中考数学补考试题

合集下载

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

2022年四川省成都七中育才学校中考数学二诊试卷及答案解析

2022年四川省成都七中育才学校中考数学二诊试卷及答案解析

2022年四川省成都七中育才学校中考数学二诊试卷一.选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案规范涂在答题卡上)1.(4分)﹣2022的相反数是()A.﹣2022B.2022C.D.﹣2.(4分)如图是一个“凹”字形几何体,这个几何体的俯视图是()A.B.C.D.3.(4分)据悉新冠病毒其直径约为0.00012毫米,这个数用科学记数法表示正确的是()A.1.2×104B.0.12×10﹣5C.0.12×105D.1.2×10﹣4 4.(4分)如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)5.(4分)下列计算正确的是()A.x2+x3=x5B.(﹣3xy2)2÷(x2y)=9y3C.(mn﹣3)(mn+3)=mn2﹣9D.(﹣x﹣y)2=x2﹣2xy+y26.(4分)如图,四边形ABCD是菱形,M,N分别是BC,CD两边上的点,不能保证△ABM 和△ADN一定全等的条件是()A.BM=DN B.∠BAM=∠DAN C.∠AMC=∠ANC D.AM=AN7.(4分)数据9,9,6,8的方差是()A.0.8B.1C.1.5D.68.(4分)若关于x的一元一次不等式组的解集为x>2,则m的取值范围是()A.m>1B.m≤1C.m<1D.m≥1二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:4﹣m2=.10.(4分)二次函数y=x2﹣4x+k的图象与x轴有两个交点,则实数k的取值范围是.11.(4分)如图,在Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形,面积分别为S1、S2,若S1=4、S2=18,则BC=.12.(4分)如图所示的网格由边长为1的小正方形组成,点A、B、C在小正方形的顶点上,D为BC的中点,则AD长为.13.(4分)如图,已知△ABC中,AB=AC,小明用直尺和圆规按下列步骤完成作图:①在AB和AC上分别截取AD,AE,使AD=AE,再分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠BAC内交于点F,作射线AF交BC于点G;②以点B为圆心,以BC的长为半径作弧,交AC于点H,再分别以点C,H为圆心,以大于CH的长为半径作弧,两弧相交于点M,作射线BM交AC于点N;若AB=2,BC=4,则BN=.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程:.15.(8分)为了解“幸福里小区”居民接种“新冠疫苗”的情况,社区工作人员对该小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了要注射两针,且两针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每两针之间要间隔一定时间的疫苗;D类——还没有接种.根据调查结果给制了条形统计图和扇形统计图,部分信息如下:(1)此次抽样调查的人数是;m=;(2)补全条形统计图;(3)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有2男2女共4名居民报名,要从这4人中随机挑选2人,求恰好抽到1男和1女的概率.16.(8分)如图,小华和同伴秋游时,发现在某地小山坡的点E处有一棵小树,他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE的长度),小华站在点B处,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E.且测得BC=3米,CD =28米.∠CDE=127°.已知小华的眼睛到地面的距离AB=1.5米,请根据以上数据,求DE的长度.(参考数据:,)17.(10分)如图1,AB是⊙O的直径,弦AC=6,∠ACB的平分线交⊙O于点D,CD=7,过点D作DE∥AB,交CA的延长线于点E,连接AD,BD.(1)求证:DE是⊙O的切线;(2)为了求出⊙O的半径长度,李鑫同学尝试过点D分别作CB,CA的垂线,垂足分别为F,G(如图2),请帮助李鑫同学继续完成求⊙O的半径长的剩余过程;(3)求△ADE的面积.18.(10分)直线y=2x与双曲线y=交于A,B两点,C是第一象限内的双曲线上A点右侧任意一点;(1)如图1,求A,B两点坐标;(2)如图2,连接BC,若∠ABC=45°,求点C的坐标;(3)如图3,设直线AC,BC分别与x轴相交于D,E两点,且AC=mCD,BC=nCE,求n﹣m的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)一次函数y=(3m﹣1)x+2的值随x值的增大而减小,则常数m的取值范围为.20.(4分)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是.21.(4分)如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是平方米.22.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.23.(4分)如图,在锐角三角形ABC中,M为三角形内部一点,∠AMC=2∠ABM,MC=MA,BC=17,AB=15,则△ABM的面积为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)某水果商从批发市场用12000元购进了枇杷和水蜜桃各300千克,枇杷的进价比水蜜桃的进价每千克多20元.枇杷的售价为每千克40元,水蜜桃的售价为每千克15元.(利润=售价﹣进价)(1)枇杷和水蜜桃的进价分别是每千克多少元?(2)该水果商第二次仍用12000元从批发市场购进了枇杷和水蜜桃各300千克,进价不变,但在运输过程中枇杷损耗了15%.若枇杷的售价不变,且想要第二次所获利润等于第一次所获利润的80%,水蜜桃的售价应调整为每千克多少元?25.(10分)如图,抛物线M1:y=﹣x2+2x+3的图象与x轴从左至右依次交于A,B两点,与y轴交于点C,其顶点为D.(1)如图1,A,B,C,D四点的坐标依次为,,,;(2)顺次连接B,C,D三点得△BCD,点P为抛物线M1上一点(点P不与点D重合),若△BCP的面积等于△BCD的面积,求点P的横坐标;(3)如图2,过点C作CE∥x轴交抛物线M1于另一点E,其对称轴与BC交于点H,将抛物线M1向右平移t(t>0)个单位得抛物线M2,过点H作x轴的垂线交抛物线M2于点I,点C与点E平移后的对应点分别为点F,G,记点I与H,C与G之间的距离分别为m,n,若|m﹣n|=2,请直接写出符合要求的t的值.26.(12分)取一张矩形纸片ABCD,E为边AD上一动点,将△AEB沿直线BE折叠得△FEB.(1)如图1,连接FC,FD,AF,当FC=FD时,试判断△ABF的形状;(2)如图2,连接FD,当AB=5,DF的最大值与最小值的和为20时,求线段AD的值;(3)如图3,当点F落在边BC上,分别延长BE,CD交于点G,将△BAE绕点B逆时针旋转α(0°<α<45°)得△BA'E',分别连接A'C,E'G,取E'G中点H连接CH,试探究线段A'C与CH的数量关系.2022年四川省成都七中育才学校中考数学二诊试卷参考答案与试题解析一.选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案规范涂在答题卡上)1.【分析】直接根据相反数的概念解答即可.【解答】解:有理数﹣2022的相反数等于2022,故选:B.【点评】此题考查的是相反数,只有符号不同的两个数叫做互为相反数.2.【分析】根据简单几何体的三视图的画法,画出它的俯视图即可.【解答】解:这个几何体的俯视图为:故选:D.【点评】本题考查简单几何体的三视图,理解视图的定义是得出正确答案的前提.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.00012=1.2×10﹣4.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选:C.【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.5.【分析】利用平方差公式和完全平方公式,直接计算即可,要注意同类项指带有相同系数的代数项(包括字母和字母指数).【解答】解:∵x2和x3的指数不同,∴不是同类项,不能相加,故选项A错误;∵等式左边=(﹣3xy2)2÷(x2y)=9x2y4÷(x2y)=9y3=等式右边,故选项B正确;∵等式左边=(mn﹣3)(mn+3)=m2n2﹣9≠等式右边,故选项C错误;∵等式左边=(﹣x﹣y)2=x2+2xy+y2≠等式右边,故选项D错误;故选:B.【点评】本题考查合并同类项,完全平方公式,平方差公式,解题的关键是熟记同类项的辨别条件,计算是要注意符号和指数.6.【分析】由菱形的性质和全等三角形的判定分别对各个选项进行判断即可.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,A、在△ABM和△ADN中,,∴△ABM≌△ADN(SAS),故选项A不符合题意;B、在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),故选项B不符合题意;C、∵∠AMC=∠ANC,∴∠AMB=∠AND,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),故选项C不符合题意;D、由AB=AD,AM=AN,∠B=∠D,不能判定△ABM和△ADN一定全等,故选项D符合题意;故选:D.【点评】本题考查了菱形的性质、全等三角形的判定等知识,熟练掌握菱形的性质和全等三角形的判定方法是解题的关键.7.【分析】先根据算术平均数的定义求出平均数,再根据方差的定义列式计算即可.【解答】解:这一组数据的平均数为×(9+9+6+8)=8,故这一组数据的方差为×[(8﹣8)2+(6﹣8)2+2×(9﹣8)2]=1.5,故选:C.【点评】本题主要考查方差,解题的关键是掌握算术平均数与方差的定义.8.【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.【解答】解:由x+8<5x,得:x>2,由x﹣1>m,得:x>m+1,∵不等式组的解集为x>2,∴m+1≤2,解得m≤1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.10.【分析】根据二次函数的定义和判别式的意义得到△=(﹣4)2﹣4×1×k>0,然后求出不等式的解集即可.【解答】解:根据题意得△=(﹣4)2﹣4×1×k>0,解得k<4.故答案为:k<4.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),Δ=b2﹣4ac决定抛物线与x轴的交点个数:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.11.【分析】根据勾股定理即可求出BC2,进而可求出BC.【解答】解:∵∠ACB=90°,∴AC2+BC2=AB2,即,∵S1=4、S2=18,∴BC2=14,∴BC=,故答案为:.【点评】本题考查勾股定理,熟练掌握勾股定理是解题关键.12.【分析】先运用勾股定理求出BC,再运用直角三角形斜边上的中线等于斜边的一半即可得出答案.【解答】解:在Rt△ABC中,∠BAC=90°,AB=2,AC=3,∴BC===,∵∠BAC=90°,D为BC的中点,∴AD=BC=,故答案为:.【点评】本题考查了勾股定理、直角三角形的性质,熟练运用直角三角形斜边上的中线等于斜边的一半这一性质是解题关键.13.【分析】利用勾股定理求出AG,再利用面积法求出BN.【解答】解:由作图可知,AG平分∠BAC,BM⊥AC,∵AB=AC,∴AG⊥BC,∴BG=CG=2,∴AG===4,=•BC•AG=•AC•BN,∵S△ABC∴BN==,故答案为:.【点评】本题考查作图﹣复杂作图,角平分线的定义,等腰三角形的性质等知识,解题关键是读懂图形信息,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先根据零指数幂,绝对值,特殊角的三角函数值和负整数指数幂进行计算,再算乘法,最后算加减即可;(2)方程两边都乘x﹣3得出x+x﹣6=x﹣3,求出方程的解,再进行检验即可.【解答】解:(1)原式=1+﹣2×+4=1+﹣+4=5;(2)﹣=1,+=1,方程两边都乘x﹣3,得x+x﹣6=x﹣3,解得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无解.【点评】本题考查了零指数幂,特殊角的三角函数值,实数的混合运算,负整数指数幂和解分式方程等知识点,能正确根据实数的运算法则进行计算是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.15.【分析】(1)由A类型人数及其所占百分比可得总人数,用D类型人数除以总人数即可得出m的值;(2)总人数乘以B类型人数所占百分比可得其人数,继而求出C类型人数,从而补全图形;(3)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)此次抽样调查的人数是40÷20%=200(人),m%=×100%=30%,即m=30,故答案为:200、30;(2)B类型人数为200×40%=80(人),C类型人数为200﹣(40+80+60)=20(人),补全图形如下:(3)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,∴恰好选到一男一女的概率为=.【点评】本题考查了统计图、列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.【分析】过点E作EF⊥BD交BD的延长线于F,设EF=x米,根据正切的定义用x表示DF,证明△ABC∽△EFC,根据相似三角形的性质计算即可.【解答】解:过点E作EF⊥BD交BD的延长线于F,设EF=x米,∵∠CDE=127°,∴∠DEF=127°﹣90°=37°,在Rt△EDF中,tan∠DEF=,则DF=EF•tan∠DEF≈x,由题意得:∠ACB=∠ECF,∵∠ABC=∠EFC=90°,∴△ABC∽△EFC,∴=,即=,解得:x=22.4,∴DF=x=16.8,∴DE=≈=28(米),答:DE的长度约为28米.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义、相似三角形的判定定理是解题的关键.17.【分析】(1)连接OD,由圆周角定理得出∠ACB=90°,由角平分线的定义得出∠ACD =45°,由圆周角定理及平行线的性质得出∠ODE=90°,即可证明DE是⊙O的切线;(2)先证明四边形CGDF是正方形,由CD=7,求出CG=GD=DF=CF=7,AG =1,再证明Rt△AGD≌Rt△BFD,得出BF=AG=1,进而求出CB=8,利用勾股定理求出AB=10,即可求出⊙O的半径长为5;(3)连接OD,过点A作AH⊥DE于点H,先证明四边形AHDO是正方形,得出AH=DH=OA=OD=5,设EG=x,EH=y,则AE=x+1,DE=y+5,利用等积法和勾股定理得出,解方程得出,即可求出△ADE的面积.【解答】(1)证明:如图1,连接OD,∵AB是直径,∴∠ACB=90°,∵CD平分∠ACB,∴∠ACD=∠ACD=45°,∴∠AOD=2∠ACB=2×45°=90°,∵AB∥DE,∴∠AOD+∠ODE=180°,∴∠ODE=90°,即OD⊥DE,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵∠ACB=90°,DG⊥CE,DF⊥CB,∴四边形CGDF是矩形,∵CD平分∠ACB,DG⊥CE,DF⊥CB,∴DG=DF,∴四边形CGDF是正方形,∵CD=7,∴CG=GD=DF=CF=7,∵AC=6,∴AG=CG﹣CA=7﹣6=1,∵CD平分∠ACB,∴∠ACD=∠BCD,∴,∴AD=BD,在Rt△AGD和Rt△BFD中,,∴Rt△AGD≌Rt△BFD(HL),∴BF=AG=1,∴CB=CF+FB=7+1=8,∴AB===10,∴⊙O的半径长为5;(3)解:如图3,连接OD,过点A作AH⊥DE于点H,∵AH⊥DE,∠AOD=∠ODH=90°,∴四边形AHDO是矩形,∵OA=OD=5,∴四边形AHDO是正方形,∴AH=DH=OA=OD=5,设EG=x,EH=y,则AE=x+1,DE=y+5,∵,∴(y+5)×5=(x+1)×7①,∵EG2+DG2=DE2,∴x2+72=(y+5)2②,联立①②得:,解得:或(不符合题意,舍去),∴△ADE的面积=•AE•DG=××7=.【点评】本题考查了圆的综合运用,掌握圆周角定理,平行线的性质,切线的判定方法,正方形的判定与性质,全等三角形的判定与性质,勾股定理,等积法,三角形的面积公式等知识是解决问题的关键.18.【分析】(1)当2x=时,解方程可得点A、B的横坐标,从而得出答案;(2)过点A作AD⊥AB,交直线BC于D,过A作x轴的平行线HG,作DG⊥HG于G,BH⊥HG于H,利用AAS证明△ABH≌△DAG,得AG=BH=4,DG=AH=2,则D(5,0),利用待定系数法求出直线BD的解析式为y=x﹣,从而求出交点C的坐标;(3)作AG⊥x轴于G,CH⊥AG于H,BQ⊥CH,交CH的延长线于Q,设C(a,),利用平行线分线段成比例定理得===m,同理得,===n,即可得出答案.【解答】解:(1)当2x=时,解得x=±1,∴A(1,2),B(﹣1,﹣2);(2)过点A作AD⊥AB,交直线BC于D,过A作x轴的平行线HG,作DG⊥HG于G,BH⊥HG于H,∵∠ABD=45°,∴AB=AD,∵∠ABH+∠HAB=90°,∠BAH+∠DAG=90°,∴∠ABH=∠DAG,∵∠H=∠G,∴△ABH≌△DAG(AAS),∴AG=BH=4,DG=AH=2,∴D(5,0),∴直线BD的解析式为y=x﹣,∴x﹣=,解得x1=6,x2=﹣1(舍去),当x=6时,y=,∴C(6,);(3)作AG⊥x轴于G,CH⊥AG于H,BQ⊥CH,交CH的延长线于Q,设C(a,),∵CH∥DG,∴===m,同理得,===n,∴n﹣m==2.【点评】本题是反比例函数综合题,主要考查了反比例函数与一次函数交点问题,全等三角形的判定与性质,平行线分线段成比例定理等知识,利用平行线分线段成比例表示出m和n是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】根据一次函数的性质可知:3m﹣1<0,即可求解.【解答】解:∵一次函数y=(3m﹣1)x+2的函数值随x值的增大而减小,∴3m﹣1<0∴m<,故答案为:m<.【点评】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.20.【分析】先利用一元二次方程根的定义得到a2=5﹣3a,则a2﹣3b+2020变形为2025﹣3(a+b),再根据根与系数的关系得到a+b=﹣3,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+3x﹣5=0的实数根,∴a2+3a﹣5=0,∴a2=5﹣3a,∴a2﹣3b+2020=5﹣3a﹣3b+2020=2025﹣3(a+b),∵a,b是方程x2+3x﹣5=0的两个实数根,∴a+b=﹣3,∴a2﹣3b+2020=2025﹣3×(﹣3)=2034.故答案为:2034.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.21.【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:如图.小羊的活动范围是:S=+=π(平方米).【点评】本题结合实际问题考查了扇形面积的计算方法,解题关键是弄清小羊活动的范围是哪些图形.22.【分析】依据选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,可得能拼成一个正方形的概率为.【解答】解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.【点评】本题考查列表法与树状图法、完全平方公式的运用,当有两个元素时,可用树形图列举,也可以列表列举.解题的关键是明确题意,找出所求问题需要的条件.23.【分析】旋转△AMB到△CME,延BM交EC于点D,作MN⊥CE于N,先证明△CEB是直角三角形,利用勾股定理解得BE==8,再证明MN是△CEB的中位线,最后根据三角形面积公式即可解答.【解答】解:设∠ABM=α,则∠AMC=2α,旋转△AMB到△CME,延BM交EC于点D,则∠MEC=∠ABM=α,ME=MB,CE=AB=15,∠AMB=∠CME,∴∠AMB﹣∠AME=∠CME﹣∠AME,即∠BME=∠AMC=2α,又∵ME=MB,∴∠MEB=∠MBE==90°﹣α,∴∠CEB=∠CEM+∠MEB=α+(90°﹣α)=90°,∴BE==8,∵∠MEB=∠MBE,∠MEB+∠MED=∠MBE+∠MDE=90°,∴∠MED=∠MDE,∴DM=ME=MB,作MN⊥CE于N,∴MN∥BE,∴MN=BE=4,∴S△ABM=S△CEM=CE×MN=15×4=30.故答案为:30.【点评】本题考查旋转的性质、勾股定理的应用、三角形中位线的判定和性质,解题关键是恰当作出辅助线,有一定的难度.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设枇杷的进价为x元/千克,蜜桃的进价为y元/千克,根据“某水果商从批发市场用12000元购进了枇杷和水蜜桃各300千克,枇杷的进价比水蜜桃的进价每千克多20元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设水蜜桃的售价应调整为m元/千克,利用总利润=销售单价×销售数量﹣进货总价,结合想要第二次所获利润等于第一次所获利润的80%,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设枇杷的进价为x元/千克,蜜桃的进价为y元/千克,依题意得:,解得:.答:枇杷的进价为30元/千克,蜜桃的进价为10元/千克.(2)设水蜜桃的售价应调整为m元/千克,依题意得:40×300×(1﹣15%)+300m﹣12000=(40×300+15×300﹣12000)×80%,解得:m=18.答:水蜜桃的售价应调整为18元/千克.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.25.【分析】(1)抛物线的解析式中,令x=0,可求得点C的坐标,令y=0,可求得A、B 的坐标;利用配方法将抛物线的解析式化为顶点坐标式,即可求得顶点D的坐标;(2)根据勾股定理的逆定理可得△BCD是直角三角形,∠BCD=90°,分两种情况:①点P在BC上方时,过点D作DP∥BC交抛物线于点P,根据平行线间的距离相等得△BCP的面积等于△BCD的面积,求出直线DP的解析式,联立抛物线M1:y=﹣x2+2x+3即可求解;②点P在BC下方时,过点B作BQ⊥BC,使BQ=CD,过Q作QP∥BC交抛物线于点P,作QH⊥x轴于H,求出Q的坐标,可得PQ的解析式,联立抛物线M1:y=﹣x2+2x+3即可求解;(3)求出点E(2,3),抛物线M1的对称轴为x=1,由直线BC的解析式为y=﹣x+3,得点H(1,2),根据平移得抛物线M2:y=﹣(x﹣1﹣t)2+4,则I(1,﹣t2+4),G(2+t,3),可得IH=2﹣(﹣t2+4)=t2﹣2,CG=2+t,根据|m﹣n|=2,得|t2﹣2﹣(2+t)|=2,解方程即可得出答案.【解答】解:(1)抛物线y=﹣x2+2x+3中,当x=0时,y=3;当y=0时,x=﹣1或3;∴A(﹣1,0),B(3,0),C(0,3);∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);故A(﹣1,0),C(0,3),D(1,4),故答案为:(﹣1,0),(3,0),(0,3),(1,4);(2)∵B(3,0),C(0,3),D(1,4),∴BC2=32+32=18,CD2=12+(4﹣3)2=2,BD2=42+(3﹣1)2=20,∵BD2=BC2+CD2,∴△BCD是直角三角形,∠BCD=90°,设直线BC的解析式为y=kx+3,将B(3,0)代入得,3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,分两种情况:①点P在BC上方时,过点D作DP∥BC交抛物线于点P,∴△BCP的面积等于△BCD的面积,∵直线BC的解析式为y=﹣x+3,DP∥BC,设直线DP的解析式为y=﹣x+b,将D(1,4)代入得,﹣1+b=4,∴b=5,∴直线DP的解析式为y=﹣x+5,联立抛物线M1:y=﹣x2+2x+3得﹣x+5=﹣x2+2x+3,解得x1=1,x2=2,∴点P的横坐标为2;②点P在BC下方时,过点B作BQ⊥BC,使BQ=CD,过Q作QP∥BC交抛物线于点P,作QH⊥x轴于H,∴△BCP的面积等于△BCD的面积,∵CD2=12+(4﹣3)2=2,∴CD=BQ=∵OB=OC=3,∴∠OBC=45°,∵BQ⊥BC,∴∠ABQ=45°,∵QH⊥x轴,∴BH=QH=1,∴OH=OB﹣BH=2,∴Q的坐标为(2,﹣1),设PQ的解析式为y=﹣x+d,将Q(2,﹣1)代入得,﹣2+d=﹣1,∴d=1,∴直线PQ的解析式为y=﹣x+1,联立抛物线M1:y=﹣x2+2x+3得﹣x+1=﹣x2+2x+3,解得x1=,x2=,∴点P的横坐标为或;综上,点P的横坐标为2或或;(3)如图2,∵点C(0,3),CE∥x轴,抛物线M1:y=﹣x2+2x+3=﹣(x﹣1)2+4,当y=3时,3=﹣x2+2x+3,解得x1=0,x2=2,∴点E(2,3),抛物线M1的对称轴为x=1,∵直线BC的解析式为y=﹣x+3,当x=1时,y=2,∴点H(1,2),∵将抛物线M1向右平移t(t>0)个单位得抛物线M2,∴抛物线M2:y=﹣(x﹣1﹣t)2+4,∴I(1,﹣t2+4),G(2+t,3),∴IH=|2﹣(﹣t2+4)|=|t2﹣2|,CG=2+t,∵点I与H,C与G之间的距离分别为m,n,|m﹣n|=2,∴|t2﹣2﹣(2+t)|=2,化简得|t2﹣t﹣4|=2,或∴|2﹣t2﹣(2+t)|=2,化简得|t2+t|=2,∴t2﹣t﹣4=2或t2﹣t﹣4=﹣2,或t2+t=2,或t2+t=﹣2(无解),解得t1=3,t2=﹣2(不合题意,舍去)或t3=2,t4=﹣1(不合题意,舍去),t5=1,t4=﹣2(不合题意,舍去),综上所述,t的值为3或2或1.【点评】本题是二次函数综合题,主要考查了二次函数的性质,待定系数法求函数解析式,勾股定理,等腰直角三角形的性质,平移的性质等知识点,解题的关键是掌握待定系数法求函数解析式和二次函数平移的性质,解题时,注意“分类讨论”和“数形结合”数学思想的应用,难度较大.26.【分析】(1)结论:△ABF是等边三角形.证明△ADF≌△BCF(SAS),推出AF=BF,可得结论;(2)由题意,DF的最大值为线段AD的长,设AD=x,则最小值为20﹣x,当B,F,D共线时,DF的值最小,推出BD=BF+DF=5+20﹣x=25﹣x,利用勾股定理构建方程,可得结论;(3)结论:A′C=CH.如图3中,延长CH到M,使得HM=HC,连接A′M,A′H,E′M.证明△A′CH是等腰直角三角形,可得结论.∴A′C=CH.【解答】解:(1)结论:△ABF是等边三角形.理由:如图1中,由翻折变换的性质可知,BA=BF,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∵FD=FC,AD=CB,∴∠FDC=∠FCD,∴∠ADF=∠BCF,在△ADF和∠BCF中,,∴△ADF≌△BCF(SAS),∴AF=BF,∴AB=BF=AF,∴△ABF是等边三角形;(2)如图2中,连接BD,由题意,DF的最大值为线段AD的长,设AD=x,则最小值为20﹣x,当B,F,D共线时,DF的值最小,∴BD=BF+DF=5+20﹣x=25﹣x,∵∠A=90°,∴AB2+AD2=BD2,∴52+x2=(25﹣x)2,∴x=12,∴AD=12;(3)结论:A′C=CH.理由:如图3中,延长CH到M,使得HM=HC,连接A′M,A′H,E′M.∵GH=HE′,∠GHC=∠E′HM,HC=HM,∴△GHC≌△E′HM(SAS),∴E′M=CG,∠HGC=∠HE′M,由翻折的性质可知∠ABE=∠EBF=45°,∵∠BCG=90°,∴∠CGB=∠CBG=45°,∴CB=CG,∴BC=E′M,∵A′E′M=360°﹣∠A′E′B′﹣∠HE′M﹣∠BE′G=315°﹣∠CGE′﹣∠GE′B,又∵∠A′BC=540°﹣∠BA′E′﹣∠BCG﹣∠AE′B﹣∠GE′B﹣∠CGE′=315°﹣∠CGE′﹣∠GE′B,∴∠A′E′M=∠A′BC,∵AB=AE′,∴△ABC≌△A′E′M(SAS),∴A′C=A′M,∠BA′C=∠EA′M,∴∠CA′M=∠BA′E′=90°,∴∠A′CM=∠A′MC=45°,∵HM=HC,∴A′H=HC=HM,A′H⊥CM,∴△A′CH是等腰直角三角形,∴A′C=CH.【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2023年湖南省湘潭市中考数学真题(原卷与解析)

2023年湖南省湘潭市中考数学真题(原卷与解析)

2023年湘潭市初中学业水平考试数学试题卷考试时量:120分钟满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共四道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的4个选项中,只有一项符合题目要求,请将正确答案的选项代号涂在答题卡相应的位置上)1.中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是()A .爱B.我C.中D.华2.在实数范围内有意义,则x 的取值范围是()A.x <1B.x ≤1C.x >1D.x ≥13.下列计算正确的是()A.824a a a÷= B.23a a a+= C.()325a a = D.235a a a ⋅=4.某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分B.94分C.92.5分D.91分5.如图,菱形ABCD 中,连接AC BD ,,若120∠=︒,则2∠的度数为()A.20︒B.60︒C.70︒D.80︒6.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图像上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于直N ,若四边形AMON 的面积为2.则k 的值是()A.2B.2- C.1 D.1-7.如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中 AA '的长为()A.4πB.6πC.8πD.16π8.某校组织九年级学生赴韶山开展研学活动,已知学校离韶山50千米,师生乘大巴车前往,某老师因有事情,推迟了10分钟出发,自驾小车以大巴车速度的1.2倍前往,结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为()A.505011.26x x =+ B.505010 1.2x x+= C.5050101.2x x=+ D.501506 1.2x x+=二、选择题(本题共4小题,每小题3分,共12分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得3分,部分选对的得2分,有选错的得0分,请将正确答案的选项代号涂在答题卡相应的位置上)9.下列选项中正确的是()A.081= B.88-= C.()88--= D.822=±10.2023年湘潭中考体育考查了投掷实心球的项目,为了解某校九年级男生投掷实心球水平.随机抽取了若干名男生的成绩(单位:米),列出了如下所示的频数分布表并绘制了扇形图:类别ABCDE成绩67x ≤<78x ≤<89x ≤<910x ≤<1011x ≤<频数2625125则下列说法正确的是()A.样本容量为50B.成绩在910x ≤<米的人数最多C.扇形图中C 类对应的圆心角为180︒D.成绩在78x ≤<米的频率为0.111.如图,AC 是O 的直径,CD 为弦,过点A 的切线与CD 延长线相交于点B ,若AB AC =,则下列说法正确的是()A.AD BC ⊥B.90CAB ∠=︒C.DB AB= D.12AD BC =12.如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是()A.0a > B.0c > C.240b ac -< D.930a b c ++=三、填空题(本题共4个小题,每小题3分,共12分.请将答案写在答题卡相应的位置上)13.__________.(写出一个即可)14.已知实数a ,b 满足()2210a b -++=,则b a =_________.15.如图,在Rt ABC △中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 长为半径作弧,分别交,AC AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,在BAC ∠内两弧交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则CD 的长为__________.16.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm 的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为__________3dm.四、解答题(本大题共10个小题,共72分.解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上)17.解不等式组:()7140234x x x -≤⎧⎪⎨+>+⎪⎩①②,并把它的解集在数轴上表示出来.18.先化简,再求值:222119x x x x +⎛⎫+⋅ ⎪+-⎝⎭,其中6x =.19.在Rt ABC △中,90BAC AD ∠=︒,是斜边BC上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.20.为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A (合唱社团)、B (硬笔书法社团)、C (街舞社团)、D (面点社团).学生从中任意选择两个社团参加活动.(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;(2)小宇和小江在选择过程中,首先都选了社团C (街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:收集数据:在家做家务时间:(单位:小时)1541a32b34整理数据:时间段03x ≤<36x <≤69x ≤<人数36m分析数据:统计量平均数中位数众数数据3.43.54请结合以上信息回答下列问题:(1)m =__________,并补全频数直方图;(2)数据统计完成后,小明发现有两个数据不小心丢失了.请根据图表信息找回这两个数据.若a b <,则=a __________,b =__________;(3)根据调查结果,请估计该校2000名学生在这一周劳动时间不少于3小时的人数.22.我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x 元,全部售完的利润为y 元.求利润y (元)关于售价x (元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?23.如图,点A 的坐标是()3,0-,点B 的坐标是(0,4),点C 为OB 中点,将ABC 绕着点B 逆时针旋转90︒得到A BC ''△.(1)反比例函数ky x=的图像经过点C ',求该反比例函数的表达式;(2)一次函数图像经过A 、A '两点,求该一次函数的表达式.24.问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r 的O .如图②,OM 始终垂直于水平面,设筒车半径为2米.当0=t 时,某盛水筒恰好位于水面A 处,此时30AOM ∠=︒,经过95秒后该盛水筒运动到点B 处.(参考数据,1.414 1.732≈≈)问题解决:(1)求该盛水筒从A 处逆时针旋转到B 处时,BOM ∠的度数;(2)求该盛水筒旋转至B 处时,它到水面的距离.(结果精确到0.1米)25.问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G ,以BG 为边长向外作正方形BEFG ,将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时,连接DF AC ,相交于点P ,小红发现点P 恰为DF 的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG ,并延长与DF 相交,发现交点恰好也是DF 中点P ,如图②,根据小红发现的结论,请判断APE V 的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG 绕点B 顺时针旋转α,连接DF ,点P 是DF 中点,连接AP ,EP ,AE ,APE V 的形状是否发生改变?请说明理由.26.如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.2023年湘潭市初中学业水平考试数学试题卷一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的4个选项中,只有一项符合题目要求,请将正确答案的选项代号涂在答题卡相应的位置上)1.【答案】C【解析】解:将选项A ,B ,D 中的汉字沿某直线折叠后不能与本身重合,所以不符合题意;将图C 中的汉字沿过中心的竖直方向的直线折叠直线两旁的部分能够重合,所以符合题意.故选:C .2.【答案】D【解析】解:由题意得,x -1≥0,解得x ≥1.故选:D .3.【答案】D【解析】解:A 选项,826a a a ÷=,故该选项不正确,不符合题意;B 选项,23a a a +≠,故该选项不正确,不符合题意;C 选项,()326a a =,故该选项不正确,不符合题意;D 选项,235a a a ⋅=,故该选项正确,符合题意;故选:D .4.【答案】B【解析】解:依题意,她的最后得分为9020%9580%94⨯+⨯=分,故选:B .5.【答案】C【解析】解:∵四边形ABCD 是菱形∴,BD AC AB CD ⊥∥,∴1,290ACD ACD ∠=∠∠+∠=︒,∵120∠=︒,∴2902070∠=︒-︒=︒,故选:C .6.【答案】A【解析】解:AM x ⊥ 轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2,2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .7.【答案】C【解析】解:依题意, AA '的长2π48π=⨯=,故选:C .8.【答案】A【解析】解:设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时,根据题意列方程为:505011.26x x =+,故答案为:A .二、选择题(本题共4小题,每小题3分,共12分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得3分,部分选对的得2分,有选错的得0分,请将正确答案的选项代号涂在答题卡相应的位置上)9.【答案】ABC【解析】解:081=,故A 符合题意,88-=,故B 符合题意;()88--=,故C 符合题意;=D 不符合题意;故选ABC 10.【答案】AC【解析】解:样本容量为262512550++++=,故A 正确;根据统计表,可得成绩在89x ≤<米的人数最多,故B 错误;扇形图中C 类对应的圆心角为2536018050⨯︒=︒,故C 正确;根据统计表,可得成绩在78x ≤<米的频率为6500.12÷=,故D 错误,故选:AC .11.【答案】C【解析】解:∵AC 是O 的直径,∴AD BC ⊥,故A 选项正确,∵AB 是O 的切线,∴AC AB ⊥,∴90CAB ∠=︒,故B 选项正确,∵AB AC=∴ABC 是等腰直角三角形,∵AD BC ⊥,∴CD DB =,∴12AD BC =,故D 选项正确∵ADB 是直角三角形,AB 是斜边,则AB DB >,故C 选项错误,故选:C .12.【答案】BD【解析】解:A 选项,由函数图象得,抛物线开口向下,故a<0,故A 错误;B 选项,图象与y 轴的交点在原点上方,故0c >,故B 正确;C 选项,因为抛物线和x 轴有两个交点,故240b ac ->,故C 错误.D 选项,当3x =时,930y a b c =++=,故D 正确;故选:BD .三、填空题(本题共4个小题,每小题3分,共12分.请将答案写在答题卡相应的位置上)13.【答案】2(答案不唯一)【解析】解:设所求数为a ,则a <则a <<,<<,即23<<,∴a 可以是2±或1±或0.故答案为:2(答案不唯一).14.【答案】12【解析】解:∵()2210a b -++=,∴20a -=且10b +=,解得:2a =,1b =-;∴1122b a -==;故答案为:12.15.【答案】1【解析】解:如图所示,过点D 作DE AB ⊥于点E ,依题意1DE =,根据作图可知AD 为CAB ∠的角平分线,∵,DC AC DE AB⊥⊥∴1CD DE ==,故答案为:1.16.【答案】2【解析】解:如图所示,依题意,2OD AD ==12OE OD ==∴图中阴影部分的面积为222OE ==故答案为:2.四、解答题(本大题共10个小题,共72分.解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上)17.【答案】不等式组的解集为:22x -<≤.画图见解析【解析】解:()7140234x x x -≤⎧⎪⎨+>+⎪⎩①②,由①得:2x ≤,由②得:26>4x x ++,∴>2x -,在数轴上表示其解集如下:∴不等式组的解集为:22x -<≤.18.【答案】3x x -;2【解析】解:222119x x x x +⎛⎫+⋅ ⎪+-⎝⎭2212119x x x x x x ++⎛⎫=+⋅ ⎪++-⎝⎭,()()()33131x x x x x x ++=++-⋅,3x x =-,当6x =时,原式2=.19.【答案】(1)见解析(2)185BD =【解析】(1)证明:∵90BAC AD ∠=︒,是斜边BC 上的高.∴90ADB ∠=︒,90B C ∠+∠=︒∴90B BAD ∠+∠=︒,∴BAD C∠=∠又∵B B∠=∠∴C ABD BA ∽△△,(2)∵C ABD BA ∽△△∴AB BD CB AB=,又610AB BC ==,∴23618105AB BD CB ===.20.【答案】(1),,,,,AB AC AD BC BD CD(2)13【解析】(1)解:依题意,他随机选择两个社团,所有的可能结果为,,,,,AB AC AD BC BD CD ;(2)解:列表如下,AB D AAA AB AD B BA BB BD DDA DB DD 共有9种等可能结果,其中符合题意的有3种,∴他俩选到相同社团的概率为3193=.21.【答案】(1)1;频数直方图见解析(2)4;7(3)1400人【解析】(1)解:根据题意,可得10361m =--=,故答案为:1,补全频数直方图,如图所示:(2)解: 在家做家务时间段为69x ≤<有1人,且a b <,6b ∴≥,观察数据,可得在家做家务时间段为36x <≤的是3,3,4,4,5,有5人,比表格中的数据少一人,故36a ≤<, 众数为4,在已知数据中在家做家务时间为4和3的各有2人,4a ∴=,根据平均数,可得方程()15414323410 3.4b +++++++++÷=,解得7b =,故答案为:4;7;(3)解:612000140010+⨯=(人),答:该校2000名学生在这一周劳动时间不少于3小时的人数约为1400人.22.【答案】(1)100050000y x =-;(2)该商店继续购进了4000件航天模型玩具.【解析】(1)解:因每件玩具售价为x 元,依题意得()100050100050000y x x =-=-;(2)解:设商店继续购进了m 件航天模型玩具,则总共有()1000m +件航天模型玩具,依题意得:()()1000605020%10000m +-⨯=,解得4000m =,答:该商店继续购进了4000件航天模型玩具.23.【答案】(1)8y x=(2)1377y x =+【解析】(1)解:∵点B 的坐标是(0,4),点C 为OB 中点,∴()0,2C ,2OC BC ==,由旋转可得:2BC BC '==,90CBC '∠=︒,∴()2,4C ',∴248k =⨯=,∴反比例函数的表达式为8y x=;(2)如图,过A '作A H BC '⊥于H ,则90AOB A HB '∠=∠=︒,而90ABA '∠=︒,AB A B '=,∴90ABO BAO ABO A BO '∠+∠=︒=∠+∠,∴BAO A BH ¢Ð=Ð,∴ABO BA H ' ≌,∴3AO BH ==,4OB A H '==,∴431OH =-=,∴()4,1A ',设直线AA '为y mx n =+,∴3041m n m n -+=⎧⎨+=⎩,解得:1737m n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AA '为1377y x =+.24.【答案】(1)45BOM ∠=︒;(2)该盛水筒旋转至B 处时,它到水面的距离为0.3米.【解析】(1)解:∵旋转一周用时120秒,∴每秒旋转3603120=︒︒,当经过95秒后该盛水筒运动到点B 处时,36039575AOB ∠=︒-︒⨯=︒,∵30AOM ∠=︒,∴753045BOM ∠=︒-︒=︒;(2)解:作BC OM ⊥于点C ,设OM 与水平面交于点D ,则OD AD ⊥,在Rt OAD △中,30AOD ∠=︒,2OA =,∴112AD OA ==,22213OD =-=,在Rt OBC △中,45BOC ∠=︒,2OB =,∴222BC OC ===,∴320.3CD OD OC =-=≈(米),答:该盛水筒旋转至B 处时,它到水面的距离为0.3米.25.【答案】(1)见解析;(2)APE V 是等腰直角三角形,理由见解析;(3)APE V 的形状不改变,见解析【解析】(1)证明:连接BD ,BF ,BP ,如图,∵四边形ABCD ,BEFG 都是正方形,∴45CBD FBG ∠=︒=∠,∴90DBF ∠=︒,∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,又∵AP AP =,∴()SAS APD APB ≌,∴BP DP =,∴PDB PBD ∠=∠,∵90PDB PFB PBD PBF ∠+∠=︒=∠+∠,∴PBF PFB ∠=∠,∴PB PF =,∴PD PF =,即点P 恰为DF 的中点;(2)APE V 是等腰直角三角形,理由如下:∵四边形ABCD ,BEFG 都是正方形,∴45CAE PEA ∠=∠=︒∴,90AP EP APE =∠=︒,∴APE V 是等腰直角三角形;(3)APE V 的形状不改变,延长EP 至点M ,使PMEP =,连接,MA MD ,∵点P 为DF 的中点,∴PD PF =,∵DPM EPF ∠=∠,∴()SAS E MPD PF ≌,∴,DM EF DMP PEF =∠=∠,∴BE DM =,DM EF ∥,∴BG DM ∥,设DF 交BC 于点H ,交BG 于点N ,∴MDN DNB ∠=∠,∵AD BC ∥,∴ADN BHN ∠=∠,∵180BHN BNH HBN ∠+∠+∠=︒,∴180ADM BHN BNH HBN ∠=∠+∠=︒-∠,∵180ABE HBN ∠=︒-∠,∴ADM ABE ∠=∠,又∵AD AB =,∴()SAS A ADM BE ≌,∴AM AE =,DAM BAE ∠=∠,∵PM EP =,∴AP ME ⊥,即90APE ∠=︒,∵90DAM MAB ∠+∠=︒,∴90BAE MAB ∠+∠=︒,即90MAE ∠=︒,∴45MAP PAE ∠=∠=︒,∴45PEA PAE ∠=︒=∠,∴AP EP =,∴APE V 是等腰直角三角形.26.【答案】(1)243y x x =-+(2)()2,1P -或317717,22P ⎛⎫ ⎪ ⎪⎝⎭+或317717,22P ⎛⎫ ⎪ ⎪⎝⎭+(3)352a <<或321a <-<.【解析】(1)解:将点()10B ,,()0,3C 代入2y x bx c =++,得103b c c ++=⎧⎨=⎩解得:43b c =-⎧⎨=⎩∴抛物线解析式为243y xx =-+;(2)∵243y x x =-+()221x =--,顶点坐标为()2,1,当0y =时,2430x x -+=解得:121,3x x ==∴()3,0A ,则3OA =∵()0,3C ,则3OC =∴AOC 是等腰直角三角形,∵PAC ABCS S =△△∴P 到AC 的距离等于B 到AC 的距离,∵()3,0A ,()0,3C ,设直线AC 的解析式为3y kx =+∴330k +=解得:1k =-∴直线AC 的解析式为3y x =-+,如图所示,过点B 作AC 的平行线,交抛物线于点P ,设BP 的解析式为y x d =-+,将点()10B ,代入得,10d -+=解得:1d =∴直线BP 的解析式为1y x =-+,2143y x y x x =-+⎧⎨=-+⎩解得:10x y =⎧⎨=⎩或21x y =⎧⎨=-⎩∴()2,1P -,∵312PA PB AB =====-=∴222PA PB AB +=∴ABP 是等腰直角三角形,且90APB ∠=︒,如图所示,延长PA 至D ,使得AD PA =,过点D 作AC 的平行线DE ,交x 轴于点E ,则DA PA =,则符合题意的点P 在直线DE 上,∵APB △是等腰直角三角形,,DE AC AC PD ⊥∥∴45DAE BAP ∠=∠=︒PD DE⊥∴ADE V是等腰直角三角形,∴2AE ===∴()5,0E 设直线DE 的解析式为y x e=-+∴50e -+=解得:5e =∴直线DE 的解析式为5y x =-+联立2543y x y x x =-+⎧⎨=-+⎩解得:31727172x y ⎧-=⎪⎪⎨⎪=⎪⎩或31727172x y ⎧+=⎪⎪⎨-⎪=⎪⎩∴31771722P ⎛⎫ ⎪ ⎪⎝⎭-+或317717,22P ⎛⎫ ⎪ ⎪⎝⎭+-综上所述,()2,1P -或37,22P ⎛⎫ ⎪ ⎪⎝⎭-+或37,22P ⎛⎫ ⎪ ⎪⎝⎭+-;(3)①当0a >时,如图所示,过点C 作CG AC ⊥交2x =于点G ,当点Q 与点G 重合时,ACQ 是直角三角形,当90AQC ∠=︒时,ACQ是直角三角形,设AC 交2x =于点H ,∵直线AC 的解析式为3y x =-+,则()2,1H ,∴CH ==,∵45CHG OCH ∠=∠=︒,∴CHG△是等腰直角三角形,∴HG=4==∴()2,5G ,设()2,Q q ,则()22222221,23613AQ q CQ q q q =+=+-=-+∵2223318AC =+=∴222186131q q q =-+++解得:32q-=(舍去)或32q =∴3172,2Q ⎛⎫ ⎪ ⎪⎝⎭∵QAC △是锐角三角形∴31752a +<<;当a<0时,如图所示,同理可得222AQ QC AC +=即∴222186131q q q =-+++解得:3172q -=或3172q +=(舍去)由(2)可得AM AC ⊥时,()2,1M -∴31721a <-<综上所述,当QAC △是锐角三角形时,31752a +<<或31721a <--<.。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

2024年广东省深圳市中考真题数学试卷含答案解析

2024年广东省深圳市中考真题数学试卷含答案解析

2024年广东省深圳市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列用七巧板拼成的图案中,为中心对称图形的是()A .B .C .D .【答案】C【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A 、B 、D 均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C .2.如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3.下列运算正确的是()A .()523m m -=-B .23m n m m n ⋅=C .33mn m n-=D .()2211m m -=-【答案】B【分析】本题考查了同底数幂的乘法,合并同类项,积的乘方,完全平方公式.根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()6523m m m -=≠-,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n -≠,故该选项不符合题意;D 、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B .4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .12B .112C .16D .145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A .40︒B .50︒C .60︒D .70︒【答案】B【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A .①②B .①③C .②③D .只有①【答案】B【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A .()7791x y x y +=⎧⎨-=⎩B .()7791x y x y +=⎧⎨+=⎩C .()7791x y x y-=⎧⎨-=⎩D .()7791x y x y+=⎧⎨+=⎩【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A .8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m【答案】A【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠=,,以及Rt tan AN ACN ACN CN ∠= ,,运用线段和差关系,即∵MEF EFB CDF ∠=∠=∠∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=∴四边形EFBM 是矩形同理得四边形CDBN 是矩形故选:A二、填空题9.已知一元二次方程230x x m -+=的一个根为1,则m =.【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是.(写出一个答案即可)∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,13.如图,在ABC 中,AB BC =,tan 12B ∠=,D 为BC 上一点,且满足5BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴cos DM CD =⋅∵DE AD ⊥,CM ∴MC DE ∥,∴CE DM ==三、解答题14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+ ⎪⎝⎭.15.先化简,再求值:221111a aa a-+⎛⎫-÷⎪,其中1a=+16.据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【详解】(1)解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A 48.34883.299B 48.42547.5354.04(2)小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若56AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.观察图象知,函数为二次函数,20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE,请直接写出PE的值.第二种情况:作ABC ∠的平分线,取CH CB =线BA 上取AF AB =,连接DF 故A 为BF 的中点;第三种情况:作AD BC ∥,交BE 的延长线于点在DA 延长线上取点F ,使则A 为DF 的中点,同理可证明12AD BC =,从而②若按照图1作图,∠=∠,由题意可知,ACB ACP四边形ABCD是平行四边形,ACB PAC∴∠=∠,∴∠=∠,PAC PCA延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,故答案为:3414PE =或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的。

2024年山东省烟台市中考真题数学试卷含答案解析

2024年山东省烟台市中考真题数学试卷含答案解析

2024年山东省烟台市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中的无理数是( )A .23B .3.14C D2.下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B . 12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .3.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④【答案】A 【分析】本题考查几何体的三视图,熟练掌握三视图的画法是解题的关键.分别画出各选项得出的左视图,再判断即可.【详解】解:A 、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A 符合题意;B 、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B 不符合题意;C 、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C 不符合题意;D 、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D 不符合题意;故选:A .4.实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c -<C .a c >D .22a b-<-【答案】B5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是4A 纸厚度的六分之一,已知1毫米1=百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A .30.1510⨯纳米B ..41510⨯纳米C .51510-⨯纳米D .61.510-⨯纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为2S 甲和2S 乙,则2S 甲和2S 乙的大小关系是( )A .22S S >甲乙B .22S S <甲乙C .22S S =甲乙D .无法确定【答案】A 【分析】本题考查比较方差的大小,根据折线图,得到乙选手的成绩波动较小,即可得出结果.【详解】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,∴22S S >甲乙;故选A .7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.【详解】解:第一个图为尺规作角平分线的方法,OP 为AOB ∠的平分线;第二个图,由作图可知:,OC OD OA OB ==,∴AC BD =,∵AOD BOC ∠=∠,∴AOD BOC ≌△△,∴OAD OBC ∠=∠,∵AC BD =,BPD APC ∠=∠,∴BPD APC ≌,∴AP BP =,∵,OA OB OP OP ==,∴AOP BOP ≌△△,∴AOP BOP ∠=∠,∴OP 为AOB ∠的平分线;第三个图,由作图可知,ACP AOB OC CP ∠=∠=,∴CP BO ∥,COP CPO ∠=∠,∴CPO BOPÐ=Ð∴COP BOP ∠=∠,∴OP 为AOB ∠的平分线;第四个图,由作图可知:OP CD ⊥,OC OD =,∴OP 为AOB ∠的平分线;故选D .8.如图,在正方形ABCD 中,点E ,F 分别为对角线BD AC ,的三等分点,连接AE 并延长交CD 于点G ,连接EF FG ,,若AGF α∠=,则FAG ∠用含α的代数式表示为( )A .452α︒-B .902α︒-C .452α︒+D .2α∴OD OC =,ODC ∠=∴OE OF =,∵EOF DOC ∠=∠,OE OD ∴EOF DOC ∽△△,9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A.45尺B.88尺C.90尺D.98尺故选:C .10.如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∵菱形EFGH ,60E ∠=︒,依题意,MNG 为等边三角形,运动时间为t ,则cos30NG =∴1sin 60S NG NG =⨯⨯⨯︒依题意,6EM EG t t =-=-,则EK ∴()211236223EKJ S EJ EM t =⋅=⨯- ∴EKJS S S =- 菱形当1114x <≤时,同理可得,3综上所述,当03x ≤≤时,函数图象为开口向上的一段抛物线,当开口向下的一段抛物线,当68x <≤时,函数图象为一条线段,当开口向下的一段抛物线,当1114x <≤时,函数图象为开口向上的一段抛物线;故选:D .二、填空题11x 的取值范围为 .【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.12.关于x 的不等式12x m x -≤-有正数解,m 的值可以是 (写出一个即可).13.若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.14.如图,在边长为6的正六边形ABCDEF 中,以点F 为圆心,以FB 的长为半径作 BD,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .设圆锥的底面圆的半径为∴3r =;故答案为:3.15.如图,在ABCD Y 中,120C ∠=︒,8AB =,10BC =.E 为边CD 的中点,F 为边AD 上的一动点,将DEF 沿EF 翻折得D EF ' ,连接AD ',BD ',则ABD '△面积的最小值为.过C 作CN AB ⊥于N ,∵AB CD ∥,∴EM CN =,在Rt BCN 中,10BC =,CBN ∠16.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x4-3-1-15y59527-下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x -<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y --均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x -或3x >.其中正确结论的序号为 .【答案】①②④【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出a b c 、、的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤;掌握二次函数的图象和性质是解题的关键.【详解】解:把()4,0-,()1,9-,()1,5代入2y ax bx c =++得,164095a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得128a b c =-⎧⎪=-⎨⎪=⎩,∴0abc >,故①正确;∵1a =-,2b =-,8c =,由2228y x y x x =-+⎧⎨=--+⎩,解得1120x y =⎧⎨=⎩,2235x y =-⎧⎨=⎩,∴()2,0A ,()3,5B -,由图形可得,当3x <-或2x >时,2282x x x --+<-+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题17.利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷⎪--+,再求值.18.“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t 表示,单位:h )进行调查.经过整理,将数据分成四组(A 组:02t ≤<;B 组:24t ≤<;C 组:46t ≤<;D 组:68t ≤<),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,1429α︒≤≤︒;夏至日时,4376α︒≤≤︒.sin140.24︒≈,cos140.97︒≈,tan140.25︒≈sin290.48︒≈,cos290.87≈︒,tan290.55≈︒sin430.68︒≈,cos430.73︒≈,tan430.93︒≈sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米,AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填14︒,29︒,43︒,76︒中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【答案】任务一:冬至,14︒;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器【分析】本题考查解直角三角形的应用,理解题意是解答的关键.任务一:根据题意直接求解即可;任务二:过E 作EF AB ⊥于F ,利用正切定义求得【详解】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即14α=︒,故答案为:冬至,14︒;任务二:过E 作EF AB ⊥于F ,则90AFE ∠=︒,54EF =米,BF DF =,在Rt AFE 中,tan AFEFα=,∴tan14540.2513.5AF EF =⋅︒≈⨯=(米)∵11 3.336.3AB =⨯=(米),∴36.313.5DE BF AB AF ==-=-=22.8 3.37÷≈(层),20.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.如图,正比例函数y x =与反比例函数k y x =的图象交于点)A a ,将正比例函数图象向下平移()0n n >个单位后,与反比例函数图象在第一、三象限交于点B ,C ,与x 轴,y 轴交于点D ,E ,且满足:3:2BE CE =.过点B 作BF x ⊥轴,垂足为点F ,G 为x 轴上一点,直线BC 与BG 关于直线BF 成轴对称,连接CG .(1)求反比例函数的表达式;(2)求n 的值及BCG 的面积.22.在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为直线BC 上任意一点,连接AD .将线段AD 绕点D 按顺时针方向旋转90︒得线段ED ,连接BE .【尝试发现】(1)如图1,当点D 在线段BC 上时,线段BE 与CD 的数量关系为________;【类比探究】(2)当点D 在线段BC 的延长线上时,先在图2中补全图形,再探究线段BE 与CD 的数量关系并证明;【联系拓广】(3)若1AC BC ==,2CD =,请直接写出sin ECD ∠的值.由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,BE 过点E 作EM BC ⊥交BC 于点由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,∵90ACB ∠=︒,∴ACD DME ∠=∠,ADC ∠+∴CAD EDM ∠=∠由(2)得1DM AC ==,2EM CD ==,∴3CM CD DM =+=,∴2213CE CM EM =+=,∴2213sin 1313EM ECD CE ∠===.同理可得:ACD DME △≌△,∴1DM AC ==,2ME CD ==,∴211CM =-=,∴22215CE =+=,∴225sin 55EM ECD CE ∠===;23.如图,AB 是O 的直径,ABC 内接于O ,点I 为ABC 的内心,连接CI 并延长交O于点D ,E 是 BC上任意一点,连接AD ,BD ,BE ,CE .(1)若25ABC ∠=︒,求CEB ∠的度数;(2)找出图中所有与DI 相等的线段,并证明;(3)若CI =DI =ABC 的周长.【答案】(1)115︒(2)DI AD BD ==,证明见解析(3)30【分析】(1)利用圆周角定理得到90ACB ∠=︒,再根据三角形的内角和定理求65CAB ∠=︒,然后利用圆内接四边形的对角互补求解即可;(2)连接A I ,由三角形的内心性质得到内心,CAI BAI ∠=∠,ACI BCI ∠=∠,然后利用圆周角定理得到DAB DCB ACI ∠=∠=∠,AD BD =,利用三角形的外角性质证得DAI DIA ∠=∠,然后利用等角对等边可得结论;(3)过I 分别作IQ AB ⊥,IF AC ⊥,IP BC ⊥,垂足分别为Q 、F 、P ,根据内切圆的性质和和切线长定理得到AQ AF =,CF CP =,BQ BP =,利用解直角三角形求得2CF CP ==, 13AB =,进而可求解.【详解】(1)解:∵AB 是O 的直径,∴90ADB ACB ∠=∠=︒,又25ABC ∠=︒,∴902565CAB ∠=︒-︒=︒,∵四边形ABEC 是O 内接四边形,∴180CEB CAB ∠+∠=︒,∴180115CEB CAB ∠=︒-∠=︒;∵点I 为ABC 的内心,∴CAI BAI ∠=∠,ACI ∠∴ AD BD=,∴DAB DCB ACI ∠=∠=∠∵点I 为ABC 的内心,即为∴Q 、F 、P 分别为该内切圆与∴AQ AF =,CF CP =,∵22CI =,90IFC ∠=2AB AQ BQ CF=+++22AB CF=+21322=⨯+⨯30=.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.由题意得2AG BG ==,∵对称轴为直线=1x -,∴()()1,0, 3.0B A -,∴3OC OA ==,∴()0,3C ,将A 、B 、C 分别代入21y ax bx c =++,得:09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴2123y x x =--+,∴()2212314y x x x =--+=-++,顶点为()1,4-∵抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,∴抛物线2y 的1a =,顶点为()1,4-,∴2y 的表达式为:()2214y x =--,即2223y x x =--(2)解:将点F 向右平移2个单位至F ',则2F F '=,()4,0F '-,过点D 作直线2l 的对称点为D ¢,连接,,F N F D ND '''',∴ND ND '=,∵()2214y x =--,∴直线2l 为直线1x =,∵抛物线()2214y x =--,∴()1,4E -∵2l y ∥轴,∴1DHE ∠=∠,∵2PEH DHE ∠=∠,∴2112PEH ∠=∠=∠+∠,∴12∠=∠,作H 关于直线2l 的对称点H ',则点H '在直线PE 上,∵点H 的坐标为()0,2-,直线2l :1x =,∴()2,2H '-,设直线PE 的表达式为:()0y kx b k =+≠,代入()2,2H '-,()1,4E -,得:224k b k b +=-⎧⎨+=-⎩,解得:26k b =⎧⎨=-⎩,∴直线PE 的表达式为26y x =-,联立222623y x y x x =-⎧⎨=--⎩,得:22326x x x --=-,解得:3x =或1x =(舍),∴()3,0P ;②当点P 在直线2l 左侧抛物线上时,延长EP 交y 轴于点N ,作HN 的垂直平分线交HE 于点Q ,交y 轴于点M ,过点E 作EK y ⊥轴于点K ,则QM EK ∥,如图:。

2023年山东省临沂市中考数学真题(答案解析)

2023年山东省临沂市中考数学真题(答案解析)

2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。

2022年云南省中考数学真题及答案

2022年云南省中考数学真题及答案
2022年云南省初中学业水平考试数学试题卷
全卷三个大题,共24个小题,共8页;满分120分,考试用时120分钟
注意事项:
1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.
2.考试结束后,请将试题卷和答题卡一并交回.
一、选择题(本大题共12小题.每小题只有一个正确选项,每小题4分,共48分)
8.按一定规律排列的单项式:x,3x²,5x³,7x ,9x ,……,第n个单项式是()
A.(2n-1) B.(2n+1) C.(n-1) D.(n+1)
【答案】A
【解析】
【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.
【详解】解:依题意,得第n项为(2n-1)xn,
说明:参与本次抽样调查的每一位居民在上述四种粽子中选择且只选择了一种喜爱的粽子.请根据以上信息,解答下列问题:
(1)补全条形统计图;
(2)若该小区有1820人,估计喜爱火腿粽的有多少人?
20.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
A. B. C. D.
6.为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:
评委1
评委2
评委3
评委4
评委5
9.9
9.7
9.6
10
9.8
数据9.9,9.7,9.6,10,9.8的中位数是()
A.9.6B.9.7C.9.8D.9.9
【详解】解:若零上 记作 ,则零下 可记作: .

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

吉林省2023年中考:《数学》考试真题与参考答案

吉林省2023年中考:《数学》考试真题与参考答案

精编中考文档吉林省中考数学科目·2023年考试真题与答案解析目录选择题…………01页填空题…………03页解答题…………04页参考答案………12页吉林省2023年中考:《数学》考试真题与参考答案一、选择题本大题有6小题,每小题2分,共12分。

在以下每小题给出的四个选项中,仅有一个选项符合题意。

1.月球表面的白天平均温度零上126C︒,记作+126C︒,夜间平均温度零下150C︒,应记作()A.+150C︒B.150C-︒C.+276C︒D.276C-︒2.图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()A.B.C.D.3.下列算式中,结果等于5a的是()A.23+a aC .23()aD .102a a ÷4.一元二次方程2520x x -+=根的判别式的值是( ) A .33 B .23 C .17D5.如图,在△ABC 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 于点E .若23AD BD ==,,则AEAC的值是( )A .25B .12C .35D .236.如图,AB ,AC 是圆O 的弦,OB ,OC 是圆PO 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒C .125︒D .155︒二、填空题每小题3分,共24分。

7.计算:8.不等式480x ->的解集为__________. 9.计算:(3)a b +=_________.10.如图,钢架桥的设计中采用了三角形的结构,其数学道理是__________.11.如图,在△ABC 中,AB AC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两孤交于点D ,作直线AD 交BC 于点E .若=110BAC ∠︒,则BAE ∠的大小为__________度.12.《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x 人,可列方程为__________.13.如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB ∠=︒,则弧AB 的长为_________m .(结果保留π)14.如图,在Rt ABC △中,90C BC AC ∠=︒<,.点D ,E 分别在边AB ,BC 上,连接DE ,将△BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,303CB E CE '∠=︒=,,则BC 的长为__________.三、解答题每小题5分,共20分。

2024年内蒙古包头市中考数学试题版,含答案

2024年内蒙古包头市中考数学试题版,含答案

2024年内蒙古包头市中考数学试题版,含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (其中c ≠ 0)2. 下列哪个数是二次根式?A. √5B. √5C. √(5^2)D. 5^(1/2)3. 若 x = 1 是方程 x^2 + kx + 1 = 0 的一个根,则 k 的值为多少?A. 2B. 0C. 2D. 无法确定4. 下列哪个函数是增函数?A. y = 2x + 3B. y = x^2C. y = 1/xD. y = x^25. 若 a、b 是实数,且a ≠ b,则下列哪个选项一定成立?A. a^2 = b^2B. a^3 = b^3C. a^2 + b^2 = 0D. a^3 + b^3 = 06. 若一组数据的平均数为 10,则这组数据的和为多少?A. 5B. 10C. 20D. 无法确定7. 若平行四边形的对角线互相垂直,则这个平行四边形是?A. 矩形B. 菱形C. 正方形D. 无法确定二、判断题(每题1分,共20分)1. 若 a > b,则 a c > b c。

()2. 任何实数的平方都是非负数。

()3. 方程 x^2 = 1 在实数范围内无解。

()4. 一次函数 y = kx + b(k ≠ 0)的图像是一条直线。

()5. 若 a、b 是实数,且a ≠ b,则a^2 ≠ b^2。

()6. 一组数据的平均数等于这组数据的和除以数据的个数。

()7. 平行四边形的对角线互相平分。

()8. 矩形的对角线相等。

()9. 菱形的对角线互相垂直。

()10. 正方形的对角线互相垂直且相等。

()三、填空题(每空1分,共10分)1. 若 a = 3,b = 2,则 a + b = ___________,a b =___________。

2022届浙江省杭州市中考数学考前冲刺试卷及答案解析

2022届浙江省杭州市中考数学考前冲刺试卷及答案解析

2022届浙江省杭州市中考数学考前冲刺试卷一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q2.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为()A.0.143×104B.1.43×103C.14.3×102D.143×103.下列图形中,是中心对称图形又是轴对称图形的是()A.B.C.D.4.在我县举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.70B.1.70,1.65C.1.65,1.70D.3,45.下列运算中,正确的是()A.3a2﹣a2=2B.(a2)3=a5C.a2•a3=a5D.(2a2)2=2a4 6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=137.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB =2,CD =3,则GH 长为( )A .1B .1.2C .2D .2.58.解分式方程1x−1+1=0,正确的结果是( )A .x =0B .x =1C .x =2D .无解9.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③−43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程ax 2+bx +c =n 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个10.如图,在矩形ABCD 中,AD =√2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF , 其中正确的有( )A .2个B .3个C .4个D .5个二、填空题11.因式分解:4a 3﹣16a = .12.规定:a ⊗b =(a +b )b ,如:2⊗3=(2+3)×3=15,若2⊗x =3,则x = . 13.从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是 .14.已知AB 是⊙O 的直径,弦CD ⊥AB 于点E ,弦PQ ∥AB 交弦CD 于点M ,BE =18,CD =PQ =24,则OM 的长为 .15.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC=67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 cm .16.如图所示,Rt △AOB 中,∠AOB =90°,OA =4,OB =2,点B 在反比例函数y =2x 图象上,则图中过点A 的双曲线解析式是 .三、解答题17.“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:分组前学生学习兴趣分组后学生学习兴趣请结合图中信息解答下列问题:(1)求出分组前学生学习兴趣为“高”的所占的百分比为;(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.18.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).①求直线BC的解析式.②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.19.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分.(1)求一次函数y=kx+b(k≠0)的表达式;(2)若△ACE的面积为11,求点E的坐标;(3)当∠CBE=∠ABO时,点E的坐标为.20.某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是;(2)求反比例函数y=kx的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x的值.21.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;22.在同一直角坐标系中画出二次函数y=13x2+1与二次函数y=−13x2﹣1的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点.23.如图1,已知O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△F′OE′(如图2).(1)探究AE'与BF'的数量关系,并给予证明;(2)当α=30°时,求证:△AOE'为直角三角形.2022届浙江省杭州市中考数学考前冲刺试卷参考答案与试题解析一、选择题1.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选:C.2.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为()A.0.143×104B.1.43×103C.14.3×102D.143×10【解答】解:1430=1.43×103,故选:B.3.下列图形中,是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形不是中心对称图形,是轴对称图形,故此选项错误;D、此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.在我县举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.70B .1.70,1.65C .1.65,1.70D .3,4【解答】解:在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70; 在这一组数据中1.65出现了4次,出现的次数最多,则众数是1.65; 所以这些运动员跳高成绩的中位数和众数分别是1.70,1.65. 故选:B .5.下列运算中,正确的是( ) A .3a 2﹣a 2=2B .(a 2)3=a 5C .a 2•a 3=a 5D .(2a 2)2=2a 4【解答】解:A 、3a 2﹣a 2=2a 2,故此选项错误; B 、(a 2)3=a 6,故此选项错误; C 、a 2•a 3=a 5,正确;D 、(2a 2)2=4a 4,故此选项错误; 故选:C .6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=13【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: {9x =11y (10y +x)−(8x +y)=13, 故选:D .7.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB =2,CD =3,则GH 长为( )A .1B .1.2C .2D .2.5【解答】解:∵AB ∥GH , ∴GH AB=CH BC,即GH 2=CH BC①,∵GH ∥CD , ∴GH CD=BH BC,即GH 3=BH BC②, ①+②,得GH 2+GH3=CH BC+BH BC=1,解得GH =1.2. 故选:B . 8.解分式方程1x−1+1=0,正确的结果是( )A .x =0B .x =1C .x =2D .无解【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选:A .9.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③−43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程ax 2+bx +c =n 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【解答】解:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴−b2a=1,∴b=﹣2a>0,∵与y轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c≤4,∴abc<0,故①错误,3a+b=3a+(﹣2a)=a<0,故②正确,∵与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴a﹣(﹣2a)+c=0,∴c=﹣3a,∴3≤﹣3a≤4,∴−43≤a≤﹣1,故③正确,∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确,一元二次方程ax2+bx+c=n有两个相等的实数根x1=x2=1,故⑤错误,综上所述,结论正确的是②③④共3个.故选:B.10.如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A .2个B .3个C .4个D .5个【解答】解:∵在矩形ABCD 中,AE 平分∠BAD , ∴∠BAE =∠DAE =45°, ∴△ABE 是等腰直角三角形, ∴AE =√2AB , ∵AD =√2AB , ∴AE =AD ,在△ABE 和△AHD 中, {∠BAE =∠DAE∠ABE =∠AHD =90°AE =AD, ∴△ABE ≌△AHD (AAS ), ∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12(180°﹣45°)=67.5°, ∴∠CED =180°﹣45°﹣67.5°=67.5°, ∴∠AED =∠CED ,故①正确;∵AB =AH ,∵∠AHB =12(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等), ∴∠OHE =67.5°=∠AED , ∴OE =OH ,∵∠DHO =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°, ∴∠DHO =∠ODH , ∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°, ∴∠EBH =∠OHD , 在△BEH 和△HDF 中, {∠EBH =∠OHD =22.5°BE =DH ∠AEB =∠HDF =45°, ∴△BEH ≌△HDF (ASA ), ∴BH =HF ,HE =DF ,故③正确;∵HE =AE ﹣AH =BC ﹣CD ,∴BC ﹣CF =BC ﹣(CD ﹣DF )=BC ﹣(CD ﹣HE )=(BC ﹣CD )+HE =HE +HE =2HE .故④正确;∵AB =AH ,∠BAE =45°, ∴△ABH 不是等边三角形, ∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个. 故选:C . 二、填空题11.因式分解:4a 3﹣16a = 4a (a +2)(a ﹣2) . 【解答】解:原式=4a (a 2﹣4)=4a (a +2)(a ﹣2), 故答案为:4a (a +2)(a ﹣2)12.规定:a ⊗b =(a +b )b ,如:2⊗3=(2+3)×3=15,若2⊗x =3,则x = 1或﹣3 . 【解答】解:依题意得:(2+x )x =3, 整理,得 x 2+2x =3, 所以 (x +1)2=4, 所以x +1=±2, 所以x =1或x =﹣3. 故答案是:1或﹣3.13.从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是23.【解答】解:由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是812=23.故答案为:2314.已知AB 是⊙O 的直径,弦CD ⊥AB 于点E ,弦PQ ∥AB 交弦CD 于点M ,BE =18,CD =PQ =24,则OM 的长为 5√2 .【解答】解:作OF ⊥PQ 于F ,连接OP , ∴PF =12PQ =12, ∵CD ⊥AB ,PQ ∥AB , ∴CD ⊥PQ ,∴四边形MEOF 为矩形, ∵CD =PQ ,OF ⊥PQ ,CD ⊥AB , ∴OE =OF ,∴四边形MEOF 为正方形, 设半径为x ,则OF =OE =18﹣x , 在直角△OPF 中, x 2=122+(18﹣x )2, 解得x =13,则MF =OF =OE =5, ∴OM =5√2. 故答案为:5√2.15.图甲是小明设计的带菱形图案的花边作品.该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙).图乙中AB BC=67,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 503cm .【解答】解:如图乙,H 是CF 与DN 的交点,取CD 的中点G ,连接HG ,,设AB =6acm ,则BC =7acm ,中间菱形的对角线HI 的长度为xcm , ∵BC =7acm ,MN =EF =4cm , ∴CN =7a+42, ∵GH ∥BC , ∴GH CN=DG DC,∴7a−x27a+42=12,∴x =3.5a ﹣2…(1);∵上下两个阴影三角形的面积之和为54cm 2, ∴6a •(7a ﹣x )÷2=54, ∴a (7a ﹣x )=18…(2); 由(1)(2),可得 a =2,x =5,∴CD =6×2=12(cm ),CN =7a+42=7×2+42=9(cm), ∴DN =√122+92=15(cm ),又∵DH =√DG 2+GH 2=√62+(7×2−52)2=7.5(cm ), ∴HN =15﹣7.5=7.5(cm ), ∵AM ∥FC , ∴KN HK=MN CM =49−4=45,∴HK =54+5×7.5=256(cm), ∴该菱形的周长为:256×4=503(cm ). 故答案为:503.16.如图所示,Rt △AOB 中,∠AOB =90°,OA =4,OB =2,点B 在反比例函数y =2x图象上,则图中过点A 的双曲线解析式是 y =−8x .【解答】解:设点B 的坐标是(m ,n ), 因为点B 在函数y =2x 的图象上,则mn =2, 则BD =n ,OD =m ,则AC =2m ,OC =2n ,设过点A 的双曲线解析式是y =kx ,A 点的坐标是(﹣2n ,2m ), 把它代入得到:2m =k−2n , 则k =﹣4mn =﹣8,则图中过点A 的双曲线解析式是y =−8x . 故答案为:y =−8x .三、解答题17.“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:分组前学生学习兴趣分组后学生学习兴趣请结合图中信息解答下列问题:(1)求出分组前学生学习兴趣为“高”的所占的百分比为30%;(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.【解答】解:(1)1﹣25%﹣25%﹣20%=30%,故答案为:30%;(2)100﹣30﹣35﹣5=30(人),分组后学生学习兴趣的统计图如下:(3)分组前学生学习兴趣“中”的有100×25%=25(人),分组后提高了30﹣25=5(人);分组前学生学习兴趣“高”的有100×30%=30(人),分组后提高了35﹣30=5(人); 分组前学生学习兴趣为“极高”的有100×25%=25(人),分组后提高了30﹣25=5(人), 2000×5+5+5100=300(人). 答:全校2000名学生中学习兴趣获得提高的学生有300人,“分组合作学习”大大提高了学生的学习兴趣,要全力推行这种课堂教学模式. 18.已知抛物线y =x 2+bx ﹣3(b 是常数)经过点A (﹣1,0). (1)求该抛物线的解析式和顶点坐标;(2)抛物线与x 轴另一交点为点B ,与y 轴交于点C ,平行于x 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3). ①求直线BC 的解析式.②若x 3<x 1<x 2,结合函数的图象,求x 1+x 2+x 3的取值范围.【解答】解:(1)把A (﹣1,0)代入y =x 2+bx ﹣3得1﹣b ﹣3=0,解得b =﹣2, ∴抛物线解析式为y =x 2﹣2x ﹣3, ∵y =(x ﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(2)①当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则B (3,0), 当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3), 设直线BC 的解析式为y =mx +n ,把B (3,0),C (0,﹣3)代入得{3m +n =0n =−3,解得{m =1n =−3,∴直线BC 的解析式为y =x ﹣3; ②如图,x 2﹣1=1﹣x 1, ∴x 1+x 2=2, ∴x 1+x 2+x 3=2+x 3, ∵y 3<﹣3,即x 3﹣3<﹣3, ∴x 3<0,∵y =﹣4时,x ﹣3=﹣4,解得x =﹣1, ∴﹣1<x 3<0, ∴1<x 1+x 2+x 3<2.19.如图,一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (﹣9,0),B (0,6)两点,过点C (2,0)作直线l 与BC 垂直,点E 在直线l 位于x 轴上方的部分. (1)求一次函数y =kx +b (k ≠0)的表达式; (2)若△ACE 的面积为11,求点E 的坐标;(3)当∠CBE =∠ABO 时,点E 的坐标为 (11,3) .【解答】解:(1)∵一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (﹣9,0),B (0,6)两点, ∴{−9k +b =0b =6, ∴{k =23b =6, ∴一次函数y =kx +b 的表达式为y =23x +6;(2)如图,记直线l 与y 轴的交点为D , ∵BC ⊥l ,∴∠BCD =90°=∠BOC ,∴∠OBC +∠OCB =∠OCD +∠OCB , ∴∠OBC =∠OCD , ∵∠BOC =∠COD , ∴△OBC ∽△OCD ,∴OB OC =OC OD ,∵B (0,6),C (2,0),∴OB =6,OC =2,∴62=2OD, ∴OD =23,∴D (0,−23),∵C (2,0),∴直线l 的解析式为y =13x −23,设E (t ,13t −23), ∵A (﹣9,0),C (2,0),∴S △ACE =12AC ×y E =12×11×(13t −23)=11, ∴t =8,∴E (8,2);(3)如图,过点E 作EF ⊥x 轴于F ,连接BE ,∵∠ABO =∠CBE ,∠AOB =∠BCE =90°∴△ABO ∽△EBC ,∴BC CE =BO AO =23, ∵∠BCE =90°=∠BOC ,∴∠BCO +∠CBO =∠BCO +∠ECF ,∴∠CBO =∠ECF ,∵∠BOC =∠EFC =90°,∴△BOC ∽△CFE ,∴BO CF =OC EF =BC CE =23, ∴6CF =2EF =23,∴CF =9,EF =3,∴OF =11,∴E (11,3).故答案为(11,3).20.某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min ,之后将对泄漏有害气体进行清理,线段DE 表示气体泄漏时车间内危险检测表显示数据y 与时间x (min )之间的函数关系(0≤x ≤40),反比例函数y =k x 对应曲线EF 表示气体泄漏控制之后车间危险检测表显示数据y 与时间x (min )之间的函数关系(40≤x ≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是 20 ;(2)求反比例函数y =k x 的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解答】解:(1)当0≤x ≤40时,y 与x 之间的函数关系式为y =ax +b ,{10a +b =3530a +b =65,得{a =1.5b =20, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20,故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80),∵点E 在反比例函数y =k x 的图象上,∴80=k 40,得k =3200, 即反比例函数y =3200x, 当y =20时,20=3200x ,得x =160, 即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.21.已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC .(1)求证:AB =AC ;【解答】(1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,(∵∠EDC +∠ADE =180°,∠B +∠ADE =180°,∴∠EDC =∠B ) ∴∠B =∠C ,∴AB =AC ;(2)方法一:解:连接AE ,∵AB 为直径,∴AE ⊥BC ,由(1)知AB =AC ,∴BE =CE =12BC =√3,∵△CDE ∽△CBA ,∴CD CB =CE AC ,∴CE •CB =CD •CA ,AC =AB =4,∴√3•2√3=4CD ,∴CD =32.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2√3)2﹣a2∴42﹣(4﹣a)2=(2√3)2﹣a2整理得:a=3 2,即:CD=3 2.22.在同一直角坐标系中画出二次函数y=13x2+1与二次函数y=−13x2﹣1的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点.【解答】解:如图:,(1)y=13x2+1与y=−13x2﹣1的相同点是:形状都是抛物线,对称轴都是y轴,y=13x2+1与y=−13x2﹣1的不同点是:y=13x2+1开口向上,顶点坐标是(0,1),y=−13x2﹣1开口向下,顶点坐标是(0,﹣1);(2)性质的相同点:开口程度相同,不同点:y=13x2+1 当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;y=−13x2﹣1当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.23.如图1,已知O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△F′OE′(如图2).(1)探究AE'与BF'的数量关系,并给予证明;(2)当α=30°时,求证:△AOE'为直角三角形.【解答】(1)证明:∵O为正方形ABCD的中心,∴OA=OD,∵OF=2OA,OE=2OD,∴OE=OF,∵将△EOF绕点O逆时针旋转α角得到△E′OF′,∴OE ′=OF ′,∵∠F ′OB =∠E ′OA ,OA =OB , 在△E ′AO 和△F ′BO 中,{OE′=OF′∠F′OB =∠E′OA OA =OB,∴△E ′AO ≌△F ′BO (SAS ),∴AE ′=BF ′;(2)证明:∵取OE ′中点G ,连接AG , ∵∠AOD =90°,α=30°,∴∠E ′OA =90°﹣α=60°,∵OE ′=2OA ,∴OA =OG ,∴∠E ′OA =∠AGO =∠OAG =60°, ∴AG =GE ′,∴∠GAE ′=∠GE ′A =30°,∴∠E ′AO =90°,∴△AOE ′为直角三角形.。

2022-2023学年安徽省安庆市区二十二校联考中考冲刺卷数学试题含解析

2022-2023学年安徽省安庆市区二十二校联考中考冲刺卷数学试题含解析

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若代数式21x 有意义,则实数x 的取值范围是( ) A .x >0 B .x≥0 C .x≠0 D .任意实数2.如图,从圆O 外一点P 引圆O 的两条切线PA ,PB ,切点分别为A ,B ,如果60APB ∠=, 8PA =,那么弦AB 的长是( )A .4B .43C .8D .833.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在EF 上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=k x(k 为常数,k≠0,x >0) D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0)4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)5.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个6.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是()A.60°B.45°C.35°D.30°7.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥48.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C .D .9.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°10.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( )A .120°B .135°C .150°D .165°二、填空题(共7小题,每小题3分,满分21分)11.在实数范围内分解因式:226x - =_________12.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为______.13.出售某种手工艺品,若每个获利x 元,一天可售出(8)x -个,则当x=_________元,一天出售该种手工艺品的总利润y 最大.14.当03x ≤≤时,直线y a =与抛物线2(1)3y x =﹣﹣有交点,则a 的取值范围是_______. 15.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB =8,∠CAB =22.5°,则 CD 的长等于___________________________.16.已知16x x +=,则221x x+=______ 17.如图所示,轮船在A 处观测灯塔C 位于北偏西70︒方向上,轮船从A 处以每小时20海里的速度沿南偏西50︒方向匀速航行,1小时后到达码头B 处,此时,观测灯塔C 位于北偏西25︒方向上,则灯塔C 与码头B 的距离是______海里(结果精确到个位,参考数据:2 1.4≈,3 1.7≈,012200111:(,),()323x p x x ∃∈=)三、解答题(共7小题,满分69分)18.(10分)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;以点B为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直接写出C 2点的坐标及△A 2BC 2的面积.19.(5分)如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (15,22)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C .(1)B 点坐标为 ,并求抛物线的解析式;(2)求线段PC 长的最大值;(3)若△PAC 为直角三角形,直接写出此时点P 的坐标.20.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=kx相交于A,B两点,已知A(2,5).求:b和k的值;△OAB的面积.21.(10分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。

2024年山东省淄博市中考数学真题(含答案)

2024年山东省淄博市中考数学真题(含答案)

2024年山东省淄博市中考数学试题一、选择题(本大题共10小题,每题4分,共40分)1.(4分)下列运算结果是正数的是( )A.3﹣1B.﹣32C.﹣|﹣3|D.−32.(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(4分)我国大力发展新质生产力,推动了新能源汽车产业的快速发展.据中国汽车工业协会发布的消息显示.2024年1至3月,我国新能源汽车完成出口30.7万辆.将30.7万用科学记数法表示为3.07×10n.则n的值是( )A.4B.5C.6D.74.(4分)如图,已知AD∥BC,BD平分∠ABC.若∠A=110°,则∠D的度数是( )A.40°B.36°C.35°D.30°5.(4分)数学兴趣小组成员小刚对自己的学习质量进行了测试.如图是他最近五次测试成绩(满分为100分)的折线统计图,那么其平均数和方差分别是( )A.95分,10B.96分,10C.95分,10D.96分,106.(4分)如图,在综合与实践活动课上,小强先测得教学楼在水平地面上的影长BC为35m.又在点C处测得该楼的顶端A的仰角是29°.则用科学计算器计算教学楼高度的按键顺序正确的是( )A.B.C.D.7.(4分)如图,其大意为:已知矩形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸)若设门的高和宽分别是x尺和y尺.则下面所列方程组正确的是( )A.x=y−6.8x2+102=y2B.x=y−6.8x2+y2=102C.x=y+6.8x2+102=y2D.x=y+6.8x2+y2=1028.(4分)如图所示,在矩形ABCD中,BC=2AB,点M,N分别在边BC,AD上.连接MN,将四边形CMND沿MN翻折,点C,D分别落在点A,E处.则tan∠AMN的值是( )A.2B.2C.3D.59.(4分)如图所示,正方形ABCD与AEFG(其中边BC,EF分别在x,y轴的正半轴上)的公共顶点A在反比例函数y=kx的图象上,直线DG与x,y轴分别相交于点M,N.若这两个正方形的面积之和是152,且MD=4GN.则k的值是( )A.5B.1C.3D.210.(4分)某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从A地匀速出发,甲健步走向B地.途中偶遇一位朋友,驻足交流10min后,继续以原速步行前进;乙因故比甲晚出发30min,跑步到达B地后立刻以原速返回,在返回途中与甲第二次相遇.如图表示甲、乙两人之间的距离y(m)与甲出发的时间x(min)之间的函数关系.那么以下结论:①甲、乙两人第一次相遇时,乙的锻炼用时为20min;②甲出发86min时,甲、乙两人之间的距离达到最大值3600m;③甲、乙两人第二次相遇的时间是在甲出发后100min;④A,B两地之间的距离是11200m.其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④二、填空题(共5小题,每题4分,共20分)11.(4分)计算:27−23= .12.(4分)如图,已知A,B两点的坐标分别为A(﹣3,1),B(﹣1,3),将线段AB平移得到线段CD.若点A的对应点是C(1,2),则点B的对应点D的坐标是 .13.(4分)若多项式4x 2﹣mxy +9y 2能用完全平方公式因式分解,则m 的值是 .14.(4分)如图,在边长为10的菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 在BC延长线上,OE 与CD 相交于点F .若∠ACD =2∠OEC ,OF FE =56,则菱形ABCD 的面积为 .15.(4分)如图,在平面直角坐标系中,作直线x =i (i =1,2,3,…)与x 轴相交于点A i ,与抛物线y =14x 2相交于点B i ,连接A i B i +1,B i A i +1相交于点∁i ,得△A i B i ∁i 和△A i +1B i +1∁i ,若将其面积之比记为a i =S △A i B i c i S △A i +1+B i +1c i ,则a 2024= .三、解答题(共8题90分)16.(10+2x <−32x +4<1+2x,并求所有整数解的和.17.(10分)如图,已知AB =CD ,点E ,F 在线段BD 上,且AF =CE .请从①BF =DE ;②∠BAF =∠DCE ;③AF =CF 中.选择一个合适的选项作为已知条件,使得△ABF ≌△CDE .你添加的条件是: (只填写一个序号).添加条件后,请证明AE∥CF.18.(10分)化简分式:a2−b2a2−2ab+b2+1−a−ba−b,并求值(请从小宇和小丽的对话中确定a,b的值)19.(10分)希望中学做了如下表的调查报告(不完整):调查目的了解本校学生:(1)周家务劳动的时间;(2)最喜欢的劳动课程调查方式随机问卷调查随机问卷调直调查对象随机问卷调直部分七年级学生(该校所有学生周家务劳动时间都在1~3.5h范围内)调查内容(1)你的周家条劳动时间(单位,h)是①1~1.5②1.5~2③2~2.5④2.5~3⑤3~3.5(2)你最喜欢的劳动课程是(必选且只选一门)A.家政B.烹饪C.剪纸D.园艺E.陶艺调查结果结合调查信息,回答下列问题:(1)参与本次问卷调查的学生人数 名;在扇形统计图中,第④组所对应扇形的圆心角的度数为 度;(2)补全周家务劳动时间的频数分布直方图;(3)若该校七年级学生共有800人,请估计最喜欢“烹饪”课程的学生人数;(4)小红和小颖分别从“家政”等五门最喜欢的劳动课程中任选一门学习,请用列表法或画树状图的方法,求两人恰好选到同一门课程的概率.20.(12分)“我运动,我健康,我快乐!”随着人们对身心健康的关注度越来越高.某市参加健身运动的人数逐年增多,从2021年的32万人增加到2023年的50万人.(1)求该市参加健身运动人数的年均增长率;(2)为支持市民的健身运动,市政府决定从A公司购买某种套装健身器材.该公司规定:若购买不超过100套,每套售价1600元;若超过100套,每增加10套,售价每套可降低40元.但最低售价不得少于1000元.已知市政府向该公司支付货款24万元,求购买的这种健身器材的套数.21.(12分)如图,一次函数y=k1x+2的图象与反比例函数y=k2x的图象相交于A(m,4),B两点,与x,y轴分别相交于点C,D.且tan∠ACO=2.(1)分别求这两个函数的表达式;(2)以点D为圆心,线段DB的长为半径作弧与x轴正半轴相交于点E,连接AE,BE.求△ABE的面积;(3)根据函数的图象直接写出关于x的不等式k1x+2>k2x的解集.22.(13分)在综合与实践活动课上,小明以“圆”为主题开展研究性学习.【操作发现】小明作出了⊙O的内接等腰三角形ABC,AB=AC.并在BC边上任取一点D(不与点B,C重合),连接AD,然后将△ABD绕点A逆时针旋转得到△ACE.如图①小明发现:CE与⊙O的位置关系是 ,请说明理由:【实践探究】连接DE,与AC相交于点F.如图②,小明又发现:当△ABC确定时,线段CF的长存在最大值.请求出当AB=310,BC=6时,CF长的最大值;【问题解决】在图②中,小明进一步发现:点D分线段BC所成的比CD:DB与点F分线段DF所成的比DF:FE始终相等.请予以证明.23.(13分)如图,抛物线y=ax2+bx+3与x轴相交于A(x1,0),B(x2,0)两点(点A在点B的左侧),其中x1,x2是方程x2﹣2x﹣3=0的两个根,抛物线与y轴相交于点C.(1)求该抛物线对应的函数表达式;(2)已知直线l:y=3x+9与x,y轴分别相交于点D,E.①设直线BC与l相交于点F,问在第三象限内的抛物线上是否存在点P,使得∠PBF=∠DFB?若存在,求出点P的坐标;若不存在,说明理由;②过抛物线上一点M作直线BC的平行线.与抛物线相交于另一点N.设直线MB,NC 相交于点Q.连接QD,QE.求线段QD+QE的最小值.2024年山东省淄博市中考数学试题参考答案一、选择题(本大题共10小题,每题4分,共40分)1.A 2.C 3.B 4.C 5.D 6.A7.D 8.A 9.C 10.B二、填空题(共5小题,每题4分,共20分)11.312.(3,4)13.±12 14.96 15.(20242025)4三、解答题(共8题90分)16.(10+2x<−32x+4①<1+2x②,解不等式①得:x<1;解不等式②得:x>﹣4,∴原不等式组的解集﹣4<x<1,∴不等式组所有整数解的和为﹣3+(﹣2)+(﹣1)+0=﹣6.17.(10分)解:当选择①BF=DE时,△ABF≌△CDE,证明如下:在△ABF和△CDE中,AB=CDAF=CEBF=DE,∴△ABF≌△CDE(SSS),∴∠B=∠D,∴AE∥CF;当选择②∠BAF=∠DCE时,△ABF≌△CDE,证明如下:在△ABF和△CDE中,AB=CD∠BAF=∠DCEAF=CE,∴△ABF≌△CDE(SAS);∴∠B=∠D,∴AE∥CF;当选择③AF=CF时,不能判定△ABF≌△CDE,故答案为:①(答案不唯一).18.(10分)解:由对话可得a =﹣3,b =2,原式=(a +b)(a−b)(a−b )2+1−a−b a−b =a +b a−b +1−a−b a−b =1a−b,当a =﹣3,b =2时,原式=1−3−2=−15.19.(10分)解:(1)参与本次问卷调查的学生人数为20÷20%=100(名).在扇形统计图中,第④组所对应扇形的圆心角的度数为360°×35100=126°.故答案为:100;126.(2)周家条劳动时间是③2~2.5的人数为100﹣10﹣20﹣35﹣10=25(人).补全周家务劳动时间的频数分布直方图如图所示.(3)800×100−18−20−24−16100=176(人).∴估计最喜欢“烹饪”课程的学生人数约176人.(4)列表如下:A B C D E A(A ,A )(A ,B )(A ,C )(A ,D )(A ,E )B(B ,A )(B ,B )(B ,C )(B ,D )(B ,E )C(C ,A )(C ,B )(C ,C )(C ,D ) (C ,E )D (D ,A )(D ,B )(D ,C )(D ,D ) (D ,E )E(E,A)(E,B)(E,C)(E,D)(E,E)共有25种等可能的结果,其中两人恰好选到同一门课程的结果有5种,∴两人恰好选到同一门课程的概率为525=15.20.(12分)解:(1)设该市参加健身运动人数的年均增长率为x,由题意得:32(1+x)2=50,解得:x1=0.25=25%,x2=﹣2.25(不符合题意,舍去),答:该市参加健身运动人数的年均增长率为25%;(2)设购买的这种健身器材的套数为m套,由题意得:m(1600−m−10010×40)=240000,整理得:m2﹣500m+60000=0,解得:m1=200,m2=300(不符合题意,舍去),答:购买的这种健身器材的套数为200套.21.(12分)解:(1)由y=k1x+2得D(0,2),∵tan∠ACO=2,∴DOCO=2,∴C(﹣1,0),代入y=k1x+2得k1=2,∴一次函数解析式为y=2x+2.过A作AM⊥x轴,如图1.∴tan∠ACO=AMCM=2,∵AM=4,∴CM=2,∴OM=1,∴A(1,4),代入y=k2x得k2=4,∴反比例函数解析式为y=4x .(2)如图2:过A 作AN ∥y 轴,交BE 于N .联立y =2x +2和y =4x 得x 2+x ﹣2=0,∴x =﹣2或1,∴B (﹣2,﹣2).∴BD =(−2−0)2+(−2−2)2=25,∴DE =DB =25,∴OE =DE 2−OD 2=4,∴E (4,0),设直线BE 解析式为y =mx +n ,∴4m +n =0−2m +n =−2,∴m =13,n =−43,∴直线BE 解析式为y =13x −43,∴N (1,﹣1),∴△ABE 面积=12(4+1)(4+2)=15.(3)看图得:当﹣2<x<0或x>1时,k1x+2>k2x,即2x+2>4x.22.(13分)解:操作发现:连接CO并延长交⊙O于点M,连接AM,∵MC是⊙O直径,∴∠MAC=90°,∴∠AMC+∠ACM=90°由旋转的性质得∠B=∠ACE,∵∠B=∠AMC,∴∠ACE=∠AMC,∵OCE=∠ACM+∠ACE=∠ACM+∠AMC=90°,∵OC是⊙O的半径,∴CE与⊙O相切;实践探究:由旋转的性质得:∠BAD=∠CAE,AD=AE,∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE,∵AB=AC,∴ABAD=ACAE,∴△ABC∽△ADE,∴∠B=∠ADE=∠ACB,∵∠ADC=∠ADE+∠CDF=∠B+∠BAD,∴∠CDF=∠BAD,∴△ABD∽△DCF,∴ABCD=BDCF,设BD=x,则CD =6﹣x ,∴3106−x =x CF,∴CF =1030x (6﹣x )=−1030(x ﹣3)2+31010,∵−1030<0,∴当x =3时,CF 有最大值为31010;问题解决:证明:过点E 作EN ∥BC 交AC 于点N ,∴∠ENC =∠ACB ,由旋转的性质知:∠B =∠ACE ,∵∠B =∠ACB ,∴∠ACB =∠ACE ,∴∠ENC =∠ACE ,∴EN =CE ,由旋转的性质得:△ABD ≌△ACE ,∴BD =CE ,∴BD =EN ,∵EN ∥BC ,∴△CDF ∽△NEF ,∴CD EN =DF EF ,∵BD =EN ,∴CD BD =DFEF .23.(13分)解:(1)∵x 1,x 2是x 2﹣2x ﹣3=0的两个根,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵抛物线y=ax2+bx+3与x轴相交于A、B两点,∴a−b+3=09a+3b+3=0,解得a=−1b=2,∴抛物线函数表达式为y=﹣x2+2x+3;(2)①存在,理由如下:∵直线y=3x+9与x、y轴分别交于点D、E,∴x=0时,y=9,y=0时,3x+9=0,x=﹣3,∴点D(﹣3,0)、E(0,9),∴OD=3,OE=9,∴tan∠OED=ODOE=13,由抛物线可知:当x=0时,y=3,∴C(0,3),∴OB=OC=3,∴∠OBC=∠OCB=45°,∴∠FCE=∠OCB=45°,∵∠DFB是△CEF的外角,∴∠DFB=∠FCE+∠FEC=45°+∠FEC,∵∠DFB=∠PBF=∠CBO+∠PBQ=45°+∠PBQ,∴∠PBQ=∠FEC,∴tan∠PBQ=PQBQ=13,设P(m,﹣m2+2m+3),则BQ=3﹣m,PQ=m2﹣2m﹣3,∴m2−2m−33−m=13,∴m=3(舍去)或−43,∴P(−43,−139);②∵过抛物线上一点M作直线BC的平行线,与抛物线相交于另一点N,设M(x1,y1),N(x2,y2),设直线MN的解析式为:y=﹣x+n,设直线BM的解析式为y=k1x+m,将B(3,0)代入得3k1+m=0,解得:m=﹣3k1,∴直线BM的解析式为y=k1x﹣3k1,设直线CN的解析式为y=k2x+m1,将C(0,3)代入得m1=3,∴直线CN的解析式为y=k2x+3;,得x2﹣3x+n﹣3=0,联立方程组y=−x+ny=−x2+2x+3∴x1+x2=3,将M(x1,y1)代入y=k1x﹣3k1,y=﹣x2+2x+3 得:y1=k1x−3k1,y1=−x12+2x1+32+(k1﹣2)x﹣3(k1+1)=0,∴x1∴(x1﹣3)[x1+(k1+1)]=0,解得:k1=﹣1﹣x1,将N(x2,y2)代入y=k2x+3,y=﹣x2+2x+3 得:y2=k2x2+3,y2=−x22+2x2+32+(k2﹣2)x2=0,∴x2∴x2(x2+k2﹣2)=0,解得:k2=2﹣x2,联立方程组y=k2x+3y=k1x−3k1,得出x Q=3(1+k1)k1−k2=3[1+(−1−x1)]−1−x1−(2−x2)=−3x1−3+x2−x1=−3x1−3+3−x1−x1=32,∴点Q在直线x=32上运动,在y=3x+9中,令x=0,则y=9,即E(0,9),如图,作点E关于直线x=32的对称点E',连接DE'交直线x=32于Q',连接EQ',则E'(3,9),由轴对称性质可得EQ'=EQ',∴QD+QE的最小值=DQ'+EQ'=DQ'+E'Q'=DE',由两点之间线段最短可得:线段QD+QE的最小值为DE',∵DE'=[3−(−3)]2+(9−0)2=313,∴线段QD+QE的最小值为313.。

中考数学专题复习32套测试题(7)四边形

中考数学专题复习32套测试题(7)四边形

四边形(时间:90分钟分值:120分)一、选择题(每小题5分、共50分)1、如图(1)在平行四边形ABCD中、E F∥AB、GH∥AD 、EF与GH交于点O、则该图中的平行四边形的个数共有()A 7个B 8个 C9个 D 11个2、如图(2)正方形的网格中、∠1+∠2+∠3+∠4+∠5等于()A 175°B 180°C 210°D 225°3、如图(3)AB∥CD、AE⊥DC、AE=12、BD=15、AC=20、则s梯形ABCD=( )A 130B 140C 150D 1604、如图(4)长方形纸片ABCD中、AD=9、AB=3、将其折叠使其点D与点B重合、折痕为EF、那么DE和EF的长分别是()A 4 10B 4 23C 5 10D 5 225、如图(5)所示、菱形ABCD的周长为40㎝、∠BAD=120°、则对角线AC的长为()A 5㎝ B 53㎝ C 10㎝ D 103㎝6、顺次连接等腰梯形四条边的中点得到一个四边形、再顺次连接所得四边形四边的中点得到的图形是()A 等腰梯形B 直角梯形C 菱形D 矩形7、如图(7)在四边形ABCD中、E是AB上一点、EC∥AD、DE∥BC、若s BEC=1、s ADE=3、则s CDE等于()A 3B 2C 2D 3/28、如图(8)将5个边长为2㎝的正方形按图所示摆放、点A B C D 分别是四个正方形的中心、则图形中四块阴影部分面积的和为A 2cm2B 4 cm2C 6 cm2D 8 cm29、在如图几何体中、上下底面都是平行四边形、各个侧面都是梯形、那么图形中和下底面平行的直线有()条A 1B 2C 4D 810、如图 ABP与 CDP是两个全等的等边三角形、且 AP⊥PD、有下列四个结论:①∠PBC=15°②AD∥BC ③CP⊥AB ④四边形ABCD 是轴对称图形、其中正确的结论个数为()A 1个B 2个C 3个D 4 个二、填空题(每小题5分、共20分)1、如图、P是正方形ABCD内一点、将 BCP绕点B顺时针旋转使BC边与AB重合、若AP:PB=1:2、∠APB=135°则tg∠PAE=2、在直角梯形ABCD中、AD∥BC、∠B=90°、AC将梯形分成两个三角形、其中三角形ACD是周长为18㎝的等边三角形、则该梯形的中位线为㎝3、如图、将一张等腰直角三角形纸片沿中位线剪开、可以拼出不同形状的四边形、请写出其中两个不同的四边形的名称:4、如图平行四边形ABCD中、AB=6、BC=4、∠ABC=60°要用一个矩形的铝板切割出这样的平行四边形并使废料最少、则矩形的面积最小为三、解答题(各题分值为:10/ 12/ 15/ 13/共50分)1、如图、在梯形ABCD中、AD//BE、AD>CD将此纸片沿过点D的直线折叠、使点C落在AD上的点C′处、折痕DE交BC于点E、连结C'E (1)求证:四边形CDC'E是菱形(2)若BC=CD+AD、试判断四边形ABED的形状、并加以证明2、如图、四边形ABCD是正方形、 ECF是等腰直角三角形、其中CE=CF、G是CD与EF的交点。

中考补考数学试卷及答案

中考补考数学试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √-42. 已知a、b是实数,且a+b=0,那么ab的值为()A. 1B. -1C. 0D. 无法确定3. 下列函数中,一次函数是()A. y = x^2 + 1B. y = 2x - 3C. y = 3x + 4xD. y = 5x^3 + 24. 在直角坐标系中,点P(-2,3)关于x轴的对称点为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 等腰三角形6. 若等边三角形的边长为6,则其高为()A. 3B. 4C. 6D. 97. 下列各式中,正确的是()A. (-2)^3 = -8B. (-2)^2 = -4C. (-2)^0 = -1D. (-2)^1 = 28. 若a=3,b=5,则a^2 + b^2的值为()A. 28B. 34C. 49D. 589. 下列方程中,一元二次方程是()A. x^2 + 2x + 1 = 0B. 2x + 3 = 5C. 3x - 4 = 0D. 4x^2 + 5x - 6 = 010. 若等腰三角形的底边长为10,腰长为12,则其周长为()A. 22B. 24C. 26D. 28二、填空题(每题4分,共20分)11. 若a=5,b=-3,则a-b的值为______。

12. 一次函数y=kx+b(k≠0)的图象经过点(1,-2),则k的值为______。

13. 若∠ABC=90°,AB=6,BC=8,则AC的长度为______。

14. 下列各数中,负数是______。

15. 若a=2,b=3,则(a+b)^2的值为______。

三、解答题(共50分)16. (12分)已知方程2x^2 - 5x + 2 = 0,求x的值。

17. (12分)已知直角三角形ABC中,∠C=90°,AB=10,BC=6,求斜边AC的长度。

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)

中考数学复习专题复习训练试题汇总(附答案)一、代数部分1. 题目:求解一元二次方程 $ x^2 3x + 2 = 0 $ 的解。

答案:$ x_1 = 1, x_2 = 2 $。

2. 题目:求解一元二次方程 $ x^2 + 4x 5 = 0 $ 的解。

答案:$ x_1 = 5, x_2 = 1 $。

3. 题目:求解一元二次方程 $ x^2 5x + 6 = 0 $ 的解。

答案:$ x_1 = 2, x_2 = 3 $。

二、几何部分1. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ AC = 4 $,求 $ BC $ 的长度。

答案:$ BC = 5 $。

2. 题目:求直角三角形 $ ABC $ 中,已知 $ BC = 5 $,$ AC = 4 $,求 $ AB $ 的长度。

答案:$ AB = 3 $。

3. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ BC =4 $,求 $ AC $ 的长度。

答案:$ AC = 5 $。

三、应用题部分1. 题目:某工厂生产的产品,每件成本为 50 元,销售价为 80 元。

已知该工厂生产 100 件产品的总成本为 5000 元,求该工厂生产的产品数量。

答案:该工厂生产的产品数量为 100 件。

2. 题目:某商店销售一款商品,原价为 100 元,打 8 折后的售价为 80 元。

求该商品的折扣率。

答案:该商品的折扣率为 20%。

3. 题目:某水果店购买一批苹果,每千克进价为 5 元,销售价为 10 元。

已知该水果店购买了 100 千克苹果,求该水果店的利润。

答案:该水果店的利润为 500 元。

中考数学复习专题复习训练试题汇总(附答案)四、函数部分1. 题目:已知一次函数 $ y = 2x + 1 $,求 $ x = 3 $ 时的$ y $ 值。

答案:当 $ x = 3 $ 时,$ y = 7 $。

2. 题目:已知二次函数 $ y = x^2 4x + 4 $,求该函数的顶点坐标。

甘肃省2023年中考:《数学》考试真题与参考答案

甘肃省2023年中考:《数学》考试真题与参考答案

甘肃省中考数学科目:2023年考试真题与参考答案适用:平凉、天水、武威临夏、庆阳、定西、白银目录选择题…………01页填空题…………05页解答题…………07页参考答案………13页甘肃省2023年中考:《数学》考试真题与参考答案一、选择题本大题共10小题,每小题3分,共30分,在以下每小题给出的四个选项中,只有一个正确选项。

1.9的算术平方根是( ) A.3± B.9± C.3D.3- 2.若32a b=,则ab =( ) A.6 B.32C.1D.233.计算:()22a a a +-=( ) A.2 B.2a C.22a a +D.22a a -4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为( ) A.2- B.1-C.12-D.25.如图,BD 是等边ABC △的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=( )A.20︒B.25︒C.30︒D.35︒ 6.方程211x x =+的解为( ) A.2x =- B.2x = C.4x =-D.4x =7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为( )A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( ) 年龄范围(岁)人数(人)90-91 2592-93 94-95 96-97 11 98-99 10 100-101 mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92-93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96-97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”。

2024年江苏省扬州市中考真题数学试卷含答案解析

2024年江苏省扬州市中考真题数学试卷含答案解析

2024年江苏省扬州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数2的倒数是( )A .2-B .2C .12-D .122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是( )A .B .C .D .【答案】C【分析】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,进行分析即可.【详解】解:A ,B ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C .3.下列运算中正确的是( )A .222()a b a b -=-B .523a a a -=C .()235a a =D .236326a a a ⋅=【答案】B【分析】本题考查了乘法公式,合并同类项,幂的乘方,同底数幂乘法,掌握整式的混合运算法则是解题的关键.【详解】解:A 、()2222a b a ab b -=-+,原选项错误,不符合题意;B 、523a a a -=,正确,符合题意;C 、()236a a =,原选项错误,不符合题意;D 、2353·26a a a =,原选项错误,不符合题意;故选:B .4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力4.3 4.4 4.5 4.6 4.7 4.8 4.95.0人数7447111053这45名同学视力检查数据的众数是( )A .4.6B .4.7C .4.8D .4.9【答案】B【分析】本题主要考查了众数的定义,在一组数据中出现最多的数,叫做众数,根据众数的定义进行判断即可.【详解】解:这45名同学视力检查数据中,4.7出现的次数最多,因此众数是4.7.故选:B .5.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是( )A .()1,2B .()1,2-C .()1,2-D .()1,2--【答案】D【分析】根据关于原点对称的点的坐标特征:横坐标、纵坐标都变为相反数,即可得答案.【详解】∵点()1,2P 关于原点的对称点为P',∴P'的坐标为(-1,-2),故选D .【点睛】本题考查关于原点对称的点的坐标,其坐标特征为:横坐标、纵坐标都变为相反数.6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了几何图形展开的识别,理解并掌握几何展开图的特点与立体图形的关系是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴三棱柱,故选:C .7.在平面直角坐标系中,函数42=+yx的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A .676B .674C .1348D .1350【答案】D【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.本题主要考查的是数字规律类问题,发现这列数的变化规律是解题的关键.【详解】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= ,即前2024个数共有674组,且余2个数,∴奇数有674221350⨯+=个.故选:D 二、填空题9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为 .【答案】71.8710⨯【分析】根据科学记数法的要求,将18700000变为10(110)n a a ⨯<≤,分别确定a 和n 的值即可.本题考查了科学记数法,其表示形式为10(110)n a a ⨯<≤,正确确定a 和n 的值是解答本题的关键.n 是整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】718700000 1.8710=⨯,故答案为:71.8710⨯.10.分解因式:2242a a -+= .【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于(精确到0.01).【答案】0.53【分析】本题考查了利用频率估计概率的知识,解题的关键是能够仔细观察表格并了解:现随着实验次数的增多,频率逐渐稳定到某个常数附近,可用这个常数表示概率.根据图表中数据解答本题即可.【详解】解:由表中数据可得:随着实验次数的增大,“盖面朝上”的概率接近0.53,故答案为:0.5312有意义,则x 的取值范围是 .13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为 cm .【答案】5【分析】本题考查了圆锥的计算.用到的知识点为:圆锥的侧面展开图弧长等于底面周长.根据题意得圆锥的母线长为10cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为210210(cm)ππ⨯÷=,∴圆锥的底面半径为1025(cm)ππ÷=,故答案为:5.14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x 、y 轴交于A 、B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为 .【答案】2x =-【分析】本题主要考查了一次函数与一元一次方程之间的关系,难度不大,认真分析题意即可.根据一次函数与x 轴交点坐标可得出答案.【详解】解:∵2OA =,∴(2,0)A -,∵一次函数y kx b =+的图象与x 轴交于点(2,0)A -,∴当0y =时,2x =-,即0kx b +=时,2x =-,∴关于x 的方程0kx b +=的解是2x =-.故答案为:2x =-.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要 分钟.【答案】2.5【分析】本题考查了一元一次方程的运用,理解数量关系,掌握方程解决实际问题是解题的关键.根据题意,设需要t 分钟追上,则速度快的人的路程等于速度慢的人的路程,由此列式求解即可.【详解】解:根据题意,设t 分钟追上,∴10060100t t +=,解得, 2.5t =,∴速度快的人追上速度慢的人需要2.5分钟,故答案为:2.5 .16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为 cm .【答案】20【分析】此题主要考查了相似三角形的应用,由题意得AB A B ''∥,AOB A OB ''∽△△,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',利用已知得出''AOB A OB △∽△,进而利用相似三角形的性质求出即可,熟练掌握相似三角形的性质是解题关键.【详解】由题意得:AB A B ''∥,∴AOB A OB ''∽△△,如图,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',∴OC A B '''⊥,30cm OC =∴A B OC AB OC'''=,即243630OC =∴20OC '=(cm ),即小孔O 到A B ''的距离为20cm 2017.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)k y x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .18.如图,已知两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C 、D 分别是1l 、2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为 .则点H 在O 上运动,∴当AH 与O 相切时BAH ∠最大,∴OH AH ⊥,∵2AE OB OE ==,∴3AO AE OE OE =+=,三、解答题19.(1)计算:0|3|2sin 302)π-+︒--;(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<a D 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图;(2)这200名学生成绩的中位数会落在________组(填A 、B 、C 、D 或E );(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.【答案】(1)20,条形统计图见详解(2)D(3)300人【分析】(1)用1减去其余各组人数所占的百分数即可得a 的值,进而可求出C 组人数,补全条形统计图即可.(2)按照中位数的定义解答即可.(3)用总人数乘以D 组人数所占百分比即可.【详解】(1)5153522105%%%%%a -=---=,C 组人数为:20020%40⨯=,补全条形统计图如图所示:故答案为:20(2)055124005%%%%%+=<+,51532075505%%%%%%++=>+,∴200名学生成绩的中位数会落在D 组.(3)120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.【点睛】本题主要考查了统计表和统计图的综合运用、用样本估计总体等知识.综合运用所学知识并且正确计算是解题的关键.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A 、B 、C 、D 、E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;(2)小明和小亮在C 、D 、E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?【答案】B 型机器每天处理60吨【分析】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,根据题意列出方程即可求出答案.【详解】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由;(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1∠的度数.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【分析】本题主要考查矩形的性质,菱形的判定和性质,全等三角形的判定和性质,含30︒的直角三角形的性质,掌握菱形的判定和性质是解题的关键.(1)根据矩形的性质可得四边形ABCD 是平行四边形,作AT NP CU EH ⊥⊥,,可证ATB CUB ≌,可得AB CB =,由此可证平行四边形ABCD 是菱形;(2)作AR CD ⊥,根据面积的计算方法可得42CD AR ==,,结合菱形的性质可得4AD =,根据含30︒的直角三角形的性质即可求解.【详解】(1)解:四边形ABCD 是菱形,理由如下,如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U ,根据题意,四边形EFGH ,四边形∴EH FG MQ NP ,,∴AB DC AD BC ,,∴四边形ABCD 是平行四边形,∵宽度相等,即AT CU =,且根据题意,2AR cm =,∵·8ABCD S CD AR ==四边形,∴4CD =,25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.、的值;(1)求b c(2)若点P在该二次函数的图像上,且PAB的面积为6,求点P的坐标.当224x x --+=-时,13x =-,22x =;∴122434()()P P ---,,,.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长.∴2COQ CAQ ∠=∠;点O 即为所求连接BC ,以点B 为圆心,以径画弧交AQ 于点11C D ,,分别以点连接11B F 并延长交AP 于点M ∵根据作图可得,2COQ CAQ ∠=∠,∴在Rt AMW 中,3sin 5WM A AM ==27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF、为边在直线l 同侧作正方形ABCD 、正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离;(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值;(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.∵90CMH∠= ,点O是CH的中点,∴12OM CH=,∴2OM HB CH HB+=+,∴当C H B'、、三点共线时,CHRt'CB Q28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD Ð∵ AB AB=∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴AFB CDB ∠=∠;∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC =,又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCDAB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD =,∴AD BD AD DF AF CD-=-==即AD BD CD -=;(3)解:①如图所示,当D 在 BC上时,在AD 上截取DE BD =,∵ AB AB=∴ACB ADBÐ=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD∠=∠∴2sin2AB BC α=⋅∴2sin 2AD BD CD α-=,即②当D 在 AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GAD ACB ∠=∠=又∵,CA CB DG DA==∴CAB DAG ∽,则。

2014年中考数学总复习提高测试题《因式分解》提高测试

2014年中考数学总复习提高测试题《因式分解》提高测试

2014年中考数学总复习提高测试题《因式分解》提高测试(100分钟,100分)一 选择题(每小题4分,共20分):1.下列等式从左到右的变形是因式分解的是…………………………………………( )(A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x(C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-42.分解多项式 bc c b a2222+--时,分组正确的是……………………………() (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+-3.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( )(A )20 (B ) 10 (C )-20 (D )绝对值是20的数4.二项式15++-n n x x 作因式分解的结果,合于要求的选项是………………………()(A ))(4n n x x x -+ (B )n x )(5x x -(C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n5.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( )(A )总是2 (B )总是0 (C )总是1 (D )是不确定的值答案:1.C;2.D;3.D;4.D;5.A.二 把下列各式分解因式(每小题8分,共48分):1.x n +4-169x n +2 (n 是自然数);解:x n +4-169x n +2=x n +2(x 2-169)=x n +2(x +13)(x -13);2.(a +2b )2-10(a +2b )+25;解:(a +2b )2-10(a +2b )+25=(a +2b -5)2;3.2xy +9-x 2-y 2;解:2xy +9-x 2-y 2=9-x 2+2xy -y 2=9-(x 2-2xy +y 2)=32-(x -y )2=(3 +x -y )(3-x +y );4.322)2()2(x a a a x a -+-;解:322)2()2(x a a a x a -+-=322)2()2(a x a a x a ---=[])2()2(2a x a a x a ---=)2()2(2a x a a x a +--=)3()2(2x a a x a --;5.16)3(8)3(222++-+m m m m ;解:16)3(8)3(222++-+m m m m=222244)3(2)3(+⨯+-+m m m m=16)3(8)3(222++-+m m m m=[]224)3(-+m m=[]2)1)(4(-+m m=22)1()4(-+m m ;6.2222224)(y x z y x --+.解:2222224)(y x z y x --+=[]xy z y x 2)(222+-+[]xy z y x 2)(222--+=[][]2222)()(z y x z y x ---+=))()()((z y x z y x z y x z y x --+--+++.三 下列整式是否能作因式分解?如果能,请完成因式分解(每小题10分,共20分):1.xy y x 4)1)(1(22---;解:展开、整理后能因式分解. xy y x 4)1)(1(22---=xy y x y x 4)1(2222-+--=)2()12(2222y xy x xy y x ++-+- =22)()1(y x xy +--=)1(y x xy ++-)1(y x xy ---; 2.13322)132(222-+-+-x x x x .解:能,用换元法. 13322)132(222-+-+-x x x x =10)132(11)132(222++--+-x x x x =)932)(32(22---x x x x=)3)(32)(32(-+-x x x x .四 (本题12 分)作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有怎样特点的多项式?2.用这两个公式把下列各式分解因式:(1)338b a+;(2)16-m . 解:1.结果为3322))((y x y xy x y x +=+-+; 3322))((y x y xy x y x -=++-. 利用它们从右到左的变形,就可以对立方和或立方差的多项式作因式分解; 2.(1)))(2()2(8223333b ab a b a b a b a +-+=+=+; (2)1)(1326-=-m m]1))[(1(2222++-=m m m)1)(1)(1(24++-+=m m m m . 选作题(本题20分):证明:比4个连续正整数的乘积大1的数一定是某整数的平方.证明:设n 为一个正整数,据题意,比4个连续正整数的乘积大1的数可以表示为A =n (n +1)(n +2)(n +3)+1,于是,有A = n (n +1)(n +2)(n +3)+1=(n 2+3n +2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=[(n 2+3n )+1]2 =(n 2+3n +1)2,这说明A 是(n 2+3n +1)表示的整数的平方.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届中考数学补考试题(满分:150分 考试时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项是符合题目要求)1.﹣3的倒数是( ) A .3B .﹣3C .13D .13-2.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( ) A .44×105B .0.44×105C .4.4×106D .4.4×1053.下列图形既是轴对称图形也是中心对称图形的是( )A . B. C. D.4.下列运算正确的是( ) A .325a b ab +=B .325a a a ⋅=C .824a a a ÷=D .()32626aa =5、若分式22221x x x x --++的值为0,则x 的值等于( )A.-2B.2C.-1D.1 6.估计5-12介于(C ) A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间7.某校男子足球队的年龄分布条形图如图所示,则这些队员年龄的众数是( ).A.12B.13 (C )14 (D )158.下面所给几何体的俯视图是( )A .B .C .D .9. 如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( D )A .33 B .55C .233D .25510.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数ky x=的图象在第一象限交于点A ,连接OA ,若S △AOB S △BOC = 1:2,则k 的值为( B ) A .2 B .3 C .4 D .6二、填空题(本大题共小题,每小题4分,共24分) 11.分解因式:228a -= .12.购买一本书,打八折比打九折少花5元钱,那么这本书的原价是 元.13.将点A (﹣1,2)沿x 轴方向向右平移3个单位长度,再沿y 轴方向向下平移4个长度单位后得到点A ′的坐标为 .E DC BA第14题图第10题图第9题图14.如图,AB ∥CD ,点E 在BC 上,且CD=CE ,∠D=75°, 则∠B 的度数为 . 15.点A (2,1)在反比例函数ky x=的图象上,当14x <<时, y 的取值范围是 .16 .观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2018个单项式是 . 三、解答题(本大题共8小题,共86分) 17.(本题满分8分)解不等式:2192136x x -+-≤,并把解集表示在数轴上. 18.(本题满分8分)先化简,再求值:2211211x x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中12+=x19.(本题满分8分)解方程:33122x x x-+=--20. (本题满分8分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)21.(本题满分8分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?22. (本题满分8分)已知:如图,△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE;垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.23. 为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.24.(本题满分12分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O 与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=2,BC=2,求⊙O的半径.225.(本题满分14分)如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.参考答案一、选择题(每题4分,共40分)二、填空题(每题4分 共24分)11.()()222a a +- 12.50 13.(2,-2)14. 30° 15. 122y << 16. 20352018x 三、填空题 17【解答】()()221926x x --+≤ ………………2分 42926x x ---≤ ………………3分 510x -≤ ………………4分 2x ≥- ………………5分∴不等式的解为2x ≥- ………………6分 正确画图(图略)………………8分 18【解答】()()22211=11x x xx x ⎛⎫-++÷ ⎪--⎝⎭原式 ………………2分 =()21x x -g()21x x =-=当1x =时上式19【解答】 33122x x x --=--………………2分()3312x x --=-………………4分()332x x --=-………………5分-=-………………6分x x62x=………………7分4x=是原方程的解………………8分经检验420【解答】如图,AD为所作.正确画图(图略)………………8分21【解答】设该校的大寝室每间住x人,小寝室每间住y人,………1分由题意得:………………4分解得:.………………6分答:该校的大寝室每间住8人,小寝室每间住6人.………………8分22【解答】(1)证明:∵AB=AC∴∠B=∠ACB又∵AD是BC边上的中线∴AD⊥BC,即∠ADB=90°∵AE∥BC∴∠EAC=∠ACB∴∠B=∠EAC∵CE⊥AE∴∠CEA=90°∴∠CEA=∠ADB又AB=AC∴△ABD≌△CAE(AAS)………………6分(2)AB∥DE且AB=DE。

由(1)△ABD≌△CAE可得AE=BD,又AE∥BD,所以四边形ABDE是平行四边形∴AB∥DE且AB=DE……………10分23【解答】(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;………2分(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;………4分(3)补全的频数分布直方图如右图所示,………6分(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.………10分 24. 【解答】(1)直线CE 与⊙O 相切.…(1分)理由如下:∵四边形ABCD 是矩形,∴BC ∥AD ,∠ACB=∠DAC ;又∵∠ACB=∠DCE ,∴∠DAC=∠DCE ;连接OE ,则∠DAC=∠AEO=∠DCE ;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE ⊥CE .又OE 是⊙O 的半径,∴直线CE 与⊙O 相切.………………6分(2)∵tan ∠ACB=22AB BC =,BC=2, ∴AB=BC •tan ∠ACB=2,∴AC=6;又∵∠ACB=∠DCE ,∴tan ∠DCE=tan ∠ACB=22, ∴DE=DC •tan ∠DCE=1;(方法一):在Rt △CDE 中,CE=223CD DE +=连接OE ,设⊙O 的半径为r ,则在Rt △COE 中,CO 2=OE 2+CE 2, 即()2263r r -=+解得:64r = ………………12分 (方法二):AE=AD ﹣DE=1,过点O 作OM ⊥AE 于点M ,则AM=1122AE = 2cos 6AD EAO AC ∠== 在Rt △AMO 中,OA=1622cos 46AM EAO ==∠ 【解答】(1)由A (0,2)知OA =2,在Rt △ABO 中,∵∠AOB=90°,AB=2, ∴OB=()22222222AB OA -=-=,∴B (﹣2,0).根据等腰梯形的对称性可得C 点坐标为(4,0).设直线AC 的函数解析式为y kx n =+,则 ,解得,∴直线AC 的函数解析式为y=﹣x+2;………………3分(2)设过点A ,C ,D 的抛物线的函数解析式为y=ax 2+bx+c ,则,解得,∴y=﹣x2+x+2;………………7分(3)∵点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,∴m<﹣2或m>4,n=﹣m2+m+2<0,∴PM=m2﹣m﹣2.∵Rt△PCM与Rt△AOC相似,∴==或==2.①若m<﹣2,则MC=4﹣m.当==时,=,解得m1=﹣4,m2=4(不合题意舍去),此时点P的坐标为(﹣4,﹣4);………………9分当==2时,=2,解得m1=﹣10,m2=4(不合题意舍去),此时点P的坐标为(﹣10,﹣28);………………10分②若m>4,则MC=m﹣4.当==时,=,解得m1=4,m2=0,均不合题意舍去;当==2时,=2,解得m1=6,m2=4(不合题意舍去),此时点P的坐标为(6,﹣4);………………13分综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).………14分。

相关文档
最新文档