人教版 数学七年级上册第一章测试题含答案

合集下载

人教版数学七年级上册 第1---2章测试题含答案

人教版数学七年级上册 第1---2章测试题含答案

人教版数学七年级上册第1章测试题含答案1.1正数和负数一.选择题1.如果收入1000元记作+1000元,那么“﹣300元”表示()A.收入300元B.支出300元C.支出﹣300元D.获利300元2.在﹣(﹣1),﹣|﹣3.14|,0,﹣(﹣3)5中,正数有()个.A.1B.2C.3D.43.在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.零是正数不是负数B.不是正数的数一定是负数C.零既是正数也是负数D.零既不是正数也不是负数5.下列各式,①﹣(﹣2);②﹣|﹣2|;③﹣23;④﹣(﹣2)2.计算结果为负数的个数有()A.4个B.3个C.2个D.1个6.如果+2%表示增加2%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%7.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415 m B.﹣415 m C.±415 m D.﹣8848 m8.张倩同学记录了某天一天的温度变化的数据,如表所示,则温暖上升的时段是()024681012141618202224时刻/时温度﹣3﹣5﹣6﹣4﹣3﹣1010﹣1﹣2﹣4﹣4 A.0~4时B.4~14时C.14~22时D.14~24时9.下列式子中结果为负数的是()A.|﹣2|B.﹣(﹣2)C.﹣|﹣2|D.(﹣2)210.在下列各数中:﹣,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的有()个.A.2个B.3个C.4个D.5个二.填空题11.如果收入1500元记作+1500元,那么支出900元应记作元.12.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.14.若向北走5km记作﹣5km,则+10km的含义是.15.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为分.三.解答题16.出租车司机小李某天下午的营运全是在县城人民路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15、﹣2、+5、﹣1、+10、﹣3、﹣2、+12、+4、﹣5.(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?(2)若汽车耗油量为0.2升/千米,这天下午小李共耗油多少升?(3)若小李家距离出车地点的西边35千米处,送完最后一名乘客,小李还要行驶多少千米才能到家?17.某公路检修小组从A地岀发,在东西方向的公路上检修路面,如果规定向东行驶为正,向西行驶为负,一天行驶记录如下(单位:千米):﹣5、﹣3,+6,﹣7,+9,+8,+4,﹣2.(1)求收工时距A地多远;(2)距A地最远的距离是多少千米(3)若每千米耗油0.2升,问这个小组从出发到收工共耗油多少升18.出租车司机小李某天下午的营运全是在东西走向的万松路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:﹣8,+6,+10,+3,﹣2,﹣6,﹣5(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出发地有多远?(2)如果汽车耗油量为0.55升/千米,那么这天下午汽车共耗油多少升?(3)距出发地最远是多少千米?19.徐州地铁1号线,西起杏山子大道,止于高铁徐州东站,共设18座站点,18座站点如下所示.徐州轨道交通试运营期间,小苏从苏堤北路站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向徐州东站站方向(即箭头方向)为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)如果相邻两站之间的距离为2.5千米,求这次小苏志愿服务期间乘坐地铁行进的总路程是多少千米?参考答案与试题解析一.选择题1.【解答】解:由题意得:﹣300元表示支出300元.故选:B.2.【解答】解:因为﹣(﹣1)=1,﹣|﹣3.14|=﹣3.14,﹣(﹣3)5=﹣(﹣35)=35,所以正数有﹣(﹣1),﹣(﹣3)5共两个.故选:B.3.【解答】解:﹣(﹣)=,﹣|﹣|=﹣,所以,在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有﹣(﹣),95%,共2个.故选:B.4.【解答】解:零既不是正数也不是负数,故选:D.5.【解答】解:,①﹣(﹣2)=2是正数;②﹣|﹣2|=﹣2是负数;③﹣23=﹣8是负数;④﹣(﹣2)2=﹣4是负数,故选:B.6.【解答】解:如果+2%表示增加2%,那么﹣6%表示减少6%,故选:C.7.【解答】解:∵高出海平面8844m,记为+8844m,∴低于海平面约415m,记为﹣415m,故选:B.8.【解答】解:观察函数图标得,上升的时段是:4时﹣﹣﹣14时.故选:B.9.【解答】解:A、|﹣2|=2是正数,故A错误;B、﹣(﹣2)=2是正数,故B错误;C、﹣|﹣2|=﹣2是负数,故C正确;D、(﹣2)2=4是正数,故D错误;故选:C.10.【解答】解:﹣,(﹣4)2=16,+(﹣3)=﹣3,﹣52,=﹣25,﹣|﹣2|=﹣2,(﹣1)2016=1,0.负数有:数中:﹣,+(﹣3),﹣52,﹣|﹣2|.共4个,故选:C.二.填空题(共5小题)11.【解答】解:如果收入1500元记作+1500元,那么支出900元应记作﹣900;故答案为:﹣900.12.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃,故答案为:零下3℃.13.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0314.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km15.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.三.解答题(共4小题)16.【解答】解:(1)他将最后一名乘客送抵目的地时,小李距下午出车时的出发地的距离为:+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5=33(千米)小李距下午出车时的出发地有33千米.(2)这天下午小李共走的距离为:15+2+5+1+10+3+2+12+4+5=59(千米)∵汽车耗油量为0.2升/千米∴共耗油:59×0.2=11.8(升)∴这天下午小李共耗油11.8升.(3)∵小李家距离出车地点的西边35千米处,即﹣35千米处,由(1)可知小李距下午出车时的出发地有33千米.∴送完最后一名乘客,小李还要行驶33﹣(﹣35)=68(千米)∴送完最后一名乘客,小李还要行驶68千米才能到家.17.【解答】解:(1)(﹣5)+(﹣3)+6+(﹣7)+9+8+4+(﹣2)=10千米答:收工时在A地的东面10千米的地方.(2)﹣5﹣3+6﹣7+9+8+4=12千米,答:在向东行驶+4千米后,距A地的距离最远为12千米.(3)|﹣5|+|﹣3|+|+6|+|﹣7|+|+9|+|+8|+|+4|+|﹣2|=44千米,44×0.2=8.8升答:收工时一共需要行驶44千米,共用汽油8.8升.18.【解答】解:(1)﹣8+6+10+3﹣2﹣6﹣5=2千米.答:最后一名乘客送抵目的地时,小李距下午出发地有2千米.(2)[|﹣8|+|+6|+|+10|+|=3|+|﹣2|+|﹣6|+|﹣5|]×0.55=22升.答:这天下午汽车共耗油22升.(3)第一名乘客下车时小王离下午出发地是﹣8千米;第二名乘客下车时小王离下午出发地是﹣8+6=﹣2;第三名乘客下车时小王离下午出发地是﹣2+10=8;第四名乘客下车时小王离下午出发地是8+3=11,第五名乘客下车时小王离下午出发地是11﹣2=9;第六名乘客下车时小王离下午出发地是9﹣6=3;第七名乘客下车时小王离下午出发地是3﹣5=﹣2;取绝对值可以看出最远是11千米;答:距出发地最远是11千米.19.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是民主北路站1.2有理数一.选择题1.下列化简错误的是()A.﹣(﹣2)=2B.﹣(+3)=﹣3C.+(﹣4)=﹣4D.﹣|5|=52.如图,数轴上A,B两点所表示的数互为相反数,则下列说法正确的是()A.原点O在点B的右侧B.原点O在点A的左侧C.原点O与线段AB的中点重合D.原点O的位置不确定3.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.ab>0C.|a|<|b|D.﹣a>b4.﹣的相反数是()A.2020B.﹣2020C.D.﹣5.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b6.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣19687.﹣2019的绝对值和相反数分别为()A.2019,﹣2019B.﹣2019,2019C.2019,2019D.﹣2019,﹣20198.若|x|=9,则x的值是()A.9B.﹣9C.±9D.09.下列分数中,不能化成有限小数的是()A.B.C.D.10.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5二.填空题11.若|x﹣2|=3,则x=.12.表示a、b两数的点在数轴上的位置如图,则|a﹣1|+|1+b|=.13.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.14.a是最大的负整数,b是绝对值最小的数,则a+b=.15.已知,化简:|a+2b|﹣|c﹣a|+|﹣b﹣a|=.三.解答题16.已知|a﹣1|=2,求﹣3+|1+a|值.17.已知有理数a,b,c在数轴上的对应点分别为A,B,C.点A,B,C在数轴上的位置如图所示.若O是BC中点,A是OC中点,AC=2.(1)求a,b,c的值;(2)求线段AB的长度.18.我们在《有理数》这一章中学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|,数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(1)①数轴上表示数3的点与表示数1的点的距离可记作.②数轴上表示数a的点与表示数2的点的距离可记作.③数轴上表示数a的点与表示数﹣3的点的距离可记作.(2)数轴上与表示数﹣2的点的距离为5的点有个,它表示的数为.(3)拓展:①当数a取值为时,数轴上表示数a的点与表示数﹣1的点的距离最小.②当整数a取值为时,式子|a+1|+|a﹣2|有最小值为.③当a取值范围为时,式子|a+1|+|a﹣2|有最小值.19.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案与试题解析一.选择题1.【解答】解:∵﹣(﹣2)=2,∴选项A不符合题意;∵﹣(+3)=﹣3,∴选项B不符合题意;∵+(﹣4)=﹣4,∴选项C不符合题意;∵﹣|5|=﹣5,∴选项D符合题意.故选:D.2.【解答】解:∵互为相反数的两数到原点的距离相等,所以原点到A、B的距离相等,若线段AB的中点为O,则OA=OB,所以原点O在点B的左侧,原点O在点A的右侧,原点O与线段AB的中点重合,原点O的位置不确定.故选:C.3.【解答】解:由图可知a<﹣1<0<b<1,则ab<0,|a|>|b|,﹣a>b.故选:D.4.【解答】解:﹣的相反数是:.故选:C.5.【解答】解:由数轴可得:a<0<b,|a|>|b|∴|a+b|=﹣a﹣b故选:D.6.【解答】解:设P0所表示的数是a,则a﹣1+2﹣3+4﹣…﹣99+100=2019,即:a+(﹣1+2)+(﹣3+4)+…+(﹣99+100)=2019.a+50=2019,解得:a=1969.点P0表示的数是1969.故选:A.7.【解答】解:|﹣2019|=2019,﹣2019的相反数是2019.故选:C.8.【解答】解:∵|x|=9,∴x的值是±9.故选:C.9.【解答】解:A、=0.875,能化成有限小数,不符合题意;B、=0.25,能化成有限小数,不符合题意;C、=1.08,能化成有限小数,不符合题意;D、=0.41,不能化成有限小数,符合题意;故选:D.10.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.二.填空题(共5小题)11.【解答】解:当x﹣2>0时,x﹣2=3,解得,x=5;当x﹣2<0时,x﹣2=﹣3,解得,x=﹣1.故x=5或﹣1.12.【解答】解:由数轴可知:a<1,b<﹣1,所以a﹣1<0,1+b<0,故|a﹣1|+|1+b|=1﹣a﹣1﹣b=﹣a﹣b.13.【解答】解:整数包括正整数,0,负整数,所以整数有24,+17,0,﹣12四个;负分数包括负的小数和负的分数,所以负分数有﹣3.14,﹣7,﹣0.01三个;非负数包括0和正数,非负数包括24,17,,0四个.故应填4,3,4.14.【解答】解:∵a是最大的负整数,∴a=﹣1,b是绝对值最小的数,∴b=0,∴a+b=﹣1.故答案为:﹣1.15.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0;∵=﹣1,∴|b|=﹣b,∴b≤0;∵|c|=c,∴c≥0,∴|a+2b|﹣|c﹣a|+|﹣b﹣a|=﹣(a+2b)﹣(c﹣a)+(﹣b﹣a)=﹣a﹣2b﹣c+a﹣b﹣a=﹣a﹣3b﹣c.故答案为:﹣a﹣3b﹣c.三.解答题(共4小题)16.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3.17.【解答】解:(1)∵AC=2,A是OC中点∴OA=AC=2OC=2AC=4∵O是BC中点∴OB=OC=4∴a=2,b=﹣4,c=4(2)AB=OA+OB=2+4=6∴线段AB的长度为6.18.【解答】解(1)由题意可得,①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;故答案为:|3﹣1|;②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|;故答案为:|a﹣2|;③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|;故答案为:|a+3|;(2)根据绝对值的含义可知数轴上与表示数﹣2的点的距离为5的点有2个,表示的数为﹣7 或3;故答案为:2;﹣7或3;(3)①由两点间的距离最小为0,可知数轴上表示数a的点与表示数﹣1的点的距离最小.则a=﹣1;故答案为:﹣1;②∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和,则符合题意的整数a有﹣1,0,1,2;|a+1|+|a﹣2|的最小值为3;故答案为:﹣1,0,1,2;3;③∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和∴﹣1≤a≤2时,|a+1|+|a﹣2|有最小值;故答案为:﹣1≤a≤2.19.【解答】解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a ﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);+n(d﹣b).1.3有理数的加减法一.选择题1.某城市在冬季某一天的最低气温为﹣13℃,最高气温为3℃.则这一天最高气温与最低气温的差是()A.3℃B.﹣13℃C.16℃D.﹣16℃2.已知a<b,|a|=4,|b|=6,则a﹣b的值是()A.﹣2B.﹣10C.2或10D.﹣2或﹣10 3.M、N两地的高度差记为M﹣N,例如:M地比N地低2米,记为M﹣N=﹣2(米).现要测量A、B两地的高度差,借助了已经设立的D、E、F、G、H共五个观测地,测量出两地的高度差,测量结果如下表:(单位:米)两地的高度差D﹣A E﹣D F﹣E G﹣F H﹣G B﹣H测量结果 3.3﹣4.2﹣0.5 2.7 3.9﹣5.6则A﹣B的值为()A.0.4B.﹣0.4C.6.8D.﹣6.84.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.1个B.2个C.3个D.4个5.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7B.﹣3或﹣7C.﹣3 或7D.3或﹣76.把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是()A.B.C.D.7.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24B.14C.24或14D.以上都不对8.下列运算正确的是()A.=+(6+2)=+8B.=+(6+5)=+11C.=﹣(3﹣2)=﹣1D.=﹣(10﹣8)=﹣29.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大10.已知|x|=5,|y|=2,且x>y,则x﹣y的值等于()A.7或﹣7B.7或3C.3或﹣3D.﹣7或﹣3二.填空题11.a、b、c、d为互不相等的有理数,且c=2,|a﹣c|=|b﹣c|=|d﹣b|=1,则a+b+c+d=.12.从冰箱冷冻室里取出温度为﹣10℃的冰块,放在杯中,过一段时间后,该冰块的温度升高到﹣4℃,其温度升高了℃.13.已知|x|=4,|y|=5,且x,y均为负数,则x+y=.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例即4+3=7;则上图中m+n+p=.15.数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为.三.解答题16.若|m|=7,n2=36,且n>m,求m+n的值.17.若|x|=5,|y|=2,且|x﹣y|=y﹣x;求2x+3y的值.18.“新春超市”在去年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元,问“新春超市”去年总的盈亏情况如何?19.列式计算.(1)求2的相反数与﹣1的绝对值的和.(2)已知﹣11与一个数的差为11,求这个数.参考答案与试题解析一.选择题1.【解答】解:3﹣(﹣13),=16(℃).故选:C.2.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a<b,∴a=4时,b=6,a﹣b=4﹣6=﹣2,a=﹣4时,b=6,a﹣b=﹣4﹣6=﹣10,综上所述,a﹣b的值是﹣2,﹣10.故选:D.3.【解答】解:B﹣A=(D﹣A)+(E﹣D)+(F﹣E)+(G﹣F)+(B﹣G)=3.3﹣4.2﹣0.5+2.7+3.9﹣5.6=0.4(米).A比B地高0.4米,故选:A.4.【解答】解:①减去一个数,等于加上这个数的相反数,说法正确;②两个互为相反数的数和为0,说法正确;③两数相减,差一定小于被减数,说法错误,如1﹣(﹣2)=1+2=3,3>1;④如果两个数的绝对值相等,则这两个数相等或互为相反数,所以这两个数的和或差等于零,故④说法正确.所以正确的说法有①②④.故选:C.5.【解答】解:∵|a|=5,|b|=2,且b<a∴a=5,b=±2,∴a+b=7或3,故选:A.6.【解答】解:验证四个选项:A、行:2+(﹣2)+3=3,列:1﹣2+4=3,行=列,不符合题意;B、行:﹣2+2+4=4,列:1+3+2=6,行≠列,符合题意;C、行:﹣2+2+4=4,列:3+2﹣1=4,行=列,不符合题意;D、行:1﹣1+2=2,列:3﹣1+0=2,行=列,不符合题意.故选:B.7.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.8.【解答】解:A、=﹣(6+2)=﹣8,故不符合题意;B、=﹣(6+5)=﹣11,故不符合题意;C、=﹣(3﹣2)=﹣1;故符合题意;D、=10+8=18,故不符合题意,故选:C.9.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.10.【解答】解:∵|x|=5,|y|=2,且x>y,∴x=5,y=2或x=5,y=﹣2,则x﹣y=3或7,故选:B.二.填空题(共5小题)11.【解答】解:∵a、b、c、d为互不相等的四个有理数,且c=2,|a﹣c|=|b﹣c|=1,∴a=3,b=1或a=1,b=3,当b=1时,∵|d﹣b|=1,∴d=2或0,又∵c=2,a、b、c、d为互不相等的有理数,∴d=0;当b=3时,∵|d﹣b|=1,∴d=4或2,又∵c=2,a、b、c、d为互不相等的有理数,∴d=4,当a=3,b=1,d=0时,a+b+c+d=3+1+2+0=6;当a=1,b=3,d=4时,a+b+c+d=1+3+2+4=10.∴a+b+c+d=6或10.故答案为:6或10.12.【解答】解:由题意可得:﹣4﹣(﹣10)=6(℃).故答案为:6.13.【解答】解:∵|x|=4,|y|=5,且x,y均为负数,∴x=﹣4,y=﹣5,∴x+y=﹣9.故答案为:﹣9.14.【解答】解:由题意可得:n=8﹣1=7,8+m=﹣1,解得:m=﹣9,故p=n﹣1=6,故m+n+p=7﹣9+6=4.故答案为:4.15.【解答】解:有理数的减法运算法则:减去一个数,等于加上这个数的相反数.∴有理数的减法运算法则可以用数学符号语言表述为:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b)三.解答题(共4小题)16.【解答】解:∵|m|=7,∴m=±7,∵n2=36,∴n=±6,∵n>m,∴①当m=﹣7时,n=﹣6,m+n=﹣7﹣6=﹣13;②当m=﹣7时,n=6,m+n=﹣7+6=﹣1.∴m+n=﹣13或﹣1.17.【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵|x﹣y|=y﹣x,∴x﹣y≤0,∴x=﹣5,y=±2,2x+3y=﹣10+6=﹣4,或2x+3y=﹣10﹣6=﹣16,综上所述,2x+3y的值为﹣4或﹣16.18.【解答】解:20×3+(﹣15)×3+17×4+(﹣23)×2=60﹣45+68﹣46=37(万元人教版数学七年级上册检测题含答案2.1整式一.选择题1.代数式;0;2x3y;;;﹣a;7x2﹣6x﹣2中,单项式有()A.1个B.2个C.3个D.4个2.单项式﹣的系数是()A.2B.﹣1C.﹣3D.﹣3.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数()A.5个B.4个C.3个D.2个4.代数式:①;②πr2;③;④﹣3a2b;⑤.其中整式的个数是()A.2B.3C.4D.55.单项式﹣3xy2z3的系数与指数的和为()A.6B.3C.﹣3D.﹣66.下列说法正确的是()A.2x2﹣3xy﹣1的常数项是1B.0不是单项式C.3ab﹣2a+1的次数是3D.﹣ab2的系数是﹣,次数是37.已知单项式的次数是7,则2m﹣17的值是()A.8B.﹣8C.9D.﹣98.下列说法中,不正确的是()A.单项式﹣x的系数是﹣1,次数是1B.单项式xy2z3的系数是1,次数是6C.xy﹣3x+2是二次三项式D.单项式﹣32ab3的次数是69.已知A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,则a2+b3等于()A.5B.﹣4C.17D.﹣110.下列说法中:①的系数是;②﹣ab2的次数是2;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式,正确的有()A.1个B.2个C.3个D.4个二.填空题11.﹣是次单项式,系数是.12.单项式3x2y m是六次单项式,则m=.13.把多项式x3﹣7x2y+y3﹣4xy2按x的升幂排列为.14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式请你写出满足以上条件的所有整式.三.解答题16.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.17.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.18.(1)下列代数式:①2x2+bx+1;②﹣ax2+3x;③;④x2;⑤,其中是整式的有.(填序号)(2)将上面的①式与②式相加,若a,b为常数,化简所得的结果是单项式,求a,b 的值.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:代数式,0,2x3y,,,﹣a,7x2﹣6x﹣2中,单项式有:0,2x3y,﹣a,共3个.故选:C.2.【解答】解:单项式﹣的系数是:﹣.故选:D.3.【解答】解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.4.【解答】解:①a;②πr2;③x2+1;④﹣3a2b,都是整式,⑤,分母中含有字母,不是整式,故选:C.5.【解答】解:单项式﹣3xy2z3的系数为:﹣3,指数为:6,故系数与指数的和为:6﹣3=3.故选:B.6.【解答】解:A、2x2﹣3xy﹣1的常数项是﹣1,故此选项错误;B、0是单项式,故此选项错误;C、3ab﹣2a+1的次数是2,故此选项错误;D、﹣ab2的系数是﹣,次数是3,故此选项正确;故选:D.7.【解答】解:单项式的次数是指单项式中所有字母因数的指数和,则m+3=7,解得m=4,所以2m﹣17=2×4﹣17=﹣9.故选:D.8.【解答】解:A、单项式﹣x的系数是﹣1,次数是1,正确;B、单项式xy2z3的系数是1,次数是6,正确;C、xy﹣3x+2是二次三项式,正确;D、单项式﹣32ab3的次数是4,故错误,故选:D.9.【解答】解:∵A=2x2+ax﹣y+6,B=bx2﹣3x+5y﹣1,且A﹣B中不含有x2项和x项,∴A﹣B=2x2+ax﹣y+6﹣(bx2﹣3x+5y﹣1)=(2﹣b)x2+(a+3)x﹣6y+7,则2﹣b=0,a+3=0,解得:b=2,a=﹣3,故a2+b3=9+8=17.故选:C.10.【解答】解:①的系数是的说法正确;②﹣ab2的次数是3,原来的说法错误;③多项式mn2+2mn﹣3n﹣1的次数是3的说法正确;④a﹣b和都是整式的说法正确.正确的有3个.故选:C.二.填空题11.【解答】解:﹣是3次单项式,系数是:﹣.故答案为:3,﹣.12.【解答】解:∵单项式3x2y m是六次单项式,∴2+m=6,解得:m=4.故答案为:4.13.【解答】解:多项式x3﹣7x2y+y3﹣4xy2的各项为x3,﹣7x2y,y3,﹣4xy2,按x的升幂排列为:y3﹣4xy2﹣7x2y+x3.故答案为:y3﹣4xy2﹣7x2y+x3.14.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.【解答】解:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式可以是2a3b﹣或2a2b2﹣或2ab3﹣,故答案为:2a3b﹣或2a2b2﹣或2ab3﹣.三.解答题16.【解答】解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.17.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.18.【解答】解:(1)①是多项式,也是整式;②是多项式,也是整式;③是分式,不是整式;④是单项式,也是整式;⑤是二次根式,不是整式;故答案为:①②④;(2)(2x2+bx+1)+(﹣ax2+3x)=2x2+bx+1﹣ax2+3x=(2﹣a)x2+(b+3)x+1∵①式与②式相加,化简所得的结果是单项式,∴2﹣a=0,b+3=0,∴a=2,b=﹣3.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列计算中,正确的是()A.3a﹣9a=6a B.ab2﹣b2a=0C.a3﹣a2=a D.﹣7(a+b)=﹣7a+7b2.若﹣3x m y3与2x4y n是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣23.下列各组式子中不是同类项的是()A.4与B.3mn与4nm C.2πx与﹣3x D.3a2b与3ab2 4.下列运算正确的是()A.23=6B.﹣8a﹣8a=0C.﹣42=﹣16D.﹣5xy+2xy=﹣35.在下列各对整式中,是同类项的是()A.3x,3y B.﹣xy,2xyC.32,a2D.3m2n2,﹣4n3m26.若a为最大的负整数,b的倒数是﹣0.5,则代数式2b3+(3ab2﹣a2b)﹣2(ab2+b3)值为()A.﹣6B.﹣2C.0D.0.57.如果关于a,b的代数式a2m﹣1b与a5b m+n是同类项,那么(mn+5)2019等于()A.0B.1C.﹣1D.520198.下列各式计算正确的是()A.32=6B.C.3a+b=3ab D.4a3b﹣5ba3=﹣a3b9.若单项式5x1﹣a y3与2x3y b﹣1的差仍是单项式,则a b的值是()A.8B.﹣8C.16D.﹣1610.下列说法中,正确的是()A.若x,y互为倒数,则(﹣xy)2020=﹣1B.如果|x|=2,那么x的值一定是2C.与原点的距离为4个单位的点所表示的有理数一定是4D.若﹣7x6y4和3x2m y n是同类项,则m+n的值是7二.填空题11.关于x、y的多项式(3a﹣2)x2+(4a+10b)xy﹣x+y﹣5不含二次项,则3a﹣5b的值是.12.若单项式x4y n+1与﹣3x m y2是同类项,则m+n=.13.单项式2x a﹣2y3与xy b+1是同类项,则a+b=.14.长方形的周长为6a+8b,一边长为2a+3b,则相邻的一边长为.15.已知a2﹣2ab=2,4ab﹣3b2=﹣3,则a2﹣14ab+9b2﹣5的值为.三.解答题16.化简:(1)3x2y﹣xy2﹣2x2y+3xy2;(2)(5a2﹣ab+1)﹣(﹣4a2+2ab+1).17.定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与是关于2的平衡数,5﹣x与是关于2的平衡数.若a=x2﹣2x+1,b=x2﹣2(x2﹣x+1)+3,判断a与b是否是关于2的平衡数,并说明理由.18.已知关于x,y的多项式(ax2﹣2y+4)﹣(2x2+by﹣2).(1)当a,b为何值时,此多项式的值与字母x,y的取值无关?(2)在(1)的条件下,化简求多项式2(a2+2b2﹣2a)﹣(a2﹣ab+4b2)的值.19.已知多项式M=(2x2+3xy+2y)﹣2(x2﹣xy+x﹣).(1)先化简,再求值,其中x=,y=﹣1;(2)若多项式M与字母x的取值无关,求y的值.参考答案与试题解析一.选择题1.【解答】解:A、3a﹣9a=﹣6a,故原题计算错误;B、ab2﹣b2a=0,故原题计算正确;C、a3和a2不是同类项,不能合并,故原题计算错误;D、﹣7(a+b)=﹣7a﹣7b,故原题计算错误;故选:B.2.【解答】解:由题意可知:m=4,n=3,∴m﹣n=4﹣3=1,故选:B.3.【解答】解:(A)4与是同类项,故A不符合题意.(B)3mn与4nm是同类项,故B不符合题意.(C)2πx与﹣3x是同类项,故C不符合题意.(D)3a2b与3ab2不是同类型,故D符合题意.故选:D.4.【解答】解:A、23=8,错误,选项不符合题意;B、﹣8a﹣8a=﹣16a,错误,选项不符合题意;C、﹣42=﹣16,正确,选项符合题意;D、﹣5xy+2xy=﹣3xy,错误,选项不符合题意;故选:C.5.【解答】解:A.3x,3y所含字母不相同,不是同类项,不合题意;B.﹣xy,2xy所含字母相同,并且相同字母的指数也相同,是同类项,符合题意;C.32,a2不是同类项,不合题意;D.3m2n2,﹣4n3m2所含字母相同,相同字母n的指数不相同,不是同类项,不合题意;故选:B.6.【解答】解:∵a为最大的负整数,∴a=﹣1,∵b的倒数是﹣0.5,∴b=﹣2,原式=2b3+3ab2﹣a2b﹣2ab2﹣2b3=ab2﹣a2b,当a=﹣1,b=﹣2时,原式=﹣1×(﹣2)2﹣(﹣1)2×(﹣2)=﹣2,故选:B.7.【解答】解:∵关于a,b的代数式a2m﹣1b与a5b m+n是同类项,∴2m﹣1=5,m+n=1,解得:m=3,n=﹣2,则(mn+5)2019=(﹣6+5)2019=﹣1.故选:C.8.【解答】解:A、32=9,原计算错误,故此选项不符合题意;B、,原计算错误,故此选项不符合题意;C、3a与b不是同类项,并能合并,原计算错误,故此选项不符合题意;D、4a3b﹣5ba3=﹣a3b,原计算正确,故此选项符合题意;故选:D.9.【解答】解:由题意得:1﹣a=3,b﹣1=3,解得:a=﹣2,b=4,则a b=16,故选:C.10.【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;B、若|x|=2,那么x是±2,故B错误;C、与原点的距离为4个单位的点所表示的有理数是4或﹣4,故C错误;D、若﹣7x6y4和3x2m y n是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.故选:D.二.填空题(共5小题)11.【解答】解:由题意可得,3a﹣2=0且4a+10b=0,所以3a=2,∴4a=,∵4a+10b=0,∴10b=﹣,∴5b=﹣,所以3a﹣5b=2+=,故答案为:.12.【解答】解:由题意可知:m=4,n+1=2,∴m=4,n=1,∴m+n=5,故答案为:5.13.【解答】解:由题意可知:a﹣2=1,b+1=3,∴a=3,b=2,∴a+b=5,故答案为:5.14.【解答】解:由题意得:(6a+8b)﹣(2a+3b)=3a+4b﹣2a﹣3b=a+b,故答案为:a+b.15.【解答】解:∵a2﹣2ab=2,4ab﹣3b2=﹣3,∴原式=(a2﹣2ab)﹣3(4ab﹣3b2)﹣5=2+9﹣5=6.故答案为:6.三.解答题(共4小题)16.【解答】解:(1)原式=3x2y﹣2x2y﹣xy2+3xy2=x2y+2xy2.(2)原式=5a2﹣ab+1+4a2﹣2ab﹣1=9a2﹣3ab.17.【解答】解:(1)设3与x是关于2的平衡数,∴x+3=2,∴x=﹣1,设t与5﹣x是关于2的平衡数,∴t+5﹣x=2,∴t=x﹣3.(2)由题意可知:a+b=x2﹣2x+1+x2﹣2(x2﹣x+1)+3=x2﹣2x+1+x2﹣2x2+2x﹣2+3=2,∴a与b是关于2的平衡数.故答案为:(1)﹣1,x﹣3.18.【解答】解:(1)(ax2﹣2y+4)﹣(2x2+by﹣2)=ax2﹣2y+4﹣2x2﹣by+2=(a﹣2)x2﹣(2+b)y+6.当a=2,b=﹣2时,多项式的值与字母x、y的取值无关.(2)∵2(a2+2b2﹣2a)﹣(a2﹣ab+4b2)=2a2+4b2﹣4a﹣a2+ab﹣4b2=a2﹣4a+ab,当a=2,b=﹣2时,原式=4﹣8﹣4=﹣8.19.【解答】解:(1)=2x2+3xy+2y﹣2x2+2xy﹣2x+1=5xy+2y﹣2x+1,当时,原式=5××(﹣1)+2×(﹣1)﹣2×+1=﹣1﹣2﹣+1=﹣2。

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

人教版七年级上册数学第一单元测试题及答案【三篇】

人教版七年级上册数学第一单元测试题及答案【三篇】

、、、、4对于近似数01830,下列说法正确的是、有两个有效数字,精确到千位、有三个有效数字,精确到千分位、有四个有效数字,精确到万分位、有五个有效数字,精确到万分5下列说法中正确的是.一定是负数一定是负数一定不是负数一定是负数二、填空题每题5分,共25分6若0<<1,则,,的大小关系是7若那么28如图,点在数轴上对应的实数分别为,则间的距离是.用含的式子表示9如果且2=4,2=9,那么+=10、正整数按下图的规律排列.请写出第6行,第5列的数字.三、解答题每题6分,共24分11①-5×6+-125÷-5②312+-12--13+223③23-14-38+524×48④-18÷-32+5×-123--15÷5四、解答题12本小题6分把下列各数分别填入相应的集合里1正数集合{…};2负数集合{…};3整数集合{…};4分数集合{…}13本小题6分某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14本小题6分已知在纸面上有一数轴如图,折叠纸面1若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;2若-1表示的点与3表示的点重合,则5表示的点与数表示的点重合;15本小题8分某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.1这10名同学中分是多少?最低分是多少?210名同学中,低于80分的所占的百分比是多少?310名同学的平均成绩是多少?参考答案1.234567≤8-9±1103211①-5②6③12④12①②③④1310千米14①2②-315①分92分;最低分70分②低于80分的学生有5人。

所占百分比50③10名同学的平均成绩是80分【篇二】人教版七年级上册数学第一单元测试题及答案一、仔细选一选30分10是.正有理数.负有理数.整数.负整数2中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于.计数.测量.标号或排序.以上都不是3下列说法不正确的是.0既不是正数,也不是负数.0的绝对值是0.一个有理数不是整数就是分数.1是绝对值最小的数4在数-,0,45,|-9|,-679中,属于正数的有个.2.3.4.55一个数的相反数是3,那么这个数是.3.-3..6下列式子正确的是.2>0>-4>-1.-4>-1>2>0.-4-17一个数的相反数是的负整数,则这个数是.1.±1.0.-18把数轴上表示数2的点移动3个单位后,表示的数为.5.1.5或1.5或-19大于-22的最小整数是.-2.-3.-1.010学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在在家在学校在书店不在上述地方二、认真填一填本题共30分11若上升15米记作+15米,则-8米表示。

人教版初中数学七年级上册第一章 《有理数》测试题(含答案)

人教版初中数学七年级上册第一章 《有理数》测试题(含答案)

第一章 《有理数》测试题一、单选题(每小题只有一个正确答案)1.25-的倒数是( ) A .25 B .52 C .52- D .12- 2.判断下列说法正确的是( )A .正数和负数统称为有理数B .正分数和小数统称为分数C .正整数集、负整数集并列在一起构成整数集D .一个有理数不是整数就是分数3.已知关于x 的代数式25x -与52x -互为相反数,则x 的值为( )A .9B .9-C .1D .1-4.某市去年完成了城市绿化面积28210000m .将“8210000”用科学记数法可表示( )A .482110⨯B .582.110⨯C .70.82110⨯D .68.2110⨯5.如果高出海平面 20 米,记作+20 米,那么-30 米表示( )A .高出海平面 30 米B .低于海平面 30 米C .不足 30 米D .低于海平面 20 米6.与1的和是3的数是( )A .﹣4B .﹣2C .2D .4 7.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是( )A .盈利了290元B .亏损了48元C .盈利了242元D .盈利了-242元8.下列说法正确的有( )①数轴原点两旁的两个数互为相反数;②若 a ,b 互为相反数,则 a+b=0;③如果一个数的绝对值等于它本身,那么这个数是正数;④-3.14 既是负数,分数,也是有理数.A .1B .2C .3D .49.已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A .a+b >0B .ab <0C .b —a >0D .a >b 10.27-的倒数与绝对值等于221的数的积为( )A .13B .13- C .13或13- D .4147或4147- 11.30269精确到百位的近似数是( )A .303B .30300C .330.230⨯D .43.0310⨯12.若a 是负数,则下列各式不正确的是( )A .a 2=(﹣a )2B .a 2=|a 2|C .a 3=(﹣a )3D .a 3=﹣(﹣a 3)二、填空题13.﹣13的相反数是_____,倒数是_____,绝对值是_____. 14.如图,数轴上点A 表示的数是________.15.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.16.已知|a|=5,|b|=3,且|a ﹣b|=b ﹣a ,那么a+b=_____.17.若定义一种新的运算,规定a cb d =ab-cd,则14 23-=_____.三、解答题18.把下列各数分别填在相应的集合内:-11,4.8,73,-2.7,16 ,3.141 592 6,-34,73,0. 正分数集合:{ };负分数集合:{ };非负整数集合:{ };非正整数集合:{ }.19.计算题:(1)(-20)-(+3)-(-5) (2)(3) |-3|×(-5)÷(- ) (4) ( )(5) (6)( )×4(7) ( ) ( ) ( )(8)20.用科学记数法表示下列各数.(1);(2);(3);(4).21.下表记录了七(1)班一个组学生的体重情况,假设平均体重是50 kg,超出记为正,不足记为负.(1)谁最重?谁最轻?(2)最重的同学比最轻的同学重多少?22.已知水结成冰的温度是,酒精冻结的温度是.现有一杯酒精的温度为,放在一个制冷装置里、每分钟温度可降低,要使这杯酒精冻结,需要几分钟?(精确到分钟)23.已知,互为相反数,,互为倒数,且,求的值.24.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, |-1.5|,, 0,(-2)2.用“<”把这些数连接起来:______________________________________.25.某电力局维修队从电力局出发,在一条南北方向的公路上巡回维修,假定向南的路线记为正数,走过的各段路程依次为(单位:千米)﹣600,+4050,﹣805,+380,﹣1600(1)维修队最后是否能回到电力局?(2)维修队最后收工时在本局什么方向,距本局多远?(3)维修队离开本局最远时是多少?(4)如果每千米耗油2升,那么在整个维修过程中用了多少升油?参考答案1.C2.D3.C4.D5.B6.C7.C8.B9.D10.C11.D12.C13.13-31314.-115.-116.﹣2或﹣8.17.1418.详见解析.19.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-399;(7)0;(8)40.20.见解析21.(1)小天最重,小丽最轻;(2)小天比小丽重13 kg.22.需要分钟.23.-3.24.用“<”把这些数连接起来:-5<-<0<<25.(1)维修队最后没有回到电力局;(2)维修队最后收工时在本局北边,距本局425千米;(3)维修队离开本局最远时是3450千米;(4)在整个维修过程中用了14870升油.。

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。

人教版七年级上册数学第一单元练习卷含答案(第一章有理数)

人教版七年级上册数学第一单元练习卷含答案(第一章有理数)

人教版七年级上册数学第一单元练习卷含答案第一章 有理数一、单选题1.如果向北走6步记作+6步,那么向南走8步记作()A.+8步B.-8步C.+14步D.-2步2.在112-,12,20-,0 ,()5--,- 1.5-中,负数的个数有( );A.2个B.3 个C.4 个D.5 个 3.-3的相反数是( )A .-3B .-13C .13D .34.如果|a|=-a ,那么a 一定是 ( )A .正数B .负数C .非正数D .非负数5.有理数a,b 在数轴上表示的点如图所示,则,,,a a b b --的大小关系是( )A .b a a b ->>->B .a a b b >->>-C .b a b a >>->-D .b a a b >->>-6.在数轴上,点P 从-2开始移动,先向右移动5个单位长度,再向左移动4个单位长度,最后到达的点表示的数为( )A.3B.-4C.-1D.-67.若|a|=8,|b|=5,且a+b>0,那么a-b 的值是( )A.3或13B.13或-13C.3或-3D.-3或-138.下列计算:①(-2)-(-3)=1;②(-6)+8=2;③0-(-2)=-2;④(-7)-(-7)=0. 错误的有( ).A.0个B.1个C.2个D.3个 9.在6,17,9-,12-这四个数中,倒数是正整数的是 ( ) A.6 B.17 C.9- D.12- 10.如果五个有理数相乘,积为负,那么其中正因数有( )A .2个B .3个C .4个D .2个或4个或0个11.2016提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为( )A.71.1710⨯B.61.1710⨯C.611.710⨯D.81.1710⨯ 12.当0a <时,下列四个结论:①20a >;②()22a a =-;③33a a -=;④22a a -=-,其中一定正确的有( )A.1个B.2个C.3个D.4个二、填空题13.近似数1.31×810 精确到______位。

人教版七年级数学上册各章节测试题含答案全

人教版七年级数学上册各章节测试题含答案全

第一章 丰富的图形世界一、精心选一选,慧眼识金!(每小题4分,共10小题,共40分) 1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是 ( ) A .长方体 B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是 ( )A.文B.明C.奥D.运3. 如图所示的几何体的从上面看到的形状图是( )4.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ( )5. 将如左下图所示的绕直角边旋转一周,所得几何体的从正面看到的形状图是 ( )6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )7. 某几何体的三种形状图如下所示,则该几何体可以是 ( )第1题图 第5题图第2题图 第3题图 A B C D第6题图从正面看 从左面看 从上面看8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为 ( )(每小题4分,共5小题,共20分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是 .12.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 .14.一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了________个三角形.15.如图,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm ,那么这根木料本来的体积是 3cm .A B C D 第10题图 3 1 1 2 2 4 第15题图1.6米三、用心做一做,马到成功!(每小题12分,共5小题,共60分) 16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图):⑴若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值为 . ⑵请你画出这个几何体所有可能的从左面看到的形状图.18.如图是一个几何体的两种形状图,求该几何体的体积(л取3.14).19. 如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.第16题图 1 5 4 62 3 7 第18题图20cm32cm 40cm 30cm30cm 25cmBA 第20题图第19题图单元测试题1.C2.A3.D4.C5.A6.B7.A8.D9.C 10.C 11.球体 12.7,6 13.30 cm 14.n-3,n-2 15.32 16.1号、2号 17.⑴8或9 ⑵图略 18.40048cm 319.18cm 220.略第二章 有理数及其运算一、耐心填一填:(每题3分,共30分)1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 . 2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 . 3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += .5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上学期第一章有理数测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数的是()A. -2B. 3C. -58D. -0.102.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 14.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣25.下列各对数是互为倒数的是( )A. 4和-4B. -3和13C. -2和12D. 0和06.下列说法中错误的是( )A. 0的相反数是0B. 任何有理数都有相反数C. a的相反数是-aD. 表示相反意义的量的两个数互为相反数7. 如图,数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A. —4B. —2C. 0D. 48.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×1079.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A a+b >0B. a-b=0C. a-b >0D. ab <0二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”) 12.某种零件,标明要求是φ20±0.2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件_____________(填“合格” 或“不合格”).13. 用四舍五入法取近似数,1.806≈__________(精确到0.01). 14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和,那么的值为___ .16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均正整数),则a+b=_______.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-53),- 3.14-,+31,3--4⎛⎫ ⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}. 18.计算: (1)(-24)×(12-213-38); (2)[2-5×(-12)2]÷1-4⎛⎫ ⎪⎝⎭.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?附加题(共20分,不计入总分)23.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 124.已知A,B在数轴上表示的数分别是m,n.(1)填写下表:m 5 -5 -6 -6 -10 -2.5n 3 0 4 -4 2 -2.5A、B两点间的距离(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数是()A. -2B. 3C. -58D. -0.10【答案】B【解析】试题分析:A.﹣2是负数,故本选项不符合题意;B.3是正数,不是负数,故本选项符合题意;C.58是负数,故本选项不符合题意;D.﹣0.10是负数,故本选项不符合题意;故选B.考点:正数和负数.2.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米【答案】A【解析】试题分析:收入20元与支出30元是一对具有相反意义的量.故选A.考点:相反意义的量.3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 1 【答案】D【解析】试题分析:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.考点:有理数大小比较.4.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣2 【答案】A【解析】【详解】解:1﹣(﹣1)=1+1=2. 故选:A .【点睛】本题考查有理数的减法. 5.下列各对数是互为倒数是( ) A. 4和-4 B. -3和13C. -2和12D. 0和0【答案】C 【解析】试题解析:A 、4×(-4)≠1,选项错误; B 、-3×13≠1,选项错误; C 、-2×(-12)=1,选项正确; D 、0×0≠1,选项错误. 故选C . 考点:倒数.6.下列说法中错误的是( ) A. 0的相反数是0 B. 任何有理数都有相反数C. a 的相反数是-aD. 表示相反意义的量的两个数互为相反数【答案】D 【解析】A 中,0的相反数是0本身,故A 不符合题意;B 中,任何有理数都有相反数,故B 不符合题意;C 中,a 的相反数是﹣a ,故C 不符合题意;D 中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示. 故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 7. 如图,数轴的单位长度为1,如果点A,B 表示的数的绝对值相等,那么点A 表示的数是( )A. —4B. —2C. 0D. 4【答案】B【解析】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.9.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|【答案】B【解析】【分析】根据乘方运算法则逐一计算即可判断.【详解】A. 22=4,(−2)2=4,故此选项正确;B. −22=−4,(−2)2=4,故此选项错误;C. −33=−27,(−3)3=−27,故此选项正确;D. −33=−27,−|−33|=−27,故此选项正确;故答案选:B.【点睛】本题考查了有理数的乘方运算,解题的关键是熟练的掌握有理数的乘方运算法则.10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A. a+b>0B. a-b=0C. a-b>0D. ab<0【答案】D【解析】【分析】根据图示,可得:a<-1,0<b<1,据此逐项判断即可.【详解】∵a<−1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<−1,0<b<1,∴∴a−b<0∴选项B不符合题意;∵a<−1,0<b<1,∴a-b<0,∴选项C不符合题意;∵a<−1,0<b<1,∴ab<0,∴选项D符合题意.故答案选:D.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的知识与运用.二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”)【答案】< 【解析】两个负数比较,绝对值大的反而小,故﹣1<1 2 -12.某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).【答案】合格【解析】【分析】先求出合格直径范围,再判断即可.【详解】解:由题意得,合格直径范围为:19.8mm--20.2mm,若一个零件的直径是19.9mm,则该零件合格.故答案为:合格.【点睛】本题考查了正数和负数的知识,解答本题的关键是求出合格直径范围.13. 用四舍五入法取近似数,1.806≈__________(精确到0.01).【答案】1.90.【解析】试题分析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.把千分位上的数字6进行四舍五入即可.解::1.806≈1.90(精确到0.01).故答案为1.90.考点:近似数和有效数字.14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.【答案】五【解析】【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【详解】解:依题意,有|−0.6|<|+0.8|<|−2.5|<|−3.5|<|+5|由于“绝对值越小,距离标准越近”所以质量接近标准的是五号排球.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数的相关知识.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的3 和,那么的值为___ .【答案】5.【解析】试题解析:由数轴可知38,x -+= 解得: 5.x = 故答案 16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均为正整数),则a+b=_______.【答案】209 【解析】试题解析:根据题中规律可知33222221111n n n n n n n n n n n n -++===⋅---- ,则当14n = 时,14a = ,195b =,所以14195209a b +=+= . 故本题的答案为209.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-5.3),- 3.14-,+31,3--4⎛⎫⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}.【答案】+31,0,-(+7),2016;-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39;-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016.【解析】 【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 【详解】解:整数:{+31,0,-(+7),2016,…}; 分数:{-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39,…};非负数:{-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016,…}. 【点睛】考查了有理数的知识点,解题的关键是熟练的掌握有理数的分类与定义. 18.计算:(1)(-24)×(12-213-38);(2)[2-5×(-12)2]÷1-4⎛⎫⎪⎝⎭.【答案】(1)37;(2)-3.【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算再计算乘除运算,最后算加减运算即可得到结果. 【详解】解:(1)原式=-12+40+9=37;(2)原式=(2-54)×(-4)=-8+5= -3.【点睛】本题考查了有理数的综合运算,解决的关键在于符号的处理.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26)=6÷(﹣16)=6×(﹣6)=﹣36.【点睛】本题考查有理数的除法.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)【答案】(1) 8.96×104;(2) 1.792×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】解:(1)1 600 000×56÷1000=89 600=8.96×104(升).答:如果每个人都不关水龙头,那么全市一天早晨漱口要浪费8.96×104升水.(2)89 600×1000÷500=179 200=1.792×105(瓶).答:如果用500毫升的水瓶来装(1)中浪费的水,可以装1.792×105瓶.【点睛】本题主要考查科学记数法—表示较大的数,关键在于要确定a的值和n的值.21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【答案】(1)149985;(2)99900.【解析】【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.考点:有理数的运算.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?【答案】(1) B地在A地的东边18千米处;(2) 还需补充7升油.【解析】试题分析:(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量. 试题解析:(1)∵14﹣9+8﹣7+13﹣6+10﹣5=18>0,∴B 地在A 地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+10=23千米;14﹣9+8﹣7+13﹣6+10﹣5=18千米,∴最远处离出发点23千米;(3)∵这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+10+|﹣5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36﹣29=7(升).考点:正数和负数.附加题(共20分,不计入总分)23.已知a 为有理数,定义运算符号▽:当a >-2时,▽a=-a ;当a <-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 1 【答案】C【解析】【分析】定义运算符号▽当a>-2时, ▽a=-a;当时a<-2, ▽a=a;当a=-2时, ▽a=0,先判断a 的大小,然后按照题中的运算法则求解即可.【详解】2532,-=-<-且当a 2<-时, ▽a=a,▽(-3)=-3.4+▽(2-5)=4-3=1>-2,当a>-2时, ▽a=-a,▽[4+▽(2-5)]=▽1=-1.【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里找寻规律. 24.已知A,B 在数轴上表示的数分别是m,n.(1)填写下表:(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.【答案】(1)2,5,10,2,12,0;(2)d=|m-n|;(3)在数轴上标出略,整数点P表示的数可以是5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和0.【解析】【分析】根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.【详解】解:(1)从左到右依次填2,5,10,2,12,0.(2)d=|m-n|.(3) 5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和是0.【点睛】本题是一个新型题目,通过本题我们可掌握数轴上两点间的距离的计算方法:两点间的距离表示两个点的数的差的绝对值,熟悉掌握是关键.。

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。

人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)

人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)

1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分D 解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 3.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】 根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 6.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.7.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.10.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.11.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 12.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.把实数3⨯用小数表示为()6.1210-A.0.0612 B.6120 C.0.00612 D.612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法15.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.1.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.2.一条数轴上有点A、B、C,其中点A、B表示的数分别是16-、9,现以点C为折点,将放轴向右对折,若点A对应的点A'落在点B的右边,若3A B'=,则C点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.4.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.5.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.6.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.7.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.8.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算. 11.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.1.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷=1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键. 3.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.4.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.。

人教版数学七年级上册 第1章 1.1--1.3测试题含答案

人教版数学七年级上册 第1章 1.1--1.3测试题含答案

人教版数学七年级上册第1章 1.1--1.3测试题1.1正数和负数一.选择题(共10小题)1.在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数的个数是()A.1B.2C.3D.42.如果向左走3米记作+3米,那么向右走了5米可以记作()米.A.+3B.﹣3C.+5D.﹣53.用﹣a表示的数一定是()A.负数B.正数或负数C.0或负数D.以上全不对4.把向东运动记作“+”,向西运动记作“﹣”,下列说法正确的是()A.﹣3米表示向东运动了3米B.+3米表示向西运动了3米C.向西运动3米表示向东运动﹣3米D.向西运动3米,也可记作向西运动﹣3米5.下列不是具有相反意义的量是()A.前进5米和后退5米B.收入30元和支出10元C.超过5克和不足2克D.向东走10米和向北走10米6.如果把向东走4km记作+4km,那么﹣2km表示的实际意义是()A.向东走2km B.向西走2km C.向南走2km D.向北走2km 7.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京10月11日9时,纽约的时间是()A.10月10日6时B.10月10日20时C.10月11日20时D.10月11日22时8.若收入60元记作+60元,则﹣20元表示()A.收入20元B.收入40元C.支出20元D.支出40元9.低于正常水位0.16米记为﹣0.16,高于正常水位0.02米记作()A.+0.02B.﹣0.02C.+0.18D.﹣0.1410.一种糖果,包装袋上写着:净重180克±6克,这表明这袋糖果的重量x的范围是()A.x≤186克B.x≥174克C.174≤x≤186克D.x=180克二.填空题(共5小题)11.如果盈利350元记作+350元,那么亏损80元记作元.12.若海平面以上1045米,记作+1045米,则海平面以下155米,记作.13.如果增加50%记作+50%,那么减少20%记作%.14.如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作.15.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.三.解答题(共4小题)16.中秋节期间,子涵和妈妈一块去商场购买月饼,妈妈买了一盒某品牌月饼共计8枚.回家后子涵很仔细地看了看标签和有关说明:子涵把8枚月饼的质量(重量)称重后统计列表如表(单位:克):枚数(个)12345678重量(克)565554.856.255.355.354.754.3(1)子涵为了简化运算,选取一个恰当的基准质量,这个基准质量是克.(2)依据这个基准质量,子涵把超出的部分记为正,不足的部分记为负,列出表(不完整)枚数(个)12345678重量(克)+1.2+0.3+0.3请补全表格,并计算这8枚月饼的平均质量.(3)当子涵看到说明书上标记的总质量为440±2克时,子涵断定妈妈买的月饼在总质量上是合格的.你知道为什么吗?17.有10筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数111313(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.5元,则出售这10筐白菜可卖多少元?18.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):星期一二三四五六日+5﹣2﹣4+13﹣9+16﹣8增减产量/个(1)根据记录的数据可知,小王星期五生产口罩个.(2)根据表格记录的数据,求出小王本周实际生产口罩数量.(3)若该厂实行每周计件工资制,每生产一个口罩可得0.6元,若超额完成周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量.则少生产一个扣0.2元,求小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量.则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,请直接写出小王这一周的工资总额是多少元.19.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置:(填:是或否);(2)守门员离开球门的位置最远是米;(3)守门员一共走的路程为米;(4)若守门员练习用时45秒,则守门员的速度为米/秒.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数有﹣1,﹣2,﹣3,﹣1,一共4个.故选:D.2.【解答】解:∵“正”和“负”相对,向左走3米记作+3米,∴向右走5米记作﹣5米.故选:D.3.【解答】解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.4.【解答】解:A、﹣3米表示向西走了3米,故A错误;B、+3米表示向东运动了3米,故B错误;C、向西运动3米表示向东运动﹣3米,故C正确;D、向西运动5米,也可记作向东运动﹣3米,故D错误.故选:C.5.【解答】解:A、前进5米和后退5米是具有相反意义的量,故本选项不符合题意;B、收入30元和支出10元是具有相反意义的量,故本选项不符合题意;C、超过5克和不足2克是具有相反意义的量,故本选项不符合题意;D、向东走10米和向北走10米不是具有相反意义的量,故本选项符合题意.故选:D.6.【解答】解:向东走4km记作+4km,那么﹣2km表示向西走2km,故选:B.7.【解答】解:纽约时间是:10月11日9时﹣13小时=10月10日20时.故选:B.8.【解答】解:根据题意,收入60元记作+60元,则﹣20元表示支出20元.故选:C.9.【解答】解:低于正常水位0.16米记作﹣0.16,高于正常水位0.02米记作+0.02;故选:A.10.【解答】解:∵糖果净重180克±6克,∴糖果最重为180+6=186(克),最轻为180﹣6=174(克),∴糖果的重量x的范围是174≤x≤186克,故选:C.二.填空题(共5小题)11.【解答】解:∵盈利350元记作+350元,∴亏损80元记作﹣80元.故答案为:﹣80.12.【解答】解:若海平面以上1045米,记作+1045米,则海平面以下155米,记作﹣155米.故答案为:﹣155米.13.【解答】解:根据正数和负数的定义可知:减少20%记作﹣20%,故答案为:﹣20.14.【解答】解:“正”和“负”相对,所以如果顺时针方向旋转21°,记作+21°,那么逆时针旋转15°,应记作﹣15°.故答案为:﹣15°.15.【解答】解:一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作﹣4m,故答案为﹣4.三.解答题(共4小题)16.【解答】解:(1)根据(2)中第4个重量记作+1.2,第5个重量记作+0.3,所以这个基准质量为,56.2﹣1.2=55(克).故答案为:55;(2)根根(1)中基准质量为55克,所以第1个重量记作56﹣55=1,第2个重量记作55﹣55=0,第3个重量记作54.8﹣55=﹣0.2,第7个重量记作54.7﹣55=﹣0.3,第8个重量记作54.3﹣55=﹣0.7,这八枚月饼的平均质量为:[1+0+(﹣0.2)+1.2+0.3+0.3+(﹣0.3)+(﹣0.7)]÷8=0.2,55+0.2=55.2(克),故答案为:1,0,﹣0.2,﹣0.3,﹣0.7;(3)这八枚月饼的总质量为:55.2×8=441.6(克),因为说明书上标记的总质量为440±2克,即总质量在438克到442克之间为合格,所以可以判定总质量式合格的.17.【解答】解:(1)从表格可知,最重的超出2.5kg,最轻的不足3kg,∴2.5﹣(﹣3)=5.5kg;答:10筐白菜中,最重的一筐比最轻的一筐重5.5千克;(2)﹣3+3×(﹣2)+0+1×2+2.5×2=﹣2kg,∴总重量不足2kg;答:与标准重量比较,10筐白菜总计不足2千克;(2)(25×10﹣2)×2.5=620(元),∴出售这10筐白菜可卖620元.答:出售这10筐白菜可卖620元.18.【解答】解:(1)小王星期五生产口罩数量为:300﹣9=291(个),故答案为:291;(2)+5﹣2﹣4+13﹣9+16﹣8=11(个),则本周实际生产的数量为:2100+11=2111(个)答:小王本周实际生产口罩数量为2111个;(3)一周超额完成的数量为:+5﹣2﹣4+13﹣9+16﹣8=11(个),所以,2100×0.6+11×(0.6+0.15)=1260+11×0.75=1260+8.25=1268.25(元),答:小王这一周的工资总额是1268.25元;(4)第一天:300×0.6+5×(0.6+0.15)=183.75(元);第二天:(300﹣2)×0.6﹣2×0.2=178.4(元);第三天:(300﹣4)×0.6﹣4×0.2=176.8(元);第四天:300×0.6+13×(0.6+0.15)=189.75(元);第五天:(300﹣9)×0.6﹣9×0.2=172.8(元);第六天:300×0.6+16×(0.6+0.15)=192(元);第七天:(300﹣8)×0.6﹣8×0.2=173.6(元);共183.75+178.4+176.8+189.75+172.8+192+173.6=1267.1(元).答:小王这一周的工资总额是1267.1元.19.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10=0(米),故回到了原来的位置,故答案为:是;(2)离开球门的位置分别是5米,2米,12米,4米,2米,10米,0米,∴离开球门的位置最远是12米,故答案为:12;(3)总路程=|5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=54(米)1.2有理数一.选择题(共10小题)1.下列各数:﹣3,,0,π,0.25,,其中有理数的个数为()A.3B.4C.5D.62.在,﹣2,+3.5,0,﹣0.7,5,﹣中,分数有()A.1个B.2个C.3个D.4个3.是真分数,是假分数,a是()A.1B.6C.7D.54.在﹣6,0,﹣3,﹣4这四个数中,最小的数是()A.﹣6B.0C.﹣3D.﹣45.某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2015,则电子昆虫的初始位置K0所表示的数是()A.2065B.﹣1965C.1965D.﹣20656.数轴上,到2的距离等于4个单位长度的点所表示的数是()A.﹣2B.6C.﹣6或6D.﹣2或67.在0和0,和﹣,和3这三对数中,互为相反数的有()A.3对B.2对C.1对D.0对8.下列四个数轴的画法中,规范的是()A.B.C.D.9.数轴上点A表示的数为2019,点B表示的数为2020,那么点A和点B之间的距离为()A.1B.2019C.2020D.403910.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②﹣a+b;③ab;④;⑤;⑥a3×b3;⑦b3﹣a3.A.4个B.5个C.6个D.7个二.填空题(共5小题)11.在框里填上“>”、“<”或“=”.;;0.7.12.比较、、﹣|﹣1|的大小关系,再按从大到小的顺序用“>”连起来为.13.比较大小:(填“<”、“=”或“>”).14.真分数一定小于假分数.(判断对错)15.﹣2或﹣12的相反数是.三.解答题(共4小题)16.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.17.把下列各数在数轴上表示出来,并用“<”号连接起来.﹣3的相反数,﹣0.5,+(﹣2),﹣(﹣1.5),﹣|﹣4|.18.把下列各数分别填在表示它所在的集合里:﹣5,﹣,2020,﹣(﹣4),,﹣|﹣13|,3.14159,﹣0.36,0.(1)负数集合{…};(2)整数集合{…};(3)分数集合{…}.19.把下列各数填在相应的集合中:15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π,.正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在﹣3,,0,π,0.25,中,其中有理数有﹣3,,0,0.25,,有理数的个数为5.故选:C.2.【解答】解:在,﹣2,+3.5,0,﹣0.7,5,﹣中,分数有,+3.5,﹣0.7,﹣,一共4个.故选:D.3.【解答】解:是真分数,是假分数,则6≤a<7,即a=6.故选:B.4.【解答】解:∵﹣6<﹣4<﹣3<0,∴最小的数是﹣6.故选:A.5.【解答】解:设K0在数轴上所表示的数为a,由题意得,K1=a﹣1,K2=a+1,K3=a﹣2,K4=a+2…k100=a+50,因此a+50=2015,解得a=1965,故选:C.6.【解答】解:2+4=6,2﹣4=﹣2,故选:D.7.【解答】解:互为相反数的是:0和0,和﹣,共有2对.故选:B.8.【解答】解:数轴是规定了原点、正方向、单位长度的直线,选项A的数轴单位长度不一致,因此选项A不正确;选项B的数轴无原点,因此选项B不正确;选项C符合数轴的意义,正确;选项D的数轴没有正方向,因此选项D不正确;故选:C.9.【解答】解:2020﹣2019=1,∴点A和点B之间的距离是1.故选:A.10.【解答】解:由点M、N在数轴上的位置可得,a<0,b>0,且|a|>|b|,因此,a+b<0,﹣a+b>0,ab<0,<0,>0,a3×b3<0,b3﹣a3>0,故结果为负数的有①③④⑥,故选:A.二.填空题(共5小题)11.【解答】解:∵,,,∴;∵,,∴;∵,0.7=,∴.故答案为:>;>;<.12.【解答】解:∵,,﹣|﹣1|=﹣1,∴,故答案为:.13.【解答】解:∵,,,∴.故答案为:>.14.【解答】解:根据真分数与假分数的意义可知,真分数<1,假分数≥1,所以两个分数相比较,真分数一定小于假分数.故答案为:正确.15.【解答】解:﹣2的相反数是2,﹣12的相反数是12,故答案为:2或12.三.解答题(共4小题)16.【解答】解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).17.【解答】解:在数轴上表示出来为:用“<”号把它们连接起来为:.18.【解答】解:﹣(﹣4)=4;﹣|﹣13|=﹣13;所以,(1)负数集合:{﹣5,﹣,﹣|﹣13|,﹣0.36…};(2)整数集合:{﹣5,﹣(﹣4),2020,﹣|﹣13|,0…};(3)分数集合:{﹣,,3.14159,﹣0.36…};故答案为:﹣5,﹣,﹣|﹣13|,﹣0.36;﹣5,﹣(﹣4),2020,﹣|﹣13|,0;﹣,,3.14159,﹣0.36.19.【解答】解:正数集合{15,0.81,,171,3.14,π,…};负分数集合{﹣,﹣3.1…};非负整数集合{15,171,0…};3.14,…}.1.3有理数的加减一.选择题1.有理数a,b,c的位置如图所示,则下列各式:①ab<0②b﹣a+c>0③=1④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确的有()个.A.1B.2C.3D.42.下列说法中,不正确的是()①符号不同的两个数互为相反数②所有有理数都能用数轴上的点表示③绝对值等于它本身的数是正数④两数相加和一定大于任何一个加数⑤有理数可分为正数和负数A.①②③⑤B.③④C.①③④⑤D.①④⑤3.已知a<0<b<c,化简|a﹣b|+|b﹣c|的结果是()A.c﹣a B.c﹣b C.a﹣c D.2c4.计算(﹣13)﹣(﹣8)的结果是()A.21B.﹣21C.5D.﹣55.将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是()A.﹣2+5﹣7﹣9B.﹣2﹣5+7+9C.﹣2﹣5﹣7﹣9D.﹣2﹣5+7﹣9 6.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b ﹣a<0.乙:a+b>0.丙:a<|b|.丁:ab>|ab|,其中结论正确的是()A.甲、乙B.甲、丙C.丙、丁D.乙、丁7.气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃8.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.|a|=a B.|a|>|b|C.a﹣b<0D.a+b<09.计算(﹣)+(+)+(﹣﹣﹣)+(+++)+…+(+…+)的值()A.54B.27C.D.0二.填空题10.计算:0﹣(﹣6)=.11.我市某天上午的气温为﹣2℃,中午上升了7℃,下午下降了2℃,到了夜间又下降了8℃,则夜间的气温为.12.已知a是绝对值最小的负整数,b是最小正整数的相反数,c是绝对值最小的有理数,则c﹣b+a=.13.计算:﹣(﹣4)+|﹣5|﹣7=.14.计算1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+…+2019﹣2020=.三.解答题15.计算题(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(3);(4).16.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.17.水位第一天上升了8cm,第二天下降了7cm,第三天又下降了9cm,第四天上升了3cm,问第四天河水水位与刚开始时的水位相比是升高还是降低了?若升高,升高多少厘米?若降低,降低多少厘米?18.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.参考答案一.选择题1.解:由图可知a<0<b<c.①∵a<0<b<c,∴ab<0,故本小题正确;②∵a<0<b<c,∴b﹣a+c>0,故本小题正确;③∵a<0<b<c,∴,,,∴=1,故本小题正确;④∵a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)+(c﹣b)=b﹣a﹣c﹣a+c﹣b=﹣2a,故本小题正确.∴正确的有①②③④共4个.故选:D.2.解:①只有符号不同的两个数互为相反数,错误;②所有有理数都能用数轴上的点表示,正确;③绝对值等于它本身的数是非负数,错误;④两数相加和不一定大于任何一个加数,错误⑤有理数可分为正数、0和负数,错误;故选:C.3.解:∵a<0<b<c,∴a﹣b<0,b﹣c<0,∴|a﹣b|+|b﹣c|=﹣(a﹣b)﹣(b﹣c)=﹣a+b﹣b+c=c﹣a.故选:A.4.解:原式=﹣13+8=﹣5,故选:D.5.解:﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D.6.解:根据图示,可得b<﹣2,0<a<2,∵b<a,∴b﹣a<0;∵b<﹣2,0<a<2,∴a+b<0;∵b<﹣2,0<a<2,∴|b|>2,∴a<|b|;∵b<0,a>0,∴ab<0,∴ab<|ab|,∴正确的是:甲、丙.故选:B.7.解:根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.8.解:由题意得:b<a<0,且|a|<|b|,∴|a|=﹣a,a﹣b>0,a+b<0,故选:D.9.解:原式=﹣+1+(﹣)++…+=﹣+1﹣+2﹣+3﹣+…+[)×=﹣+1﹣+2﹣+3﹣+4…﹣+27=+++…+=27×=.故选:C.二.填空题10.解:原式=0+6=6.故答案为:6.11.解:﹣2+7﹣2﹣8=﹣5(℃)答:夜间的气温为﹣5℃.故答案为:﹣5℃.12.解:根据题意得:a=﹣1,b=﹣1,c=0,则c﹣b+a=0+1﹣1=0,故答案为:013.解:﹣(﹣4)+|﹣5|﹣7=4+5﹣7=2,故答案为:2.14.解:1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+…+2019﹣2020=(1﹣2)+(3﹣4)+(5﹣6)+…+(2019﹣2020)=(﹣1)+(﹣1)+(﹣1)+(﹣1)+…+(﹣1)=(﹣1)×=(﹣1)×1010=﹣1010故答案为:﹣1010三.解答题15.解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=(﹣20)+(﹣14)+18+(﹣13)=[(﹣20)+(﹣14)+(﹣13)]+18=(﹣47)+18=﹣29;(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=(﹣7)+2=﹣5;(3)=﹣﹣+=﹣=﹣;(4)=[(﹣3)+(16)]+[12.5﹣(﹣2.5)]=13+15=28.16.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.17.解:根据题意得:+8﹣7﹣9+3=11﹣16=﹣5,则第四天河水水位与刚开始时的水位相比是降低了,降低了5cm.18.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.。

人教版数学七年级上册第一章测试题及答案

人教版数学七年级上册第一章测试题及答案

人教版数学七年级上册第一章测试题一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元B .收入20元C .支出80元D .收入80元2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,()5--,25--中,负数有( ) A .1个B .2个C .3个D .4个3.(2022·全国·七年级专题练习)若a 与1互为相反数,那么1a +=( ) A .1-B .0C .1D .2-4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A .80.989109⨯B .79.89910⨯C .698.9910⨯D .69.89910⨯5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处D .以上都不对6.(2022·全国·七年级课时练习)式子21x -+的最小值是( ) A .0B .1C .2D .37.(2022·江苏·泰州中学附属初中七年级阶段练习)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7B .3或﹣3C .3D .7或39.(2022·河北秦皇岛·七年级期末)计算()()1155⎛⎫-÷-⨯- ⎪⎝⎭的结果是( )A .125-B .125C .-1D .110.(2022·湖南永州·七年级期中)规定两正数a ,b 之间的一种运算,记作:(),a b ,如果c a b =,那么(),a b c =.例如328=,则()2,83=.那么11,381⎛⎫= ⎪⎝⎭( ) A .3 B .4 C .5 D .611.(2022·浙江·七年级专题练习)若22a ,33b,24c,则()a b c ---⎡⎤⎣⎦的值为( )A .﹣39B .7C .15D .4712.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个B .2个C .1个D .0个13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为3,m 与n 互为倒数,则293a b e mn ++-的值为( ) A .1B .3C .0D .无法确定14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,a -,b -中最小的是_______.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元. 18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2022·全国·七年级单元测试)把下列各数:()4-+,3-,0,213-,1.5(1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题: (1)23(2)(47)12-+-÷--(2)117313()(48)126424-+-⨯-21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答:(1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆? (3)产量最多的一天比产量最少的一天多生产多少辆?23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题 【提出问题】三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即0a >,0b >,0c >时, 则1113a b c a b ca b c a b c++=++=++=; ②当a ,b ,c 中有一个为正数,另两个为负数时, 不妨设0a >,0b <,0c <, 则()()1111a b c a b c a b c a b c--++=++=+-+-=- 综上所述,a b c a b c++值为3或-1【探究】请根据上面的解题思路解答下面的问题: (1)三个有理数a ,b ,c 满足0abc <,求a b c a b c++的值;(2)若a ,b ,c 为三个不为0的有理数,且1a b c a b c++=-,求abcabc 的值. 24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):0.3-、0.2-、0.1-、0.4-、0.3-、0.1+、0.3-、0、0.3-、0.2-,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为3-,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.26.(2022·浙江·七年级开学考试)同学们都知道,()74--表示7与﹣4之差的绝对值,实际上也可理解为7与﹣4两数在数轴上所对的两点之间的距离.74-也可理解为7与4两数在数轴上所对的两点之间的距离.试探索:(1)求()74--= .(2)找出所有符合条件的整数x ,使得()628x x --+-=这样的整数是 .(3)由以上探索猜想对于任何有理数x ,15x x -+-是否有最小值?如果有写出最小值请尝试说明理由.如果没有也要请尝试说明理由.人教版数学七年级上册第一章测答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元 B .收入20元 C .支出80元 D .收入80元【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元. 故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,,中,负数有( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】根据相反数和绝对值的定义化简后,再根据负数的定义判断即可. 【详解】解:﹣(﹣5)=5,﹣||,∴在﹣25%,0.0001,0,﹣(﹣5),﹣||中,负数有﹣25%,﹣||,共2个.故选:B .【点睛】本题考查了正数和负数,绝对值以及相反数,熟记相关定义是解答本题的关键. 3.(2022·全国·七年级专题练习)若与1互为相反数,那么( ) A . B .0C .1D .【答案】B【分析】根据互为相反数的两数和为0,可得a+1=0即可. 【详解】解:∵互为相反数的两数和为0, ∴a +1=0, 故选B .()5--25--25-25=-25-25-a 1a +=1-2-【点睛】本题考查相反数,掌握相反数的性质是解题关键.4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A . B . C . D .【答案】B【分析】科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:9899万=98990000= 故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处 D .以上都不对【答案】A【分析】把行走记录相加,然后根据有理数的加法运算法则进行计算,如果结果是正数则在A 地东边,是负数则在A 地西边.【详解】解:(+15)+(-2)+(+5)+(-1)+(+10)+(-3) =15-2+5-1+10-3 =30-6 =24收工时在A 地东边24千米处,故答案为:A .【点睛】本题考查了正负数的意义,以及有理数的加法运算,根据有理数的加法运算法则进行计算是解题的关键.80.989109⨯79.89910⨯698.9910⨯69.89910⨯10n a ⨯110a ≤<79.89910⨯∴6.(2022·全国·七年级课时练习)式子的最小值是( ) A .0 B .1 C .2 D .3【答案】B【分析】当绝对值有最小值时,式子有最小值,进而得出答案. 【详解】解:当绝对值最小时,式子有最小值, 即|x -2|=0时,式子最小值为0+1=1. 故选:B .【点睛】本题考查了绝对值的性质,任意数的绝对值为非负数,即绝对值最小为0,进而求得式子的最小值. 7.(2022·江苏·泰州中学附属初中七年级阶段练习)计算( )A .B .C .D .【答案】D【分析】根据乘法的含义,可得:2m ,根据乘方的含义,可得:,据此求解即可. 【详解】解:2m +.故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义. 8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7 B .3或﹣3C .3D .7或3【答案】A【分析】先根据绝对值的性质得出m =±5,n =±2,再结合m 、n 异号知m =5、n =﹣2或m =﹣5、n =2,继而分别代入计算可得答案. 【详解】解:∵|m |=5,|n |=2, ∴m =±5,n =±2, 又∵m 、n 异号,∴m =5、n =﹣2或m =﹣5、n =2,当m =5、n =﹣2时,|m ﹣n |=|5﹣(﹣2)|=7; 当m =﹣5、n =2时,|m ﹣n |=|﹣5﹣2|=7; 综上|m ﹣n |的值为7,21x -+222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个32m n +23+m n 23m n +23n m +222m ++⋅⋅⋅+=个333n ⨯⨯⋅⋅⋅⨯=个3n222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个3n故选:A .【点睛】本题考查了有理数的减法和绝对值,解题的关键是确定m 、n 的值. 9.(2022·河北秦皇岛·七年级期末)计算的结果是( )A .B .C .-1D .1【答案】A【分析】先确定运算结果的符号,再把除法运算化为乘法运算,再计算即可. 【详解】解:故选A【点睛】本题考查的是有理数的乘除混合运算,掌握“有理数的乘除混合运算的运算顺序”是解本题的关键. 10.(2022·湖南永州·七年级期中)规定两正数,之间的一种运算,记作:,如果,那么.例如,则.那么( )A .3B .4C .5D .6【答案】B【分析】根据新定义运算的法则,求出的多少次方等于即可.【详解】解:因为, 所以4,故选:B .【点睛】本题考查了乘方的运算和新定义运算,解题关键是准确理解新定义运算,熟练运用乘方的意义求解.11.(2022·浙江·七年级专题练习)若,,,则的值为( )A .﹣39B .7C .15D .47【答案】D【分析】利用乘方的意义化简各式,确定出a ,b ,c 的值,原式去括号后代入计算即可求出值. 【详解】解:由题意得 :,,,∴()()1155⎛⎫-÷-⨯- ⎪⎝⎭125-125()()1155⎛⎫-÷-⨯- ⎪⎝⎭a b (),a b c a b =(),a b c =328=()2,83=11,381⎛⎫= ⎪⎝⎭13181411()813=11381⎛⎫= ⎪⎝⎭,22a 33b24c()a b c ---⎡⎤⎣⎦()224a =--=-327273b 2416c ()a b c ---⎡⎤⎣⎦=4+27+16 =47 故选:D【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的乘方法则和去括号法则是解题的关键. 12.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个 B .2个 C .1个 D .0个【答案】A【分析】根据相反数的意义:只有符号不同的两个数互为相反数,若a +b =0,移项可得a =-b ,满足相反数的定义,故a 与b 互为相反数,可判定①;举一个反例满足a +b <0,可以取a 与b 同时为负数满足条件,但a 与b 不异号,可判定②;根据条件可得a +b 大于0,且a 与b 同号,可得a 与b 只能同时为正,进而得到a 、b 大于0,可判定③;举一个反例,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,可判定④;由|a |<b ,所以b >0,所以a +b >0,可判定⑤.【详解】解:①若a +b =0,则a =﹣b ,即a 与b 互为相反数,故①正确; ②若a +b <0,若a =﹣1,b =﹣2,a +b =﹣3<0,但是a 与b 同号,故②错误; ③a +b >0,若a 与b 同号,只有同时为正,故a >0,b >0,故③正确;④若|a |>|b |,且a ,b 异号,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,故④错误. ⑤由|a |<b ,所以b >0,所以a +b >0,故⑤正确; 则正确的结论有①③⑤,共3个. 故选:A .【点睛】此题考查了有理数的加法运算,熟练掌握有理数的加法运算法则是解本题的关键. 13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为,m 与n 互为倒数,则的值为( )a b c a b c =-+-427163293a b e mn ++-A .1B .3C .0D .无法确定【答案】C 【分析】由a 、b 互为相反数,可得.由e 的绝对值为,可得,所以.由m 与n 互为倒数,可得.所以.故选C . 【详解】解:由已知得:a 、b 互为相反数,,e 的绝对值为,,,m 与n 互为倒数,,, 故选C .【点睛】本题主要考查知识点为:相反数的定义、倒数的定义、绝对值的性质,平方的性质.熟练掌握相反数的定义、倒数的定义、绝对值的性质,平方的性质,是解决此题的关键.14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A【答案】C 【分析】分析出前几次点对应的数值,找到规律,即可求解.【详解】由图可知,旋转一次:再旋转一次:0a b +=33e =29e =1mn =209=99=033a b e mn ++-+-∴0a b +=3∴3e =∴29e=∴1mn =∴209=99=033a b e mn ++-+-10A D --、2B -3C -再旋转一次:再旋转一次:依次循环发现:四个点依次循环,对应的点为故选:C .【点睛】此题主要考查数轴上点的规律探索,解题的关键是理解题意并找到点的运动轨迹.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,,中最小的是_______.【答案】–b【分析】根据a ,b 在数轴上的位置确定a ,b 的符号及它们的绝对值即可得出答案.【详解】解:由图可知a <0<b ,且|b |>|a |,∴-b <a <-a <b ,∴最小的是-b ,故答案为:-b .【点睛】本题主要考查实数的大小比较,关键是要能根据a ,b 在数轴上的位置确定出-a ,-b 在数轴上的位置.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.【答案】9【分析】可任意选几个两位数,根据题意进行操作,从而可得出结果.【详解】解:当心里想的一个两位数是12时,则:12-(1+2)=9,当心里想的一个两位数是21时,则:21-(2+1)=18,18-(1+8)=9,当心里想的一个两位数是35时,则:35-(3+5)=27,27-(2+7)=18,18-(1+8)=9,……故最终得到的数是:9,4D -5A -A B C D 、、、2022=45052⨯+2022∴B a -b-故答案为:9.【点睛】本题考查了数字的变化规律,解题的关键是理解清楚题意,多列几个数进行求证.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元.【答案】19【分析】根据题意列出算式,计算求值即可.【详解】解:圆圆在该快递公司寄一件8千克的物品,超过了5千克,需付费(元),故答案为:.【点睛】本题考查有理数的混合运算,读懂题意,准确判断付费标准是解决问题的关键.18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点处,第二次从点跳动到O 的中点处,第三次从点跳动到O 的中点处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.【答案】 【分析】根据题意分析可得:每次跳动后,到原点O 的距离为跳动前的一半.【详解】解:依题意可知,第n 次跳动后,该质点到原点O 的距离为, ∴第5次跳动后,该质点到原点O 的距离为. 故答案为. 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2022·全国·七年级单元测试)把下列各数:,,,, (1)分别在数轴上表示出来:∴()13+852=13+6=19-⨯191A 1A 1A 2A 2A 2A 3A 13212n132132()4-+3-0213-1.5(2)将上述的有理数填入图中相应的圈内.【答案】(1)见解析(2)见解析【分析】(1)根据有理数在数轴上对应的点解决此题.(2)根据正数整数、负数的定义解决此题.(1),∴,,,,在数轴上表示为:(2)如图所示:【点睛】本题主要考查负数、整数和正数的意义,熟练掌握负数、整数、正数的意义是解决本题的关键. 20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题:(1) (2) 【答案】 (1) (2)【分析】(1)先算乘方和括号里面,再算除法,然后相加即可;()4=4-+-3=3-()4-+3-0213-1.523(2)(47)12-+-÷--117313()(48)126424-+-⨯-12(2)利用乘法的分配率求解即可;(1)解:;(2)解:;21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .【答案】(1)3(2)﹣4或6(3)0(4)﹣1007,1005【分析】(1) 根据两点间的距离公式即可得到结论;(2)分所求点在点A 的左边和右边两种情况解答;(3)根据中心对称列式计算即可得解;(4)根据中点的定义求出MN 的一半,然后分别列式计算即可得解.(1)A 、B 之间的距离是.23(2)(47)12-+-÷--34312=-÷-421=--1=117313()(48)126424-+-⨯-=44+5636+26--=80+82-=21(2)3--=故答案为:3;(2)(2)与点A 的距离为5的点表示的数是:或.故答案为:﹣4或6;(3)则A 点与﹣3重合,则对称点是,则数B 关于﹣1的对称点是:0. 故答案为:0;(4)由对称点为,且M 、N 两点之间的距离为2012(M 在N 的左侧)可知,M 点表示数,N 点表示数. 故答案为:﹣1007,1005.【点睛】本题考查了数轴的相关知识,解答此题的关键是利用了数轴上两点间的距离,中点计算公式,注意分类讨论思想与数形结合思想的应用.22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答: (1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产多少辆?【答案】(1)241辆(2)21辆(3)35辆【分析】(1)平均数加上增减的数即可得到周六生产的数量.(2)将所有的增减量相加,若为正则增加,若为负则减少.(3)即求增加数量最多的一天减去减少数量最多的一天.(1)解:本周六生产数量=250﹣9=241(辆);(2)解:﹣5+7﹣3+4+10﹣9﹣25=﹣21,所以减少了21辆.154-=-156+=1(13)12-=-1-11201210072--⨯=-11201210052-+⨯=(3)解:增量最多的是星期五,减量最多的是星期日,∴产量最多的一天比产量最少的一天多生产10﹣(﹣25)=35(辆).【点睛】本题考查有理数的混合运算,难度不大,解题的关键是读懂题意.23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题【提出问题】三个有理数a ,b ,c 满足,求的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即,,时, 则; ②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设,,, 则 综上所述,值为3或-1 【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值. 【答案】(1)-3或1(2)1 【分析】(1)仿照题目给出的思路和方法,解决(1)即可; (2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.(1)解:∵,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即,,时,则:; ②a ,b ,c 有一个为负数,另两个为正数时,不妨设,,,则; 0abc >abca b c ++0a >0b >0c >1113a b c a b c a b c a b c++=++=++=0a >0b <0c <()()1111a b c a b c a b c a b c--++=++=+-+-=-abca b c ++0abc <abca b c ++1a b c a b c++=-abc abc 0abc <0a <0b <0c <1113a b c a b c a b c a b c---++=++=---=-0a <0b >0c >1111abca b c a b c a b c-++=++=-++=综上所述,值为-3或1.(2)解:∵a ,b ,c 为三个不为0的有理数,且, ∴a ,b ,c 中负数有2个,正数有1个,∴, ∴. 【点睛】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):、、、、、、、0、、,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?【答案】(1)48千克(2)150元(3)多320元【分析】(1)求出称重记录的数据之和,再与标准重量相加,即为总净重量;(2)按照获利50%的标准求出销售额,除以数量,即为单价;(3)求出超市实际销售樱桃的总销售额和原计划销售樱桃的总销售额,再进行计算即可.(1)解:(千克)(千克),答:这10箱樱桃的总净重量是48千克.(2)解:根据题意,销售额应为:(元),每千克售价:(元).答:樱桃的售价应定为每千克150元.(3)解:包装前销售额:(元),abca b c ++1a b c a b c++=-0abc >1abc abc abc abc==0.3-0.2-0.1-0.4-0.3-0.1+0.3-0.3-0.2-0.30.20.10.40.30.10.30.30.22-----+---=-510248⨯-=48010(150%)7200⨯⨯+=720048150÷=1504850%3600⨯⨯=包装后销售额:(元),买入成本:(元)包装成本:(元),实际总利润与原计划总利润之差:(元).答:该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多320元.【点睛】本题考查正负数的实际应用以及有理数四则混合运算的实际应用,读懂题意,理解利润、单价、成本之间的关系是解题的关键.25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.【答案】(1)3(2)-17(3)【分析】(1)根据题意代入相应的值运算即可;(2)设●表示的数为x ,根据题意得出相应的方程求解即可;(3)根据输入数为a ,●表示的数为b ,当计算结果为0时,求出a ,b 之间的关系.(1)解:∵●表示2,输入数为∴;(2)解:设●表示的数为x ,根据题意得:,∴;(3)解:∵输入数为a ,●表示的数为b ,当计算结果为0时,∴, 整理得.【点睛】本题主要考查有理数的混合运算,解答的关键理解清楚题意,并掌握相应的运算法则.(243)5004000÷⨯=480104800=⨯81080⨯=(36004000480080)(72004800)+----320=3-21b a =--3-(3)(4)2(1)2122123-⨯-÷+--=÷--=4(4)2(1)8x ⨯-÷+--=17x =-4(1)02a b -+--=21b a =--。

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级上册第一章测试题含答案
一、选择题。

1.下列说法正确的个数是( )
①一个有理数不是整数就是分数②一个有理数不是正数就是负数
③一个整数不是正的,就是负的④一个分数不是正的,就是负的
A 1
B 2
C 3
D 4
2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b按照从小到大的顺序排列 ( )
A -b<-a<a<b
B -a<-b<a<b
C -b<a<-a<b
D -b<b<-a<a
3下列说法正确的是
( )
①0是绝对值最小的有理数②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小
A ①②
B ①③
C ①②③
D ①②③④
4.下列运算正确的
是( )
A B -7-2×5=-9×5=-45
C 3÷
D -(-3)2=-9
5若a+b<0,ab<0,则 ( )
A a>0,b>0
B a<0,b<0
C a,b两数一正一负,且正数的绝对值大于负数的绝对值
D a,b两数一正一负,且负数的绝对值大于正数的绝对值
6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A 0.8kg
B 0.6kg
C 0.5kg
D 0.4kg
7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长是()
A ()5m
B [1-()5]m
C ()5m
D [1-()5]m
8.若ab≠0,则的取值不可能
是()
A 0
B 1
C 2
D -2
二、填空题。

9.比大而比小的所有整数的和为。

10.若那么2a一定是。

11.若0<a<1,则a,a2,的大小关系是。

12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是。

13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min。

14.规定a﹡b=5a+2b-1,则(-4)﹡6的值为。

15.已知=3,=2,且ab<0,则a-b= 。

16.已知a=25,b= -3,则a99+b100的末位数字是。

三、计算题。

17.
18. 8-2×32-(-2×3)2
19.
20.[-38-(-1)7+(-3)8]×[-53]
21. –12 × (-3)2-(-)2003×(-2)2002÷
22.–16-(0.5-)÷×[-2-(-3)3]-∣-0.52∣
四、解答题。

23.已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)
第一次第二次第三次第四次第五次第六次第七次
-4+7-9+8+6-5-2(1)求收工时距A地多远?
(2)在第次纪录时距A地最远。

(3)若每km耗油0.3升,问共耗油多少升?
26.如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求
+…+的值。

参考答案:
一、选择题:1-8:BCADDBCB
二、填空题:
9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6
三、计算题17.-9;18.-45;19.;20.;21.;
22.
四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;
26.。

相关文档
最新文档