点线面体练习题二(可编辑修改word版)

合集下载

第二章_点线面——习题

第二章_点线面——习题

2-32 已知:三角形ABC的投影, 求作:该平面对V面的倾角。
2-33 已知MN为平面内对V面的最大斜度线, =300, 试求作该平面的两面投影。
已 知:平面ABCD的BC边平行于V面, 试完成:ABCD的水平投影。(习题2-32)
2-34 判别直线与平面的相对位置(平行、相交)。
平行
'
2-45 求两平面的交线,并判别可见性。
2-46 求两平面的交线,并判别可见性。
2-46 求两平面的交线,并判,试作其上第II 段(四棱锥台)和第IV段(四棱柱)的展开图。
2-42 求两平面的交线,并判别可见性。
2-42 求两平面的交线,并判别可见性。
2-43 求两平面的交线,并判别可见性。
2-43 求两平面的交线,并判别可见性。
2-43 求两平面的交线,并判别可见性。
2-43 求两平面的交线,并判别可见性。
2-44 求直线与平面的交点,并判别可见性。
2-44 求直线与平面的交点,并判别可见性。
第二章点线面习题点线面位置关系练习题点线面位置关系习题点线面体练习题点线面练习题点线面体同步习题点线面点线面平面构成图片康定斯基论点线面点线面设计
第二章 点线面——习题
2-1 根据直观图作A、B、C、D各点的投影图。
2-2 根据直观图作A、B的三面投影图。
2-3 已知各点的两面投影, 求作其第三面投影。
2-38 过点D作直线DE平行三角形ABC且与H面成300。
2-39 判别下列平面与平面是否平行。
不平行
2-39 判别下列平面与平面是否平行。
平行
2-39 判别下列平面与平面是否平行。
平行
2-40 过点A作平面平行于平面BCDE。

高中数学人教A版必修2《点线面综合问题》课后练习二(含解析)

高中数学人教A版必修2《点线面综合问题》课后练习二(含解析)

(同步复习精讲辅导)北京市-高中数学点线面综合问题课后练习二(含解析)新人教A版必修2题1在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,点M是BC的中点,点N是AA1的中点.(1)求证:MN∥平面A1CD;(2)过N,C,D三点的平面把长方体ABCD-A1B1C1D1截成两部分几何体,求所截成的两部分几何体的体积的比值.题2已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.则在上面的结论中,正确结论的编号是________(写出所有正确结论的编号).题3A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥b,a⊥α,b⊄α,则b∥α题4正三棱锥A-BCD,底面边长为a,侧棱为2a,过点B作与侧棱AC、AD相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值;(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.题5若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是.(只须写出一个可能的值)题6一个多面体的直观图、正视图、侧视图如图(1)和(2)所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图(2)指定的位置画出多面体的俯视图;(2)若多面体底面对角线AC、BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.(1)(2)题7如图,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.求证:AC∥平面BPQ.题8如图,在四棱锥E—ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.(1)求证:AE⊥BC;(2)如果点N为线段AB的中点,求证:MN∥平面ADE.题9如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH 截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ).A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱 D.Ω是棱台课后练习详解题1答案:见详解.详解: (1)设点P 为AD 的中点,连结MP 、NP ,∵点M 是BC 的中点,∴MP ∥CD .∵CD ⊂平面A 1CD ,MP ⊄平面A 1CD , ∴MP ∥平面A 1CD .∵点N 是AA 1的中点,∴NP ∥A 1D . ∵A 1D ⊂平面A 1CD ,NP ⊄平面A 1CD ,∴NP ∥平面A 1CD . ∵MP ∩NP =P ,MP ⊂平面MNP ,NP ⊂平面MNP ,∴平面MNP ∥平面A 1CD .∵MN ⊂平面MNP ,∴MN ∥平面A 1CD . (2)取BB 1的中点Q ,连结NQ 、CQ 、ND ,∵点N 是AA 1的中点,∴NQ ∥AB .∵AB ∥CD ,∴NQ ∥CD ,∴过N 、C 、D 三点的平面NQCD 把长方体ABCD -A 1B 1C 1D 1截成两部分几何体,其中一部分几何体为直棱柱QBC -NAD ,另一部分几何体为直四棱柱B 1QCC 1-A 1NDD 1, ∴S △QBC =12·QB ·BC =12×1×1=12,∴直三棱柱QBC -NAD 的体积V 1=S △QBC ·AB =12.∵长方体ABCD -A 1B 1C 1D 1的体积V =1×1×2=2, ∴直四棱柱B 1QCC 1-A 1NDD 1的体积V 2=V -V 1=32,∴V 1V 2=1232=13,∴所截成的两部分几何体的体积的比值为13.题2答案:①②④.详解:①、②、④对应的情况如下:用反证法证明③不可能. 题3答案:D . 详解:对于选项A ,要注意直线a ,b 的方向相同时才平行;对于选项B ,可用长方体验证.如图,设A 1B 1为a ,平面AC 为α,BC 为b ,平面A 1C 1为β,显然有a ∥α,b ∥β,α∥β,但得不到a ∥b ;对于选项C ,可设A 1B 1为a ,平面AB 1为α,CD 为b ,平面AC 为β,满足选项C 的条件却得不到α∥β,故C 不正确;对于选项D ,可验证是正确的. 题4 答案:(1)411a ;(2)64553a 2;(3)169.详解: (1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a .∵ΔFDB ′∽ΔADB ′,∴B D DF'=B A B D '',a DF=a a 2=21,∴DF =21a ,AF =23a .又∵ΔAEF ∽ΔACD ,∴BB ′=a +43a +a =411a ,∴截面三角形的周长的最小值为411a .(2)如图,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF .∴BG =22EG BE -=22)83(a a -=855a ∴S ΔBEF =21·EF ·BG =21·43a ·855a =64553a 2. (3)∵V A -BCD =V B -ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,即CAD B AEF B V V --=ACD AEF S S △△=22CD EF =169题5 答案:611或1214. 详解:该题的显著特点是结论发散而不惟一.本题表面上是考查锥体求体积公式这个知识点,实际上主要考查由所给条件构造一个四面体的能力,首先得考虑每个面的三条棱是如何构成的.排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},然后由这三类面在空间构造满足条件的一个四面体,再求其体积.由平时所见的题目,至少可构造出二类满足条件的四面体,五条边为2,另一边为1,对棱相等的四面体.对于五条边为2,另一边为1的四面体,参看下图所示,设AD =1,取AD 的中点为M ,平面BCM 把三棱锥分成两个三棱锥,由对称性可知AD ⊥面BCM ,且V A —BCM =V D —BCM ,所以V ABCD =31S ΔBCM ·AD . CM =22DM CD -=22)21(2-=215.设N 是BC 的中点,则MN ⊥BC ,MN =22CN CM -=1415-=211,从而S ΔBCM =21×2×211=211, 故V ABCD =31×211×1=611.对于对棱相等的四面体,可参见图2.其体积的计算可先将其置于一个长方体之中,再用长方体的体积减去四个小三棱锥的体积来进行.亦可套公式V =122·222222222()()()a b c b c a c a b +-+-+-, 不妨令a =b =2,c =1,则V =122·)441)(414)(144(-+-+-+=122·7=1214. 题6答案:(3)5a 2. 详解: (1)(2)如图,连结AC 、BD ,交于O 点.∵E 为AA 1的中点,O 为AC 的中点.∴在△AA 1C 中,OE 为△AA 1C 的中位线,∴OE ∥A 1C . ∵OE ⊄平面A 1C 1C ,A 1C ⊂平面A 1C 1C ,∴OE ∥平面A 1C 1C . (3)多面体表面共包括10个面,S ABCD =a 2,S 1111A B C D =a 22,1ABA S=1B BCS=1C DCS=1ADD S=a 22,11AA D S =11B A BS=11C B CS=11DC D S=12×2a 2×32a 4=3a 28,所以该多面体的表面积S =a 2+a 22+4×a 22+4×3a 28=5a 2. 题7答案:见详解. 详解:连接CD 1、AD 1,∵P 、Q 分别是CC 1、C 1D 1的中点,∴PQ ∥CD 1,又CD 1⊄平面BPQ ,PQ ⊂平面BPQ ,∴CD 1∥平面BPQ .又D 1Q =AB =1,D 1Q ∥DC ∥AB ,∴四边形ABQD 1是平行四边形,∴AD 1∥BQ , 又∵AD 1⊄平面BPQ ,BQ ⊂平面BPQ ,∴AD 1∥平面BPQ . 又AD 1∩CD 1=D 1,∴平面ACD 1∥平面BPQ . ∵AC ⊂平面ACD 1,∴AC ∥平面BPQ .题8证明:(1)因为BM⊥平面ACE,AE⊂平面ACE,所以BM⊥AE.因为AE⊥BE,且BE∩BM=B,BE、BM⊂平面EBC,所以AE⊥平面EBC.因为BC⊂平面EBC,所以AE⊥BC.(2)法1:取DE中点H,连接MH、AH.因为BM⊥平面ACE,EC⊂平面ACE,所以BM⊥EC.因为BE=BC,所以M为CE的中点.所以MH为△EDC的中位线,所以MH平行且等于12 DC.因为四边形ABCD为平行四边形,所以DC平行且等于AB.故MH平行且等于 AB.因为N为AB的中点,所以MH平行且等于AN.所以四边形ANMH为平行四边形,所以MN∥AH.因为MN⊄平面ADE,AH⊂平面ADE,所以MN∥平面ADE.法2:取EB的中点F,连接MF、NF.因为BM⊥平面ACE,EC⊂平面ACE,所以BM⊥EC.因为BE=BC,所以M为CE的中点,所以MF∥BC.因为N为AB的中点,所以NF∥AE,因为四边形ABCD为平行四边形,所以AD∥BC.所以MF∥AD.因为NF、MF⊄平面ADE,AD、AE⊂平面ADE,所以NF∥平面ADE,MF∥平面ADE.因为MF∩NF=F,MF、NF⊂平面MNF,所以平面MNF∥平面ADE.因为MN⊂平面MNF,所以MN∥平面ADE.题9答案:D.详解:∵EH∥A1D1,∴EH∥BC,∴EH∥平面BCC1B1.又过EH的平面EFGH与平面BCC1B1交于FG,∴EH∥FG.故A成立.B中,易得四边形EFGH为平行四边形,∵BC⊥平面ABB1A1,∴BC⊥EF,即FG⊥EF,∴四边形EFGH为矩形.故B正确.C中可将Ω看做以A1EFBA和D1DCGH为上下底面,以AD为高的棱柱.故C正确.。

点、线、面、体(含答案)

点、线、面、体(含答案)

点、线、面、体
轻松入门
1.如图,观察图形,填空:包围着体的是______;面与面相交的地方形成______; 线与线相交的地方是
_______.
2.笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起
来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.
3.如图,三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了
________个点.
4.如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?
快乐晋级
5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出
的图案是( )
6.生活中经常看到由一些简单的平面图形组成的优美图案, 你能说出下面图中的神秘图案是由哪些平面
图形组成的吗?
7.将如图左边的图形折成一个立方体, 判断右边的四个立方体哪个是由左边的图形折成的.
8.用6根火柴能摆成含有4个三角形的图形吗?有几种方法?
拓广探索
9.小明为班级专栏设计一个图案,如图,主题是“我们喜爱合作学习”, 请你也尝试用圆、扇形、三角形、
四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
我们喜爱合作学习
答案
1.面;线;点
2.点动成线;线动成面;面动成体
3.4;6;4
4.圆柱;圆锥;球
5.A 7.(1)B;(2)B;(3)B 8.提示:三棱锥。

第二章点线面习题答案

第二章点线面习题答案
2、已知各点的坐标为A(20,15,8)、B(15,20,20)、 C(5,5,25)作出它们的三面投影。
Z
c' 按坐标值 作各投影轴的 垂线, 垂线,线段的 交点即为各点 投影。 投影。 b' a'
X O
c" b" a"
Yw
c a b
YH
4、已知点A的侧面投影,并知点A到侧面的距离为30,求其它 两面投影。
Z
a'
O
a"Leabharlann XYwaYH
点到侧面 的距离为x的 坐标,在x轴 上量取30个单 位长度,作投 影轴的垂线, 可求出其余两 投影。
5、根据点的投影图,判断两点的相对位置。 根据点的投影图,判断两点的相对位置。
Z
b' a' c'
O X
b" a" c"
Yw
判断两点的相对位 置,要根据同面投影坐 标值的大小来判断。
c b
点B在点A的上面、右面、后面。 点C在点A的下面、左面、后面。 a
YH

人教版七年级数学上册点线面体同步测试(含答案)

人教版七年级数学上册点线面体同步测试(含答案)

人教版七年级数学上册4.1.2 点线面体同步测试(含答案)一、单选题1.下列几何图形与相应语言描述相符的个数有()A.1 个B.2 个C.3 个D.4 个2.如图,用一个平面去截正方体截面形状不可能...为下图中的()A.B.C.D.3.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A.B.C.D.4.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.5.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆6.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变D.无法确定变化7.用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形8.十个棱长为a的正方体摆放成如图的形状,这个图形的表面积是()A.36a2B.36a C.6a2D.30a29.用一个平面去截圆柱体,则截面形状不可能是()A.梯形B.正方形C.长方形D.圆10.用一个平面去截下列四个几何体,可以得到三角形截面的几何体有()A.1个B.2个C.3个D.4个二、填空题11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.12.一个长方形绕着它的一条边旋转一周,所形成的几何体是.13.用个平面去截下列几何体:①球体、②圆锥、③圆柱、④正三枝柱、⑤长方体,得到的截面形状可能是三角形的有(写出正确的序号).14.若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为cm,面积为cm2.15.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=.三、解答题16.如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.17.如图所示,一个长方体的长.宽.高分别是10cm,8cm,6cm,有一只蚂蚁从点A 出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点 A 时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.18.图中的立体图形是由哪个平面图形旋转后得到?请用线连起来.19.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?20.长和宽分别是4cm和2cm的长方体分别沿长、宽所在直线旋转一周得到两个几何体,哪个几何体的体积大?为什么?21.下图是长方体的表面展开图,将它折叠成一个长方体.(1)哪几个点与点N重合?(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积. 22.在一块长为7x+5y,宽为5x+3y的长方形铁片的四个角都剪去一个边长为x+y的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含x、y的代数式表示).23.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)24.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?答 案1.C 2.A 3.C 4.B 5.B 6.C 7.D 8.A 9.A 10.B 11.8 12.圆柱体13.②④⑤ 14.42;90 15.√3a 216.解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条17.解:由于不能重复且最后回到点 A 处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为 10CM 的棱即可. 10×4+8×2+6×2=68(cm) ,所以最多爬行 68CM .路线举例: A →B →C →D →H →G →F →E →A . 18.解:如图.19.解:(1)方案一:π×32×4=36π(cm 3),方案二:π×22×6=24π(cm 3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×(52)2×3=754π(cm 3), 方案二:π×(32)2×5=454π(cm 3), ∵754π>454π, ∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.20.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).∵16π<32π,∴绕宽所在的直线旋转一周得到圆柱体积大.21.解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积.解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.(1)解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.22.解:由题意,得(7x+5y)(5x+3y)−4(x+y)2=35x2+21xy+25xy+15y2−4(x2+2xy+y2)=35x2+46xy+15y2−4x2−8xy−4y2 =31x2+38xy+11y2.∴这个盒子的表面积为(31x2+38xy+11y2) .23.解:露在外面的表面积:5×5+4×(3×3+4×4+5×5)=25+4×(9+16+25)=225cm2.24.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3。

点线面关系练习题(有答案)

点线面关系练习题(有答案)

//a α点线面位置关系总复习知识梳理一、直线与平面平行1.判定方法(1)定义法:直线与平面无公共点。

(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂=二、平面与平面平行1.判定方法(1)定义法:两平面无公共点。

//a b a b αα⊄⊂//a α//a b//a b//a b (2)判定定理:////a b a b a b Pββαα⊂⊂⋂= //αβ (3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。

(2)判定方法① 用定义.② 判定定理:a ba cb c A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥ (3)性质①a b αα⊥⊂ a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。

(2)判定定理a a αβ⊂⊥ αβ⊥(3)性质①性质定理l a a lαβαβα⊥⋂=⊂⊥ αβ⊥ ② l P P A Aαβαβαβ⊥⋂=∈⊥垂足为 A l ∈ 3 l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行面面垂直 线面垂直 线线垂直●求二面角1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角.2.在二面角的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。

●求线面夹角定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。

§4.1.2 点、线、面、体“堂堂清”检测题

§4.1.2 点、线、面、体“堂堂清”检测题

§4.1.2 点、线、面、体“堂堂清”练习题1.点、线、面、体的概念(1)几何体也简称为,例如长方体、正方体、圆柱体、球等。

(2)面:包围着体的是,面有的面和的面两种。

例如:圆锥的侧面是,底面是。

(3)线:面与面相交形成;线有线与线两种。

例如圆锥的侧面与底面相交的线是的。

(4)点:线与线相交形成。

2.从运动的观点看点、线、面、体;点动成,线动成,面动成。

例如:流星坠落在空中留下一条;转动自行车轮子上的辐条形成一个;一个长方形绕自身的一条边旋转形成一个。

3、几何图形的组成;几何图形是由,,,组成的,点是构成图形的基本元素。

4.一个五棱柱有个侧面,个底面,个顶点,条棱。

5.下列几何体只由一个面围成的是()A.正方体B.圆柱C.圆锥D.球6.下列现象能说明“面动成体”的是()A.天空划过一道流星。

B.旋转一扇门,门在空中运动的痕迹。

C.抛出一块小石子,石子在空中飞行的路线。

D.汽车雨刷在挡风玻璃上画出的痕迹。

7.如图1所示,将其绕轴旋转一周所得的几何体为()8.将三角形沿直线L旋转一周,可以得到如图2所示的立体图形的是()9.小军将一直角三角板(如图3所示)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()10.现有一个长为5cm,宽为4cm的矩形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多少?谁的体积大?你得到了怎样的启示?11.观察表格中的多面体,并把下表补充完整。

观察表中的结果,你能发现a、b、c之间有什么关系吗?§4.1.2 点、线、面、体“堂堂清”练习题答案1.(1)体(2)面、平、曲;曲面、平面。

(3)线、直、曲;曲。

(4)点。

2、线、面、体;线、面、体。

3.点、线、面、体。

4.5、2、10、15.5.D6.B7.C8.B9.D10.80π;100π;启示:同一长方形以较短的一边所在的直线为轴旋转一周比以较长的一边所在的直线为轴旋转一周所得到的圆柱的体积大。

[精品]必修2点线面关系基础训练题.doc

[精品]必修2点线面关系基础训练题.doc

[基础训练A组]一、选择题1.下列四个结论:(1)两条直线都和同一个平面平行,贝U这两条育线平行。

⑵两条直线没有公共点,则这两条育线平行。

⑶两条宜线都和第三条肓线垂貞,则这两条肓线平行。

⑷一条肓线和一个平面内无数条肓线没有公共点,则这条直线和这个平面平行。

其屮正确的个数为()A. 0B. 1C. 2D. 32.下面列举的图形一定是平面图形的是()A.有一个角是肓角的四边形B.有两个角是育角的四边形C.有三个角是肓角的四边形D.有四个角是肓角的四边形3.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能4.如右图所示,正三棱锥V-ABC(顶点在底面的射影是底面正三角形的中心)中,D,E,F分别是VC9VA9AC的中点,P为VB上任意一点,则直线DE与PF所成的角的大小是()A. 30°B. 90°C. 60°D.随P点的变化而变化。

C5.互不重合的三个平面最多可以把空问分成()个部分A. 4B. 5C. 7D. 86.把正方形ABCD沿对角线AC折起,当以A.B.C.D四点为顶点的三梭锥体积最大时,直线BD和平面ABC所成的角的大小为()A. 90 B. 60 C. 45 D・ 30二、填空题1.已知。

,方是两条异面貞线,ell a,那么c、与方的位置关系________________ 。

2.直线/与平面a所成角为30°,/ D a = A,加u a, A E m ,则加与/所成角的取值范围是3.棱长为1的正四面体内有一点P,由点P向各血引垂线,垂线段长度分别为£,〃6,仏'〃4,贝U £ +乩+心+ £的值为_________ o4.直二面角a — I— 0的棱/上有一点A,在平面a,0内各有一条射线AB ,AC 与/成45°, ABua、ACu/3,则ABAC =_____________________ 。

2019—2020年最新高中数学人教A版必修2《点线面综合问题》同步练习二(课堂同步练习及答案解析).doc

2019—2020年最新高中数学人教A版必修2《点线面综合问题》同步练习二(课堂同步练习及答案解析).doc

高中数学点线面综合问题课后练习二(含解析)新人教A版必修2在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,点M是BC 的中点,点N是AA1的中点.(1)求证:MN∥平面A1CD;(2)过N,C,D三点的平面把长方体ABCD-A1B1C1D1截成两部分几何体,求所截成的两部分几何体的体积的比值.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.则在上面的结论中,正确结论的编号是________(写出所有正确结论的编号).设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是( ).A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥b,a⊥α,b⊄α,则b∥α正三棱锥A-BCD,底面边长为a,侧棱为2a,过点B作与侧棱AC、AD相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值;(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是.(只须写出一个可能的值)一个多面体的直观图、正视图、侧视图如图(1)和(2)所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图(2)指定的位置画出多面体的俯视图;(2)若多面体底面对角线AC、BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.(1)(2)如图,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD ⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.求证:AC∥平面BPQ.如图,在四棱锥E—ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.(1)求证:AE⊥BC;(2)如果点N为线段AB的中点,求证:MN∥平面ADE.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ).A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台课后练习详解答案:见详解.详解:(1)设点P为AD的中点,连结MP、NP,∵点M是BC的中点,∴MP∥CD.∵CD⊂平面A1CD,MP⊄平面A1CD,∴MP∥平面A1CD.∵点N是AA1的中点,∴NP∥A1D.∵A1D⊂平面A1CD,NP⊄平面A1CD,∴NP∥平面A1CD.∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴平面MNP∥平面A1CD.∵MN⊂平面MNP,∴MN∥平面A1CD.(2)取BB1的中点Q,连结NQ、CQ、ND,∵点N是AA1的中点,∴NQ∥AB.∵AB∥CD,∴NQ∥CD,∴过N、C、D三点的平面NQCD把长方体ABCD -A 1B 1C 1D 1截成两部分几何体,其中一部分几何体为直棱柱QBC -NAD ,另一部分几何体为直四棱柱B 1QCC 1-A 1NDD 1,∴S △QBC =12·QB ·BC =12×1×1=12,∴直三棱柱QBC -NAD 的体积V 1=S △QBC ·AB =12. ∵长方体ABCD -A 1B 1C 1D 1的体积V =1×1×2=2,∴直四棱柱B 1QCC 1-A 1NDD 1的体积V 2=V -V 1=32, ∴V 1V 2=1232=13,∴所截成的两部分几何体的体积的比值为13. 答案:①②④.详解:①、②、④对应的情况如下:用反证法证明③不可能.答案:D .详解:对于选项A ,要注意直线a ,b 的方向相同时才平行;对于选项B ,可用长方体验证.如图,设A 1B 1为a ,平面AC 为α,BC 为b ,平面A 1C 1为β,显然有a ∥α,b ∥β,α∥β,但得不到a ∥b ;对于选项C ,可设A 1B 1为a ,平面AB 1为α,CD 为b ,平面AC 为β,满足选项C 的条件却得不到α∥β,故C 不正确;对于选项D ,可验证是正确的.答案:(1)411a ;(2)64553a 2;(3)169. 详解:(1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a .∵ΔFDB ′∽ΔADB ′,∴B D DF '=B A B D '',a DF =a a 2=21,∴DF =21a,AF =23a .又∵ΔAEF ∽ΔACD ,∴BB ′=a+43a+a =411a,∴截面三角形的周长的最小值为411a .(2)如图,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF .∴BG =22EG BE -=22)83(a a -=855a ∴S ΔBEF =21·EF ·BG =21·43a ·855a =64553a 2. (3)∵V A-BCD =V B-ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,即CADB AEF B V V --=ACD AEF S S △△=22CD EF =169 答案:611或1214. 详解:该题的显著特点是结论发散而不惟一.本题表面上是考查锥体求体积公式这个知识点,实际上主要考查由所给条件构造一个四面体的能力,首先得考虑每个面的三条棱是如何构成的.排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},然后由这三类面在空间构造满足条件的一个四面体,再求其体积.由平时所见的题目,至少可构造出二类满足条件的四面体,五条边为2,另一边为1,对棱相等的四面体.对于五条边为2,另一边为1的四面体,参看下图所示,设AD=1,取AD 的中点为M ,平面BCM 把三棱锥分成两个三棱锥,由对称性可知AD ⊥面BCM ,且V A —BCM =V D —BCM ,所以V ABCD =31S ΔBCM ·AD . CM=22DM CD -=22)21(2-=215.设N 是BC 的中点,则MN ⊥BC ,MN=22CN CM -=1415-=211,从而S ΔBCM =21×2×211=211, 故V ABCD =31×211×1=611.对于对棱相等的四面体,可参见图2.其体积的计算可先将其置于一个长方体之中,再用长方体的体积减去四个小三棱锥的体积来进行.亦可套公式V=122, 不妨令a=b=2,c=1,则V=122·)441)(414)(144(-+-+-+=122·7=1214. 答案:(3)5a 2.详解:(1)(2)如图,连结AC 、BD ,交于O 点.∵E 为AA 1的中点,O 为AC 的中点.∴在△AA 1C 中,OE 为△AA 1C 的中位线,∴OE ∥A 1C . ∵OE ⊄平面A 1C 1C ,A 1C ⊂平面A 1C 1C ,∴OE ∥平面A 1C 1C .(3)多面体表面共包括10个面,S ABCD =a 2,S 1111A B C D=a 22, 1ABA S =1B BC S =1C DC S =1ADD S =a 22,11AA D S =11B A B S =11C B C S =11DC D S=12×2a 2×32a 4=3a 28,所以该多面体的表面积S =a 2+a 22+4×a 22+4×3a 28=5a 2. 答案:见详解.详解:连接CD 1、AD 1,∵P 、Q 分别是CC 1、C 1D 1的中点,∴PQ ∥CD 1,又CD 1⊄平面BPQ ,PQ ⊂平面BPQ ,∴CD 1∥平面BPQ . 又D 1Q =AB =1,D 1Q ∥DC ∥AB ,∴四边形ABQD 1是平行四边形,∴AD 1∥BQ ,又∵AD 1⊄平面BPQ ,BQ ⊂平面BPQ ,∴AD 1∥平面BPQ . 又AD 1∩CD 1=D 1,∴平面ACD 1∥平面BPQ .∵AC ⊂平面ACD 1,∴AC ∥平面BPQ .证明:(1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE . 因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC .因为BC ⊂平面EBC ,所以AE ⊥BC .(2)法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC .因为BE =BC ,所以M 为CE 的中点.所以MH 为△EDC 的中位线,所以MH 平行且等于12DC . 因为四边形ABCD 为平行四边形,所以DC 平行且等于AB .故MH 平行且等于AB .因为N 为AB 的中点,所以MH 平行且等于AN .所以四边形ANMH 为平行四边形,所以MN ∥AH .因为MN ⊄平面ADE ,AH ⊂平面ADE ,所以MN ∥平面ADE .法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC .因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE ,因为四边形ABCD 为平行四边形,所以AD ∥BC .所以MF∥AD.因为NF、MF⊄平面ADE,AD、AE⊂平面ADE,所以NF∥平面ADE,MF∥平面ADE.因为MF∩NF=F,MF、NF⊂平面MNF,所以平面MNF∥平面ADE.因为MN⊂平面MNF,所以MN∥平面ADE.答案:D.详解:∵EH∥A1D1,∴EH∥BC,∴EH∥平面BCC1B1.又过EH的平面EFGH与平面BCC1B1交于FG,∴EH∥FG.故A成立.B中,易得四边形EFGH为平行四边形,∵BC⊥平面ABB1A1,∴BC ⊥EF,即FG⊥EF,∴四边形EFGH为矩形.故B正确.C中可将Ω看做以A1EFBA和D1DCGH为上下底面,以AD为高的棱柱.故C正确.。

人教版初中数学七年级上册《4.1.2 点、线、面、体》同步练习卷(含答案解析

人教版初中数学七年级上册《4.1.2 点、线、面、体》同步练习卷(含答案解析

人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为.(圆锥的体积公式为:V圆锥10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是;由图(2)可得到的立体图形的名称是;由图(3)可得到的立体图形的名称是.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成,图2旋转形成,图3旋转形成,图4旋转形成,图5旋转形成,图6旋转形成.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷参考答案与试题解析一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.【分析】根据面动成体的原理:下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【解答】解:∵下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:B.【点评】此题主要考查了平面图形与立体图形的联系,可把较复杂的图形进行分解旋转,然后再组合,学生应注意培养空间想象能力.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选:D.【点评】本题考查了点、线、面、体,点动成线,线动成面,面动成体:以直角三角形的一条直角边所在直线为对称轴旋转一周得到圆锥.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:三角形旋转得两个同底的圆锥,故选:B.【点评】本题考查了点线面体,利用面动成体是解题关键.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.【解答】解:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【点评】此题考查了点、线、面、体,关键是掌握平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【分析】根据从运动的观点来看点动成线,线动成面,面动成体可得答案.【解答】解:生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选:B.【点评】此题主要考查了点、线、面、体,关键是掌握四者之间的关系.8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交【分析】根据点动成线,线动成面,面动成体进行解答.【解答】解:用钢笔写字是点动成线,故选:A.【点评】此题主要考查了点线面体,题目比较简单.二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为π.(圆锥的体积公式为:V圆锥【分析】将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,依据圆锥的体积公式和圆柱的体积公式进行计算即可.【解答】解:将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,这个几何体的体积=(π×22×2+π×22×2)=π,故答案为:π.【点评】本题主要考查了几何体的体积,解决问题的关键是掌握圆锥的体积公式和圆柱的体积公式.10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球.【分析】根据点动成线,线动成面,面动成体,即可解答.【解答】解:由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球;故答案为:圆柱,圆锥,球.【点评】此题主要考查立体图形中的旋转体,也就是把一个图形绕一条直线旋转得到的图形,要掌握基本的图形特征,才能正确判定.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.【点评】本题考查了点、线、面、体的知识,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键,另外要掌握圆柱的体积计算公式.14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)【分析】(1)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案;(2)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案.【解答】解:(1)得到的是底面半径是7cm,高是3cm的圆柱,V=3.14×72×3=461.58(cm3),答:得到的几何体的体积是461.58cm3;(2)得到的是底面半径是3cm,高是7cm的圆柱,V=3.14×32×7=197.82(cm3),答:得到的几何体的体积是197.82cm3.【点评】本题考查了点、线、面、体,矩形绕一边旋转是圆柱,圆柱的体积公式:πr2h.15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到3种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【分析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)如果以AB所在的直线旋转一周得到的圆锥的底面半径是8厘米,高是4厘米;如果以BC所在的直线旋转一周得到的圆锥的底面半径是4厘米,高是8厘米,根据圆锥的体积公式:v=πr2h,把数据代入公式解答.【解答】解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.【点评】此题考查了点、线、面、体,关键是理解掌握圆锥的特征,以及圆锥体积公式的灵活运用.16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:连线如下:【点评】本题考查了图形的旋转,注意培养自己的空间想象能力.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【分析】根据旋转的特点和各几何图形的特性判断即可.【解答】解:图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【点评】本题考查了平面图形与立体图形的联系,难度不大,学生应注意培养空间想象能力.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.【分析】由题意可知,A点所经过的路径是先以长方形的长为半径,旋转90°,再以长方形的对角线为半径,旋转90°所对应的弧长.【解答】解:如图所示.【点评】本题考查了点动成线,画图时注意半径的确定.。

第二套点线面体测验题

第二套点线面体测验题

一、点线面投影
1. 已知A、B、C三点的两面投
2.判断各直线与投影面的相
影,求作第三面投影。

(6分)对位置,并填空。

(8分)
AB为()线、CD为()线、EF为()线、GH为()线
3.已知k属于平面ABC,完成
4.完成平面第三面投影,并
平面ABC的正面投影。

(4分)填空。

(4分)
分数
一二三四五...... 总分阅卷人
二、基本题投影
1.作三棱锥的侧面投影,并补全表
2.作圆柱水平投影,补全表
面上A、B两点的投影。

(7分)面点投影。

(7分)
(15分)3. 做四棱锥被正垂面截切 4. 补全截切圆柱的第三面投。

后的侧投影,并补全被截
切后的水平投影。

(4分)
三、组合体投影四、标注下列组合体的尺寸(从图
1.补画组合体的俯视图。

(12分)中量取整数)。

(11分)
五、根据三视图,按1:1比例画正等测轴测图(尺寸从视图中量取整数)。

(12分)
班级:学号:姓名:
六.做三棱锥被正垂面截切后的侧投影,并补全被截切后的水平投影。

七.根据三视图,按1:1比例画正等测轴测图(尺寸从视图中量取整数)。

立体几何初步空间几何与点线面午练专题练习(二)含答案人教版新高考分类汇编

立体几何初步空间几何与点线面午练专题练习(二)含答案人教版新高考分类汇编

高中数学专题复习《立体几何初步空间几何与点线面》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.若P是平面α外一点,则下列命题正确的是( D )(A)过P只能作一条直线与平面α相交(B)过P可作无数条直线与平面α垂直(C)过P只能作一条直线与平面α平行(D)过P可作无数条直线与平面α平行(2020年高考重庆文)2.如图,在四面体AB CD中,截面A EF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EF C的表面积分别是S1,S2,则必有()A. S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定(2020江西理)DBAOCEF3.表面积为23 的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .23πB .13πC .23π D .223π(2020安徽理)4.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平等于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有( ) A .1个B .2个C .3个D .4个(2020重庆文)5.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题: ①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④(2020辽宁)6.1.正方体1111ABCD A B C D -中,与对角线1AC 异面的棱有-------------------------------------( )(A) 3条 (B) 4条 (C) 6条 (D) 87.若一条直线上有一点在已知平面外,则下列命题正确的是__________;①直线上上所有点都在平面外;②直线上有无穷多个点在平面外; ③直线上有有限个点在平面外;④平面内至少有一个点在直线。

4.1.2 《点线面体》测试题练习题常考题试卷及答案

4.1.2 《点线面体》测试题练习题常考题试卷及答案

4.1.2 点、线、面、体一、单选题(共7题;共14分)1.如图所示,用一个平面去截一个圆柱,则截得的形状应是()A. B. C. D.2.如图为一个三棱柱,用一个平面去截这个三棱柱,截面形状不可能是()A. B. C. D.3.用一个平面去截一个正方体,截面不可能是()A. 梯形B. 五边形C. 六边形D. 七边形4.将右边图形绕直线旋转一周,所得的立体图形是()A. B. C. D.5.用一平面去截下列几何体,其截面可能是长方形的有()A. 1个B. 2个C. 3个D. 4个6.如图所示,下列的图形旋转一周形成左边图形形状的是()A. B. C. D.7.用一个平面去截圆柱体,则截面形状不可能是()A. 梯形B. 三角形C. 长方形D. 圆二、填空题(共8题;共11分)8.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体________.9.矩形绕其一边旋转一周形成的几何体叫________,直角三角形绕其中一条直角边旋转一周形成的几何体叫________.10.在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明________.11.如图所示的积木是由16块棱长为acm的正方体堆积而成的,则这个几何体的表面积是________ cm2.12.若一圆锥的轴截面是等边三角形,则其侧面展开图的圆心角是________.13.下列图形中,表示平面图形的是____;表示立体图形的是___.(填入序号)14.用一个平面去截球,截面是________.15.用一个平面去截长方体、三棱柱、圆柱和圆锥,其中截面不能截成三角形的是________ ,不能截出圆形的几何体是________三、解答题(共5题;共25分)16.如图所示,有一个长为4cm、宽为3cm的长方形.(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.(2)在你画出的这两个几何体中,哪个体积大?17.在一个长方形中,长和宽分别为4cm、3cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)18.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?19.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)20.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.答案解析部分一、单选题1. B2. D3. D4. D5. C6. D7. B二、填空题8. 圆柱9.圆柱;圆锥10.点动成线11.46a2cm212.180°13.①③;②④14. 圆15.圆柱;长方体、三棱柱三、解答题16.【解答】解:(1)如图所示:(2)绕4cm长的边旋转一周所得圆柱的体积=π×33×4=36π;绕3cm长的边旋转一周所得圆柱的体积=π×42×3=48π.答:第二个圆柱体的体积大.17.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.故形成的几何体的体积是36πcm3或48πcm3.18.3200cm3解答:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3)19. 解:露在外面的表面积:5×5+4×(3×3+4×4+5×5)=25+4×(9+16+25)=225cm2.20. 解:(1)这个几何体由 10个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 1个正方体只有一个面是黄色,有 2个正方体只有两个面是黄色,有 3个正方体只有三个面是黄色.(3)露出表面的面一共有32个,则这个几何体喷漆的面积为3200cm2,故答案为:10;1,2,3;3200.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《点、线、面、体》基础练习2
江西省兴国县第六中学罗绵景
1.如图1 的圆锥体有两个面,一个是平面,另一个是曲
面.如图2 的六棱柱有个面,分别都是面.
如图3 的圆柱有个面,分别都是面.
图1 图2 图3
2.图4 所示的几何体中,不完全由平面围成的几何体是().
图 4
3.在下列立体图形中,有5 个面的是().
A.四棱锥B.五棱锥C.四棱柱D.五棱柱
4.如图5,由左面的平面图形绕所给的直线旋转得到的几何体是().
图 5
5.如图6,第二行的图绕直线旋转一周,便能形成第一行的某个几何体,用线连一连,并指出这些几何体的名称.
图 6
参考答案:
1.8,平面;3,底面是平面,侧面是曲面2.D
3.A
4.B
5.(1)与C;(2)与A;(3)与B 连起来.A 是圆台;B 是球;C 是圆柱与圆锥的组合.。

相关文档
最新文档