular complex form. Therefore, the silicate species, complex composition. Their composition, often in the form of oxides, such as potassium micaK2H4Al6Si6O24 can be written as K2O - 3Al2O3 - 6SiO2 - 2H2O.(1) order of oxides: reactive metal oxides - more active metal oxides - silica - water(2) the principle of the distribution of oxide coefficients: the configuration coefficient of the elements in the outer element and the other elements under the conservation principle of the number of atoms before and after the configurationNote: the oxides are separated by ".". The coefficient configuration shall be divided into integral numbers2. silicate products[examples 2] silicon elements and their compounds have a wide range of applications. Please answer the following questions:(1) the preparation of silicon semiconductor material must first obtain high purity silicon. Three (SiHCl3) reduction is the main method for the preparation of high-purity silicon at present. The production process is as follows:Write the chemical reaction equation______________________________________. for preparation of high-purity silicon by pure SiHCl3The whole preparation process must be strictly controlled in anhydrous water.SiHCl3 reaction to produce H2SiO3, HCl and other substances, write the chemical reaction equation________________________ trim; H2 SiHCl3 reduction process if mixed with O2, the possible consequences are____________________.(2) the silicon material is correct to say that ________ (fill).A. silicon carbide is chemically stable and can be used in the production of high temperature resistant cementB. silicon nitride has high hardness and high melting point. It can be used to make high temperature ceramics and bearingsC. high purity silica can be used to produce high performance communication materials - optical fibersD. ordinary glass is made of soda ash, limestone and quartz sand, and has a high melting pointE. hydrochloric acid can react with silicon, so hydrochloric acid is used as polishing liquid to polish monocrystalline silicon(3) sodium silicate aqueous solution commonly known as water glass. Take a small amount of sodium silicate aqueous solution in a test tube, by the dropwise addition of saturated ammonium chloride solution, oscillation. Write the experiment phenomenon and explain __________________________________I answer the questions to understand the principle of each step for producing high purity silicon in the process, at the same time to pay attention to the application of redox reaction, hydrolysis of salts and other knowledge, but also the application of silicon material and memorizing common silicate industry.Analysis: (1) SiHCl3 and H2 react with 1357K to generate Si and HCl, and then write the corresponding formulaThe violent reaction of SiHCl3 and water to produce H2SiO3, HCl and other substances, they change valence analysis,And the valence of Cl did not change, so the other elements that the valence of H will decrease, which is another matter for H2.H2 SiHCl3 reduction process if mixed with O2, may cause an explosion at the same time, O2 may be the oxidation of SiHCl3.(2) silicon carbide and silicon nitride as atomic crystal, A, B; SiO2 can be used for the manufacture of optical fiber, C; glass is a glass material, no fixed melting point. Hydrochloric acid could not react with the silicon, and HCl above 573K temperature can react with silicon, so D and E is not correct.(3) Na2SiO3 and NH4Cl hydrolysis promote each other, resulting in H2SiO3 precipitation and NH3.The SiHCl33H2O===H2SiO3: 3HCl = = + H2 oxygen and hydrogen mixture, may cause an explosion; oxygen may oxidize SiHCl3(2) BC(3) the phenomenon is that white flocculent precipitate is produced in the test tube, and stimulating gas is generatedInterpretation: both Na2SiO3 and NH4Cl can hydrolyze, and the two promote each other, Na2SiO3 hydrolysis generates H2SiO3, and NH4Cl hydrolysis produces NH3(1) the complex silicate is recast into an oxide form:KAlSi3O8__________________________________.Al2Si2O5 (OH) 4_________________.(2) the reason of this reaction can occur is ______.Analysis: (1) according to the principle of silicate recast oxides can be obtained:KAlSi3O6, K2O, Al2O3, 6SiO2II. Al2Si2O5 (OH) 4 - Al2O3 2H2O 2SiO2(2) the principle of the reaction is to prepare weak acids from stronger acidsAnswer: (1) K2O, Al2O3, 6SiO2Al2O3, 2SiO2, 2H2O(2) because weak acid is stronger than silicic acid, weak acid can be prepared by stronger acidMethods: Portland in whatever form, its composition and composition is fixed, the nature is the same; Portland expressed in the form of oxides, must follow the same principle. The valence force weak "is an important law, can be used to explain the causes of metathesis reaction and redox reaction response.It is known that SiO2, SO2 and CO2 are acidic oxides, and their chemical properties are similar. The chemical properties of Mg and Na are similarMg and SO2 experiments using the device shown above, where A is the device for the generation of SO2(1) select the appropriate ________. reagent preparation of SO2 (in number)10% H2SO4 solution 80% H2SO4 solutionNa2SO3 solid, CaSO4 solid(2) write the main reaction mechanism in B chemical formula ________________.The solution of NaOH device in the C is _________________.(3) please draw the device for preparing the SO2 in the drawing and indicate the name of the main instrument. The fixed instrument is omitted(4) what do you think is the shortage of this device?__________________.II. A research study group of "research laboratory Si", they are based on the textbook, access to information obtained the following information for reference: the industry at high temperature by C reduction can be made of SiO2 Si Mg can be ignited under the condition of the reaction with SiO2 and thin metal silicide H2SO4 SiH4 and the Si reaction of sulfate and SiO2 are not with dilute H2SO4 reaction. SiH4 spontaneous combustion in the air.They are documented in the research report:"...... Select the suitable substance to react adequately under suitable conditions, then dissolve the solid product with enough dilute sulfuric acid, then filter, wash, dry, and finally weigh...... When a solid product is dissolved in dilute sulfuric acid, adetonation sound and a spark are found, and the yield is only about 63% of the expected value"(5) the group of chemical formula Si laboratory "is________________________.(6) do you estimate "with dilute sulfuric acid dissolved solid product, that causes detonation and spark" is_______________________________.Answer: (1) 2(3) as shown(4) no drying device is connected between A and B; the C device is not communicated with the atmosphere; a stainless steel sheet is not inserted below the magnesium; the magnesium reacts with the glass tube; an anti dumping device is not designed1. (2009 Sichuan science college entrance examination) the development of new materials is one of the direction of development of modern science and technology. Materials related to the following statement is true ()A. silicon nitride ceramic is a new inorganic non-metallic materialB.C60 belongs to atomic crystals and is used in the manufacture of nanomaterialsC. cellulose acetate belongs to natural macromolecule materialD. monocrystalline silicon is commonly used in manufacturing optical fibersResolution: B term, C60 belongs to molecular crystal; C term, cellulose acetate is not a natural polymer material; D term, silica is commonly used in the manufacture of optical fibersAnswer: A2. experiment with 4 kinds of solutions, and the error of "operation" and "phenomenon" in the following table is corresponding to "solution"Analysis: the CO2 is passed into the C6H5ONa solution, because it is generated` cloudy, when higher than 65 DEG C, phenol soluble in water, so the solution becomes clear, A; Na2SiO3 solution to pass into the CO2 will generate H2SiO3 white precipitate when CO2 is excessive, precipitation does not disappear, B error; Ca (ClO) 2CO2H2O===CaCO3 down 2HClO, so generating CaCO3 precipitation, solution turbidity, HClO will fade fuchsin oxidation, C;D chemical reaction: Ca (OH) 2 + CO2===CaCO3 + CaCO3 + H2O: H2O + CO2===Ca (HCO3) 2, Ca (HCO3) 2 + 2NaOH===CaCO3 + Na2CO3 +: 2H2O, so D is correct. Only B with B.Answer: BThreeKnown as "crystal town" reputation of Jiangsu Donghai County is rich in the crystal, existing in the National Geological Museum of the crystal king from Donghai County. The crystal is relatively pure quartz crystal transparent, main component is the SiO2. quartz quartz narrative is not correct ()A. quartz is not necessarily a transparent crystal, it can be used as an ornamentB. quartz can be used to make glass or cementC. quartz crystal has the highest hardness and can be made from emeryD. quartz can be used to make high-purity silicon and also to make optical fibersAnalysis: if quartz contains impurities, they are not transparent crystals, so they can not be used to make optical instruments. The hardness of quartz is not the highest, so C is not correctAnswer: C4. if the 4.2g silicon and sodium 9.2g are put into the right amount of water, the volume of hydrogen (standard condition) can be collectedA.22.4LB.11.2LC.5.6LD.2.8L2Na2H2O===2NaOHH2 hav'e 2mol 2mol 1mol。
无机非金属材料专业英语译文
第一部分无机材料物理化学第1单元晶体化学键类型离子键在有些晶体中,原子通常呈现这样一种状态,那就是它的电子结构同稀有气体的电子结构类似,它的最外层轨道要么失去多余的电子,要么被填满达到8个电子的稳定结构。
为了保持电中性,晶体中通常同时存在有些原子失去电子而有些原子得到电子。
前者形成带正电的阳离子,后者则形成带负电的阴离子。
离子所带电量是电子电量的整数倍。
这种晶体中离子之间的结合力是静电吸引力,这种类型的晶体被称为离子晶体。
由于离子的电场呈球型对称结构,所以离子键是各向同性的,也就是说离子键没有方向性而且每个离子都尽可能多的与其他离子之间成键,所以离子键具有不饱和性。
碱金属卤化物盐是典型的离子晶体,其原因是碱金属元素的最外层只有一个电子,而卤族元素的最外层恰好缺少一个电子而达到8个电子的稳定结构。
这种观念与化学键的概念完全相同,只是没有把晶体视为分子化合物,而把它看作一种均一的结构,对他而言化学式只表示元素的比值,而元素的几何排布是描述该物质必不可少的部分。
例如,化学式NaCl并不代表一个分子结构单元,因为在晶体中每个离子与很多个最近邻的异号离子接触,所以在NaCl晶体中每个Na+离子周围有六个等价的最近邻的Cl-离子,反之亦然。
共价键亥特勒和伦敦在1927年用量子力学精确地计算了氢分子模型,得出氢分子存在由原先的单原子状态构成的两种可能的最低能量状态,其中能量更低的这种对应于电子自旋反平行取向的单一态又称为零自旋能级。
两个单原子状态的与结合后的分子状态的能量差被称为两个原子共有的交换力(结合力),它的大小取决于电子波函数的重叠。
这种键合形式叫做相似极化或原子极化。
根据鲍林规则,成对电子中两个电子的自旋方向不同,具有更复杂电子结构的原子之间的共价键也具有这种特征。
原子轨道上的单电子波函数重叠形成了共有状态的波函数,键也就重新建立。
共价键的主要特征是饱和性而且当给定原子有多个共价键时,各个键之间具有相互取向性。
无机非金属材料工程专业英语
无机非金属材料工程专业英语一、无机非金属材料概论中文英文无机非金属材料inorganic non-metallic materials 定义definition分类classification组成composition结构structure性能properties制备方法preparation methods应用领域application fields陶瓷ceramics玻璃glass耐火材料refractories水泥cement石膏gypsum石棉asbestos碳素材料carbon materials石墨graphite碳纤维carbon fiber碳纳米管carbon nanotube钻石diamond全氟聚合物fluoropolymer聚四氟乙烯polytetrafluoroethylene (PTFE)聚偏氟乙烯polyvinylidene fluoride (PVDF)聚合物陶瓷polymer-derived ceramics (PDCs)氧化物陶瓷oxide ceramics氧化铝alumina (Al2O3)氧化锆zirconia (ZrO2)氧化镁magnesia (MgO)氧化钛titania (TiO2)非氧化物陶瓷non-oxide ceramics氮化硅silicon nitride (Si3N4)氮化铝aluminium nitride (AlN)碳化硅silicon carbide (SiC)碳化钨tungsten carbide (WC)碳化钛titanium carbide (TiC)二、物理化学中文英文物理化学physical chemistry物质matter结构structure组成composition性质properties变化规律laws of change分子运动论kinetic theory of molecules分子molecule原子atom离子ion气体gas液体liquid固体solid理想气体ideal gas真实气体real gas相平衡phase equilibrium相phase相图phase diagram相规则phase rule单元系unary system二元系binary system三元系ternary system溶液理论solution theory溶液solution溶剂solvent溶质solute浓度concentration摩尔分数mole fraction理想溶液ideal solution非理想溶液non-ideal solutionRaoult定律Raoult's lawHenry定律Henry's law三、无机材料科学基础中文英文无机材料科学基础fundamentals of inorganic materials science 无机材料inorganic materials结构structure性能properties结构-性能关系structure-property relationship晶体结构crystal structure晶体系统crystal system点阵类型lattice type空间群space group单胞参数lattice parameters基元胞primitive cell单位胞unit cell四、热工基础中文英文热工基础thermal engineering fundamentals热力学thermodynamics传热学heat transfer流体力学fluid mechanics热工学科thermal engineering disciplines 热力学第一定律first law of thermodynamics热力学第二定律second law of thermodynamics 热力系统thermodynamic system系统边界system boundary系统状态system state状态方程equation of state过程process循环cycle工作物质working substance理想气体ideal gas气体常数gas constant温度temperature压力pressure体积volume内能internal energy热容heat capacity比热容specific heat capacity焓enthalpy熵entropy自由能free energy吉布斯函数Gibbs function卡诺循环Carnot cycle热效率thermal efficiency 反向卡诺循环reversed Carnot cycle制冷系数coefficient of performance传导传热heat conduction傅里叶定律Fourier's law热导率thermal conductivity热阻thermal resistance稳态传热steady-state heat transfer非稳态传热transient heat transfer对流传热heat convection对流换热系数convection heat transfer coefficient 力对流forced convection自然对流natural convection努塞尔特数Nusselt number辐射传热heat radiation斯特藩-玻尔兹曼定律Stefan-Boltzmann law黑体blackbody发射率emissivity吸收率absorptivity反射率reflectivity透射率transmissivity灰体graybody视域因子view factor流体静力学fluid statics流体fluid密度density粘度viscosity表面张力surface tension液压hydrostatics帕斯卡定律Pascal's law流体运动方程equations of fluid motion质量守恒方程continuity equation动量守恒方程momentum equation能量守恒方程energy equation雷诺数Reynolds number理想流体ideal fluid实际流体real fluid层流laminar flow湍流turbulent flow边界层boundary layer阻力drag升力lift伯努利方程Bernoulli's equation皮托管Pitot tube五、无机非金属材料物理性能中文英文无机非金属材料物理性能physical properties of inorganic non-metallic materials 电学性能electrical properties磁学性能magnetic properties光学性能optical properties声学性能acoustic properties热学性能thermal properties电导率electrical conductivity电阻率electrical resistivity电容率electrical capacitance介电常数dielectric constant压电效应piezoelectric effect热电效应thermoelectric effect光电效应photoelectric effect半导体性质semiconductor properties铁电性质ferroelectric properties磁导率magnetic permeability磁化率magnetic susceptibility磁滞回线hysteresis loop铁磁性质ferromagnetic properties反铁磁性质antiferromagnetic properties顺磁性质paramagnetic properties抗磁性质diamagnetic properties光学常数optical constants折射率refractive index反射率reflectance吸收率absorbance透射率transmittance色散现象dispersion phenomenon双折射现象birefringence phenomenon声速sound velocity声阻抗acoustic impedance。
无机非金属专业外文翻译---粉煤灰高性能混凝土的工程应用
附录A 英文原文Project application of the High-performance Concrete of fly ash[The summary ]Every performance of this text to high-performance concrete of fly ash has done detailed research, and to the concrete respectively to person who mix of fly ash Kinds of influence of performance and fly ash concrete some questions that should notice carry on analysis and discussion in not constructing.1. SummaryFly ash, as a kind of industrial waste material, resources are abundant , cheap, and contain a large amount of active composition , it is modern concrete Central Africa A often important component part . The high-quality fly ash is applied to the concrete rationally , not only can replace the cement partly , save the fabrication cost of the project, And, its peculiar performance can be used in the concrete of various kinds of instructions for use very effectively, improve the performance of the concrete, It is the ideal in the high-performance concrete that admixes the material . Among it is at concrete not modern, whose name is already with cement in fly ash, collect material , water , admixture and Kind is important, become a component part in concrete. Fly ash high-performance concrete regard durability as main goal go on design mix Congeal the soil . It regards excellent durability (instead of the high strength) as the main characteristic , that is to say, concrete capital of any grade of intensity Can make into the high durability concrete . In order to reach high durability, the performance that the fly ash concrete should possess is: Mixing the state newly well Work,namely, without emanating, secreting by water, so that shaping the even , closely knit by mobility, harden not shrinking subsiding early water and Water shrink light, warm to rise low, harden course is it dwindle to do, in order to reach having the initial crack, the permeability after hardenning is low.2." function " and " effect " of the fly ash are fly ash material technology and application foundation of the project.Mix and add the powder of the concrete Coal ash, in conformity with understanding that the function of the fly ash is made overallly, by " volcanic ash react " and " economic component part" general to fly ash originally Read , expand technological consciousness of " fly ash effect " to , make fly ash function can serve performance of concrete improve with quality raising better. The role in concrete of fly ash has the following several points:(1) Shape effect: It is spongy vitreous body , little pearl of silicate glass of aluminium that the main mineral of the fly ash makes up , smooth the body surface of these spherical glass, the grain size is thin, the quality is pre-pressing, inside smaller than the surface area, the strength of absorbing to water is small, this line of physical characteristics, reduce concrete rub obstruction inside , favorable to improvement , concrete of mobility not merely; And, have " reducing water " function in various degree on the concrete;(2)Active effect: The active composition SiO2of the fly ash and water result of AI2O3 and cement react in a situation that there is water, producing water silicic acid calcium (C-S-H ) and water sour calcium (C-A-S-H ) of sulphur aluminium, these responses nearly all go on in the grout hole, water that produce result pack , cut apart the heavy original hole , make the hole thinning, can reduce the hole rate within the concrete , change the hole structure , improve glueing the function of forming of concrete every component part ;(3)Collect the material effect a little: Very small particle of fly ash even to is it among cement particle , pack the hole to distribute, play a role in getting to " thinning hole " , meanwhile , prevent glueing gathering each other of the cement particle, and make it in state of dispersing , help water of the mixture to react, the fly ash will not be totally with reacting with water result of the cement, can keep its " collecting the material effect a little " for a long time ;(4)Effect of the interface: It is the weak link in the concrete structure to collect the interface between the material and cement stone, width of transition area as water for dust than, collect there aren’t material , transition area have than grout body more, heavy hole. Mixing can reduce the regional width of the transition to add the fly ash , interfere Ca (OH )2orientation of 2 crystal in the transition area, improve the intensity of interface and density in the concrete.3.Performance of the fly ash concreteThe change of the fly ash to concrete performance can be divided into three stages:(1)Mix concrete stage newly: Influence the coagulation time of the concrete , is improving and easy , change rheology nature , can improve pump ,etc.;(2)The concrete stage while hardenning: Regulate the course of hardenning, reduce the heat of hydration;(3)The concrete stage after hardenning: Raise the intensity on later stage , raise every durability, such as anti-permeability, resist the sulphate corroding, suppress the alkali - Collect the material and react etc..3.1 IntensityThe fly ash has three kinds of influence on the intensity of concrete: Reduce water consumption , increase glued material content and reflect through the long-term volcanic ash that raises his intensity. The particle in the fly ash of low calcium is the silicon oxygen tetrahedron structure, one’s own activation is very low. In the final result of the cement, high alkaline water silicic acid calcium and crystallization of colloid of Ca (OH )2 are very low in intensity, especially Ca (OH) 2 ask vigorous to come 1-2% , stone of intensity only, but Ca (OH) 2 volume account for whole cement 25% , stone of volume.A large number of silicon , aluminium oxide that contain in the fly ash, can and high alkaline water silicic acid calcium responses take place with Ca (OH )2progressively, produce intensity than high low alkaline water silicic acid calcium , so , make cement stone water glue congeal quantity of material increase, and make its quality improved by a large margin , is favorable to the improvement of the intensity of concrete. Meanwhile, to is it can disperse cement particle to mix fly ash, make cement to be ink sufficient, improve closely knit degree of the grout , make the intensity of the interfaces of the aggregate and grout in the concrete improve. Fly ash is it draw intensity compare with contribution of the bending strength compression strength to be heavy to confront with each other, this is useful to resisting the performance of splitting of concrete. The elastic mould amount of the fly ash concrete is similar to compression strength, it is early and on the low side, improve progressively later stage , get 28d the constant basic concrete is raised by 5-10%. With to hold strength of wrapping up in reinforcing bar, 28d , fly ash of concrete is it form intensity the same with ,etc. basic concrete of grade basically to glue, but homogeneity, fly ash of concrete fine, is it form intensity person who test getting dispersed and kind than basic concrete to glue. Water two times of the fly ash reacts and generally starts after the concrete builds 14d, when temperature is low , will reflect necessary time is longer. If strict with early intensity of the concrete, the mixing amount of the fly ash is unsuitable to exceed 30%, winter construction large volume at theconcrete, the mixing amount of the fly ash is unsuitable to exceed 20% non-. Because modern concrete China and foreign countries add use of pharmaceutical, on one hand, reducible concrete mix and stir water consumption, it reduce by dust water than,of not lasting concrete density of cement; On the other hand, water-reducing agent can make cement silicic acid calcium ink Ca (OH )2 produced 2 increase, help fly ash and water two times of 2 of Ca (OH )2 to reflect , excites the activation of the fly ash, this effectual for early intensity to improve fly ash, in addition use fly ash activation excite pharmaceutical or in large volume use strong cement early among the concrete non-, can compensate mixing the impact on early intensity of concrete of fly ash too.3.2 and easyWhether fly ash there are the following several points to concrete and getting easy improvement function.(1)The high-quality fly ash contains more than 70% of the spherical vitreous bodies, too smooth to have raised angle the body surface of these spherical glass, performance is steady, play a kind of lubricated function which is similar to the bearing in the pump sending , shaking the course of smashing of the concrete;(2)Mix particle apt to gather group cement in the concrete newly, to is it can disperse cement particle effectively to mix fly ash, release more thick liquid body is it lubricate aggregate to come , help concrete work the improvement of performance ;(3)Mix fly ash can compensate detailed deficiency of bits in the detailed aggregate , cut off mortar base body secrete continuity , water of channel, the fly ash that at the same time quality is good can reduce the mixing water consumption of the concrete under the same consistency, make water dust of concrete than reduce light level to , is it secrete ink and emanate the phenomenon to reduce.3.3 shrinkingThe shrink of the concrete relates to the fact that the mixing water consumption and thick liquid body body of the concrete are accumulated, the less water consumption is, shrink the smaller. High-quality fly ash water requirement than smaller than 100% , mix and stir reduction , water of quantity make mix fly ash concrete after the 28d since dry to shrink and not dry to shrink little. Fly ash concrete is it is it mix with fly ash improvement of quantity reduce too to contract to do. But because water , fly ash of concrete reponse slowly, moisture evaporate fast, so between fly ash and to do epitome to be loud and very much heavy in early days concrete. For prevent early shrink , fly ash of concrete from fracture , should strengthen in early days raising to it3.4 creepsIssue in the past will it be age one day, intensity of concrete relatively low, issue is it it meets an emergency to be heavy than ordinary concrete too to creep corresponding age, but with ordinary concrete fly ash in one age one creep and was smaller than the ordinary concrete after this concrete of intensity.3.5 carbonization performanceFly ash concrete resist carbonization to be performance relatively poor. Cement consumption , fly ash of concrete reduce, cement water Ca (OH )2 too corresponding to reduce quantity that appear, and volcanic ash is it consume Ca (OH )2of a certain amount too to react, make hydrogen ion index of the concrete reduce, will increase the speed of carbonization of the concrete. Unless especially at water in early days, fly ash the low in degree in response in volcanic ash,fly ash- there is the loose in structure in hole in system cement, CO2, O2, moisture ,etc. invade obstruction small, so carbonization is relatively large in depth. With the growth of one and gradual full play of the fly ash volcanic ash effect of age, the speed of carbonization will be reduced gradually. Carbonization , fly ash of concrete as water for dust in depth than and fly ash last increase of quantity and not increased to some extent. Than 0.5-0.55 in water dust, fly ash person who mix greater than 30% and under the general construction situation of competence, the depth of carbonization of the concrete can reach about 20mm in 15-17. Carbonization reacts and goes on within the range of certain relative humidity fastest, otherwise, the response is relatively slow. Under or is close to 100% 25% in the relative humidity, namely the occasion in the abundant dryness or water saturation of concrete, have more difficult to produce carbonization shrink concretes. In such concrete projects not contacted with the atmosphere as the foundation works ,etc., because of isolating with CO2, can take place carbonization react , so can mix and add the fly ash more , in order to fully reduce the heat of hydration of the concrete, improve the durability of the concrete. It is ultra to be adopt law quantity replace,water glue not lower than,mix carry on match ratio design water-reducing agent for admixture of main fact at the same time, can make fly ash concrete resist carbonization performance improve to some extent.3.6 reinforcing bar corrosionReinforcing bar of concrete can it antirusts to be because concrete getting alkaline to form one pre-pressing passivation membrane in metal surface. Is it add fly ash to mix among concrete, on one hand it consume Ca (OH ) 2, reduce the alkali environment of theconcrete; On the other hand, fly ash 2 responses turn into the hyrate with Ca (OH)2, raise closely knit degree of the concrete, increase the impermeability of the concrete and obstruction spread to the chlorine ion, hinder and prevent the invasion of CO2, can shield the reinforcing bar , so fly ash is mixed, in preventing the reinforcing bar corrosion, can offset because alkali degree reduce adverse effect that bring. The fly ash is on certain range (FA≤ 24% ) of mixing amount, have not influenced the reinforcing bar corrosi on basically, even superior to the blank concrete. But if the mixing amount of the fly ash is greater than 30%, the carbonization of the concrete can make hydrogen ion index of the concrete dropped to about 8.5 from 12.5 , under so low a hydrogen ion index condition, the reinforcing bar is no longer passivated. Reach reinforcing bar position by depth as carbonization, complete carbonization , on terms that water and oxygen are permeated antiabrasion layer, reinforcing bar can take place but corrosion lead to the fact fracture of the concrete even destroy.3.7 heat of hydrationThe fly ash is very obvious to reducing the function of the concrete heat of hydration. Low calcium fly ash water in the first several days obvious degree have, heat of hydration produced only and half of cement. Replace 20% of the cement with fly ash in the concrete , can make the heat of hydration of concrete 7d drop by 11% . 1-28d in the issue, roughly for mix percentage of fly ash, Sheng Wen and percentage that heat of hydration reduce age. Fly ash is it can make heat of hydration time that peak appear is it appear to 3d to delay generally to mix among large volume concrete, can prevent the concrete from producing the temperature crack effectively .附录B 中文译文粉煤灰高性能混凝土的工程应用[摘要]本文对粉煤灰高性能混凝土的各项性能作了详细的研究,并针对粉煤灰的掺入量对混凝土各种性能的影响以及粉煤灰混凝土在施工中应注意的一些问题进行了分析和探讨。
无机非金属材料工程专业英语-第1章
Contemporary 当代 Stimulus 激励,刺激 Opaque 不透明 Translucent 半透明 Transparent 透明 Deep-seated 根深蒂固的,深层的 Existence 存在, 实在, 生活, 存在物, 实在物 Sophisticated 复杂的 Forerunner 先驱(者), 传令官, 预兆 Intimately 密切地
These include metals, plastics, glasses, and fibers.
Fundamentals of Materials Science and Engineering
ceramics
porcelain
The ugly bowl and the beautiful cup are different in appearance, but do you know the bowl is the ancestor of the cup if trace back to 7000 years ago?
Fundamentals of Materials Science and Engineering
Elaboration 解释,阐述 Stepwise楼梯式的, 逐步的 Recreation 消遣, 娱乐 segment段, 节, 片断 Deteriorative 恶化,变质,
Fundamentals of Materials Science and Engineering
For example, automobiles would not have been possible without the availability (利 用)of inexpensive steel or some other comparable substitute.
无机非金属外文文献
1. Introduction
Cement and/or clinker (cement primary input) is a commodity being produced in over 150 countries of the world [1]. It is an essential input into the production of concrete needed for building purposes and other construction related activities. According to Madlool et al. [2], world demand for cement was predicted to increase from 2283 million tonnes in 2005 to about 2836 million tonnes in the year 2010 [2]. The growth witnessed in recent days is largely driven by rising production in emerging economies and developing countries, especially in Asia. In 2006, almost 70% of the world production was in Asia (47.4% in China, 6.2% in India, 2.7% in Japan and 13.2% in other Asian countries) and about 13.4% in Europe [3]. In Nigeria, cement production grew rapidly from 2 million tonnes in 2002 to 17 million in 2011 [4]. This has led to the Nigeria cement industry accounting for 63.6% of the West African region’s cement output in 2011. Daily production is in excess of sales having recorded a zero importation from January 2012 to date and in the process of formalizing the exportation of cement to EcoOpen Access
无机非金属材料的英文介绍
无机非金属材料的英文介绍Title: Introduction to Inorganic Non-metallic Materials.Inorganic non-metallic materials play a crucial role in various industries and applications. These materials are essential for the development of modern technology and are used in a wide range of products, from constructionmaterials to electronic devices.One of the most common inorganic non-metallic materials is silicon dioxide, also known as silica. Silica is widely used in the production of glass, ceramics, and cement. Its high melting point and resistance to chemical corrosion make it an ideal material for these applications.Another important inorganic non-metallic material is carbon. Carbon exists in various forms, including graphite, diamond, and carbon nanotubes. Each form has unique properties that make it suitable for different applications. For example, graphite is used as a lubricant and in theproduction of electrodes, while diamond is valued for its hardness and is used in cutting and grinding tools.In addition to silica and carbon, inorganic non-metallic materials also include materials such as boron nitride, alumina, and various types of polymers. These materials have diverse properties, including high thermal conductivity, electrical insulation, and chemical resistance, making them valuable for a wide range of applications.In the field of electronics, inorganic non-metallic materials are used in the production of semiconductors, insulators, and dielectric materials. These materials are essential for the manufacturing of electronic devices such as transistors, integrated circuits, and capacitors.In conclusion, inorganic non-metallic materials are indispensable in modern industry and technology. Their diverse properties and applications make them essential for the development of new materials and products. As technology continues to advance, the demand for thesematerials is expected to grow, driving further research and innovation in this field.。
无机非金属材料英语作文
Inorganic nonmetallic materials are a class of materials that have garnered significant attention in the field of material science due to their unique properties and applications. As a high school student with a keen interest in science, I have always been fascinated by the diverse applications and the endless possibilities that these materials offer.My journey into the world of inorganic nonmetallic materials began with a school project where I had to research and present on different types of materials. I was particularly drawn to inorganic nonmetallics because of their wide range of applications, from construction to electronics. I learned about various types of ceramics, glass, cement, and refractory materials, each with its own set of properties and uses.One of the most intriguing aspects of inorganic nonmetallic materials is their ability to withstand extreme temperatures. For instance, refractory materials are used in industries such as steel and glass manufacturing, where high temperatures are a common occurrence. These materials can maintain their structural integrity and resist deformation even at temperatures exceeding 1600C. This property makes them ideal for use in furnaces, kilns, and other hightemperature environments.Another area where inorganic nonmetallic materials excel is in the field of electronics. Ceramic materials, for example, are used in the manufacturing of capacitors, resistors, and sensors due to their excellent dielectric and piezoelectric properties. They offer high resistance to electrical and thermal shock, making them suitable for use in harsh environments.The environmental benefits of inorganic nonmetallic materials are also noteworthy. Cement, a widely used construction material, has undergone significant advancements in recent years to reduce its carbon footprint. The development of ecofriendly cements, such as belite cement and calcium sulfoaluminate cement, has helped to lower the overall carbon emissions associated with cement production.Moreover, the use of recycled glass in the construction industry is another example of how inorganic nonmetallic materials can contribute to a more sustainable future. Recycled glass can be used as an aggregate in concrete, reducing the need for natural resources and promoting waste management.In addition to their practical applications, inorganic nonmetallic materials also hold great potential in the field of research and innovation. Scientists are constantly exploring new ways to enhance the properties of these materials, such as improving their mechanical strength, thermal conductivity, and electrical insulation. This ongoing research is paving the way for the development of advanced materials with even greater capabilities.In conclusion, inorganic nonmetallic materials are a fascinating and versatile class of materials with a wide range of applications. From their ability to withstand extreme temperatures to their use in electronics and environmental sustainability, these materials offer numerous benefits and opportunities for innovation. As a high school student, my interest in inorganic nonmetallic materials has only grown stronger, and I lookforward to learning more about their properties and potential applications in the future.。
非金属材料介绍的英语作文
非金属材料介绍的英语作文Non-metallic materials are a diverse group of substances that do not possess the characteristic properties of metals. They are widely used in various industries due to their unique properties, which include electrical insulation, thermal insulation, and chemical inertness. This essay aims to provide an overview of non-metallic materials, their classification, properties, and applications.Classification of Non-Metallic Materials:Non-metallic materials can be broadly classified into three categories: ceramics, polymers, and composites.1. Ceramics: These are inorganic, non-metallic solids that are typically hard, brittle, and resistant to deformation. They are usually made from clay, silica, or alumina, and are fired at high temperatures.2. Polymers: Polymers are large molecules composed of repeating structural units, which can be derived from both natural and synthetic sources. They are characterized bytheir flexibility, light weight, and versatility.3. Composites: Composite materials are made by combining two or more different materials to achieve superior properties. In the context of non-metallic materials, composites often consist of a polymer matrix reinforced with ceramic or carbon fibers.Properties of Non-Metallic Materials:The properties of non-metallic materials that make them desirable for various applications include:1. Electrical Insulation: Materials like plastic and rubber are poor conductors of electricity, making them ideal for electrical insulation.2. Thermal Insulation: Non-metallic materials such as fiberglass and certain polymers provide excellent thermal insulation, which is crucial in construction and aerospace applications.3. Chemical Stability: Ceramics and some polymers are chemically inert, meaning they do not react easily with other substances, making them suitable for use in corrosive environments.4. Lightweight: Polymers and some composites are much lighter than their metallic counterparts, which is advantageous in applications where weight is a critical factor.Applications of Non-Metallic Materials:The applications of non-metallic materials are extensive and span across multiple industries:1. Construction: Materials like glass, cement, and fiberglass are used extensively in the construction industry for their strength and insulation properties.2. Electronics: Plastics are widely used in the manufacturing of electronic devices due to their insulating properties and ease of fabrication.3. Automotive: Non-metallic materials are increasingly being used in the automotive industry to reduce vehicle weight and improve fuel efficiency.4. Aerospace: The use of non-metallic composites in aerospace applications is growing due to their high strength-to-weight ratio, which contributes to better fuel efficiency and performance.5. Medical: Polymers are used in the medical industry for various applications, including implants, prosthetics, and drug delivery systems.In conclusion, non-metallic materials play a vital role in modern technology and industry due to their unique and beneficial properties. As technology advances, the development of new non-metallic materials and their applications will continue to expand, further enhancing their importance in our daily lives and industrial processes.。
无机非金属材料专业英语
被铝取代的氧O2-ion replaced by Al3+比热specific heat波函数wave function玻璃态的vitreous玻璃组成glass composition 不完整的配位incomplete coordination长石feldspar成对电子paired electrons 初晶相the primary phase 磁光效应magneto-optic effect缔合缺陷associated defects 电导conductivity电光效应electro-optic effect电子空穴electron holes电子排布electronconfiguration断裂韧性fracture-toughness二价阳离子divalentcation钙铝硅酸盐玻璃calcium-aluminateglass刚性体rigid body锆英石zircon共沉淀和过饱和coprecipitationandsupersaturation共价键covalent bonds固体电解质Solid electrolyte硅铝酸盐alumina-silica红外投射infraredtransmission互溶体mutual solution化学方程式chemical formulate碱金属alkali metal碱金属硅酸盐玻璃alkali silicateglass碱金属卤化物hailde of alkalimetals角连接的硅氧四面体[SiO4]tetrahedrawith shared corners介电常数、强度、损耗dielectricconstant、strength、losses紧密堆积结构closed-packedstructure近似立方紧密堆积nearly cubicclose-packedstructure净化工艺purificatinprocedures颗粒尺寸分布particle sizedistribution颗粒的重排和团聚particlerearrangement andagglomerate快离子导体Fast ion conductor冷却速率cooling rate离子键ionic bonds链状排列chain arrangement莫来石mullite母体玻璃parent glass钠钙硅玻璃soda-lime-silicaglass配位数coordinationnumber喷雾干燥和煅烧spray-drying andcalcination缺乏absence of缺陷化学defect chemistry热历史the thermal history热能thermal energy热膨胀系数thermal expansioncoefficient熔点melting point软化范围softening range三元系统the ternary system受控结晶controlledcrystallization水软化water softener四面体tetrahedron体积核化volume nucleation退火玻璃annealing glass退火和烧结温度annealing andsinteringtemperature网络结构network structure网络条整体network modifier相图phase diagram学说theory学说解释account for压敏电阻和热敏电阻varistor andthermistor亚原子粒子subatomicparticles衍生结构derivationstructure阳离子cation氧化锆陶瓷zirconia-basedceramics氧离子oxygen ions液相温度liquidustemperature一价阴离子univalent anion异质核化heter ogeneousnucleation阴离子anion阴离子空位vacant anion sites有效电荷effective charges折射率和色散index of refractionand dispersion中间体intermediate转变温度transmissiontemperatureact as作为,冲当aggregation of finepowder细粉团聚alumina-silica铝硅酸盐as compared to与…比较ball-milled powers球磨粉末be based on以…为基础be regarded as被认为是chanrgedinterstitial site带电间隙位chemical formulate化学方程式cohesive fore内聚力commence with从……开始effectivelyneutral charge有效中性点荷fireclay products黏土烧制产品framework框架结构glassy andcrystalline grainboundary phases玻璃相和晶界相hexagonalclosed-packedstructure六方紧密堆积结构host lattice主晶格hot uniaxialpressing单轴热压hybridization ofthe atomic orbitals原子杂化轨道in particular of特别尤其in spite of尽管isotronic均质的isotrophicsubstitution均匀取代layed structure层状结构Low temperaturemodifications低温变体non-metal非金属octahedral hole八面体空隙olivine minerals橄榄石矿物on the basis of 以…为基础point defects点缺陷quantum mechanics 量子力学shrinkage and densification收缩和致密化solid solution固溶体tetrahedral coordinations四面体配位tetrahedral site 四面体位置Three dimensiona models三维结构模型transmission of light beams透过光束transparency、translucency、opacity透明、半透明、不透明universal acceptance普遍认可vacancy pair空位对Van der Waals forces范德华力vice versa反之亦然。
无机非金属材料专业英语-8
Each of these new products has given rise to significant progress in glass quality. The transparent cooker top in particular implies not only absence of visible macroscopic defects but also the absence of even smaller inclusions that might prevent the mechanical shock resistance from reaching the particularly high level required. 这些新产品中的每一个在玻璃质量上都有明显的进步。 透明锅盖的产生表明,玻璃中不仅没有宏观缺陷,就 算是小的夹杂物也不存在,因为小的夹杂物存在可能 会降低抗振性而无法满足较高的要求。
14.2 Text
1. Introduction The objective of industrial glass making is to produce the required quality at the lowest possible global cost. This has been achieved in the past by continuous evolution ever since the invention of the Siemens tank furnace.
Inorganic Non-metallic Material Engineering
Speciality English
Speaker teacher: Yuan Longhua
无机非金属材料工程英语 样本
无机非金属材料工程英语样本In the realm of engineering, particularly in the domain of inorganic non-metallic materials, there exists a vast expanse of linguistic intricacies and technical jargon that often bewilder even the most adept minds. The sheer complexity of this subject matter, coupled with its ever-evolving nature, renders it a perennial source ofperplexity and spontaneity for both novices and seasoned professionals alike.Navigating through the labyrinthine corridors of inorganic non-metallic materials engineering, one is immediately confronted with a plethora of terminologies, each more cryptic than the last. From the arcane depths of crystallography to the enigmatic realms of polymer science, the lexicon of this discipline is replete with terms that seem to dance on the precipice of comprehension, teasing the intellect with their elusive meanings.At the heart of this linguistic enigma lies the concept of material characterization, a process as intricate as it isindispensable. Through a delicate interplay ofspectroscopic analysis, electron microscopy, and mechanical testing, engineers endeavor to unravel the secretsconcealed within the molecular tapestry of inorganic non-metallic materials. Each sample, a testament to theingenuity of human endeavor, serves as a microcosm of the broader scientific inquiry into the properties andbehaviors of these enigmatic substances.In the realm of inorganic non-metallic materials, language serves not merely as a tool for communication, but as a conduit for understanding the very essence of matter itself. As engineers grapple with the complexities of composition and structure, they are compelled to forge new pathways of linguistic expression, crafting a lexicon that mirrors the intricacies of the materials they seek to comprehend.Yet, amidst the labyrinth of technical terminology, there exists a profound sense of wonder and discovery. With each sample meticulously examined and analyzed, engineers are granted a fleeting glimpse into the inner workings of the natural world, a glimpse that serves as both a humblingreminder of humanity's limitations and a testament to its boundless curiosity.In the realm of inorganic non-metallic materials engineering, spontaneity is not merely a byproduct of the creative process; it is a fundamental aspect of the journey towards enlightenment. As engineers grapple with the ever-shifting landscape of scientific discovery, they are constantly forced to adapt and innovate, drawing upon their ingenuity and resourcefulness to overcome the myriad challenges that lie in their path.In conclusion, the world of inorganic non-metallic materials engineering is a tapestry woven from the threads of curiosity, ingenuity, and perseverance. From the cryptic depths of crystallography to the boundless expanse of polymer science, it is a realm where language serves as both a barrier and a bridge, a testament to the indomitable spirit of human inquiry.。
无机非金属材料专业英语作文
无机非金属材料专业英语作文In the realm of materials science, the field of inorganic non-metallic materials stands as a cornerstone of modern innovation, a testament to the enduring quest for materials that push the boundaries of what is possible. These materials, ranging from the ubiquitous ceramics to the cutting-edge composites, are the silent heroes in the construction of our world, from the skyscrapers that pierce the clouds to the microchips that power our digital lives.The essence of inorganic non-metallic materials lies in their unique properties—extreme durability, resistance toheat and corrosion, and the ability to be molded into a plethora of shapes and sizes. The versatility of these materials is only matched by the ingenuity of the scientists and engineers who harness their potential. From the development of advanced ceramics that can withstand therigors of aerospace applications to the creation of glassthat can bend light in ways previously thought impossible,the possibilities are as boundless as the human imagination.In the educational sphere, the study of inorganic non-metallic materials is a gateway to understanding the complex interactions between chemistry, physics, and engineering. Itis a field that demands a deep knowledge of atomic and molecular structures, as well as an appreciation for the intricate processes that transform raw materials intofinished products. Students who delve into this subject arenot just learning about materials; they are learning aboutthe very fabric of our technological society.As we look to the future, the demand for innovative materials that can meet the challenges of sustainability and efficiency is only set to increase. Inorganic non-metallic materials are poised to play a pivotal role in this narrative, whether it be through the development of new energy storage solutions, the enhancement of existing infrastructure, or the creation of materials that can withstand the harshest environments on Earth and beyond.In conclusion, the study and application of inorganicnon-metallic materials is more than just a scientific pursuit; it is a journey into the heart of what makes our world function. As we continue to explore the potential of these materials, we are not only expanding our knowledge but alsoour capacity to create a future that is as resilient and adaptable as the materials themselves.。
传统无机非金属材料
传统无机非金属材料Traditional Inorganic Non-metallic Materials。
Inorganic non-metallic materials refer to substances that do not contain carbon-hydrogen bonds and are not classified as metals. They are widely used in variousfields due to their excellent physical and chemical properties. In this article, we will introduce several traditional inorganic non-metallic materials and their applications.1. Silica。
Silica is a compound composed of silicon and oxygen. It is widely used in the production of glass, ceramics, and refractory materials due to its high melting point, high hardness, and excellent chemical stability. In addition, silica is also used as a desiccant, adsorbent, and catalyst carrier.2. Alumina。
Alumina, also known as aluminum oxide, is a compound composed of aluminum and oxygen. It has high hardness, high melting point, and excellent chemical stability. Alumina is widely used in the production of ceramics, refractory materials, and abrasives. In addition, it is also used as a catalyst carrier and a filler in the plastics industry.3. Calcium Carbonate。
无机非金属材料专业英语阅读教程 翻译
自从工业革命,甚至是这从前的几百年里,一直有频繁的争论,不行的是,这些都伴随暴力。
在这样的背景下,材料被完全的忽视,尽管在过去和现在,材料经常引领着技术的进步,在未来材料也会继续这样。
材料大多数意味着结束,因而被认为是劣质的。
实际上,材料被理所当然的认为:他们对大多数人是不言而喻的。
二、波特兰水泥及其种类水泥可以被定义成这样一种物质,可以结合两种或三种物质形成一个整体。
水泥是一种精细的粉末,当与水混合时,能发生凝固和硬化,也可以结合不同的组分形成一个机械强度高的结构,经常被应用于建筑工业上。
水泥可以用来作为砖块或不同尺寸固体颗粒的连结来形成一个整体。
波特兰水泥是由加热石灰石与粘土的混合物或其它类似体积密度的物质经过充分反应,最后在1450℃下生成。
发生部分融化,并产生熟料的结节。
熟料混合一小部分石膏,经过精磨,制成水泥,石膏控制凝固速率,也可部分的被硫酸钙的其他形式所代替。
有些系数指标允许在研磨阶段加入其他物质铝硅酸盐相与普通波特兰水泥熟料的5%—10%。
铝硅酸盐相就是Ca3Al2O6,实际上就是通过结合外来离子,尤其是Si4+,Fe3+,Na+,K+,而在组成和结构上发生改变的Ca3Al2O6。
他与水迅速反应,引起不可控制的快速凝固,除非加入缓凝剂,通常是石膏。
铁酸盐相占普通波特兰水泥熟料的5%—15%。
铁酸盐相就是Ca2AlFeO5,实际上是通过改变Al/Fe比和结合外来离子而在组成上发生改变的Ca2AlFeO5。
或许是因为组成和其他特征的差异,铁酸盐相与水的反应速度似乎有些变动,开始时速度很快,在后期处于A相与B 相和水反应的两种速率之间。
全世界的绝大部分水泥是为常规建筑反应而设计的。
有很多的名字来命名水泥,例如英国的OPC,美国的1号水泥。
如果水泥中含有过多的硫酸盐,硫酸盐反应产生的破坏性膨胀不仅发生在后期工艺中,也发生在硫酸盐溶液对混凝土的侵蚀中。
这个反应涉及包含Al2O3相的快硬性水泥和抗硫酸盐的波特兰水泥。
无机非金属材料英语论文翻译
Henan University of Urban Construction《无机材料专业英语》课程设计专业:无机非金属工程班级:0134091学号:013409128姓名: 王峰指导老师:徐开东成绩:土木与材料工程系2012年05月有关碱土氧化物对相的形成和莫来石陶瓷的形态发展的研究摘要:将对莫来石(3Al2O3·2SiO2)相的形成和陶瓷形态发展有影响的包括氧化镁,氧化钙,氧化锶,氧化钡在内的碱土氧化物和活性炭组成的混合物,经高能球磨后,进行研究。
不同的碱土氧化物表现出对莫来石化行为和形态/莫来石陶瓷的微观结构发展有不同影响。
莫来石化的温度随着氧化镁和氧化钡的比例的增大而升高。
莫来石晶须的形成和发展与氧化镁的掺量有关,而与氧化锶、氧化钡和氧化钙的的掺量有关的正常形状的颗粒相比更好一点。
这两种莫来石的形成温度和形态发展都是根据碱土氧化物的种类来定的,并对莫来石化机制和溶解沉淀方面进行了解释。
关键词:莫来石 .碱土氧化物各向异性晶粒的生长莫来石化1 前言许多先进的技术和莫来石(3Al2O3.2SiO2)的热学性能使它成为一种很有前途的工程材料,莫来石粉体材料通常是通过氧化物之间的固态反应制得的。
由于在莫来石晶格内SI4+和Al3 +上网相互扩散率比较低,莫来石化动力学性能又是由其混合物的早期强烈的反应引起的。
因此,能与Al2O3和SiO2(石英)发生固态反应的莫来石相形成温度可以高达1600摄氏度 。
不同的种类可以降低莫来石相形成温度。
例如,使用α-氧化铝与二氧化硅形成的无定形颗粒溶胶,可以使莫来石的形成温度降到1400-1500摄氏度。
如果使用纳米级γ-Al2O3颗粒,莫来石化的温度可进一步降低1300摄氏度。
溶胶-凝胶过程是降低莫来石形成温度的另一种方式。
在此过程中,前期是在原子水平上的混合,使莫来石的形成可以大大增强。
莫来石化的温度通常是900-1200摄氏度。
溶胶-凝胶过程的缺点,也就是涂料的方法,包括复杂的实验过程,昂贵的化学用品的和较低的生产量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Henan University of Urban Construction
《无机材料专业英语》
课程设计
专业:无机非金属工程
班级:0134091
学号:013409128
姓名: 王峰
指导老师:徐开东
成绩:
土木与材料工程系
2012年05月
有关碱土氧化物对相的形成和莫来石
陶瓷的形态发展的研究
摘要:将对莫来石(3Al2O3·2SiO2)相的形成和陶瓷形态发展有影响的包括氧化镁,氧化钙,氧化锶,氧化钡在内的碱土氧化物和活性炭组成的混合物,经高能球磨后,进行研究。
不同的碱土氧化物表现出对莫来石化行为和形态/莫来石陶瓷的微观结构发展有不同影响。
莫来石化的温度随着氧化镁和氧化钡的比例的增大而升高。
莫来石晶须的形成和发展与氧化镁的掺量有关,而与氧化锶、氧化钡和氧化钙的的掺量有关的正常形状的颗粒相比更好一点。
这两种莫来石的形成温度和形态发展都是根据碱土氧化物的种类来定的,并对莫来石化机制和溶解沉淀方面进行了解释。
关键词:莫来石 .碱土氧化物各向异性晶粒的生长莫来石化
1 前言
许多先进的技术和莫来石(3Al2O3.2SiO2)的热学性能使它成为一种很有前途的工程材料,莫来石粉体材料通常是通过氧化物之间的固态反应制得的。
由于在莫来石晶格内SI4+和Al3 +上网相互扩散率比较低,莫来石化动力学性能又是由其混合物的早期强烈的反应引起的。
因此,能与Al2O3和SiO2(石英)发生固态反应的莫来石相形成温度可以高达1600摄氏度 。
不同的种类可以降低莫来石相形成温度。
例如,使用α-氧化铝与二氧化硅形成的无定形颗粒溶胶,可以使莫来石的形成温度降到1400-1500摄氏度。
如果使用纳米级γ-Al2O3颗粒,莫来石化的温度可进一步降低1300摄氏度。
溶胶-凝胶过程是降低莫来石形成温度的另一种方式。
在此过程中,前期是在原子水平上的混合,使莫来石的形成可以大大增强。
莫来石化的温度通常是900-1200摄氏度。
溶胶-凝胶过程的缺点,也就是涂料的方法,包括复杂的实验过程,昂贵的化学用品的和较低的生产量。
这些缺点的改变将是促进莫来石陶瓷替代普通工艺的有效途径。
高能球磨的目的是使金属氧化复合材料分散均匀,随后进行机械合金化,这种机械现已被应用到陶瓷材料的制备中,有些化合物可以直接通过高能球磨合成。
例如,锆钛酸铅在一定时间内可以由氧化钛、氧化铅、氧化锆经高能球磨机研磨制的,快慢取决于研磨介质和铣削参数。
而其他材料,如钛酸钡和镁铝尖晶石在用高能球磨机研磨之前需要进行低温处理,对这些材料进行前期研磨可以增强相的形成能力,并且在球磨或在冷却处理过程中都会有直接的反应。
我们本来打算采用高能球磨机来实现莫来石陶瓷的低温制造,然而,通过高能量球磨机得不到致密的莫来石陶瓷,反而得到了莫来石晶须。
另外我们还发现,加入其他氧化物可以改变莫来石化行为和莫来石的尺寸,许多种氧化物我们都已经研究过了,而在最近的研究中,我们主要是通过高能球磨机来研究碱土氧化物对莫来石化行为和形态/微观发展氧化铝石英混合物的影响。
这是很有意义的,最终发现莫来石晶须只在有氧化镁的情况下生成,而在氧化钙,氧化锆和氧化钡存在的情况下可以得到各向异性不明显的致密莫来石陶瓷。
这些观点可以通过溶解- 沉淀机制来解释。
2 实验
市售二氧化硅(石英,99+%纯度,Aldrich公司,美国),氧化铝(纯度大于99%,Aldrich公司,美国),氧化镁,氧化钙,碳酸锶,碳酸钡粉末被用作初始原料,混合组成(3Al2O3·2SiO2)0.9(MO)0.1(M:镁,钙,锶,钡)。
“这种粉
末是以氧化锆为介质用传统的铣削加工进行了第一次混合,混合粉末的活性可以由高能球磨机激活,铣削操作就是运用瑞驰PM400型行星气体粉磨系统进行操作的,然后在室温下保持5小时,在200 rpm的铣削速度下,用一瓶250毫升碳化钨和100个直径为10mm的碳化钨球来作为球磨介质。
球粉重量比率为约40:1。
磨碎的粉末在50MPa压力下压成的直径为10mm的颗粒,这种绿色的颗粒在瑞和丰式炉中进行1600种烧成,并保持4小时,空气温度以10摄氏度/分钟的加热和冷却速率从1000摄氏度至1500摄氏度。
X射线衍射分析了粉末和烧结样品在理学类型衍射与铜的Kα辐射中的应用,绿色颗粒的致密性是用塞塔拉姆16/18型膨胀仪系统在每分钟升高10摄氏度的空气氛围下测定的,烧结样品的微观结构是用JEOL JSM-6340F型电子显微镜(FESEM)检查的,莫来石陶瓷的密度是用MD-200S型电子比重计并以水为液体介质测定的。
图1:不同温度下烧结4小时的掺杂碱土氧化物混合物的XRD图谱。
图2:掺杂碱土氧化物的混合物的致密化行为
3 结果与讨论
图1显示了掺杂碱土的氧化物样品在不同温度下烧结的XRD图谱,图中可以看到四组在1000摄氏度的时候烧结的XRD图谱类似,其中氧化铝和石英是主要的阶段,对于氧化镁和氧化钙,是通过X射线衍射得到小峰2θ≈21.69度的结果,这意味着石英方石英的烧结相变过程在这个温度下发生。
对于氧化锶和氧化钡的衍射图,样品中观察不到方石英,这意味着掺入氧化锶和氧化钡可以抑制石英和方石英之间的相转变。
烧结1100摄氏度后,氧化镁掺杂组出现了莫来石相,虽然来自氧化铝和方石英的衍射峰仍然相当强劲,然而,其他三个组在此温度下没有形成莫来石,从图中可以看出,石英和方石英的相变已经完成,当烧结温度升高到1200摄氏度时,氧化镁掺杂组中莫来石化几乎完成,而在氧化钙和氧化锶的掺杂组中莫来石化是主要阶段,然而,在氧化钡掺杂组中莫来石仍是在不成熟阶段。
“氧化镁掺杂组莫来石化的的温度几乎和掺杂氧化铝、石英系统经高能球磨后的温度相同,而氧化钡掺杂组中莫来石化样品的温度和掺杂无铣系统的温度非常接近,我们以前的研究表明,高能球磨机可以降低莫来石化氧化铝-石英的温度200摄氏度左右,这些现象还表明,氧化钙,氧化锶和氧化钡对莫来石相的形成有负面影响,这种影响的程度是在由氧化钙<氧化锶<氧化钡这种关系决定的,所有样品的衍射图谱烧结在1300摄氏度或1300摄氏度以上几乎是相同的。
图2显示了掺杂四种碱土氧化物样品的致密化行为。
在温度低于1200摄氏度时没有明显的现象,四种碱土氧化物的曲线非常相似,然而,当温度高于1200摄氏度时可以观察到它们的差异很大。
掺杂氧化镁的样品致密性最不明显,掺杂氧化钙,氧化锶和氧化钡样品最大收缩分别为10.5%,15.9%和18.5%。
图3显示了氧化镁掺杂样品在不同温度下烧结的SEM照片,在1000摄氏度下烧结的样品含有等轴晶,这个温度下莫来石相是不能形成的,在1100摄氏度下烧结的氧化镁样品晶须可随时观察,莫来石晶须随着烧结温度的提高而继续成
长,选择几张在1400摄氏度下烧结掺杂氧化钙、氧化锶、氧化钡样品的SEM图像,如图4所示,与掺杂氧化镁组的样品相比,这三个掺杂样品碱土氧化物不表现出明显的各向异性晶粒生长,相反,可以得到致密的莫来石陶瓷,这也证实了可以测量不同温度下烧结样品的密度如图5所示,事实上,掺杂氧化钡样品的密度之所以高于莫来石的理论密度,主要是由于高密度的氧化钡在起作用。
图3。
在烧结4小时后掺杂氧化镁样品的SEM照片:(a)1100℃,(b)1200℃,(c)1300℃,(d)1400℃和(e)1500℃。
莫来石相形成Al2O3-SiO2二元系统是由溶解-沉淀机制决定的已被普遍接受。
在Al2O3-SiO2系统的烧结过程中,在相对较低的温度下,形成富硅液体状层,随着氧化铝成分溶解,莫来石核结晶氧化铝浓度达到临界水平,这液体状层也可作为烧结助剂,以促进致密的烧结体,这被称为瞬变流粘性烧结。
如果莫来石相形成之前进行致密,就可以得到晶须,这是因为莫来石晶粒在不受约束的环境下有一个强烈的倾向,会随着晶粒生长其各向异性生长进行,否则,致密莫来石陶瓷等轴晶将成为最终产品,用传统的固态反应制备莫来石陶瓷,在氧化物加入前莫来石相的形成需要非常高的温度。
这主要是因为市售Al2O3和SiO2(石英)组成的颗粒非常大,使溶解Al2O3非常困难,这反过来又导致莫来石化后发生致密化,在这种情况下,莫来石颗粒的各向异性不能生长,因此,莫来石晶须是不可用的,高能量球磨机可以减少氧化物前体颗粒纳米尺度,精致的前体具有很高的活性,导致莫来石化的温度低于致密化的温度。
所以可以得到莫来石晶须,因此,建议用不同的方法研究碱土氧化物对富SiO2液体状的不同阶段的特点的影响。
氧化镁和氧化钡是氧化钙和氧化锶两者之间两种极端情况,氧化镁-氧化铝-氧化硅系统与高能球磨氧化铝-氧化硅系统相似,然而氧化钡-氧化镁-氧化硅系样本演示的莫来石化像没有铣削的纯Al2O3-SiO2系混合物,需要进一步进行努力,以修正碱土氧化物的这些影响。
a氧化钙b氧化锶c氧化钡
图5:掺杂碱土氧化物混合物的相对密度与烧结温度的关系图。
4。
结论
加入氧化镁的莫来石化行为和形态发展与低温莫来石化和形成的晶须观察相似,莫来石化的温度主要是由氧化钙、氧化锶、氧化钡来提供的,相比之下,加入氧化镁,氧化钙,氧化锶和氧化钡可以导致无致密莫来石陶瓷晶粒呈现出各向异性生长的性质,可以通过溶解- 沉淀机制来解释碱土氧化物对莫来石的形成温度和莫来石形态起的决定性作用。