九年级数学统计初步试题

合集下载

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28

沪教版数学九年级下第二十八章统计初步28.4表示一组数据波动程度的量练习一和参考答案数学九年级下第二十八章:统计初步28.4 表示一组数据波动程度的量一、选择题1.在统计中,样本的标准差可以反映这组数据的(C)离散程度。

2.数学老师对XXX在参加中考前的 5 次数学模拟考试成绩进行统计分析,判断XXX的数学成绩是否稳定,于是老师需要知道XXX这 5 次数学成绩的(A)平均数或中位数。

3.若一组数据 2,1,x,5,4 的平均数是 3,则这组数据的方差是(B)4.4.已知一组数据 x1,x2,x3,x4,x5 的平均数是 2,方差为,那么另一组数据 2x1-1,2x2-1,2x3-1,2x4-1,2x5-1 的平均数和方差分别是(B)2,2.5.某车间 7 月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这 10 天中该车间生产零件的次品数的(A)众数是 0 个。

6.甲、乙两名学生在参加今年体育中考前作了 5 次立定跳远测试,两人平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20m,2.30m,2.30m,2.40m,2.30m,那么甲、乙的成绩比较(B)乙的成绩更稳定。

二、填空题7.已知数据 x1,x2,…,xn,则平均数为,方差为,标准差为。

8.已知数据 2,3,4,5,6,7,8 的平均数为,方差为。

标准差为。

9.已知数据 91,92,93,94,95,96,97 的平均数为,方差为。

标准差为。

10.把 2,3,4,5,6,7,8 这组数据中的每个数按 3x+2计算后,可得到新的数据为;则新的数据的平均数为,方差为。

标准差为。

11.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。

则数据 2x1+3,2x2+3,…,2xn+3 的平均数为,方差为。

标准差为。

12.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。

九年级数学下册 第二十八章 统计初步练习 沪教版五四制

九年级数学下册 第二十八章 统计初步练习 沪教版五四制

统计初步一、填空题1、数据收集常用的方式有普查和 两种.2、要想估计池塘里鱼的条数,先捞出50条作上记号后放回池塘,过一段时间后再捞出100条鱼,有记号的鱼正好10条,问池塘里原来大约有 条鱼.3、一组数据25、80、84、90、95、96中,25通常叫做 ,描述这组数据的一般水平用 比较合适,这个值是 .4、一组数据按大小顺序排列后为x 1 , x 2 , x 3…x 29 , 则其中位数是 ,若数据中再增加一个x 1 ,其中位数是 ,若数据中再增加一个x 29 ,其中位数是5、一个样本的容量为50 ,一组的频数为18,则这组的频率为 .6、一组数据中,各组数据的频率之和等于 .7、101、99、97、102、100、96、105、99、103、98的平均数为 . 8、已知一组数据x 、-1、0、1、-2的平均数是0,那么x=9、一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ; 10、某校对初三学生进行政治学习情况的测试, 从中随机抽取了40份试卷, 这40份试卷中80分及以上有16人,由此可估计全校200名初三学生80分及以上有 人,优良率为_________%,二、选择题1、某工厂对一个生产小组的零件进行抽样调查。

在10天中,这个生产小组每天出的次品数如下(单位:个)0, 2, 0, 2, 3, 0, 2, 3, 1, 2在这10天中,该生产小组生产零件所出的次品数平均数为 ( ) (A )2 (B )3 (C )1.5 (D )1.23、从一组数据中取出a 个x 1,b 个x 2,c 个x 3,组成一个样本,那么这个样本的平均数是( )。

(A )3321x x x ++(B )3cb a ++(C )3321cx bx ax ++(D )cb a cx bx ax ++++3214、某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是 ( )(A )这1000名考生是总体的一个样本 (B )每位考生的数学成绩是个体 (C )7万名考生是总体 (D )1000名考生是样本容量5、有甲、乙两种产品,抽查每批产品的合格产品数后,计算出样本方差分别为2甲S =11,2乙S =3.4,由此可以估计( )(A )甲产品比乙产品稳定 (B )乙产品比甲产品稳定(C )两种产品稳定程度相同 (D )甲、乙两种产品稳定程度不能比较三、解答题 1、(本题6分)为了了解某地区初三女生的身高情况,以200名女生的身高(单位:cm )作为样本,将她们的身高整理、分组,列成下表:(每组数据含最小值,不含最大值) 分组(cm ) 150-155 155-160 160-165 165-170 170-175 175-180 频数 10 30 n 60 m 频率 0.09 0.01 填空:(1)表中的m =________,n =_________;(2)200名女生的身高的中位数落在_________ 小组内;(3)样本中身高不到160cm 的女生占了百分之几?答:占_________。

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川区第一中学2020年中考九年级数学典型压轴题专练:统计初步1、根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.2、为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.3、为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?4、某校八年级学生在学习《数据的分析》后,进行了检测.现将该校八年级(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【逐步提示】(1)在表格中查到得96的人数是6,据此不全条形图;(2)根据众数、中位数的定义求解;(3)用500乘以96分以上(含96分)的人数所占的百分比即可得解;(4)把小明的成绩和平均数、中位数、众数作对比,即可对小明的成绩做出判断.5、秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?6、某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?7、某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.8、中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?9、海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?10、为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?11、在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.12、某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱30%8%6%动画新闻体育娱乐戏曲体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.13、某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8% ,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.14、为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.15、为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求所抽取的学生人数;(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.16、某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?17、为了解某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?18、某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?19、为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.20、某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.答案:1、、【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A: =10,B: =30;C: =50;D: =70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.2、【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).3、【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.4、解:(1)补全条形统计图如下:(2)该班学生成绩的中位数为90分,众数为90分;(3)∵6+540×500≈138.∴估计有138名学生的成绩在96分以上(含96分).(4)小明的成绩为88分,他的成绩处于中偏下水平,因为小明的成绩比班级平均成绩高,但比班级学生成绩的中位数和众数低.5、【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.6、【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.7、【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.11118、【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.9、【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.10、【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.11、【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.12、【答案】(1)50,3,72°;(2)160人【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36% 50⨯=,∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,在扇形统计图中,最喜爱体育的对应扇形圆心角大小事360°×20%=72°;(2)2000×8%=160(人).13、【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.14、【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.15、【解答】解:(1)∵频数之和=40,∴所抽取的学生人数40人.(2)活动前该校学生的视力达标率==37.5%.(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.16、【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.17、【解答】解:(1)120÷30%=400(吨).[来源:学§科§网Z§X§X§K] 答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.18、【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.19、【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为: =6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.20、【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.。

湖南省长沙市怡雅中学2020年中考复习:统计初步 综合练习试题(word版,无答案)

湖南省长沙市怡雅中学2020年中考复习:统计初步 综合练习试题(word版,无答案)

湖南省长沙市怡雅中学2020 年中考复习九年级数学统计初步综合练习题1、为配合全市“倡导低碳绿色生活,推进城镇节水减排”的宣传活动,某校数学课外活动小组把用水习惯分为“很注意解决用水(A)”、“较注意解决用水(B)”、“不注意解决用水(C)”三类情况,设计了调查问卷在中学生中开展调查,并将调查结果分析整理后,制成如图所示的两个统计图.请根据以上信息解答下列问题:(1)这次调查问卷调查共调查了多少名学生?(2)在扇形统计图中,“B”所对应的扇形的圆心角度数是多少?(3)如果设该校共有学生 3000 人,试估计“不注意解决用水”的学生人数.2、为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有 180 人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?3、某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市 2012年参加三独比赛的不完整的参赛人数统计图.(1)该市参加三独比赛的总人数是人,图中独唱所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取 20 人调查,其中有 9 人获奖,请你估算今年全市约有多少人获奖?4、为保证学生上学安全,学校打算在今年下期采购一批校车,为此,学校安排学生会在全校300 名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如图统计图.走读学生对购买校车的四种态度如下:A.非常希望,决定以后就坐校车上学 B.希望,以后也可能坐校车上学C.随便,反正不会坐校车上学D.反对,因家离学校近不会坐校车上学(1)由图①知A 所占的百分比为,本次抽样调查共调查了名走读学生,并完成图②;(2)请你估计学校走读学生中至少会有多少名学生乘坐校车上学(即A 态度的学生人数).5、岳阳楼、君山岛去年评为国家 5A 级景区.“十•一”期间,游客满员,据统计绘制了两幅不完整的游客统计图(如图①、图②),请你根据图中提供的信息解答下列问题:(1)把图①补充完整;(2)在图②中画出君山岛“十•一”期间游客人次的折线图;(3)由统计可知,岳阳楼、君山岛两景点“十一”期间共接待游客 149000 人次,占全市接待游客总数的 40%,求全市共接待游客多少人次(用科学记数法表示,保留两位有效数字)6、某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5合计频数 2 a 20 16 4 50 频率0.040.160.400.32b1(1)频数、频率统计表中,a= ;b= ;(2)请将频数分布直方图补充完整;(3))小华在班上任选一名同学,该同学成绩不低于 80 分的概率是多少?7、游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的 2000 名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校 2000 名学生中大约有多少人“一定会下河游泳”?8、网络购物发展十分迅速,某企业有 4000 名职工,从中随机抽取 350 人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图 1 和扇形图 2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有 22 人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?9、为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于 1 小时, 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图中两幅不完整的统计,请你根据图中提供的信息解答下列问题:(1) 在这次调查中共调查了多少名学生?(2) 求户外活动时间为 0.5 小时的人数,并补充频数分布直方图; (3) 求表示户外活动时间为 2 小时的扇形圆心角的度数;(4) 本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?10、某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班 50 名学生的处理方式进行统计,得出相关统计表和统计图.请根据表图所提供的信息回答下列问题:(1) 统计表中的 m=,n= ;(2) 补全频数分布直方图;(3) 若该校有 2000 名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?组别 A B C D 处理方式 迅速离开 马上救助 视情况而定 只看热闹 人数 m 30 n 511、目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.12、市教育局对九年级学生的信息技术、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定 A、B、C、D 四个等级.现抽取 1000 名学生成绩进行统计分析(其中 A、B、C、D 分别表示优秀、良好、合格、不合格四个等级),其相在数据统计如下:(1)(1)请将上表空缺补充完整;(2)全市共有 40000 名学生参加测试,试估计该市九年级学生信息技术成绩合格以上(含合格)的人数;(3)在这 40000 名学生中,化学实验操作达到优秀的大约有多少人?13、如图所示,图①表示的是某教育网站一周内连续 7 天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这 7 天的日访问总量一共约为 10 万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.14、某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a= ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了 10 次活动的成员被选中的概率有多少?15、初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中; B.读职业高中 C.直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县 2020 年初三毕业生共有 4500 人,请估计该县今年的初三毕业生中读普通高中的学生人数.16、6 月5 日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:C n 0.1D 18 m合计 a 1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a= ;(2)请你将条形图补充完整;(3)如果小文所在的学校有 1200 名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?17、某学校开展课外体育活动,决定开设 A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?18、某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a),(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1)本次上交调查表的总人数为多少?(2)求关心“道路交通”部分的人数,并补充完整条形统计图.19、“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了 2020 年 1 月份至 4 月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)统计图共统计了天空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.(3)从小源所在班级的 40 名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?。

上海四大名校中考总复习数学通用辅导材料初三复习基本训练卷--统计初步(A)

上海四大名校中考总复习数学通用辅导材料初三复习基本训练卷--统计初步(A)

上海四大名校中考总复习通用教材卷6 统计初步(A)——p1一.填空(2分×30=60分)1.一组数据:2、5、8、5、10、12,则它们的平均数是__________,中位数是__________,方差是__________,标准差是__________。

2.一组数据:2、1、5、4、8的中位数是__________,标准差是__________。

3.一组数据中有3个4,5个6和2个9,则这组数据的平均数是__________,中位数是__________,方差是__________。

4.已知一组数据1、2、3、5、x,他们的平均数是3,则x=__________。

5.已知一组数据x1,x2,x3,x4,x5,x6,x7,其中x1,x2,x3,的平均数为a,x4,x5,x6,x7,的平均数为b,则x1,x2,x3,x4,x5,x6,x7,的平均数是__________。

6.在一组数据进行整理所得的频率分布表中,各组的频率之和是__________。

7.在一组数据:85,96,85,98,90,85,76,68,85,66中,85这个数的频率为__________。

8.一组数据共有50个,其中在80~~86之间的数据有5个,则这组的频率为__________。

9.如果样本中各数据的和为1010,样本平均数为2.5,则这组数据有__________。

10.甲、乙两人在五次数学测验中的平均分相同,但甲的标准差大于乙的标准差,则__________的成绩比较稳定。

11.小明的语文总评分通过右表计算,则这个总评分为__________分。

12.为了估计鱼塘有多少条鱼,我们从塘里先捕上50条鱼做上标记,再放回塘里,过了一段时间,待带有标记的鱼完全混合于鱼群后,第二次捕上300条鱼,发现有2条鱼带有标记,则估计塘里有__________条鱼。

13.反映一组数据一般水平的量是__________,反映一组数据离散程度的量是__________。

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。

除了颜色外,它们都一样。

如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。

c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。

b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。

B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。

转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。

如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。

d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。

10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。

c.d。

中考数学复习基本过关训练 12统计初步(二)

中考数学复习基本过关训练 12统计初步(二)

卷12:统计初步(二)班级:姓名:分数:一.单项选择题:(本大题共8题,满分24分)1.下列哪一个数不是反映一组数据的平均水平的量()A.平均数B.中位数C.标准差D.加权平均数.x、、的标准差为2,则数据3-1、3-1、3-12.若数据{ EMBED Equation.3 |1的方差是()A.5B.17C.11D.36.3.下列命题中,真命题是()A.8、9、10、11、7的中位数是10 ;B.一组数据的标准差是这组数据的方差的平方;C.在频率分布直方图中,各个小长方形的面积之和等于1 ;D.在平均数相同的情况下,方差也一定.4.若数据2、6、4、、5的中位数是5,则可取下列数值中的()A.2B.3C.4D.55.一组数据中有2个,3个,4个,则下列计算平均数的结果中,正确的是()A. B. C. D.6.要了解某种产品的使用寿命,从中抽取10个产品进行测试,这10个产品的使用寿命是()A.总体B.个体C.总体的一个样本D.样本容量.7. 已知、、、……、的平均数为3,方差为2. 则+2、+2、+2、……、+2的平均数、方差分别为( )A.3,4B.5,4C.4,2D.5,28.某校为了解一学期中全体学生做广播操的出勤率,在其中的30天里对出勤情况进行了统计.下列说法中,错误的是()A. 样本容量是全体学生的个数;B.个体是单独一天做广播操的出勤率;C.样本是30天里每天做广播操的出勤率;D.总体是全校一学期中每天做广播操的出勤率.二.填空题(本大题共16题,满分64分)9.样本-5、2、2、4、4、4的中位数是___________.10.一组数据-8、0、、-21、7、13的中位数为3,则=_________.11.一组数据共40个,分为6组。

其中第二组有4人,则第二组的频率为________.12.某班在一次测试中,成绩在90分以上的有4人,频率为0.1,则此班有_______人.13.数据6、7、8、6、3的方差为________.14.数据3、6、9、2、0的平均数是一元二次方程的一个根,则=______.15.数据1、2、3、5、的平均数为3,则=_______.16.若、、……、的平均数为,则、、……、、这20个数的平均数是____________.17.如果一组数据的方差,则这组数据之和为_____________.18.一组数据的方差是的根,那么这组数据的方差等于___________.19.一组数据为40个,分为6组,其中第1组的频率为0.1,而2、3、4、6组的频数分别为5、10、6、7,则第5组的频率为_________.20.对甲乙两同学进行射击测试,两人命中环数的平均数相同,乙命中环数的方差为,结果选拔了水平比较稳定的甲参加射击比赛,那么甲命中环数的方差______(填“>”“<”或“=”).21.五名学生测验的平均成绩为72分,除去学生甲后的余下四名学生的平均成绩为70分,则甲的成绩为_________分.22.如果一组数据、、、、的平均数为,则另一组数、、、、的平均数为________.23.某班47位同学今年的平均年龄为15.3岁,则两年前这47位同学的平均年龄为__________岁.24.某村有储户110户,存款在5-10万元之间的频率为0.2,则存款在5-10万元之间的储户共有________户.三、解答题(25、26、27、28题每题8分,29、30、31每题10分,满分62分)25.甲、乙两人在相同条件下各射靶5次,依次命中环数如下:甲7、8、9、9、7 乙8、7、8、7、10 ,①分别计算上面两个样本的平均数与方差;②从计算结果看,谁的射击比较稳定.26.随机抽取某商场6月份6天的营业额(单位:万元)分别如下:3.0、3.1、2.9、3.0、3.4、3.2,试估计商场6月份的营业额大约是多少万元?27.对全国足球甲A联赛上海申花队与云南红塔队比赛情况调查,现让400名被调查者在“很精彩”“比较精彩”“不精彩”三项中选一项,将调查结果绘制扇形图.如图所示,回答下列问题:①400名被调查者中认为“很精彩”的有几名?②表示“不精彩”部分的扇形圆心角是几度?28. 某校为了了解本校初三学生一天中在家里做作业所用的时间,对本校初三学生进行抽样调查,并把调查所得的所有数据(时间)进行整理,分成五组,绘制成统计图(如图).请结合图中所提供的信息,(每组可含最低值,不含最高值).回答下列问题:(1) 被调查的学生有人;(2) 在被调查的学生中,做作业的时间不少于150分钟的人数占被调查学生数的百分之;(3)这组数据(时间)的中位数在第时间段内.时间(分)29.张老伯在山上种了44棵果树,现已进入第三年的收获时节。

第八章-概率与统计初步综合测试题-基础模块下册-高教版

第八章-概率与统计初步综合测试题-基础模块下册-高教版
A.2
B.4
C.6
2.数据 1,3,6,2,2,4,6,8 的平均值是(
A.3
B.4
D.10

C.5
D.6
3.电视台某节目组要从2019名观众中抽取100名幸运观众.先用简单随机抽样从2019人
中剔除19人,剩下的2000人再按系统抽样方法抽取100人,则在2019人中,每个人被

抽取的可能性(
A.都相等,且为
5
)
2
3
B.
C.
5
5
4
D.
5
16.抛掷一枚质地均匀的硬币,设事件 =“正面向上”,则下列说法正确的是(

A.抛掷硬币 10 次,事件 A 必发生 5 次
B.抛掷硬币 100 次,事件 A 不可能发生 50 次
C.抛掷硬币 1000 次,事件 A 发生的频率一定等于 0.5
D.随着抛掷硬币次数的增多,事件 A 发生的频率在 0.5 附近波动的幅度较大的可能性
分.某地旅游部门从 2020 年到该地旅游的游客中随机抽取部分游客进行调查,得到各年
龄段游客的人数和旅游方式如图所示,则下列结论正确的是(

A.估计 2020 年到该地旅游的游客选择自助游的中年人的人数少于选择自助游的青年
人人数的一半
B.估计 2020 年到该地旅游的游客选择自助游的青年人的人数占总游客人数的 13.5%
率.
29.甲、乙两位小朋友玩卡片游戏.甲有两张大小相同的卡片,卡片编号分别为数字 2、
4;乙有四张大小相同的卡片,卡片编号分别为数字 1、2、3、4.
(1)若乙从自己的卡片中随机抽取两张,求所抽取的两张卡片的编号之和为奇数的概率;
(2)若甲、乙从各自的卡片中各抽取一张卡片,并比较卡片编号大小,且编号大者获胜,

2015届中考数学自主复习课件【第29讲】统计初步(43页)

2015届中考数学自主复习课件【第29讲】统计初步(43页)

第29讲┃ 统计初步
解:(1)抽样调查或抽查(填“抽样”也可以) (2)a=0.350,b=5,c=40,频数分布直方图略. (3)32 (4)20 30
第29讲┃ 统计初步
[中考点金]
准确理解频数与频率之间的关系及所有频率之和为 1 可解决频数分布表中的问题. 补全频数直方图要结合频数 分布表,从频数分布表中获取相关数据信息是关键.
第29讲┃ 统计初步
考点3
平均数、中位数和众数
1.实验学校九年级(1)班十名同学进行定点投篮测试, 每人投篮六次,投中次数统计如下:5,4,3,5,5,2,5, 3,4,1,则这组数据的中位数、众数分别为 ( A ) A.4,5 B.5,4 C.4,4 D.5,5 2.某校女子排球队队员的年龄分布如下表,则该校女 子排球队队员的平均年龄是________ 岁. 14 年龄 人数 13 4 14 7 15 4
图 29-3
第29讲┃ 统计初步
(1)求被调查的学生人数; (2)补全条形统计图; (3)已知该校有 1200 名学生,估计全校最喜爱文学类图书 的学生有多少人?
第29讲┃ 统计初步
解:(1)被调查的学生人数为 12÷ 20%=60. (2)如图.
24 (3) 全校最喜爱文学类图书的学生约有 1200× = 60 480(人).
第29讲┃ 统计初步
2. [2014· 呼和浩特] 以下问题, 不适合用全面调查的是( D ) A.旅客上飞机前的安检 B.学校招聘教师,对应聘人员的面试 C.了解全校学生的课外读书时间 D.了解一批灯泡的使用寿命 3. [2014· 盐城] 数据-1, 0, 1, 2, 3 的平均数是 ( C ) A.-1 B.0 C.1 D.5
图 29-1

基础强化沪教版(上海)九年级数学第二学期第二十八章统计初步综合测试试卷(精选含详解)

基础强化沪教版(上海)九年级数学第二学期第二十八章统计初步综合测试试卷(精选含详解)

九年级数学第二学期第二十八章统计初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题正确的是( )A .数轴上的每一个点都表示一个有理数B .甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则乙的成绩更稳定C .三角形的一个外角大于任意一个内角D .在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称2、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是( )A .甲B .乙C .丙D .丁3、水果店内的5个苹果,其质量(单位:g )分别是:200,300,200,240,260关于这组数据,下列说法正确的是( )A .平均数是240B .中位数是200C .众数是300D .以上三个选项均不正确4、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.255、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是( )A.2017年我县九年级学生是总体B.每一名九年级学生是个体C.200名九年级学生是总体的一个样本D.样本容量是2006、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是()A.九年级(1)班共有学生40名B.锻炼时间为8小时的学生有10名C.平均数是8.5小时D.众数是8小时7、下列调查中,最适合采用抽样调查的是()A.调查一批防疫口罩的质量B.调查某校九年级学生的视力C.对乘坐某班次飞机的乘客进行安检D.国务院于2020年11月1日开展的第七次全国人口调查8、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A.200名学生的视力是总体的一个样本B.200名学生是总体C .200名学生是总体的一个个体D .样本容量是1200名9、下列说法中,正确的是( )A .若a b =,0c ≠,则a c b c +=-B .90′=1.5°C .过六边形的每一个顶点有4条对角线D .疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查10、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A .甲B .乙C .丙D .丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg 种子中发芽的大约有_______kg .2、某校七年级二班在订购本班的班服前,按身高型号进行登记,对女生的记录中,身高150cm 以下记为S 号,150~160cm 记为M 号,160~170cm 记为L 号.170cm 以上记为XL 号.若绘制成统计图描述这些数据,合适的统计图是_____(填“条形”、“折线”、“扇形”中的一个)统计图.3、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.4、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____5、为庆祝中国共产党建党一百周年,某单位党支部开展“学史明理,学史增信,学史崇德,学史力行”读书活动,学习小组抽取了七名党员5天的学史的时间(单位:h)分别为:4,3,3,5,6,5,5,这组数据的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查,在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,得到两种西瓜得分的统计图:对数据进行分析,得到如下统计量:请根据以上信息分析哪种西瓜的品质更好,并说明理由.2、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a=,b=,c=,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、本学期某校举行了有关垃圾分类知识测试活动,并从该校七年级和八年级中各随机抽取40名学生的测试成绩,整理如下:小明将样本中的成绩进行了数据处理,如表为数据处理的一部分,根据图表,解答问题:(1)填空:表中的a = ,b = ;(2)你认为 年级的成绩更加稳定,理由是 ;(3)若规定6分及6分以上为合格,该校八年级共1200名学生参加了此次测试活动,估计参如此次测试活动成绩合格的学生人数是多少?5、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.(1)=a ,B 类所在扇形的圆心角的度数是 ,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在80100x ≤<范围内的学生人数;(3)九年级(1)班数学李老师准备从D 类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.-参考答案-一、单选题1、D【分析】根据数轴上的点与实数一一对应即可判断A ;根据平均数相同的情形下,方差越小,成绩越稳定即可判断B ;根据三角形的外角与内角的关系即可判断C ;根据关于x 轴对称的点的坐标特征即可判断D【详解】A. 数轴上的每一个点都表示一个实数,故该选项不正确,不符合题意;B. 甲、乙两人五次考试平均成绩相同,且20.9S =甲,2 1.2S =乙,则甲的成绩更稳定,故该选项不正确,不符合题意;C. 三角形的一个外角不一定大于任意一个内角,故该选项不正确,不符合题意;D. 在平面直角坐标系中,点(4,2)-与点(4,2)关于x 轴对称,故该选项正确,符合题意;故选D【点睛】本题考查了实数与数轴,方差的意义,三角形的外角的性质,关于x轴对称的点的坐标特征,掌握以上知识是解题的关键.2、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.3、A【分析】根据平均数、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】A、平均数是:15×(200+300+200+240+260)=240(g),故本选项正确,符合题意;B、把这些数从小到大排列为:200,200,240,260,300,中位数是240g,故本选项错误,不符合题意;C、众数是200g,故本选项错误,不符合题意;D、以上三个选项A选项正确,故本选项错误,不符合题意;故选:A.【点睛】此题考查了平均数、中位数和众数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).5、D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.【详解】解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;每一名九年级学生的数学成绩是个体,故B不符合题意;200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;样本容量是200,故D符合题意;故选D【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、D【分析】根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.【详解】解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;C. 平均数是710820915105=8.350⨯+⨯+⨯+⨯小时,故原选项判断错误,不合题意;D. 众数是8小时,故原选项判断正确,符合题意.故选:D【点睛】本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.7、A【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D .国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意; 故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、A【分析】根据总体,样本,个体,样本容量的定义,即可得出结论.【详解】解:A .200名学生的视力是总体的一个样本,故本选项正确;B .学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;C .学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;D .样本容量是1200,故本选项错误.故选:A .【点睛】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.9、B【分析】由等式的基本性质可判断A ,由160,'︒= 可判断B ,由过n 边形的一个顶点可作()3n -条对角线可判断C ,由全面调查与抽样调查的含义可判断D ,从而可得答案.【详解】解:若a b =,则,a c b c +=+故A 不符合题意; 90′=90 1.5,60⎛⎫︒=︒ ⎪⎝⎭故B 符合题意; 过六边形的每一个顶点有3条对角线,故C 不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D 不符合题意;故选:B .【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.10、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题1、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可.【详解】解:∵大量重复试验发芽率逐渐稳定在0.85左右,∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850.【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.2、条形【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:为了清晰显示四种型号衣服的具体数量,应选用条形统计图,故答案为:条形.【点睛】此题主要考查统计图的选择,应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.3、0.753 4【分析】根据频率=频数÷总数进行求解即可.解:∵小亮在10分钟之内罚球20次,共罚进15次,∴小亮点球罚进的频率是150.75 20,故答案为:0.75.【点睛】本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.4、a>1.5b【分析】先表示甲乙的加权平均分,再根据甲被录取列不等式即可.【详解】甲的加权平均分为:90a+80b乙的加权平均分为:84a+89b∵甲被录取∴甲的分数>乙的分数∴90a+80b>84a+89b,解得a>1.5b,故答案为:a>1.5b.【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.5、5h【分析】根据众数的意义(出现次数最多的数据是众数)可得答案.解:这组数据中出现次数最多的是5h,共出现3次,所以众数是5h,故答案为:5h.【点睛】本题考查众数,理解众数的意义是解决问题的关键.三、解答题1、乙种西瓜品质更好,见解析.【分析】由平均数、中位数、众数、方差等数据的影响综合评价即可.【详解】解:乙种西瓜品质更好.理由如下:比较甲、乙两种西瓜品质的统计量可知甲与乙的平均数相同,乙的中位数较高、众数较低、方差较小.以上分析说明,乙种西瓜的品质更高,且稳定性更好.所以,乙种西瓜的品质更好.【点睛】本题考查了由平均数、中位数、众数、方差等数据做决策的问题.不受个别偏大或数偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势;众数的大小只与这组数据中部分数据有关,当一组数据中有个别数据多次重复出现,以至于其他数据的作用显得相对较小时,众数可以在某种意义上代表这组数据的整体情况;在分析数据时,往往要求数据的平均数,当数据的平均水平一致时,为了更好地根据统计结果进行合理的判断和预测,我们往往会根据方差来判断数据的稳定性,从而得到正确的决策.2、(1)40;(2)补图见解析;(3)117°;(4)40人.(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:512.5%40÷=(人),故答案为:40;(2)C等级的人数有:402513812----=(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:1336011740︒⨯=︒,故答案为:117°;(4)估计该校A等级的学生人数有:28004040⨯=(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,∴a=2182302+=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,∴c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×211400=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1)8,7.5(2)八,八年级成绩的方差小于七年级(3)1080【分析】(1)根据众数和中位数的定义求解即可;(2)根据方差的意义求解即可;(3)用总人数乘以样本中6分及6分以上人数所占比例即可.(1)解:由表可知,八年级成绩的平均数a =4586871084961040⨯+⨯+⨯+⨯+⨯+⨯=7.5, 所以a =7.5;八年级成绩最中间的2个数分别为7、8,所以其中位数b =782+=7.5, 故答案为:8、7.5;(2)解:八年级的成绩更加稳定,理由是八年级成绩的方差小于七年级,故答案为:八,八年级成绩的方差小于七年级;(3)解:估计参如此次测试活动成绩合格的学生人数是1200×40440-=1080(人). 【点睛】本题考查条形统计图、中位数、众数、方差、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)2,120︒,图见解析;(2)450人;(3)815. 【分析】(1)先根据C 类的信息可求出调查的总人数,由此即可得出a 的值,再求出B 类所占百分比,然后乘以360︒可得圆心角的度数,最后根据,A D 类的人数补全频数分布直方图即可;(2)利用720乘以成绩在80100x ≤<范围内的学生所占百分比即可得;(3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.【详解】解:(1)调查的总人数为2450%48÷=(人),则48162462a =---=,B 类所在扇形的圆心角的度数是16360100%12048︒⨯⨯=︒, 故答案为:2,120︒,补全频数分布直方图如图所示:(2)246720100%45048+⨯⨯=(人), 答:估计该校成绩在80100x ≤<范围内的学生人数为450人;(3)把D 类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种, 则所求的概率为1683015P ==,答:恰好只选中其中1名留守学生进行经验交流的概率为815.【点睛】本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.。

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

九年级数学第二学期第二十八章统计初步专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,62、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.83、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.924、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.85、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式6、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的()A.平均数B.加权平均数C.众数D.中位数7、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量8、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.259、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环10、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?3、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)(2)估算袋中白球的个数.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:甲校成绩统计表(1)甲校参赛人数是______人,x ______;(2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?-参考答案-一、单选题1、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.3、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.7、D【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.8、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).9、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,⨯=条,成活的鱼的总数为:25000.82000则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.三、解答题1、(1)40;(2)见解析;(3)360(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060⨯(人). ∴估计该校表示“很喜欢”的A 类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25.(2)设袋中白球为x 个,4 0.254x=+, x =12,经检验x =12是方程的解,答:估计袋中有2个白球.【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.4、(1)见解析;(2)B ;(3)1620人.【分析】(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A 、B 组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:总人数为:90520360︒÷=︒人,∵两校参赛人数相等,∴甲校参赛人数为20人,∴2011081x=---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:787.52+=分;两校得分的平均分数一样,中位数分数乙校大于甲校,∴两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.。

最新九年级数学锁定核心考点针对性冲刺 统计与概率 (6)

最新九年级数学锁定核心考点针对性冲刺 统计与概率 (6)

最新九年级数学锁定核心考点 针对性冲刺统计与概率1. 统计初步—数据的描述与分析例1:下列调查方式,合适的是 ( ) (A)要了解一批灯泡的使用寿命,采用普查方式.(B)要了解中央电视台“焦点访谈”栏目的收视率,采用普查方式.(C)要保证“神舟六号”载人飞船成功发射,对重要零部件的检查采用抽查方式. (D)要了解某渔场中青鱼的平均重量,采用抽查方式.例2:(1) 为了了解武汉市九年级学生中考数学成绩,从所有考生的试卷中抽取1000份试卷进行统计分析,在这个问题中,总体是__________________;个体是_________________;样本是______________;样本容量是____________.(2)为了解我市参加中考的68 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是 ( ) (A) 68 000名学生是总体(B) 1000名学生的视力是总体的一个样本(C) 每名学生是总体的一个个体 (D) 以上调查是普查例3:(1)某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:7,6,10,7,9,则这五次射击的众数是________环,中位数_______环,平均成绩是________环,极差是________环,方差是_________环2.(2)设数据4,5,2,3,5,5的平均数为a ,中位数为b ,众数为c ,则________________=++c b a (3)已知一组数据为3,12,4,x ,9,5,6,7,8的平均数为7,则______________=x例4:甲、乙两人各射靶5次,已知甲所中环数是8、7、9、7、9,乙所中的环数的平均数8=x ,方差4.02=乙S ,那么,对甲、乙的射击成绩的正确判断是 ( ) (A)甲的平均射击成绩比乙好 (B)乙的平均射击成绩比甲好 (C)甲的射击成绩比乙稳定 (D)乙的射击成绩比甲稳定2. 统计图例1:右面是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是 ( ) (A)甲户比乙户大 (B)乙户比甲户大 (C)甲、乙两户一样大 (D)无法确定哪一户大例2:我国从2011年1月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如右两个统计图:根据以上信息,下列结论:①同学们一共随机调查了300人;②支持药物戒烟方式的有45人;③扇形图中“强制戒烟”部分的扇形的圆心角的度数是135°;④如果该社区有1000人,估计该社区大约有350人支持“警示戒烟”这种方式.其中正确的是________________________.例3:在“不闯红灯,珍惜生命”活动中,甲乙两位同学某天来到城区中心的十字路口,观察、统计上午7~12点中闯红灯的人次.制作了如右的两个数据统计图.(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数. (2)估计一个月(按30天计算)上午7~12点在该十字路口闯红灯 的未成年人约有______________人次.(3)请根据统计图提供的信息向交通管理部门提出一条合理建议.例4:为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄 为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如右:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是____________.3. 概率问题及其简单应用例1:下列事件中,必然事件的是 ( ) (A) 中秋节的晚上总能看到圆圆的月亮 (B) 打开电视机,正在播广告 (C)一口袋中装有2个红球和1个白球,从中摸出2个球,其中有红球 (D)购买中奖率为%10的彩票10张,前9张均为中奖,最后一张必中奖例2:有4张形状、大小和质地都相同的卡片,正面分别写有字母D C B A 、、、和一个算式,背面完全一致.将这4张卡片背面向上洗匀,从中随机抽取1张,不放回,接着再随机抽取1张. (1)请用画树形图或列表法表示出所有的可能 结果;(卡片可用D C B A 、、、表示)(2)将“第一张卡片上的算式是正确,同时第二张卡片上的算式是错误”记为事件A ,求事件A 的概率.例3:有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况; (2)求红球恰好被放入②号盒子的概率.例4:在一个不透明的口袋里装有黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸一个球记下颜色,再把它放回袋中,不断重复. 下表是活动进行中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近___________;假如你去摸一次,你摸到白球的概率是__________,摸到黑球的概率是____________(2)试估算口袋中黑、白两种颜色的球各有多少只?(3)解决了上面的问题后,小明同学猛然顿悟,过去一个悬而未决的问题有办法了,这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及物品)?请你摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率n m /0.580.640.580.590.600.601523--=-A 32333+=B523a a a -=C 660a a ÷=D应用统计与概率的思想和方法解决这个问题。

统计与概率初三练习题

统计与概率初三练习题

统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。

通过做题,我们可以巩固所学知识,提高解决问题的能力。

本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。

一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。

解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。

平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。

中考数学统计初步考点复习

中考数学统计初步考点复习

中考数学统计初步考点复习一、填空题1、一小组共6名先生,在一次引体向上的测试中,他们区分做了8、10、8、7、6、9个,这6名先生平均每人做了___________(个)。

2、某商场4月份随机抽查了6天的营业额,结果区分如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,试预算该商场4月份的总营业额,大约是_____________万元。

3、某校初三(1)班为希望工程捐款,该班共有50名同窗,其中20名同窗每人捐款15元,其他的30名同窗每人捐款10元,那么该班同窗平均每人捐款_________元。

4.、某校为了了解初一年级300名先生每天完成作业所用时间的状况,从中对20名先生每天完成作业作用时间停止了抽查,这个效果中的样本容量是___________。

5、假定一组数据6,7,5,6,x,1的平均数是5,那么这组数据的众数是。

6、甲、乙两战士在射击训练中,打靶的次数相反,且中环的平均数 = ,假设甲的射击效果比拟动摇,那么方差的大小关系是。

7、某餐厅共有7名员工,一切员工的工资状况如下表所示:解答以下效果(直接填在横线上):(1)餐厅一切员工的平均工资是__________元。

(2)一切员工工资的中位数是__________元。

(3)用平均数还是用中位数描画该餐厅员工工资的普通水平比拟恰当?答:__________。

(4)去掉经理的工资后,其他员工的平均工资是元,能否也能反响该餐厅员工工资的普通水平?答:__________。

8、为了了解本市初中一、二、三年级男生的身高状况,有关部门预备对180名初中男生的身高作调查现有三种调查方案:(A)测量少年体校中180名女子篮球、排球队员的身高;(B)查阅有关外地180名男生身高的统计资料;(C)在本市的郊区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,用抽签的方法区分选出10名男生,然后测量他们的身高。

问:为了到达估量本市初中这三个年级男主身高散布的目的,你以为采用上述哪一种调查方案比拟合理,为什么?(答案区分填在空格内)答:选________;理由:__________________。

人教版九年级数学知识点及例题总结

人教版九年级数学知识点及例题总结

人教版九年级数学知识点及例题总结第一章 实数 一、重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法 ②性质:A.a≠1/a (a≠±1);B.1/a 中,a≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)实数无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数正无理数负无理数实数负数整数 分数无理数有理数正数整数分数无理数有理数│a │ 2aa (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学统计初步试题
一、填空题(20×3分 =60分)
1、为了解一批炸弹的爆炸威力,应采取的调查方式是 .
2、数据
3、1、6、7、8的平均数为 .
3、有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是 .
4、数据32、18、21、69、10、
5、22的中位数为 . 5、数据7
6、83、85、90、74、68的中位数为 . 6、数据2、3、4、5、6的方差为 .
7、为了了解400名初三学生的体重情况,从中抽取了50名学生进行测量,在这项体重的调查中,样本是 .
8、有一组数据500个正好分在6个组内,前5组的频率分别为0.1,0.1,0.15,0.2,0.25,则第六组的频率为 .
9、甲班和乙班数学期末考试的平均分相同,而甲班的标准差是4,乙班的标准差是11,则 班同学的数学成绩的差异较小.
10、一个样本中共有50个数据落在5个组内,前4组数据个数分别为3、7、17、18,则第5组的频率是 .
11、数0、3、5、6、x 的平均数为4,则它的方差是 .
12、一组数据x 1 ,x 2 ,…,x n 的平均数是3,方差是7,则数据3 x 1 ,3x 2 ,…,3x n 的平均数是 ,方差是 .
13、某农民种了44棵桃数,收获时,他先随意采摘其中的5棵桃数,称得桃子的重量(单位:千克)依次为70、70、68、74、78,根据样本平均数,估计这年桃子的产量为 千克.
14、若样本甲的标准差为1.2,样本乙的方差为1.21 ,则样本 的波动大.
15、若一组数据的标准差S=
22221)4()4()4(10
1
-++-+-n x x x ,则这 组数据共有 个,它们的平均数是 .
16、有一组数据,数据个数是90,数据中最大值为81,最小值为50 ,你
认为分 组较好,此时组距为 .
17、一组数据24、x 、27、25的平均数为26,则另一组数据32、27、x 、30、33的中位数为 .
18、若一组数据x 1 ,x 2 ,x 3的平均数是3,则数据x 1-3,x 2+2,x 3+4的平均数是 .
19、一组数据的方差是方程3X-4=0的根,则这组数据的标准差是 .
20、在50名学生的一次数学测试成绩的频率分布表中,出现在[0,60)中的频率是0.06,那么其中及格的人数有 人. 二、选择题(6×4分=24分)
21、今年某区有400名初三学生参加市数学竞赛,为了了解这400名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是
( ) A .400名考生是总体 B.每个考生是个体 C. 100名考生的数学成绩是一个样本 D. 100名考生是一个样本 22、样本标准差是样本方差的 ( ) A.平方根 B.正的平方根 C.负的平方根 D. 平方 23、在频率分布直方图中,各小长方形面积等于 ( ) A.频数 B.频率 C.组数 D. 组距
24、下列各量中,可以用来反映一组数据离散程度的是 ( ) A.平均数 B.中位数 C.标准差 D. 加权平均数
25、若将给定一组数据中的每一个数据加上5,得到一组新的数据,在此过程中 ( )
A.平均数不变
B. 平均数改变
C.方差改变
D. 标准差改变
26、某校准备从甲、乙、丙三位同学中选一人参加全市射击比赛,他们在选
拔比赛中,射靶十次的平均环数是—
甲x =—
乙x =—
丙x =8.4,方差分别为2
甲S =1.3,2

S =2.9,2丙S =3.6,根据以上提供的信息,你认为应该推荐参加全市比赛的同学是 ( )
A.甲
B. 乙
C.丙
D. 不能确定
三、解答题(1×8分+2×9分+4×10分=66分)
27、某班有学生50人,一次考试成绩的平均分是72.6,女生的平均分是75.0,男生的平均分是70.0,这个班男生、女生各有多少人?
28、某养殖户在池塘中放养了一定数量的鱼,为了估计鱼的数量,先网出50条鱼,并作上标记,然后放回鱼塘,过些时候,重新网出80条鱼,发现其中有4条鱼有标记,试估计该鱼塘内养的鱼约有多少条?
29、对某部影片作问卷调查,400名被调查者在“很满意”、“满意”、“不满意”三项中选择一项,调查结果绘成扇形图,如图所示.
(1)400名被调查者中,对影片不满意的有多少人?
(2)表示各部分的扇形圆心角的度数分别是多少?
30、为了解中学生的体能情况,抽取了某中学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图,如图所示。

已知图中从左至右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.
(1)求第四小组的频率.
(2)参加这次测试的人数是多少?
(3)这次测试中,学生跳绳次数的中位数落在第几小组内?
31、两台机床同时生产直径为10的零件,为了检验产品质量,检验员从两台机床的产品中各抽出4件进行测量,结果如下:
分别计算两台机床的产品的平均数和方差,并说明哪台机床生产的零件质量更符合要求.
32、青少年视力水平下降已引起全社会的广泛关注。

为了解某市5000名初中毕业生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下频率分布表和频率分布直方图:
(1)补全频率分布表和频率分布直方图
(2)若视力在4.85以上属于正常,不需矫正,试估计该市5000名初中毕业生约有多少名学生的视力需要矫正.
33、如图所示分别表示某开发区近三年的人口数和人均居住面积。

试根据图中提供的数据回答下列问题:
(1)2001年和2002年中,哪一年比上一年增加的住房面积多?多增加多少平方米?
(2)由于经济发展需要,2003年底人口总数将比2002年底增加1.5万,为了使2003年底该区人均住房面积达到12平方米,试2002年、2003年这两年该区住房面积的平均增长率应是多少?
参考答案:
1.抽样调查 ;
2.5;
3.11.6;
4.21;
5. 79.5;
6.2;
7.50名学生的体
重; 8. 0.2;9. 乙班;10. 0.1; 11. 526
;12. 9,63; 13. 3168;14.
甲; 15. 100,4;16. 5,7;17. 30;18. 4;19.2
3
2; 20. 47;21.C ;
22.B ;23.B ;24.C ;25.B ;26.C ;27.24,26;28.1000;29. 20,270°,72°18°;30.0.2,50,三;31.乙;32.3000;33.2.4,16.4%。

相关文档
最新文档