人教版八年级上册第2讲 与三角形有关的角讲义
人教版八年级上册数学11.2 与三角形有关的角(解析版)
11.2与三角形有关的角知识要点:1.三角形内角和定理:三角形三个内角的和等于180︒.(1)三角形内角和定理适用于任意三角形.(2)任何一个三角形中,至少有两个锐角,最多有一个钝角或直角.2.直角三角形的性质与判定(1)性质:直角三角形的两个锐角互余.在Rt ABC∠+∠=︒.A BC△中,90∠=︒,则90(2)判定:有两个角互余的三角形是直角三角形.3.三角形的外角三角形内角的一边与另一边的反向延长线组成的角,叫做三角形的外角.4.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于与它不相邻的任意一个内角.一、单选题1.一个三角形三个内角的度数之比是2:3:4,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】C【解析】设一份为k∘,则三个内角的度数分别为2k°,3k°,4k.根据三角形内角和定理可知2k°+3k°+4k°=180°,所以2k°=40°,3k°=60°,4k°=80°.即这个三角形是锐角三角形。
故选:C2.已知三角形两个内角的差等于第三个内角,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】C【解析】依题意得∠A-∠B=∠C,即∠A=∠B+∠C,又∠A+∠B+∠C=180°,∴∠A=90°,∴三角形为直角三角形,故选C.3.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()A.100°B.120°C.140°D.160°【答案】B【解析】∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°∴∠A=2(180°-∠A)解得∠A=120°,故选B.4.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【解析】(1)∵∠A=25°,∠B=65°,∴∠A+∠B=25°+65°=90°,又∵∠A+∠B+∠C=180°,∴∠C=180°-(∠A+∠B)=180°-90°=90°,∴△ABC是直角三角形;(2)∵3∠A=2∠B=∠C,∴∠A=13∠C,∠B=12∠C,∵∠A+∠B+∠C=180°∴13∠C+12∠C+∠C=116∠C=180°∴∠C≠90°∴△ABC不是直角三角形;(3)∵∠A=5∠B∴无法计算内角的度数,因此无法判定△ABC的形状;(4)∵2∠A=3∠B=4∠C,∴∠A=2∠C,∠B=43∠C,又∵∠A+∠B+∠C=180°,∴2∠C+43∠C+∠C=133∠C=180°,∴∠C=54090 13≠︒∴△ABC不是直角三角形.故选A.5.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为()A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°【答案】B【解析】设第一个内角的度数为x,∵三角形的一个内角是另一个内角的23,是第三个内角的45,∴另一个内角的度数为32x,第三个内角为54x,∴x+32x+54x=180°,解得x=48°,∴三个内角分别为48°,72°,60°故选B.6.如图有四条互相不平行的直线l1、l2、l3、l4所截出的七个角,关于这七个角的度数关系,下列结论正确的是()A.∠2=∠4+∠7B.∠3=∠1+∠7C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°【答案】B【解析】A、∵∠2=∠10+∠9,∠10=∠7,∠9≠∠4,∴∠2=∠4+∠7不成立,故本选项错误;B、∵∠3=∠8+∠10,∠8=∠1,∠10=∠7,∴∠3=∠1+∠7,故本选项正确;C、∠4=∠8+∠6,∠8=∠1,∴∠4=∠1+∠6,∴无法说明∠1+∠4+∠6=180°,故本选项错误;D、根据多边形的外角和定理,∠2+∠4+∠5=360°,∵l3、l4不平行,∴∠3≠∠4,∴∠2+∠3+∠5=360°不成立,故本选项错误.故选B.7.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=()A.80°B.70°C.60°D.90°【答案】A【解析】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故选A.8.如图,∠BDC=98°,∠C=38°,∠A=37°,则∠B的度数是()A.33°B.23°C.27°D.37°【答案】B【解析】如图,延长CD交AB于E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC-∠1=98°-75°=23°.故选:B.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=30°,则∠3的度数为()A.30°B.40°C.45°D.50°【答案】B【解析】∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,又∵∠1=70°,∠2=30°,∴∠3=70°-30°=40°,故选B.10.如图,在△ABC中,∠BAC=90︒,AD⊥BC于D,则图中互余的角有A.2对B.3对C.4对D.5对【答案】C【解析】∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④。
人教版八年级数学上册培优讲义 第二讲:全等三角形与轴对称
模型一:手拉手模型第二讲:全等三角形与轴对称特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC =180°(3)OA 平分∠BOC例 1.如图在直线 ABC 的同一侧作两个等边三角形∆ABD 与∆BCE ,连结 AE 与CD ,求证: (1) ∆ABE ≅ ∆DBC (2) AE = DC (3) AE 与 DC 之间的夹角为60︒(4) ∆AGB ≅ ∆DFB (5) ∆EGB ≅ ∆CFB (6) BH 平分∠AHC (7) G F // AC变式精练1:两个等腰三角形∆ABD 与∆BCE ,其中AB =BD , CB =EB, ∠ABD =∠CBE =α,连结AE与CD,问:(1)∆ABE≅∆DBC是否成立?(2)AE是否与CD相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分∠AHC ?变式精练2:如图,两个正方形ABCD 与DEFG ,连结AG, CE ,二者相交于点H问:(1)∆ADG≅∆CDE是否成立?(2)AG是否与CE相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?模型二:对角互补模型(1)全等型——90°条件:① ∠AOB =∠DCE = 90︒②OC 平分∠AOB结论:① CD =CE ;②OD +OE = 2OC ;③S四边形ODCE =S∆OCD+S∆OCE=1OC 22辅助线之一:作垂直,证明∆CDM ≌∆CEN辅助线之二:过点C 作CF⊥OC,证明∆ODC≌∆FEC结论:①CD =CE ;②OE -OD = 2OC ;③S∆OCE -S∆OCD=1OC 22条件:① ∠AOB =∠DCE = 90︒②CD =CE结论:①OC 平分∠AOB;②OD +OE = 2OC ;③S四边形ODCE =S∆OCD+S∆OCE=1OC 22(2)全等型——120°条件:① ∠AOB = 2∠DCE = 120︒②OC 平分∠AOB结论:① CD =CE ;②OD +OE =OC ;③ S四边形ODCE 模仿(全等型——90°)辅助线之一完成证明=S∆OCD+S∆OCE=3OC 24辅助线之二:在OB 上取一点F,使OF=OC,证明△OCF 为等边三角形(3)全等型——任意角α条件:① ∠AOB = 2α,∠DCE = 180︒- 2α结论:OC 平分∠AOB②C D =CE例:四边形ABCD 被对角线BD 分为等腰直角三角形ABD 和直角三角形CBD ,其中∠A 和∠C 都是直角,另一条对角线AC 的长度为2 ,求四边形ABCD 的面积.AB DC变式精练1:已知∠MAN ,AC 平分∠MAN .(1)在图 1 中,若∠MAN = 120︒,∠ABC =∠ADC = 90︒,求证:AB +AD =AC ;(2)在图2 中,若∠MAN = 120︒,∠ABC +∠ADC = 180︒,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;变式精练2:已知:如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,⑴写出点O 到△ABC 的三个顶点A、B、C 的距离的关系(不要求证明)⑵如果点M、N 分别在线段AC、AB 上移动,且在移动中保持AN=CM.试判断△OMN 的形状,并证明你的结论.⑶如果点M、N 分别在线段CA、AB 的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.模型三:角含半角模型(1)角含半角模型90°-1条件:①正方形ABCD ②∠EAF = 45︒结论:① EF =DF +BE ;② ∆CEF 的周长为正方形ABCD 周长的一半;也可以这样:条件:①正方形ABCD ②EF =DF +BE结论:① ∠EAF = 45︒;口诀:角含半角要旋转(2)角含半角模型90°-2条件:①正方形ABCD ②∠EAF = 45︒结论:① EF =DF -BE ;辅助线:(2)角含半角模型90°-3条件:①等腰直角三角形ABC ②∠DAE = 45︒结论:① BD2+CE2=DE2;(勾股定理知识)辅助线:将△ACE 绕点 A 顺时针旋转90°得到△ABF,并连接DF.若∠DAE 旋转到△ABC 外部时,结论BD2 +CE 2 =DE 2 仍然成立。
(名师整理)数学八年级上册第11章《11.2.与三角形有关的角》优秀教案
与三角形有关的内角一、教材分析本节选自人教版课程标准实验教科书数学八年级上册第十一章第二节第一课时。
在学生已感性认识三角形内角和等于180°的基础上,由实验几何过渡到论证几何,探索证明三角形内角和定理;而该定理是后续研究多边形内角、直角三角形等的基础,因此它在整个三角形知识体系中起着承上启下的作用。
二、学情分析【知识上】已感性认识了三角形内角和等于180°;【方法上】初步学习了简单推理证明;【思维上】形象思维逐步过渡到抽象思维;【能力上】还不具备独立系统推理证明能力;【情感上】好奇心强,乐于探究;三、重难点分析▲重点:探索证明三角形内角和定理;▲难点:如何启发学生发现和理解通过添加辅助线证明定理;▲突破难点的关键点:引导学生从直观动作形象思维向表象思维过11 / 10渡,采用“实物拼图—留下痕迹—抽象图形”,引导分析图形变化的内在联系,发现所添加的辅助线,化解证明难点,使证明思路直观化。
四、教学目标1、知识与技能:构建探索三角形内角和定理的证明思路并对定理进行运用;2、过程与方法:通过引导学生参与拼图探索、抽象图形,培养学生直观感知能力;经历探究证明过程,渗透图形变化,提高学生演绎推理和逻辑思维能力。
3、情感态度与价值观:让学生在推理过程中感受数学的严谨性,形成“言必有据”的科学态度和良好的数学思维品质。
五,教具:多媒体,直尺六、教法与学法✧教法:引导发现式教学法、启发式教学法;✧学法:动手实验、推理论证、反思总结等学法。
22 / 1033 / 10七、教学过程设计环节一:回顾探索【新课引入】师:前面我们已经初步学习了简单的推理证明,知道了依据什么2 何分析并找到证明一个问题的思路”。
【回顾旧知】师:小学时,我们探索发现三角形的内角和为180°,是怎样发现的?预设:学生可能回答:①用量角器量出三个角再相加;②撕下三个角拼一拼。
问:这些方法是不是数学证明?能否完全让人信服?建 构 思 路 回 顾 探 索 意 犹 未 尽 学 以 致 用 课 堂 回 眸44 / 10预设:学生可能回答:测量存在误差;三角形有无数多个无法一一验证。
人教版八年级数学上册11.2与三角形有关的角优秀教学案例
5. 将数学教学与信息技术相结合,运用多媒体课件、网络资源等手段,丰富教学手段,提高教学效果。
(三)情感态度与价值观
1. 培养学生对数学学科的兴趣,使他们感受到数学的乐趣,提高学生学习数学的积极性。
2. 使学生认识到数学在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。
本节课的内容与学生的生活实际密切相关,学生可以通过观察、操作、推理等途径,发现并总结出三角形的内角和定理。在教学过程中,教师要引导学生积极参与,发挥学生的主体作用,让学生在观察、思考、操作、交流等活动中,发现规律,总结方法,提高学生的数学素养。同时,教师还要关注学生的个体差异,给予不同程度的学生以必要的帮助和指导,使他们在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
1. 利用多媒体课件展示生活中常见的三角形实例,如自行车的三角形车架、房屋的三角屋顶等,让学生感受到三角形在生活中的广泛应用。
2. 提出具有挑战性的数学问题:“一个三角形的三个内角分别为60°、60°和60°,求这个三角形的类型。”让学生在解决实际问题的过程中,自然地引入本节课的学习内容。
(二)问题导向
1. 教师提出问题,引导学生思考:“三角形的三个内角之和是多少度?为什么?”让学生带着问题进行观察、操作、推理等学习活动。
2. 设计一系列具有层次性的问题,如:“三角形的外角与相邻的内角有什么关系?如何证明?”,引导学生逐步深入探究与三角形有关的角的性质。
3. 教师引导学生运用已有的知识和经验,尝试解决新的问题,如:“如果知道一个三角形的两个内角,如何求解第三个内角?”从而提高学生的解决问题的能力。
2. 问题导向:教师在教学过程中提出一系列具有挑战性的问题,引导学生思考、探究与三角形有关的角的性质,使学生在解决问题的过程中,自然地引入本节课的学习内容。
人教版八年级上册第2讲 与三角形有关的角讲义
第2讲与三角形有关的角三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:证法多样,主要是运用平行线知识把三个角转移成一个平角,从而得到内角和是180°。
①如图所示,过C作CM∥AB,将求∠A+∠B+∠ACB转化为求∠1+∠2+∠ACB,②过A点作DE∥BC,把求∠BAC+∠B+∠C转化为求∠BAC+∠DAB+∠EAC.(3)理解与延伸:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°.(4)作用:求角度,尤其是三角形中的角度计算。
【例1-1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=________°,∠C=_________°.【例1-2】如图,在△ABC中,∠CAB=∠B=2∠C,AD是∠BAC的平分线,求∠ADC 的度数.【例1-3】如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB的度数。
【例1-4】若等腰三角形的一内角为40°,则顶角为( )A. 40°B. 100°C. 70°或40°D.40°或100°直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt △ABC 中,如果∠C =90°,那么∠A +∠B =90°.【例2-1】 将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是 ( ). A .43° B .47° C .30° D .60°【例2-2】 如图所示,AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,∠BEF 的平分线与∠DFE 的平分线相交于点P ,求证:△EPF 是直角三角形.判定:有两个角互余的三角形是直角三角形。
人教版八年级上册11.2三角形有关的角(教案)
一、教学内容
人教版八年级上册11.2三角形有关的角:本节课我们将学习三角形的内角和定理,掌握三角形的内角和为180°,并能运用这一性质解决相关问题。具体内容包括:
1.三角形的内角和定理:了解三角形的内角和为180°,并掌握其证明方法。
2.三角形内角的性质:探讨三角形内角的大小关系,了解等腰三角形、等边三角形内角的特点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的内角和定理、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对内角和定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
-难点理解:学生对于三角形的内角和定理的理解,特别是为什么三角形的内角和是固定的180°。
-逻辑推理:在证明内角和定理的过程中,学生可能会对几何逻辑推理感到困惑。
-实际应用:将内角和定理应用到解决具体问题时,学生可能会在选择和使用定理上遇到困难。
-操作技巧:在测量和计算过程中,学生可能对角度的精确计算和测量方法掌握不熟练。
3.运用内角和定理解决实际问题:通过具体实例,学会运用三角形的内角和定理解决生活中的问题。
本节课将结合实际案例,让学生在实际操作中掌握三角形内角和的性质,提高解决问题的能力。
二、核心素养目标
1.培养学生的空间观念:通过探究三角形的内角和定理,使学生能够形成对几何图形的直观认识,提高空间想象力。
2.发展学生的逻辑推理能力:在学习三角形的内角和定理证明过程中,引导学生运用演绎推理,培养严谨的逻辑思维。
人教版八年级数学上册教学设计11.2 与三角形有关的角
人教版八年级数学上册教学设计11.2 与三角形有关的角一. 教材分析人教版八年级数学上册“与三角形有关的角”这一节主要让学生了解三角形内角和定理,学会使用三角形的内角和定理解决实际问题。
通过这一节的学习,让学生进一步理解三角形的性质,为后续学习三角形的其他性质和判定打下基础。
二. 学情分析学生在七年级时已经学习了角的性质,对角的概念有了初步的了解。
但他们对三角形的内角和定理的理解还不够深入,需要通过实例来进一步理解和掌握。
此外,学生的空间想象力还不够丰富,需要通过实物演示和动手操作来帮助他们理解和掌握三角形的内角和定理。
三. 教学目标1.知识与技能:使学生了解三角形内角和定理,能运用三角形的内角和定理解决实际问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:三角形内角和定理的理解和运用。
2.难点:对三角形内角和定理的证明和灵活运用。
五. 教学方法采用问题驱动法、实物演示法、合作交流法等,引导学生观察、操作、推理,从而理解和掌握三角形的内角和定理。
六. 教学准备1.准备三角形模型、直尺、量角器等教具。
2.制作课件,展示三角形内角和定理的证明过程。
七. 教学过程导入(5分钟)教师通过提问:“我们以前学过角的性质,那么你们知道三角形的角有什么特点吗?”引导学生回顾角的知识,为新课的学习做好铺垫。
呈现(10分钟)教师展示三角形模型,让学生观察并提问:“请大家观察这个三角形,你们能发现什么规律吗?”引导学生发现三角形的内角和等于180度。
操练(10分钟)教师给出几个三角形,让学生用量角器测量其内角和,验证三角形的内角和定理。
同时,教师巡回指导,帮助学生解决问题。
巩固(10分钟)教师通过出示一些实际问题,让学生运用三角形的内角和定理解决问题,巩固所学知识。
拓展(10分钟)教师提问:“你们还能找到其他形状的图形的内角和定理吗?”引导学生思考四边形、五边形等图形的内角和定理,培养学生的空间想象力。
人教版数学八年级上册11.2与三角形有关的角优秀教学案例
(一)知识与技能
1.理解三角形外角的性质,能够熟练运用外角定理解决相关问题。
2.掌握三角形内角平分线、中线的性质,能够运用这些性质解决一些简单的几何问题。
3.能够运用三角形的性质判断三角形的形状,并求解一些特殊类型的三角形。
4.通过观察、分析、归纳等方法,提高学生对三角形性质的理解和应用能力。
5.培养学生关爱环境、珍惜资源的意识,使学生在学习过程中养成良好的道德品质。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。
2.利用多媒体技术,展示三角形的相关图片,引导学生关注三角形在现实生活中的应用。
3.通过设计具有启发性的问题,引导学生主动探究三角形的性质,激发学生的求知欲。
(三)小组合作
1.合理划分学习小组,培养学生合作交流的能力。
2.设计具有挑战性的合作任务,激发学生的团队精神。
3.组织小组讨论,鼓励学生互相借鉴、互相学习,提高学生的综合素质。
4.及时对小组合作情况进行评价,总结经验,提高合作效果。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养学生自我监控、自我评价的能力。
(五)作业小结
1.学生独立完成课后作业,巩固本节课所学知识。
2.教师及时批改作业,了解学生掌握程度,对存在的问题进行反馈。
3.组织课后辅导,帮助学生解决作业中遇到的问题。
4.鼓励学生进行自主学习,提高学生的学习能力。
五、案例亮点
1.生活情境导入:通过展示三角形在现实生活中的应用,如建筑设计、道路规划等,激发学生的学习兴趣,让学生感受到数学与生活的紧密联系。这种情境导入的方法不仅能够吸引学生的注意力,还能够让学生明白学习三角形性质的重要性。
人教版数学八上第2讲与三角形有关的角(基础) 知识讲解
第二讲与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.因为DF∥AC(已作),所以∠1=∠C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等). 同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补). 所以∠5+∠2+∠6+∠3=180°(等量代换). 又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】(春•安岳县期末)如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.(春•江阴市校级月考)已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠ACB 的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG.理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB.∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°.又∵∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.与三角形有关的角(基础)巩固练习【巩固练习】一、选择题1.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ).A.直角三角形 B.等边三角形C.钝角三角形 D.等腰三角形2.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( ).A.40° B.80° C.60° D.120°3.(云南昆明)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=( ).A.80° B.90° C.100° D.110°4.(•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°5.(山东济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形6.(山东菏泽)一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠α等于( ).A.30° B.45° C.60° D.75°二、填空题7.如图,AD⊥BC,垂足是点D,若∠A=32°,∠B=40°,则∠C=_______,∠BFD=_______,∠AEF=________.8.在△ABC中,∠A+∠B=∠C,则∠C=_______.9.根据如图所示角的度数,求出其中∠α的度数.10.如图所示,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)38°(即∠A =38°),飞到了C地.已知∠ABC=20°,现在飞机要到达B地,则飞机需以_______的角飞行(即∠BCD的度数).11.如图,有_______个三角形,∠1是________的外角,∠ADB是________的外角.12.(春•通川区校级期末)如图中,∠B=36°,∠C=76°,AD、AF分别是△ABC的角平分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠3+∠4的度数.14.已知:如图所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.15.(春•石家庄期末)已知△ABC中,AE平分∠BAC,(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.16.如图是李师傅设计的一块模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠B=75°,∠C=85°,∠D=55°.能否判定模板是否合格,为什么?【答案与解析】一、选择题1. 【答案】D.2. 【答案】B;【解析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+x°+60°=180°,解得x°=40°,∠B=2x°=80°.3. 【答案】D.4. 【答案】C;【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.5. 【答案】B;【解析】先求出三角形的三个内角度数,再判断三角形的形状.6. 【答案】D;【解析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7. 【答案】58°,50°,98°;【解析】在Rt△ADC中,∠A=32°,∠C=58°;在Rt△BDF中,∠B=40°,∠BFD=50°;在△BEC,∠AEF=∠B+∠C=98°.8. 【答案】90°.9. 【答案】 (1)48°; (2)27°; (3)85°;【解析】充分利用:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.10.【答案】58°.11.【答案】8,△DBC,△ADE;【解析】考查三角形外角的定义.12.【答案】20;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=36°+34°=70°,∵AF⊥BC,∴∠AFD=90°,∴∠DAF=180°﹣∠ADC﹣∠AFD=180°﹣70°﹣90°=20°.三、解答题13.【解析】解:连接AD,在△ADC中,∠1+∠CAD+∠CDA=180°,在△ABD中,∠3+∠BAD+∠BDA=180°.∴∠1+∠2+∠3+∠4=∠1+∠CAD+∠BAD+∠3+∠CDA+∠BDA.=(∠1+∠CAD+∠CDA)+(∠3+∠BAD+∠BDA)=180°+180°=360°.14.【解析】解:设∠A=x°,则∠ABC=∠C=2x°.在△ABC中,由内角和定理有x+2x+2x=180°,∴ x=36°.人教版初中数学(知识讲解+例题+课后习题)∴∠C=72°,在△BDC中,∵ BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°,∴∠DBC=90°-∠C=18°.15.【解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.16.【解析】解:分别延长CB、DA交于点P.因为∠C=85°,∠D=55°,由三角形内角和可知∠P=180°-∠C-∠D=40°,即DA与CB相交成40°角.同理可得BA与CD相交成20°角.所以这个模板是合格的.。
人教版八年级数学上册:112与三角形有关的角教学设计
3.学会使用三角板、量角器等工具进行三角形内角度的测量和作图。
(二)教学设想
1.创设情境,导入新课
利用生活实例,如三角形交通标志、建筑物的三角形结构等,引出三角形的概念,激发学生的学习兴趣。
2.自主探究,合作交流
分组讨论,引导学生自主探究三角形的性质,如内角和、三角形的边的关系等。教师适时给予指导和反馈,帮助学生形成正确的认识。
1.针对学生对三角形基本概念掌握程度的不同,采用差异化教学策略,对基础薄弱的学生进行个别辅导,提高他们的自信心。
2.充分发挥学生的空间想象力,通过实际操作、观察和思考,帮助他们理解三角形的性质和内角和定理。
3.鼓励学生积极参与课堂讨论,培养他们的合作意识和交流能力,使学生在互动中提高对三角形知识点的掌握。
5.学会使用三角板、量角器等工具进行三角形内角度的测量和作图。
(二)过程与方法
在本章节的教学过程中,引导学生运用以下过程与方法:
1.观察与发现:通过观察生活中的三角形实物,引导学生发现三角形的特点,激发学生对三角形相关概念的兴趣。
2.探索与实践:鼓励学生通过小组合作、自主探究的方式,发现三角形的内角和定理,并在实践中运用。
4.注重培养学生的实际问题解决能力,将三角形知识应用于生活情境,让学生感受到数学的实用价值。
5.关注学生的情感态度,激发他们对数学几何的兴趣,引导他们形成积极的学习态度,为后续几何知识的学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.理解和掌握三角形内角和定理,并能运用其解决实际问题。
7.教学评价,关注成长
采用多元化评价方式,关注学生在学习过程中的表现。既注重知识掌握程度,又关注学生的情感态度、合作交流能力等方面,全面评价学生的成长。
数学人教版八年级上册11.2 与三角形有关的角(2).2 与三角形有关的角(第2课时)课件 (新版)新人教版
B
6
4
C
结论:三角形的外 角和等于360°
练一练
1、如图,D是△ABC的BC边上一点,
∠B=∠BAD,∠ADC=80°,
∠BAC=70°.
70°
求:(1)∠B的度数;
(2)∠C的度数.
A
80°
B
D
C
练一练
2、如图,∠A+∠B+∠B+∠D+∠E+∠F的度数.
B A
∵∠A+∠B=∠1, ∠C+∠D=∠2, ∠E+∠F=∠3 ∴∠A+∠B+∠C+∠D+
B
C
D
位置关系:外角与它相邻的内角互为邻补角。 数量关系:三角形的一个外角与它相邻内角的和是180°
三角形的一个外角与它不相邻的两 个内角之间 有何关系? A
∠ ACD+ ∠ ACB=180° ∠ACD= ∠ A+ ∠ B
B
C
D
三角形的一个外角等于与它不相邻的两个内角的和。
思考:如何说明∠ACD= ∠B+ ∠ A A
C
P
1
N
3
F
∠E+∠F=∠1+∠2+∠3
2
M
∵∠1+∠2+∠3=360°
∴∠A+∠B+∠C+∠D+
D
E
∠E+∠F= 360°
课堂小结
(一)三角形的外角的定义:三角形的一边与 另一边的延长线组成的角. (二)三角形的外角与内角的关系: 1、三角形的一个外角与它相邻的内角互补;
2、三角形的一个外角等于与它不相邻的两 个内角的和;
A D
人教版数学八年级上册11.2与三角形有关的角的综合运用优秀教学案例
(一)知识与技能
1.理解并掌握三角形的内角和定理ቤተ መጻሕፍቲ ባይዱ能够运用该定理解决实际问题。
2.掌握三角形外角的性质,能够判断三角形的外角与相邻内角的关系。
3.了解三角形的分类,能够正确判断等边三角形、等腰三角形和一般三角形的性质。
4.能够运用三角形的性质解决一些简单的几何问题,提高空间想象能力。
(二)过程与方法
在实际教学中,本节课的内容对于培养学生的逻辑思维能力、空间想象能力和问题解决能力具有重要意义。通过对与三角形有关角的综合运用,学生能够进一步巩固和拓展之前所学的知识,提高数学素养。
为了确保本节课的教学效果,我结合了学科特点和课程内容,设计了一系列具有针对性和实用性的教学活动。在教学过程中,我注重启发学生思考,引导学生主动探索,通过小组合作和讨论,提高学生解决问题的能力。同时,我还运用多媒体教学资源,以生动形象的方式展示三角形的相关概念和性质,增强学生的直观感受。
3.各小组汇报讨论成果,分享自己的发现和心得。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如:三角形内角和定理、外角的性质、三角形的分类等。
2.强调三角形在实际生活中的应用,提醒学生关注数学与生活的联系。
3.总结本节课的学习方法,如:观察、操作、思考、交流等。
(五)作业小结
1.布置作业:要求学生运用所学知识解决一些与三角形有关的实际问题,如:计算三角形面积、判断三角形稳定性等。
3.小组合作学习:本案例鼓励学生进行小组合作,培养学生的团队合作意识和沟通能力。在小组讨论过程中,学生相互学习、相互借鉴,提高了问题解决能力。
2.培养学生勇于探究、积极思考的科学精神,引导学生体验数学学习的乐趣。
3.培养学生良好的学习习惯和团队合作意识,提高学生的问题解决能力。
人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B
[初中数+学++] 与三角形有关的角+课件++人教版数学八年级上册
总结归纳
A
基本图形
A
A D1
D1 2E
3
4
A E
F
想一想:同学们还有其他的证法吗?B
D
C
知识要点 辅助线
在这里,为了证明的需要,在原来的图形上添画的线叫做辅 助线.在平面几何里,辅助线通常画成虚线.
思路总结 为了证明三个角的和为 180°,转化为一个平角或同旁内角
互补等,这种转化思想是数学中的常用方法.
三角形的内角和定理的运用
例1 如图,在△ABC中, ∠BAC = 40°,∠B = 75°,AD 是 △ABC 的角平分线,求∠ADB 的度数.
(2) 你能直接写出∠BPC 与∠A 之间的数量关系吗?
解:∵ BP 平分∠ABC,CP 平分∠ACB, 1
∴∠PBC +∠PCB = 2 (∠ABC +∠ACB). ∵∠PBC +∠PCB +∠BPC = 180°, ∴∠BPC = 180° - 1 (∠ABC +∠ACB)
2
= 180° - 1 (180° - ∠A)
解:∵∠B = 42°,∠C = 78°, ∴∠BAC = 180° - ∠B - ∠C = 60°. ∵ AD 平分∠BAC,
∴∠CAD = ∠1 BAC = 30°. ∴∠ADC = 1820° - ∠C - ∠CAD = 72°.
拓展提升
例5.如图,在△ABC 中,BP 平分∠ABC,CP 平分∠ACB. (1)若∠A = 60°,求∠BPC 的度数.
人教版数学八年级上册11.2与三角形有关的角习题课优秀教学案例
(三)小组合作
1.合理划分学习小组,培养学生合作学习的习惯;
2.设计具有挑战性和综合性的任务,激发学生的合作兴趣;
3.引导学生进行互动交流,培养他们的沟通能力和团队协作精神;
4.关注小组合作过程,及时给予反馈和指导,提高学生的合作效果。
在教学过程中,我会合理划分学习小组,培养学生合作学习的习惯。我会设计具有挑战性和综合性的任务,激发学生的合作兴趣。例如,我可以让学生分组讨论三角形分类的规律,并总结出各自的结论。在小组合作过程中,我会引导学生进行互动交流,培养他们的沟通能力和团队协作精神。同时,我会关注小组合作过程,及时给予反馈和指导,提高学生的合作效果。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们愿意主动参与数学学习;
2.培养学生勇于探究、积极思考的学习精神,提高他们的自主学习能力;
3.培养学生合作意识,使他们认识到团队协作的重要性;
4.培养学生面对困难不退缩,勇于克服的精神,增强他们的自信心。
在教学过程中,我将关注学生的情感需求,以生动有趣的教学手段,激发学生对数学的兴趣。同时,我会鼓励学生积极思考、勇于探究,培养他们自主学习的能力。在小组合作过程中,我会引导学生互相尊重、互相帮助,培养他们的合作意识。在面对困难时,我会鼓励学生勇敢面对,帮助他们克服困难,增强他们的自信心。通过本节课的学习,使学生形成积极向上的情感态度,树立正确的价值观。
八年级数学上册 11.2 与三角形有关的角说课稿 (新版)新人教版
与三角形有关的角一、说教材1、教材分析本节课是在学生学习了“与三角形有关的线段”之后,由线至面进一步研究三角形的角。
本节知识不仅是对前面“角”知识的升华与综合运用,也是研究多边形中角的问题的基础。
2、教学目标分析根据新课标的要求及八年级学生的认知水平,我确定本节课的教学目标如下:(1)知识与技能目标:发现并证明三角形内角和定理,使学生体验合情推理与演绎推理的相互依赖和相互补充的辨证关系,进一步体会证明的必要性。
(2)过程与方法目标:经历“猜想验证—逻辑证明—应用拓广—归纳概括”的探究过程,使学生体会命题研究的一般方法,进而提升学生的数学推理能力和推理意识。
(3)情感、态度与价值观目标:引导学生通过小组合作学习,培养动手实践、合作交流和语言表达的能力,丰富与人交往的经历和体验。
3、教学重难点分析重点:三角形内角和定理;难点:三角形内角和定理的证明;二、说教法本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化。
在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用拼图法探索三角形内角和是180°的证明方法,教师采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
三、说学法课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
四、说教学过程【环节一】复习回顾,导入新课1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。
11.2与三角形有关的角的课件 2024-2025学年人教版数学八年级上册
45°
50°
∠1=90°
120°
35°
1
∠1=85°
60°
1
60°
2
20°
∠1=80°, ∠2=40°
例题讲解
如图,在△ABC的每个顶点处各取一个外角∠1、
∠2 、∠3 ,你能求出∠1+∠2 +∠3 的度数吗
?
∵∠1+∠4=180°,
∠2+∠5=180°,
A
∠3+∠6=180°
22
∴∠1+∠4+∠2+∠5+∠3+∠6=540°
D
B
C A
学习目标
1.了解直角三角形两个锐角的关系.(重点) 2.掌握直角三角形的判定.(难点) 3.会运用直角三角形的性质和判定进行相关计算.(难点)
课时导入
在一个三角形花坛的外围走一圈,在每一个拐弯 的地方都转了一个角度(∠1,∠2,∠3),那么回到 原来位置时(方向与出发时相同),一共转了多少度?
2
6
B5
3C
2
B
∠1+∠2+∠3 就是△ABC的外角和。
A 1
C 3
∠1+∠2+∠3=
度
填空:与三角形的每个内角相邻的外角分别有 两 个,
这两个外角是 对顶角 ,他们的大小 相等
。
探索: 猜一猜 ∠1+∠2+∠3= 360 度
数学说理: ∠1+∠BAC=180°,
A1
2
C
B
3
∠2+∠ABC=180° ∠3+ ∠BCA =180°, 三式相加可得:
B
A ∵∠A+∠B=∠1,
人教版-八年级数学-与三角形有关的角讲义
人教版-八年级数学-与三角形有关的角讲义-(含解析)(总28页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第1讲与三角形有关的角知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习三角形的知识,包括与三角形有关的线段和角,本次课重点讲述与三角形有关的角,这是几何题目中出现概率较为频繁的,要熟练掌握三角形相关角的性质并灵活运用。
知识梳理讲解用时:20分钟与三角形有关的线段与三角形有关的角1、三角形内角和定理:三角形的内角和是180°2、三角形的外角性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和性质2:三角形的一个外角大于任何一个和它不相邻的内角3、三角形的几种特殊模型: 两内角角平分线夹角 两外角角平分线 一内角、一外角角平分线夹角 ∠P=90°+12∠A ∠P=90°-12∠A ∠P=12∠A 证明方法如课堂精讲精练【例题1】下列长度的三条线段能组成三角形的是()、2、3 、3、7 、15、8 、15、8【答案】C【解析】根据三角形的三边关系进行判断,若任意两边之和大于第三边则成立讲解用时:2分钟解题思路:利用三角形的三边关系做题教学建议:熟记三角形中任意两边之和大于第三边难度: 2 适应场景:当堂例题例题来源:无年份:2018【练习】若a、b、c分别为三角形的三边,化简:|a-b-c|+|b-c-a|+|c-a+b|【答案】-a+b+3c【解析】根据三角形的三边关系可以得出:b+c>a,a+c>b,b+c>a,再去绝对值符号,化简合并同类项讲解用时:2分钟解题思路:利用三角形的三边关系做题.教学建议:熟记三角形中任意两边之和大于第三边.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习】a、b、c分别为△ABC的三边,且满足a+b=3c-2,a-b=2c-6(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.【答案】(1)2<c<6;(2)c=5【解析】根据三角形的两边之和大于第三边a+b=3c-2>c,两边之差小于第三边a-b=2c-6<c,求出c的取值范围.讲解用时:3分钟解题思路:利用三角形的三边关系做题.教学建议:熟记三角形中任意两边之和大于第三边,任意两边之差小于第三边.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°【答案】A【解析】根据三角形内角和定理可求出∠1的度数,由三角形外角性质可得出∠2的度数,再根据∠2与∠α互补,即可得出结论.解:给图中标上∠1、∠2,如图所示.∵∠1+45°+90°=180°,∴∠1=45°,∵∠1=∠2+30°,∴∠2=15°.又∵∠2+∠α=180°,∴∠α=165°.故选:A.讲解用时:3分钟解题思路:本题考查了三角形内角和定理以及三角形外角的性质,熟练掌握三角形内角和定义以及三角形外角的性质是解题的关键.教学建议:熟练使用三角形内角和定理和外角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为()A.90°B.58°C.54°D.32°【答案】D【解析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.解:∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°﹣∠C,∵∠B=2∠C﹣6°,∴90°﹣∠C=2∠C﹣6°,∴∠C=32°.故选:D.讲解用时:3分钟解题思路:本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.教学建议:熟练使用三角形内角和定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80°B.100°C.120°D.140°【答案】B【解析】延长BC交AD于点E,根据三角形的一个外角等于与它不相邻的两个内角的和先求出∠CED的度数,再次利用三角形的一个外角等于与它不相邻的两个内角的和即可求出∠BCD的度数.解:如图所示,延长BC交AD于点E,∵∠A=50°,∠B=20°,∴∠CED=∠A+∠B=50°+20°=70°,∴∠BCD=∠CED+∠D=70°+30°=100°.故选:B.讲解用时:3分钟解题思路:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,作出辅助线是解题的关键.教学建议:熟练使用三角形的外角性质难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【答案】24°【解析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.讲解用时:3分钟解题思路:此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.教学建议:熟练掌握三角形的外角性质和三角形内角和定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图,在△ABC中,点D在AB边上,点E在AC边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75°B.50°C.35°D.30°【答案】C【解析】根据平行线的性质得出∠DEC=140°,进而利用三角形内角和解答即可.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.讲解用时:3分钟解题思路:此题考查三角形内角和,关键是根据平行线的性质得出∠DEC=140°.教学建议:熟练运用平行线的性质和三角形的内角和定理.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.【答案】105°【解析】证明CD∥EF,得到∠2=∠BCD,证明DG∥BC,根据平行线的性质证明即可.解:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.讲解用时:3分钟解题思路:本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.教学建议:熟练掌握平行线的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°【答案】C【解析】根据三角形的角平分线的定义得到∠EBC=∠ABC,∠ECD=∠ACD,根据三角形的外角的性质计算即可.解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=∠ABC,∠ECD=∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴∠ACD﹣∠ABC=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.讲解用时:3分钟解题思路:充分利用角平分线的性质和三角形的外角性质.教学建议:熟记一内角、一外角角平分线的模型.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图,在△ABC中,点D在边BA的延长线上,∠ABC的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M的大小为()A.20°B.25°C.30°D.35°【答案】C【解析】根据三角形的内角和定理列式计算即可求出∠ABC=40°,再根据角平分线的定义求出∠ABM,∠CAM,然后利用三角形的内角和定理求出∠M即可.解:∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=,∴∠M=180°﹣20°﹣50°﹣80°=30°,故选:C.讲解用时:3分钟解题思路:本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.教学建议:熟记一内角、一外角角平分线的模型.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠A=60°,求∠BFC的度数.【答案】120°【解析】根据角平分线的定义可得出∠CBF=∠ABC、∠BCF=∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.解:∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=∠ABC,∠BCF=∠ACB,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣(∠ABC+∠ACB)=120°.讲解用时:3分钟解题思路:本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.教学建议:熟记两内角角平分线的模型.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】(1)如图①,BD、CD是∠ABC和∠ACB的角平分线且交于点D,∠A=50°,则∠D=(2)如图②,BD、CD是∠ABC和∠ACB外角的平分线且相交于点D,请猜想∠A与∠D之间的数量关系:(3)如图③,BD为∠ABC的角平分线,CD为∠ACB的外角的角平分线,它们相交于点D,请猜想∠A与∠D之间的数量关系,并说明理由.【答案】 B(1)115°;(2)90°-12∠A;(3)∠D=12∠A【解析】(1)根据角平分线的定义得到∠DBC=∠ABC,∠DCB=∠ACB,根据三角形内角和定理和计算即可;(2)根据角平分线的定义得到∠DBC=∠EBC,∠FCB=∠ACB,根据三角形内角和定理和计算即可;(3)根据角平分线的定义得到∠DBC=∠ABC,∠DCE=∠ACE,根据三角形的外角的性质解答.解:(1)∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A;∵∠A=50°,∴∠D=115°,故答案为:115°;(2)BC、CD是∠ABC和∠ACB外角的平分线,∴∠DBC=∠EBC,∠FCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠EBC+∠FCB)=180°﹣(180°+∠A)=90°﹣∠A;故答案为:90°﹣∠A;(3)∵BD为∠ABC的角平分线,CD为∠ACB的外角的角平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∠D=∠2﹣∠1=(∠ACE﹣∠ABC)=∠A.讲解用时:5分钟解题思路:本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.教学建议:熟记三角形角平分线的3种模型.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【答案】(1)∠ACD=∠B;(2)∠CEF=∠CFE【解析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.讲解用时:3分钟解题思路:本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.教学建议:熟练掌握直角三角形的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=30°,∠D=40°,求∠ACD的度数.【答案】80°【解析】根据三角形外角与内角的关系及三角形内角和定理解答.解:∵DF⊥AB,∠B=40°∴∠DFB=90°,∴∠B=90°﹣∠D=90°﹣40°=50°,∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.讲解用时:3分钟解题思路:此题考查三角形外角与内角的关系,关键是熟记三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.教学建议:熟练掌握直角三角形的性质以及三角形内角和定理、外角性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=115°,则∠A的度数是()A.50°B.°C.60°D.65°【答案】A【解析】先根据三角形内角和定理得出∠BCF+∠CBF的度数,再由角平分线的性质得出∠ABC+∠ACB的度数,根据三角形内角和定理即可得出结论.解:∵∠BFC=115°,∴∠BCF+∠CBF=180°﹣115°=65°.∵BF平分∠ABC,CF平分∠ACB,∴∠ABC+∠ACB=2(∠BCF+∠CBF)=130°,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣130°=50°.故选:A.讲解用时:3分钟难度: 2 适应场景:练习题例题来源:无年份:2018【作业2】在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2= .【答案】270°【解析】首先根据三角形的内角和定理求得∠A与∠B的度数的和,然后利用四边形的内角和定理即可求解.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】一个三角形的最大角不会小于度.【答案】60【解析】因为三角形的内角和是180度,假设三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾,所以三角形的最大角不小于60度.解:由分析可知:如果三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.所以三角形的最大角不小于60度;故答案为:60.讲解用时:4分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E= .(用度数表示)【答案】180°【解析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业5】如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BOA=125°,求∠DAC的度数.【答案】20°【解析】先根据角平分线定义和三角形内角和定理求出∠CAB+∠CBA的度数,再求出∠C的度数,即可求出答案.解:∵AE,BF是角平分线,∴∠OAB=∠BAC,∠OBA=∠ABC,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=2(180°﹣∠AOB),∵∠AOB=125°,∴∠CAB+∠CBA=110°,∴∠C=70°,∵∠ADC=90°,∴∠CAD=20°.讲解用时:4分钟难度:3适应场景:练习题例题来源:无年份:2018【作业6】已知:如图,点D、E分别在AB、AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.【答案】(1)成立;(2)∠EGH=∠ADE+∠A+∠AEF【解析】(1)根据平行线的性质得出∠B=∠ADE,根据三角形的外角性质得出∠EGH>∠B,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.证明:(1)∵∠EGH是△FBG的外角,∴∠EGH>∠B,又∵DE∥BC,∴∠B=∠ADE.(两直线平行,同位角相等),∴∠EGH>∠ADE;(2)∵∠BFE是△AFE的外角,∴∠BFE=∠A+∠AEF,∵∠EGH是△BFG的外角,∴∠EGH=∠B+∠BFE.∴∠EGH=∠B+∠A+∠AEF,又∵DE∥BC,∴∠B=∠ADE(两直线平行,同位角相等),∴∠EGH=∠ADE+∠A+∠AEF.讲解用时:4分钟难度: 2 适应场景:练习题例题来源:无年份:2018【作业7】如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.【答案】(1)成立;(2)110°【解析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.(1)证明:延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,在△ABC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣×140°=110°.讲解用时:4分钟难度: 3 适应场景:练习题例题来源:无年份:2018。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲与三角形有关的角三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:证法多样,主要是运用平行线知识把三个角转移成一个平角,从而得到内角和是180°。
①如图所示,过C作CM∥AB,将求∠A+∠B+∠ACB转化为求∠1+∠2+∠ACB,②过A点作DE∥BC,把求∠BAC+∠B+∠C转化为求∠BAC+∠DAB+∠EAC.(3)理解与延伸:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°.(4)作用:求角度,尤其是三角形中的角度计算。
【例1-1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=________°,∠C=_________°.【例1-2】如图,在△ABC中,∠CAB=∠B=2∠C,AD是∠BAC的平分线,求∠ADC 的度数.【例1-3】如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB的度数。
【例1-4】若等腰三角形的一内角为40°,则顶角为( )A. 40°B. 100°C. 70°或40°D.40°或100°直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt △ABC 中,如果∠C =90°,那么∠A +∠B =90°.【例2-1】 将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是 ( ). A .43° B .47° C .30° D .60°【例2-2】 如图所示,AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,∠BEF 的平分线与∠DFE 的平分线相交于点P ,求证:△EPF 是直角三角形.判定:有两个角互余的三角形是直角三角形。
【例2-3】下列条件能确定△ABC 是直角三角形的条件有_____________ ①∠A+∠B=∠C ;② ∠A:∠B:∠C=1:2:3;③∠A=90°-∠B ; ④∠A=∠B=21∠C ; ⑥∠A -∠B=∠C ;⑦∠A=2∠B=3∠C ;⑧∠A=21∠B=31∠C 【例2-4】如图,在△ABC 中,∠ABC=60∘,∠ACB=54∘,BE 是AC 边上的高,CF 是AB 边上的高,H 是BE 和CF 的交点,HD 是∠BHC 的平分线,求∠ABE ,∠ACF 和∠CHB 的度数。
三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD 就是△ABC 其中的一个外角.练习:选出下图中∠1是△ABC 的外角的序号:_______________注意:一个三角形有6个外角,其中两两互为对顶角,如图所示.三角形外角的理解:外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.【例3】 在△ABC 中,∠A 等于和它相邻的外角的四分之一,这个外角等于∠B 的两倍,那么∠A =__________,∠B =__________,∠C =__________. 4.三角形外角性质(1)1B ACD (3)1ABCD(4)ABD1(5)E ABCD1(6)EAB CD1(2)1AB C D性质:三角形的外角等于与它不相邻的两个内角的和.三角形的一个外角大于任何一个与它不相邻的内角如图所示: ∠1=∠B +∠C∠B =∠1-∠C 或∠C =∠1-∠B .注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.(2)作用:①求角的度数,在外角、不相邻的两内角中知道两角能求第三角,也能求出相邻内角的度数;②证明角相等,一般是把外角作为中间关系式证明角相等. 【例4--1】填空:求出下列各图中∠1的度数.(1)如图,∠1=______;(2)如图,∠1=______;(3)如图,∠1=______;(4)如图,∠1=______;(5)如图,∠1=______;(6)如图,∠1=______.【例4--2】如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=__________.【例4--3】 填空:(1)如图(1),P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =________°.(2)如图(2)所示,已知∠ABE =142°,∠C =72°,则∠A =__________°,∠ABC =1BACD第4题(1)30︒30︒(1)1BACD第4题(2)40︒35︒(2) ABCD1第4题(3)40︒ (3)ABCD1第4题(4)120︒85︒(4) ABC1D第4题(5)70︒40︒(5) AD1CB第4题(6)35︒ (6)__________°.(3)如图(3),∠3=120°,则∠1-∠2=________°.图4【例4--4】如图4,CE是△ABC的外角△ACD的平分线,若△B=35°,△ACE=60°,则△A=________.三角形外角和(1)定义:如图所示,在每一个顶点上取一个外角,如∠1,∠2,∠3,它们的和叫做三角形的外角和.(2)三角形外角和定理:三角形的外角和等于360°.注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.【例5】如图所示.用两种方法说明∠1+∠2+∠3=360°.多边形内角和多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的分类:多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
思考:五边形共有_______条对角线,n边形共有_______条对角线。
多边形内角和:…………从五边形的一个顶点出发,可以作______条对角线,它们将五边形分为______个三角形,五边形的内角和等于180°×_____________;从六边形的一个顶点出发,可以作______条对角线,它们将六边形分为______个三角形,五边形的内角和等于180°×_____________;从n边形的一个顶点出发,可以作______条对角线,它们将n边形分为______个三角形,n 边形的内角和等于180°×_____________。
n边形的内角和等于___________。
【例6--1】在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠A=________.【例6--2】如图,DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,则∠B=______【例6--3】一个多边形内角和是1080°,则这个多边形的边数为()A、6B、7C、8D、9【例6--4】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7C.8 D.9n边形的外角和等于___________。
【例6--5】一个多边形的内角和是外角和的2倍,则这个多边形()A.四边形B. 五边形C. 六边形D. 八边形※.角平分线的夹角与三角形内角关系的探究(1)三角形的两内角平分线的夹角与内角的关系如图,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点O,求∠BOC与∠A之间的关系.(2)三角形两外角的平分线的夹角与内角的关系如图,在△ABC中,BP,CP分别是△ABC的外角∠DBC和∠ECB的平分线,试探究∠BPC与∠A的关系.(3)一个内角平分线与一个外角平分线的夹角与内角的关系如图,在△ABC 中,CE 平分∠ACB ,BE 是△ABC 的外角∠ABD 的平分线,试探究 ∠BEC 与∠A 的关系.【例7-1】 如图,BO ,CO 分别是∠ABC ,∠ACB 的两条平分线,∠A =100°,则∠BOC 的度数是( ). A .80° B .90° C .120° D .140°【例7-2】 如图所示,∠ABC 的平分线和△ABC 的外角∠ACE 的平分线交于点D ,∠D =30°,∠A 的度数是__________;当∠D =__________时,∠A 的度数是90°.作业1:1.三角形的三个外角之比为2:3:4,则与之相应的三个内角之比为( ) A .2:3:4 B .4:3:2 C .5:3:1 D .1:3:52.如图,在△ABC 中,D 是AB 上的一点,E 是AC 上一点,BE.CD 相交于F ,∠A=70°,∠ACD=20°,∠ABE=28°,则CFE ∠的度数为( ) A .62°B .68°C .78°D .90°3.若三条线段中3a =,5b =,c 为奇数,那么由a b c ,,为边组成的三角形共有( )A .1个B .3个C .无数多个D .无法确定 4.如果线段a b c ,,能组成三角形,那么它们的长度比可能是( ) A .1:2:4 B .1:3:4 C .3:4:7 D .2:3:4 5.不一定能构成三角形的一组线段的长度为( ) A .3,7,5 B .3x ,4x ,5x(x >0) C .5,5,a(0<a <10) D .m ,m ,m 26.如图1,ABC ∠的平分线交ACB ∠的平分线于l ,若60A =∠,则BIC =∠_____. 7.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.8.三角形两个外角的和等于第三个内角的4倍,则第三个内角等于___________. 9.如图2,1234+++=∠∠∠∠______;如图3,1234+++=∠∠∠∠_____.图210.两根木棒的长分别为7cm和10cm.要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x(cm)的范围是______.11.如图,已知△ACD=120°,△DFA=122°,△D=34°,求△A的度数.。