材料的强化与韧化

合集下载

强化韧化机理

强化韧化机理

强化韧化机理
强化韧化是一种通过改变材料的微观结构和化学成分,提高材料的强度和韧性的方法。

它涉及到一系列的力学和物理机制,以下是一些常见的强化韧化机理:
1.晶粒细化:通过控制材料的热处理或变形加工条件,可以
使晶粒变得更加细小。

细小的晶粒能够阻碍位错和裂纹的运动,从而提高材料的抗拉强度和韧性。

2.相界增多:通过形成更多的相界面,例如晶界、相界以及
位错堆垛等,可以阻碍位错和裂纹扩展。

相界增多提供了额外的韧性机制,从而提高材料的韧性。

3.增强相分散:在基体材料中加入第二相颗粒或纳米颗粒,
可以形成复相结构。

这种复相结构能够阻碍位错运动和裂纹扩展,提供更高的强度和韧性。

4.锁定位错:通过在材料中引入位错锁定机制,可以阻止位
错的移动和滑移,从而提高材料的强度和韧性。

5.固溶强化:通过向基体材料中加入合金元素,调整其晶格
结构,形成的固溶体能够在晶内形成固溶强化效应,提高材料的强度和韧性。

6.相互作用增强:通过精细调控材料的化学成分和结构,使
不同相之间发生特定的相互作用,例如化学键的形成、界面的相容性等,从而提高材料的抗拉强度和韧性。

通过利用上述强化韧化机制,材料科学家和工程师能够设计和
制造出具有优异综合性能的材料,满足不同领域对材料性能的需求。

每种机制的适用性取决于材料的类型和应用要求。

材料强化基本原理

材料强化基本原理

第十章材料的强韧化节材料强化基本原理结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。

通过改变材料的内制材料性能的目的。

不同种类的材料,提高其强度的机理、方法也不同。

一、金属材料的强化原理纯金属经过适当的合金化后强度、硬度提高的现象,称为固溶原因可归结于溶质原子和位错的交互作用,这些作用起源于溶质引发的局变。

固溶体可分为无序固溶体和有序固溶体,其强化机理也不相同。

(1)无序固溶强化固溶强化的实质是溶质原子的长程位错的交互作用导致致错运动受阻。

溶质相位错的交互作用是二者应力场用。

作用的大小要看溶质本身及溶质与基体之间的交互作用,这种作用使成弯曲形状。

如图10—l所示.图中的A、B、C表示溶质原子强烈地钉扎了位错。

x—x',A的乎直位错线,被钉后呈观曲线形状。

处于位错线上的少数溶质原子与位互作用很强,这些原子允许位错线的局部曲率远大于根据平均内应力求出钉扎的第一个效应就是使位错线呈曲折形状。

相对于x—x'的偏离为x在方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段AB'C,在B'处又被钉扎起来。

位错之所以能够这样弯曲,其原因是因位增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。

在切应力τ动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻。

若AC≈2y,ABC比2y略大,近似地当作2y。

由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。

由ABC变为AC,平均位力需要做功为τb(2y)·x/2,故1看,沿着xx'方向,单位长度上有1/y个溶质原子。

用柯氏气团的概念,如果位错和溶质原子交互作用能为U0,溶质钉扎将降低的能量为所以设C为溶质原子百分数,在滑移面单位面积上有1/62个原子,其中有C/62个为溶质原子。

第十章_材料的强化与韧化

第十章_材料的强化与韧化

(7)纤维、晶须增韧 纤维或晶须具有高弹性和高强度,当它作为第二 相弥散于陶瓷基体构成复合材料时,纤维或晶须能为 基体分担大部分外加应力而产生强化。当有裂纹时, 裂纹为避开纤维或晶须,沿着基体与纤维或晶须界面 传播,使裂纹扩展途径出现弯曲从而使断裂能增加而 增韧。 在裂纹尖端附近由于应力集中,纤维或晶须也可 能从基体中拔出。拔出时以拔出功的形式消耗部分能 量,同时在接近尖端后部,部分未拔出或末断裂的纤 维或晶须桥接上下裂纹面,降低应力集中,提高韧性。 在裂纹尖端,由于应力集中可使基体和纤维或晶须间 发生脱粘,脱粘大幅度降低裂纹尖端的应力集中,使 材料韧性提高。
第十章 材料的强化与韧化
第一节 金属材料的强韧化 第二节 陶瓷材料的强韧化 第三节 高分子材料的强韧化 第四节 复合材料的强韧化
对结构材料,最重要的性能指标是强度和韧性。 * 强 度:材料抵抗变形和断裂的能力; * 韧 性:材料变形和断裂过程中吸收能量的能力。 提高材料的强度和韧性,可以节约材料、降低 成本、增加材料在使用过程中的可靠性和延长服役寿 命,对国民经济和人类社会可持续发展具有重要意义。 所以人们在利用材料的力学性能时,总希望材料 既具有足够的强度,又有较好的韧性。但通常的材料 往往二者不可兼得。 理解材料的强化和韧化机理,以提高材料的强度 和韧性。
裂纹顶端应力诱发t →m相变增韧机理
(2)微裂纹增韧 在陶瓷基体相和分散相之间,由于温度变化引 起的热膨胀差或相变引起的体积差,会产生弥散均 布的微裂纹[图(a)],当导致断裂的主裂纹扩展时, 这些均匀分布的微裂纹会促使主裂纹分叉(图(b)), 使主裂纹扩展路径曲折前进,增加了扩展过程中的 表面能,从而使裂纹快速扩展受到阻碍,增加了材 料的韧性。
第二节 陶瓷材料的强韧化

1.2 第1章_钢合金化概论-钢的强化和韧化

1.2 第1章_钢合金化概论-钢的强化和韧化

2、影响塑性的因素
溶质 原子
↓ 韧性,间隙溶质原子 > 置换溶质原子。
晶粒 度
第二 相 杂质
细晶既↑σS,又 ↑ 韧性 → 最佳组织因素。
K↓韧性。K 小、匀、圆、适量 → 工艺努力方向。
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 径 3.改善沿晶断裂抗力的途径
锰对钢γ区的影响
铬对钢γ区的影响
3、对γ-Fe区的影响
A形成元素Ni、Mn等使γ-Fe区扩大→钢在室 温下也为A体 — A钢; F形成元素Cr、Si等使γ-Fe区缩小→钢在高 温下仍为F体 — 铁素体钢。
二、 合金钢的加热A化
α+ Fe3C (或 K) →
γ
α→γ: 需要Fe重组和 C扩散
Fe3C或K:需要溶解于γ
s 0 Ks d
著名的Hall-petch公式 式中,d为晶粒直径,Ks为系数
1/ 2
机理
晶粒越细 → 晶界、亚晶界越多→ 有效 阻止位错运动,产生位错塞积强化。
效果
↑钢的强度,又↑塑性和韧度 这是最理想的强化途径.
3、第二相强化
表达式
P K P
1
机理
微粒第二相钉扎位错运动→强化效果 主要有切割机制和绕过机制。在钢中主 要是绕过机制。 两种情况:回火时弥散沉淀析出强化, 淬火时残留第二相强化。 有效提高强度,但稍降低塑韧性。
效果
提高强度,降低塑韧性
固溶强化的规律
( 1)溶质元素在溶剂中的饱和溶解度愈小,其固溶 强化效果愈好。
置换元素对α-Fe屈服强度的影响
固溶强化的规律

金属材料的强化与韧化

金属材料的强化与韧化

金属材料的强化与韧化机械工程学院机械工程1班刘文龙2011201120 对于金属材料来讲,最重要的性能指标包括了材料的强度和韧性等。

简单的说,强度是指材料抵抗变形和断裂的能力,而韧性指的是材料变形和断裂过程中吸收能量的能力。

随着制造业及材料工业的快速发展,人们对高性能材料的需求已经越来越迫切,从目前角度来看,在不更改加工方式与行业整体现状的情况下,高性能材料主要由制备新型高性能材料与对原有材料进行改性以提高其性能两种方法,显然的,第二种方法更易实现,也更接近工程实际。

在现有的研究中,提高材料的强度主要有以下两种途径:1、完全消除材料内部的位错以及其他的缺陷,使它的强度接近于理论强度,例如金属晶须等,但实际应用难度较大;2、在金属中引入大量缺陷,以此阻碍位错的运动,如加工硬化、固溶强化、细晶强化、沉淀强化等。

其中金属材料的强化主要有以下几种放法:1、固溶强化此方法是利用点缺陷对位错运动的阻力使金属基体获得强化的一种方法,一般通过在金属基体中溶入一种或数种溶质元素形成固溶体而使其强度和硬度升高。

2、细晶强化此方法通过细化晶粒以增加晶界对位错的阻滞效应来提高金属强度。

3、第二相粒子强化此法按获得粒子的工艺可分为析出强化与弥散强化。

4、形变强化金属在塑性变形过程中,位错密度会逐渐增加,使得弹性应力场不断变大,位错间交互作用增强,使得位错困难增强金属强度。

这里以金属的细晶强化方式举例,在王艳林[1]等人关于热轧钢材晶粒细化的文章中指出,在保证相同变形量、变形温度以及化学成分的前提下,对22mm棒材进行热轧制后通过强制冷去的方式进行细化晶粒组织,将晶粒度的等级由7.5级提高到8.0级,见图1。

通过试验发现,轧后强制冷却的热轧钢材延伸率为22.68%,与空冷状态下的24.30%基本相等,但是其屈服强度由空冷状态下的358.03MPa提高到了498.37MPa,提高了大约39.20%,抗拉强度由空冷状态下的508.33MPa提高到了626.44Mpa,提高了23.23%,可见通过此种方法对热轧钢材进行细晶强化对提高其综合性能效果十分明显,适宜推广;而目前首钢、水城钢铁公司等单位都进行了细晶钢螺纹钢的研究开发,均实现了细晶钢棒线材的工业化生产,并进行了推广应用。

材料科学基础材料韧化基本原理

材料科学基础材料韧化基本原理
(4) 共混与冲击韧性 与橡胶态高聚物掺混的树脂。橡胶颗粒的承载作用
材料的强韧化
三、无机非金属材料的韧化机理
(1) 相变增韧 ZrO2陶瓷中四方相的ZrO2向单斜相的ZrO2转变,伴 随有体积膨胀。当有较大外应力作用时,基体的约束 作用减弱,促进相变,会引发微裂纹,从而消除应力 集中,吸收了主裂纹扩展的能量,提高断裂韧性。
一、金属材料的韧化原理
材料的韧性是强度和塑性的综合体现
改善材料的韧性的基本途径
1 减少诱发微裂纹的组成相 2 提高基体的塑性 3 增加组织的塑性形变均匀性(减少应力集中) 4 避免晶界弱化,防止裂纹沿晶界的形核和扩展
材料的强韧化
5 强化同时的增韧
(1)位错强化与塑性和韧性 位错密度升高会提高强度而降低塑性和韧性。可 动的未被锁住的位错对韧性的损害小于被沉淀物 或固溶原子锁住的位错。故提高可动位错密度对 塑性和韧性均有利。
(4)沉淀相颗粒与塑性
沉淀颗粒会通过弥散强化提高基体的强度和硬度, 但可能会明显降低塑性和韧性。尤其,条带状、片 状析出物,以及沿晶界网状析出的沉淀相,均显著 降低材料塑性。 减少沉淀相的析出数量,改善沉淀相的形状和分布 状态,可改善材料塑性。
材料的强韧化
二、高聚物的韧化原理
(1) 增塑剂与冲击韧性 添加增塑剂使分子间作用力减小,链段以至大分子 容易运动,使高分子材料的冲击韧性提高。
材料的强韧化
(3)亚结构为高密度位错, 位错强化作用
(4)可动位错缓解局部应力集中, 延缓裂纹产生, 塑性和韧性
(5)残余奥氏体薄膜阻挡裂纹扩展, 塑性和韧性
材料的强韧化
二、高分子材料强韧化的例子 三、陶瓷材料强韧化的例子
Al2O3-ZrO2 +Y2O3 (ZTA)陶瓷材料

材料的强化和韧化

材料的强化和韧化

➢ 形变强化使金属变脆,因而在冷加工过程中需要进行 多次中间退火,使金属软化,才能够继续加工
❖限制
➢ 使用温度不能太高,否则由于退火效应,金属会软化
➢ 对于脆性材料,一般不宜利用应变硬化来提高强度性 能
金属材料的韧化
材料的韧性是断裂过程的能量参量,是材料强度与塑性的 综合表现
当不考虑外因时,断裂过程包括裂纹的形核和扩展。通常 以裂纹形核和扩展的能量消耗或裂纹扩展抗力来标示材料 韧性。
细晶强化
❖定义
❖强化机理
➢晶界对位错滑移的阻滞效应
当位错运动时,由于晶界两侧晶粒的取向不同,加之 这里杂质原子较多,增大了晶界附近的滑移阻力, 因而的滑移带不能直接进入一侧晶粒中
➢晶界上形变要满足协调性
需要多个滑移系统同时动作,这同样导致位错不易穿 过晶界,而是塞积在晶界处
—晶粒越细,晶界越多,位错阻滞效应越显著, 多晶体的强度就越高
第二相粒子强化
➢不易形变的粒子
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错绕过机制(Orowan,奥罗万机制)
运动位错线在 不易形变粒子 前受阻、弯曲
外加切应力的 增加使位错弯 曲,直到在A、 B处相遇
位错线方向相反 位错线绕过
的A、B相遇抵 粒子,恢复
消,留下位错环, 原态,继续
位错增殖
向前滑移
临界尺寸dc,十几到二十纳米之间 反Hall-Petch效应
第二相粒子强化 ❖分类
➢通过相变(热处理)获得 析出硬化、沉淀强化或时效强化
➢通过粉末烧结或内氧化获得 弥散强化
❖强化效果
➢相粒子的强度、体积分数、间距、粒子的形状 和分布等都对强化效果有影响
➢第二相粒子强化比固溶强化的效果更为显著

第1章钢合金化概论钢的强化和韧化课件

第1章钢合金化概论钢的强化和韧化课件
Si 和Fe的结合力 >Fe和C的结合力 ,↑ac
Si能溶于ε ,不溶于Fe3C ,Si要从ε 中出去
↓ε-FeXC的形核、长大
↓ε→ Fe3C 效果: 含2% Si能使M分解温度从260℃提高到350℃以上
(2)对残余A转变的影响
(3)回火时K的形成
各元素明显开始扩散的温度为:
Me
Si
Mn
Cr
(2) Me对A晶粒长大倾向的影响
➢合金元素形成的碳化物在高温下越稳定,
越不易溶入A中,能阻碍晶界长大,显著细 化晶粒。 按照对晶粒长大作用的影响,合 金元素可分为:
①Ti 、V 、Zr 、Nb等强烈阻止A晶粒长大,
Al在钢中易形成高熔点AlN 也能强烈阻止晶粒长大;
、Al2O3细质点,
AlN含量对A晶粒度的影响
第二 相
K ↓韧性。 K 小、匀、圆、适量 → 工艺努力方向。
杂质
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 3.改径善沿晶断裂抗力的途径
4、提高钢韧度的合金化途径
1)细化晶粒、组织—— 如Ti 、V 、Mo; 2) ↑回火稳定性 —— 如强K形成元素 ; 3)改善基体韧度 —— Ni ; 4) 细化K —— 适量Cr 、V ,使K小而匀 ; 5) ↓回脆 —— W 、Mo ; 6)在保证强度水平下,适当↓含C量.
效果
有效提高强度,但稍降低塑韧性。
钢强度表达式
位错被质点障碍物所挡住
4、位错强化
表达式
机理
位错密度ρt →tt位错交割、缠结, → 有效地阻止了位错运动 → t钢强度。
效果

强化韧化

强化韧化
形变强化的存在可以使材料具有一定的 抗偶然过载的能力,保证构件安全可靠 形变强化可使材料塑性变形均匀进行, 保证冷变形工艺的顺利实现 对于那些不能进行热处理强化的金属材 料,比如奥氏体不锈钢,形变强化就成 为最重要的强化手段
其他强化方法
形变热处理强化 界面强化 纤维强化 …
将高强度材料制成纤维,通过一定方法 将纤维束布置在基体金属中
金属材料的强化增加材料Fra bibliotek部缺陷,提高强度
在金属中增加大量缺陷,以阻碍位错的运动
固溶强化
细晶强化
第二相强化 相变强化
0.2 μm
形变强化
固溶强化
融入固溶体中的溶质原子造成晶格畸变,晶格 畸变增大了位错运动的阻力,使滑移难以进行,从 而使合金固溶体的强度与硬度增加。
间隙固溶体
溶质原子嵌入晶格间隙中
常用名词
硬度 强度 刚度
抵抗变形 同种材料 材料局部抵抗硬物强度越高 材料在外力作用下 构件产生单位变形 VS 压入其表面的能力硬度越高 抵抗破坏的能力 弹性变形 所需的外力值
不同材料 无法对比 屈服强度 抗拉强度 抗压强度 抗弯强度 … 材料自身 VS 成品构件 影响刚度 的因素是 材料的弹 性模量和 结构形式
置换固溶体 溶质原子替换溶剂原子晶格中位置
细晶强化
晶界是位错运动的障碍,晶界越多,则位 错运动阻力越大,屈服强度越高。
霍尔佩奇(Hall-Petch)关系式
细化晶粒可增加单位体积内的晶界 面积,相对减少晶界上夹杂物含量
晶界既是位错运动的阻力,也是裂 纹扩展的障碍
高温形变时晶界成为薄弱环节
特殊热处理
超高温淬火、亚临界区淬火、性变热处理等
谢谢聆听!
常用名词

材料的强韧性及其应用

材料的强韧性及其应用

材料的强韧性及其应用强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

韧性:表示材料在塑性变形和断裂过程中吸收能量的能力。

金属材料的强化1. 材料强化的类型:主要有细晶强化(晶界强化)、固溶强化、形变强化(位错强化)、第二相粒子沉淀(沉淀强化和弥散强化)、相变强化等。

2. 强化机制:(1) 细晶强化(晶界强化):晶界分为大角度晶界和小角度晶界。

晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。

晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界处对塑性变形的抗力较晶内为大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也困难。

因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也越高。

方法:根据晶界强化的原理,在热处理工艺方法上发展了采用超细化热处理的新工艺,即细化奥氏体(A)晶粒或碳化物相,使晶粒度细化到十级以上。

由于超细化作用,使晶界面积增大,从而对金属塑性变形的抗力增加,反映在力学性能方面其金属强韧性大大提高。

如果奥氏体晶粒细化在十级以上,则金属的强韧性将大大提高,为达此目的,现代发展的热处理新技术方法有以下三种。

①利用极高加热速度的能量密度进行快速加热的热处理。

由于极高的加热能量密度,使加热速度大大提高,在10-2~1s的时间内,钢件便可加热到奥氏体(A)状态,此时A的起始晶粒度很小,继之以自冷淬火(冷速达104℃/s以上),可得极细的马氏体(M)组织,与一般高频淬火比较硬度可高出Hv50,而变形只有高频淬火的1/4~1/5,寿命可提高1.2~4倍。

②利用奥氏体(A)的逆转变钢件加热到A后,淬火成M,然后快速(20s)内重新加热到A状态,如此反复3~4次,晶粒可细化到13~14级。

③采用A-F两相区交替加淬火采用亚温淬火(F+A双相区加热),在提高材料强韧性的同时显著降低临界脆化温度,抑制回火脆性。

在A-F两相区交替加热,可使A/F相界面积大大增加,因而使奥氏体形核率大大增多,晶粒也就越细化。

金属材料强化与韧化手段

金属材料强化与韧化手段

钢的韧化方法钢的韧化方法包括:(1)细化晶粒法;(2)合金化法;(3)纯净化法;(4)位错板条马氏体韧化;(5)高温形变热处理;(6)利用稳定奥氏体使钢韧化;(7)利用介稳奥氏体使钢韧化;(8)回火和其他方法。

(1)细化晶粒法常温或低温下,在利用细化晶粒提高钢的强度的同时,还可改善钢的韧性,特别是低温韧性。

这是细化晶粒方法的突出优点。

因为细化晶粒不仅增大钢的屈服强度(@),而且增大钢的断裂强度O b)。

这样,随着晶粒的不断细化,钢从脆性断裂过渡到韧性断裂(沪os),如图3所示。

晶粒尺寸]/ ■图3新裂强度s和屈服强度6与晶粒尺寸M的关糸(2)合金化法合金元素锰和镍能使钢的韧性提高。

锰因为能减少晶界碳化物,细化珠光体,相应也细化铁素体晶粒,从而提高铁素体一珠光体钢的韧性。

镍是提高钢的韧性最有效的元素,这是因为镍能提高铁素体基体的韧性,并使晶粒细化的缘故。

(3)纯净化法除去钢中夹杂、气体及有害元素,尽可能降低钢的碳含量是提高钢韧性的有效方法。

钢中非金属夹杂物是断裂的裂纹源。

在冶炼上采用真空除气,电渣重熔、真空白耗重熔和各种炉外精炼技术,提高钢的纯净度,可显著改善钢的韧性。

钢中磷、硫、砷、锑等有害元素的去除,也能改善钢的韧性。

钢中的碳,虽然在很多情况下是不可缺少的元素,但碳却使钢的韧性显著恶化,因此,在可能的条件下,应尽量降低钢的碳含量。

(4)位错板条马氏体韧化铁碳合金中,碳含量<0. 30%时,淬火马氏体的形态主要为位错板条马氏体;碳含量>0. 6%时,主要为内孪晶马氏体。

一般认为,化学成分相同,位错马氏体与内孪晶马氏体的强化效果相当,而位错马氏体具有较好的韧性。

原因可能是位错马氏体的板条尺寸很小,类似于非常细的晶粒,可阻止裂纹的传播;而孪晶片状马氏体,厚度较大,且内部孪晶取向相同,类似于粗大的晶粒,从而韧性较差。

另外,位错马氏体板条之间的残留奥氏体塑性良好,使得钢的韧性改善。

(5)高温形变热处理将钢在高于临界点A C3以上的较高温度(如在奥氏体的再结晶温度以上)奥氏体化,然后预冷到稍高于A。

材料的强化与韧化

材料的强化与韧化

材料的强化与韧化材料的强化与韧化是指通过一系列的方法和工艺,提高材料的强度和韧性,从而增加其使用寿命和可靠性。

在工程领域中,强度和韧性往往是评价材料性能的重要指标之一、强度是指材料抵抗外部应力引起的破坏的能力,而韧性是指材料在受到外部应力时能够发生塑性变形而不破裂的能力。

强度和韧性的提高可以使材料更适合于承受高强度和高载荷的工作环境,以及更好地抵抗损坏和断裂。

1.固溶强化:通过固溶合金元素或合金化来增强材料的强度。

固溶合金元素可以在基体中形成固溶体或形成新的晶体相,从而提高材料的强度。

与基体原子相互作用的固溶元素可以阻碍晶格滑移和位错运动,从而增强材料的强度。

2.细晶强化:通过细化晶粒结构来提高材料的强度。

细小的晶粒可以增加材料的晶界面积,从而增加位错与晶界的相互作用机会,增强材料的抗位错运动能力,提高强度。

3.相变强化:通过相变来改变材料的微观结构,从而提高材料的强度。

相变时会产生局部应变和应力场,从而阻碍位错运动和塑性变形,提高材料的强度。

4.显微组织控制强化:通过控制材料的显微组织,如晶粒形状、相分布和相互作用等,来增加材料的强度。

控制材料的显微组织可以将位错和晶界的相互作用最大化,从而阻碍位错运动和滑移,提高材料的强度。

材料的韧化主要有以下几种方式:1.纳米颗粒强化:纳米颗粒在材料中的分布可以阻断裂纹的扩展,增加材料的韧性。

纳米颗粒可以吸收部分应变能,通过控制纳米颗粒的尺寸和分布,可以有效地提高材料的韧性。

2.相变韧化:通过相变来改变材料的微观结构和组织,从而增强材料的韧性。

相变时会产生内应力和晶界,可以阻碍裂纹扩展,提高材料的韧性。

3.变形和断裂机制的优化:通过调节材料的微观结构,改变材料的变形和断裂机制,从而提高材料的韧性。

例如,增加材料的位错密度和滑移系统数量可以增加材料的塑性变形,提高韧性。

4.多元合金化:通过合金化来改变材料的组成和微观结构,从而增加材料的韧性。

合金化可以引入不同的元素和相,从而改变材料的微观结构,提高材料的韧性。

强化韧化机理

强化韧化机理

强化韧化机理
强化韧化机理是金属材料科学中的一个重要概念,它涉及到材料性能的改善,尤其是硬度和韧性这两个重要的力学性能指标。

强化与韧化通常是材料改性处理的目的,使其在保持足够强度的同时,提高抵抗断裂的能力。

1. 强化机制:
强化主要通过以下几种方式进行:
- 固溶强化:通过添加合金元素使基体材料内部形成固溶体,阻碍位错运动,从而提高材料的强度。

- 时效强化:通过加热、保温然后冷却的过程,使材料内部析出第二相粒子,位错运动受到阻挡,提高材料强度。

- 应变强化(加工硬化):通过冷加工(如轧制、锻造等)使材料内部产生大量位错,位错交互作用增加,从而提高材料的抗拉强度。

- 晶粒细化强化:通过控制加工工艺使材料晶粒细化,晶界数量增多,位错运动阻力增大,材料强度提高。

2. 韧化机制:
韧化主要通过以下方式实现:
- 细化晶粒:晶粒越细,晶界越多,晶界能阻止裂纹扩展,从而提高材料韧性。

- 第二相颗粒强化:在材料基体中引入弥散分布的第二相颗粒,如陶瓷颗粒、金属间化合物等,可以阻滞裂纹的扩展,起到钉扎位错的作用,提高材料韧性。

- 亚微观结构调控:通过调整材料内部的层片状、孪晶、位错胞等亚微观结构,使材料在遭受冲击或负载时分散并吸收能量,从而提高韧性。

- 混合韧化:结合多种韧化机制,如相变韧化(马氏体钢的相变)、沉淀强化与韧化并存(航空铝合金的时效处理)等,实现强度和韧性的同步提升。

2.钢的强化和韧化

2.钢的强化和韧化

转变温度相同 :
(碳化物量增多)
思考题:
1. 钢中最常用的强化方式有哪些? 它们对材料的强度
和韧性有何影响?
2.固溶强化可分哪两类?对强韧性的影响各有什么特点?
3.为什么细化晶粒能同时提高金属材料的强度和塑性?
4.用图示意说明钢中铌、钒、钛含量对铁素体晶粒大小
ηa——外加的分切应力
ηc——邻近晶粒位错源开动所需的应力
应力集中与位错塞积数目成正比,塞积群大→应力集中大 粗晶粒,d大,塞积距离长,应力集中↑,所需外力↓,就 可达到ηc
细晶粒,d小,塞积距离短,应力集中↓,所需外力↑,
才可达到ηc ,使邻晶粒开动 细晶材料的强度大 另一方面 粗晶粒:变形不均匀,应力集中大,裂纹易形核,塑性差 细晶粒:变形较均匀,外加应力大,大量的晶粒同时实现塑 性变形,变形的协调性好,塑性好 1
d1——T1温度的临界晶粒直径 d >d1 d<d1 脆性状态 韧性状态
T2:B点是韧脆转变的临界点 d2——T2温度的临界晶粒直径
T2<T1,d2<d1
说明温度降低
时需要更细的晶粒才能维持足够 的韧性 结论: ① 晶粒愈细,韧性愈高 (d↓,ζc与ζy差距变大) ②晶粒愈细,脆性转变温度愈低
2.4 沉淀强化(析出强化)
①γ→α相变前,在γ中析出粗大的Nb(CN),对强化作用很小
② γ→α相变时, Nb(CN)沿γ→α 晶界呈点列状析出 ③相变后, Nb(CN)在α中微细析出,强化效果显著 图4-18示出Nb、V、Ti材料的强化情况 △ζGy——细晶强化 △ζ0 ——析出强化
Nb钢:细晶强化大,析出强化也大 V 钢:析出强化大,细晶强化小 Ti 钢:两种强化均有限
6
6
2.2 位错强化(形变强化) 一.定义 在塑性变形中,随变形程度↑,基体强度↑的现象。

03-材料的强化与韧化解析

03-材料的强化与韧化解析

固溶强化机制
➢ 固溶造成晶格的畸变,固溶强化的微观机理是溶质原子和位 错交互作用的结果。
弹性交互作用、化学作用、电化学作用、有序化作用
➢ 溶质原子可以是均匀不规则地分布在基体中,也可以偏聚到 位错周围形成各种气团,这两种情况都可以使金属材料的基 体造成强化。 均匀强化 非均匀强化
➢由于固溶度有限或由于合金原子与基体原子的半径差较小, 均匀分布的合金元素的固溶强化效果较小,当溶质原子发生偏 聚时,合金元素与位错会发生强的交互作用。
➢ 要求:溶质原子在基体中的溶解度随温度而变化, 高温时第二相溶于基体中,低温时则析出第二相。
➢ 获得方法:先高温固溶,再急冷形成过饱和固溶体, 最后时效析出第二相;
➢ 第二相与基体结合较牢固,强化效果与第二相的形 状、数量、大小及分布等有关;
➢ 沉淀强化受温度影响。
2) 弥散强化
➢ 用粉末冶金法,向基体金属中加入金属氧化物、氮 化物、碳化物等强化相粒子(第二相),并使这类 粒子在基体中高度弥散分布来强化合金;
3.1 金属及合金的强化与韧化
形变强化



细晶强化
形变强化
固溶强化
细晶强化 合

第二相强化
纤维强化
界面强化
沉淀强化 弥散强化
形变热处理强化、相变强化
一、形变强化
它不是工业上广泛应用的强化方法,它受到两 个限制:
➢ 使用温度不能太高,否则由于退火效应,金属会 软化;
➢ 由于硬化会引起金属脆化,对于本来就很脆的金 属,一般不宜利用形变强化来提高强度性能。
Orowan(奥罗万)强化机制
定义:位错线绕过不易形变的粒子
➢沉淀强化合金中当析出相到一定尺寸的时候,运动位 错接近它们时,只能绕过它们。像钢中的碳化物、氮化 物一般都是不可变形的。 ➢弥散强化合金中的第二相粒子硬度高,采用绕过机制。

材料强韧化

材料强韧化
(2)减缓裂纹尖端的应力集中效应。(减小缺陷尺寸)
** 陶瓷增韧机理: (1) 在裂纹尖端周围分布着非弹性变形的区域,它们 由于相变或微裂纹所引起的。 (2) 由纤维或晶须,或未破坏的带状第二相所引起的 裂纹桥联。
** 韧化方法: (1)氧化锆相变增韧
当材料受到外力作用时,裂纹扩展到亚稳的四方 t-ZrO2粒子,裂纹尖端的应力集中使基体对t-ZrO2的 压抑作用首先在裂纹尖端得到松弛,促发t-ZrO2 → 单斜m-ZrO2的相变,产生体积膨胀形成相变区。由 此产生的相变应力又反作用于裂纹尖端,降低了裂 纹尖端的应力集中程度,发生所谓的钝化反应,减 缓或完全抑制了裂纹的扩展,从而提高断裂韧性。
材料的强韧化
(Strengthening and Toughening of Material )
1概述
材料研究最终目的:使用。 挖掘材料性能潜力:各种各样处理 提高力学性能的处理——强化与韧化。
2 金属材料强化机理
2.1、固溶强化
Cu.4弥散强化或沉淀强化
第二相以细小弥散微粒均匀分布在基体相中 → 强化作用。 第二相通过过饱和固溶体时效处理而沉淀析出产生强化 →
沉淀强化或时效强化。 第二相借助于粉末冶金方法加入起强化作用→ 弥散强化 第二相颗粒强化作用: 微粒分为:1)不可变形颗粒; 2)可变形颗粒 两类粒子与位错交互作用方式不同,强化途径不同。
3.3. 位错强化与塑性、韧性 位错密度↑,位错间交互作用↑,可动位错↓ → 塑性、韧性降
低。 提高可动位错密度对提高塑性、韧性有利。
3.4.沉淀相颗粒与塑性 析出相(沉淀相)强化 → 塑性下降。 原因:常以本身断裂或颗粒与基体间界脱开诱发微孔 →
塑性降低。 ① 沉淀相颗粒越多,强度越高,塑性越低; ② 呈片状沉淀相对塑性损害大,呈球状损害小; ③ 沉淀相颗粒均匀分布对塑性影响小;

韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现b..

韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现b..

材料的强化与韧化韧性是材料变形和断裂过程中吸收能量的能力,它是强度和塑性的综合表现;强度是材料抵抗变形和断裂的能力,塑性则表示材料断裂时总的塑变程度。

金属材料的强化方法大体分为四类:固溶强化、细晶强化、形变强化、沉淀相颗粒强化等。

固溶强化是指纯金属经适当的合金化后强度、硬度提高的现象。

根据强化机理可分为无序固溶体和有序固溶体。

固溶强化的特点:(1)溶质原子的原子数分数越大,强化作用越大;(2)溶质原子与基体金属原子尺寸相差越大,强化作用越大;(3)间隙型溶质原子比置换原子有更大的固溶强化作用;(3)溶质原子与基体金属的价电子数相差越大,固溶强化越明显。

晶粒细化是一种有效的既可提高金属材料强度又可改善韧性的手段,这是其他强化方式如加工硬化、时效强化等方法难以达到的。

细化晶粒提高材料强度和硬度主要来源于晶界对位错运动的阻碍作用,而改善韧性源于晶界面积增加使单位面积上偏聚的杂质原子数量减少,降低材料脆性转变温度。

多晶体金属的晶粒通常是大角度晶界,相邻取向不同的的晶粒受力发生塑性变形时,部分晶粒内部的位错先开动,并沿一定晶体学平面滑移和增殖,位错在晶界前被阻挡,当晶粒细化时,需要更大外加力才能使材料发生塑性变形,从而达到强化的目的。

形变强化是指金属的整个形变过程中当外力超过屈服强度后,要塑性变形继续进行必须不断增加外力,从而在真实的应力-应变曲线上表现为盈利不断上升。

随着塑性变形量的增加,金属流变强度也增加。

金属在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的相互作用不断加强,因而位错运动越来越困难。

晶体中的位错达到一定值后,位错间的弹性交互作用增加了位错运动的阻力,可以有效地提高金属的强度。

曲线明显可分为三个阶段:I.易滑移阶段:发生单滑移,位错移动和增殖所遇到的阻力很小,θI 很低,约为10-4G数量级。

II.线性硬化阶段:发生多系滑移,位错运动困难,θII 远大于θI 约为G/100—G/300 ,并接近于一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Boltzmann分布时,换言之,位错线张应力区间隙原子浓度比较小,但比平均浓 度高,这种状态称为稀气团。这种状态强化效果比浓气团强化效果差,并且受温 度影响比较大。
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓Cottrell气团强化
• 应变时效
• 动态应变时效 为应变时效的一种特殊情况,这种锯齿形曲线系因试样在
Hall-Petch关系式: ss=so+Kyd-1/2
利用位错塞积模型推导Hall-Petch关系式:
运动位错的有效应力是外力作用到滑移方向的分切应力(τ)减去位错 运动时克服的摩擦阻力(τi), 即τ-τi。根据位错塞积群理论,塞积的位错 数n为: n=[KL(τ-τi)]/Gb 在塞积群头部将产生一个应力集中,其值为 τ1=n(τ-τi)
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化
✓ 浓度梯度强化
晶格常数相互作用:
溶质元素分布存在梯度→晶格常数存在梯度→提高位错运动阻力;
弹性模量相互作用:
溶质元素分布存在梯度→弹性模量不是常数→提高位错运动阻力;合
金元素与位错间的弹性交互作用: 存在合金元素分布梯度时的Cottrell气团强化.
RAL 3.1 金属与合金的强化与韧化
3.1.3 细晶强化 ✓细晶强化机理
晶界是位错运动的障碍, 晶界越多,则位错运动阻力 越大,屈服应力越高。
晶界对屈服强度的影响不 只来自晶界本身,而与晶界 是连接两个晶粒的过渡区有 关——位错运动的障碍。
RAL 3.1 金属与合金的强化与韧化
3.1.3 细晶强化 ✓细晶强化机理
体心立方金属中,间隙原子分布在八面体间隙位置。当有外力作 用时,应变能较大的间隙原子将到应变能较小的位置上,以降低 系统能量——局部有序化。
强化作用与温度无关,而与溶质浓度成正比。 常温下,对位错的钉扎虽然不亚于Cottrell气团,但溶质原子这 种短程的动态有序,当形变温度较高时,由于有序化太快,其作 用也就不显著了。形变速度过大时,亦如此。
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓静电相互作用强化
刃型位错的静电作用如同一串电偶极子,溶质原子 与刃型位错存在静电交互作用;
螺型位错中心带AL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓Suzuki气团强化
RAL 3.1 金属与合金的强化与韧化
强化方法 按实现工艺:
加工硬化、热处理、TMCP、合金化 按强化机制:
固溶强化、细晶强化、沉淀强化、相变强化等
RAL 3.1 金属与合金的强化与韧化
3.1.1 均匀强化
由于溶质原子与位错线的相互作用 不同,位错线的运动方式有两种: (a)相互作用强时,位错线便“感 到”溶质原子分布较密; (b)为相互作用弱时,位错线便 “感到”溶质原子分布较疏。
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓Cottrell气团强化
合金元素与位错之间存在交互作 用-移至位错线附近-形成气团。 位错周围合金元素的浓度与其他 地方有所不同。 由于这是一种稳定状态,若破坏 这种状态,即位错运动时,只有 增加外力才可能,故可以提高金 属强度。
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓Cottrell气团强化
形成Cottrell气团不需要很多的溶质原子。
浓气团:这种在位错线张应力区(如正刃型位错,垂直于纸面一条位错)下边有
一条间隙原子线,称为Cottrell气团的浓气团,即Cottrell气团变成饱和状态。这 种浓气团强化效果大,并且受温度影响比较小。
稀气团:当间隙原子(如C,N)在位错张应力区(如正刃型位错下边)呈Maxwell-
RAL
材料的强化与韧化
RAL 3.1 金属与合金的强化与韧化
金属材料的主要失效形式: 过量弹性变形;过量塑性变形;断裂;磨损;腐蚀。
强度和韧性: 是衡量结构材料的最重要的力学性能指标。 为了有效地提高材料的强度和韧性,必须对材料的整 体结构进行多组分设计,包括材料组分、微结构、界 面性能和材料制备工艺等。
RAL 3.1 金属与合金的强化与韧化
3.1.3 细晶强化 ✓细晶强化机理
由于位错塞积,这相当于将有效应力放大了n倍,n为位错塞积数目。 由上述两个式子得到: τ1=[KL(τ-τi)2]/Gb 若晶粒Ⅱ内位错源S2在晶界附近,则开动这个位错源的临界切应力为τρ 由位错塞积群的应力集中τ1提供。若位错S2开动并放出位错,则τ1≥τρ, 即 τ1=[KL(τs-τi)2]/Gb≥τρ ,则
面心立方金属中,一个滑移的全位错可以分解为两个不全位错, 形成层错。为保持热平衡,层错区和基体部分溶质原子浓度不同, 起着阻碍位错运动的作用。
已滑移区
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓有序强化
分为短程有序和长程有序两种; 一般长程有序化后,合金总是变得较硬,有时产生明显的屈 服现象,随着有序度的增加,其屈服应力在某一中等有序度时出 现一极大值。
试验中重复的屈服和时效引起。换言之,此种条件下作为形成Cottrell气团的 C,N原子的扩散速度与位错线的运动速度相近,从而使得Cottrell气团在应 变中不断形成与位错线挣脱C,N原子的钉扎,故在应力-应变曲线上表现出 锯齿形。
RAL 3.1 金属与合金的强化与韧化
3.1.2 非均匀强化 ✓Snoek气团强化
若以l和L分别表示两种情况下可以独立滑移的位错段平均长度,F为溶质原子沿 滑移方向作用在位错线上的阻力,则使位错运动所需的切应力可表示为 τ=F/bl 或 τ=F/bL 从表面上看,因为间隙式溶质原子固溶后引起的晶格畸变大,对称性低,属于 (a);置换式固溶所引起的晶格畸变小,对称性高,属于(b)。但事实上,间隙 式溶质原子在晶格中,一般总是优先与缺陷相结合,所以已不属于均匀强化的 范畴。
RAL 3.1 金属与合金的强化与韧化
3.1.2非均匀强化
由于合金元素与位错的强交互作用,使得在晶体 生长过程中位错密度大大提高,使之结构与纯金属不 同——非均匀强化的部分原因。非均匀强化类型:
浓度梯度强化 Cottrell气团强化 Snoek气团强化 静电相互作用强化 Suzuki气团强化 有序强化
相关文档
最新文档