概率统计第一章随机事件与概率1-4,

合集下载

概率论与数理统计 --- 第一章{随机事件的概率} 第四节:独立性 主观概率

概率论与数理统计 --- 第一章{随机事件的概率} 第四节:独立性 主观概率


代入得 P(W) 0.782
概率论
作业
习题1-3 1,5,7,10 习题1-4 3,5,7,10
概率论
P A P B P AP B 0.2 0.9 0.8 0.1 0.26 .
3 P A B P A P B P AB
P A P B P AP B 0.8 0.9 0.8 0.9 0.98 .
概率论
例2 设有两门高射炮 , 每一门击中飞机的概率都
是 0.6 , 求下列事件的概率:
1同时发射一发炮弹而击中飞机的概率是多少 ? 2 若有一架敌机入侵领空 , 欲以 99%以上的概率
击中它 ,问至少需要多少门高射炮 ?
解 设 Ak 第 k 门高射炮发射一发炮弹而击中飞机 ,
k 1,2 , 则 Ak 之间相互独立, 且 P Ak 0.6 , 于是
解 由于 P(A)=4/52=1/13, P(B)=26/52=1/2, P(AB)=2/52=1/26.
可见, P(AB)=P(A)P(B)
故事件A、B独立.
在实际应用中, 往往根据问题的实际意义去判断两事件是否独立.
例如 甲、乙两人向同一目标射击, 记 A={甲命中}, B={乙命中}, A与B是否独立? 由于“甲命中”并不影响“乙命中”的概率, 故认为A、B独立 .
3. 定理2: 若两事件A、B独立, 则: A 与B, A与B , 证明 仅证A与 B 独立
概率的性质
A 与B 也相互独立.
概率论
A、B独立
P(A B )= P(A -A B) = P(A)- P(AB) = P(A)-P(A) P(B) =P(A)[1- P(B)] = P(A) P(B) 故 A与 B 独立

概率论与数理统计第一章1-4高职高专

概率论与数理统计第一章1-4高职高专
A、 B不可能同

A
B
时发生
A1 , A2 ,, An 两两互斥
Ai Aj , i j, i, j 1,2,, n A1 , A2 ,, An , 两两互斥
Ai Aj , i j, i, j 1,2,
7. 事件的对立
AB , A B
习 题(P 50-51) 1.
ABC 2% 23% 20% 3% 7% 5% ABC
B
C
ABC 30%
A
2. (1) ABC=A
BC
B A
C
(2)
A
B C
3. 试把 相容的事件的和。
表示成n个两两互不
A
B
AB
ABC
C
6. 解:
(1) (2) (3) (4) (5)
第三节
频率定义
频率与概率
频率——对于随机事件A,若在N次试验中出现
—— A 与B 互相对立 每次试验 A、 B中
B A
A

有且只有一个发生
称B 为A的对立事件(or逆事件), 记为 B A 注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
8. 完备事件组
若 A1 , A2 ,, An两两互斥,且 Ai
n
则称 A1 , A2 ,, An 为完备事件组 或称 A1 , A2 ,, An 为 的一个分割
(1) 将3名优秀生分配到三个班级,共有3!种分 法,其余12名新生平均分配到三个班级,共有 种分法,因此所求概率为
交换 ( B C ) ( AB)C A( BC ) 分配律 ( A B) C ( A C ) ( B C ) A ( BC ) ( A B)( A C )

概率论与数理统计总复习参考

概率论与数理统计总复习参考
运算的优先次序: 逆,积,和,差
定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.

概率论与数理统计【第一到四章】公式

概率论与数理统计【第一到四章】公式

概率论公式!一、随机事件与概率二、随机变量及其分布三、多维随机变量及其分布联合分布函数:对任意的n个实数,,,n个事件同时发生的概率,,,,。

联合分布函数,性质:单调性:对x,y单调非减。

有界性:,,,,,右连续性:对每个变量右连续。

非负性:对任意,,有,,,,,。

二维离散随机变量:只取有限个或可列个数对。

联合分布列:,,i,j=1,2…联合分布列性质:非负性、正则性。

联合密度函数:,,使,,,,。

联合密度函数性质:非负性、正则性、,X的边际分布:,,。

Y的边际分布:,,。

二维指数分布:,,,,其他,是参数其边际分布是一维指数分布。

边际分布列:二维离散随机变量对单个变量求和:,,,边际密度函数:,,,=,为X的边际密度函数。

,,,=,为Y的边际密度函数。

相互独立:多维随机变量的分布函数为,,,边际分布为,对任意n个实数,,:,,称,,相互独立。

可分离:,=,,,,。

①相互独立②非零区域可分解为两个一维区间乘积。

多维离散随机变量函数:,,为n维离散随机变量,则,,为一维离散随机变量。

可加性:同一类分布的独立随机变量和的分布仍属于此类分布。

泊松分布的可加性:,,则.二项分布的可加性:,,,,则,。

连续场合的卷积公式:X和Y独立,密度函数分别为和,则Z=X+Y的密度函数为:正态分布的可加性:,,则。

变量变换法:即数分中求二重积分的变量变换法:的联合密度函数是,,若,,有连续偏导数,且存在唯一反函数,,,其雅可比行列式,,,,二维随机变量,,,则的联合密度函数是:,,,,增补变量法:若,,则可令或。

多维随机变量特征数:数学期望:,的数学期望为,,,在离散场合,,,在连续场合当,,得X的期望。

当,,的X的方差。

期望和方差的性质:和的期望得期望的和:积的期望得期望的积:X和Y独立,则和差的方差得方差的和差:X和Y独立,协方差(相关(中心)矩):,特别的,:正相关;:负相关。

:不相关:①X,Y取值毫无关联②存在某种非线性关系。

经典概率论与数理统计第1章随机事件与概率

经典概率论与数理统计第1章随机事件与概率
(5)A,B,C不都发生; (6)A,B,C中至少有两个发生。
上一页 下一页 返回
上一页
下一页
返回
第二节
1、频率
概率的定义及其确定方法
定义1: 在相同条件下,进行了n次试验.若随机事件A在
这n次试验中发生了k次,则比值
实验中发生的频率,记为 频率具有下列性质: (1)对于任一事件A,有
称为事件A在n次
n n P Ai P Ai i 1 i 1
推论:
PA 1 P A
例1.2.7 一袋中装有N-1个黑球及1只白球,每次从 袋中摸出一球,并换入一只黑球,如此延续下去,问 第k次摸球摸到黑球的概率是多大?
解:令A={第k次摸球摸到黑球}。 则 A ={第k次摸到白球}。
确定性现象
不确定性现象
相同条件下大量重复试验中呈现规律性的现象称之为 随机现象或偶然现象,这种规律性称为统计规律性。 在一定条件下,对自然与社会现象进行的观察或实验 称为试验,在概率论中,把满足以下条件的试验称为 随机试验. (1)试验在相同条件下是可重复的; (2)试验的全部可能结果不止一个,且都是事先可 以知道的; (3)每一次试验都会出现上述可能结果中的某一个 结果,至于是哪一个结果则事前无法预知。
解:(1)记Ai={第i封信配对},i=1,2,…
S1 P ( Ai ) 1 n i 1 S 2 P ( Ai A j ) n(n 1) 1 2! 1 i j n 于是,由加法定理,得 n n P ( A) P ( Ai ) P ( Ai ) P ( Ai A j )
P( Ai Aj Ak ) (1)n1 P( A1 A2 An ).
下赌注问题:17世纪未,法国的 Chevalies Demere在赌博中 感觉到,如果上抛一对骰子25次,则把赌注押到“ 至少出现一次 双六”比把赌注押到“完全不出现双六”更有利,但他本人找不 出原因,请计算该两事件的概率。 上抛一对骰子25次,

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

第1章 概率论的基本概念

第1章 概率论的基本概念

确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

海南大学《概率论与数理统计》课件-第一二三四章

海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总

n 有关。若
lim
n
npn
0

lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x

概率论与数理统计总结

概率论与数理统计总结

第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。

5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。

(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。

(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。

(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。

用交并补可以表示为。

(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。

8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。

概率论f1-4

概率论f1-4

概率论f1-4概率论的基本概念§1-4 等可能概型目录索引等可能概型(古典概型)返回主目录第一章概率论的基本概念等可能概型1. 等可能概型(古典概型)考虑最简单的一类随机试验,它们的共同特点是:样本空间的元素只有有限个;(有限性) 每个基本事件发生的可能性相同。

(等可能性) 我们把这类试验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。

返回主目录第一章概率论的基本概念等可能概型基本事件的概率:设S ={e1, e2, 。

en }, 由古典概型的等可能性,得P ({e1 }) P ({e2 }) P ({en })又由于基本事件两两互不相容,所以1 P ( S ) P ({e1 }) P ({e2 }) ( P{en }),1 P ({ei }) , n i 1,2, , n.返回主目录第一章概率论的基本概念随机事件的概率:若事件A 包含k 个基本事件,即等可能概型A {en1 , en2 , , enk }则有:k P ( A) P ({eni }) n i 1kA包含的基本事件数即:P ( A) . S中基本事件总数例1 将一枚硬币抛掷三次。

设:事件A1=“恰有一次出现正面”返回主目录第一章概率论的基本概念事件A2 =“至少有一次出现正面”, 求P (A1 ), P (A2 )。

解:根据上一节的记号,E2 的样本空间S2={HHH, HHT, HTH, THH, HTT, THT TTH,TTT},等可能概型n = 8,即S2 中包含有限个元素,且由对称性知每个基本事件发生的可能性相同,属于古典概型。

A1为“恰有一次出现正面”,A1={HTT, THT, TTH},返回主目录第一章概率论的基本概念等可能概型k = 3,k 3 P ( A 1) = = , n 8事件A2=“至少有一次出现正面”,A2={HHH, HHT, HTH, THH, HTT, THT, TTH }k2 = 7 ,k2 7 P ( A 2) = = , n 81 另解: 由于A2 = {T T T}, k A 2 = 1 ,P ( A 2 ) = = , n 8A2k1 7 P ( A2 ) = 1 P ( A2 ) = 1 = . 8 8返回主目录第一章概率论的基本概念等可能概型例2 一口袋装有6 只球,其中4 只白球、2 只红球。

《概率论与数理统计》1-4全概公式

《概率论与数理统计》1-4全概公式

365 400 97 146097
146097 20871 7
20871 52 400 71 P B 400 400
方法二 利用全概公式
A 表示平年,
则 A, A 构成一划分
B 表示有53个星期天
P A 97 400

1 2 P B | A , P B | A 7 7
125 198
注 : 一定要写清事件, 公式 , 不得只写算式.
p 2500 2000 1500 5% 3% 1% 3.3% X 6000 6000 6000
全概率公式和贝叶斯公式是概率论中的两个重要公式,
有着广泛的应用.若把事件Ai 理解为‘原因’, 而把 B理 解为‘结果’ P, 则 B| A 是原因 Ai
为 0.01, 各车间的产品数量分别为2500, 2000, 1500件 . 出厂时 , 三车间的产品完全混合, 现从中任取一产品, 求该 产品是次品的概率. 若已知抽到的产品是次品, 求该产品 是一车间的概率.
解 : 设 Ai 为取到第 i个车间的产品, B为取到次品 由全概率公式得:
P( B) P( Ai ) P( B Ai )
i 1
3
P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 )
2500 2000 1500 5% 3% 1% 3.3% 6000 6000 6000
由贝叶斯公式得:
P A1 B
P A1 P B A1 P B
P B P BA1 P BA2 P BA3 P A1 P B | A1 P A2 P B | A2 P A3 P B | A3

同济大学《概率论与数理统计》PPT课件

同济大学《概率论与数理统计》PPT课件
随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)

概率论与数理统计 第一章 随机事件与概率

概率论与数理统计 第一章 随机事件与概率
S AB
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n

Ank k!

n! (n k)!k!

Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。

∴A={1,2},B={1,2,3}。

所以A发生则必然导致B 发生。

显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。

概率统计第1章

概率统计第1章
N 个产品,其中M个不合格品、NM个合格品. 从中有返回地任取n 个. 则此 n 个中有 m 个不合格品的概率为:

条件: m n ,
7/28/2017
即 m = 0, 1, 2, ……, n.
常见模型(3) ——彩票问题幸运35选7:P21
购买:从01,……,35 中选7个号码. 开奖:7个基本号码,1个特殊号码.
并: A B 交: A B = AB 差: A B 对立: A A 与 B 至少有一发生 A 与 B 同时发生 A发生但 B不发生 A 不发生
ቤተ መጻሕፍቲ ባይዱ
注意:对立→互不相容,反之不然 应用举例:P7
事件运算的图示
AB
AB
AB
事件的运算性质
德莫根公式
A B A B;
1.2.1 概率的公理化定义
定义1.2.1:设Ω为一个样本空间,F为Ω的某些 子集组成的一个事件域,如果对任意一个事件A F,定义在F上的一个实质函数P(A)满足
非负性公理:若 AF,则P(A)0;
正则性公理: P(Ω)=1;
可列可加性公理:若A1, A2, ……, An ……
例1.1.1
口袋中有a 个白球、b 个黑球,从中一个一个不返 回地取球。A = “取到最后一个是白球”, B = “取到最后一段是白球”。问 A 与 B 的关系? 解:1) 显然,B 发生必然导致A发生,所以 BA;.
2) 又因为A发生必然导致B发生,所以 AB, 由此得 A = B.
1.1.6 事件的运算
P(A)=0.4,P(B)=0.3,P(AB)=0.6, 求 P(AB).
解:因为 P(AB) = P(A)P(AB) ,所以先求 P(AB) 由加法公式得 P(AB) = P(A)+P(B)P(AB) = 0.4+0.30.6=0.1 所以 P(AB) = P(A)P(AB) = 0.3

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计随机事件与概率随机事件

概率论与数理统计随机事件与概率随机事件

概率论与数理统计第1章随机事件与概率第1讲随机事件第一讲随机事件随机现象随机现象的统计规律性随机试验如何研究随机现象的规律性?概率统计的研究对象概率统计的研究内容全概率统计的研究方法本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机现象的规律性是通过大量试验呈现出来的,为了研究这种规律性,我们需要对随机现象进行调查、观察或试验.这类工作我们统称为“随机试验”,简称为“试验”,用E表示.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定.随机试验具有下列三个特点:试验可以在相同的条件下重复进行;试验的所有结果明确可知,并且不止一个;每次试验只能出现一个结果,事先不能确定. 例1给微信好友发消息,观察对方是否回复;检验10件产品,记录其中的次品数;调查某收银台一天内使用移动支付的次数;研究某品牌电脑的使用寿命.随机试验E 所有可能的结果组成的集合,记为S 或Ω.E 1给微信好友发消息,观察对方是否回复.E 2检验10件产品,记录其中的次品数.1=S 2=S 样本空间 例2{0,1,2,,10}E 4研究某品牌电脑的使用寿命.E 3调查某收银台一天内使用移动支付的次数.3=S 4=S 注研究随机现象时, 第一步就是建立样本空间.{0,1,2,3,}{|0}≥t t本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算随机事件样本空间的子集, 记为A ,B ,…基本事件仅由一个元素(样本点)组成的子集,每次试验必定生.发生且只可能发生一个的结果.复合事件由若干个基本事件组成的随机事件.每次试验必定不发生的事件,记为每次试验必定发生的事件,即样本空间S . 必然事件不可能事件∅=A =B =C =D 抛骰子例3.AS文氏图(Venn diagram)在一般情况下,事件的关系是怎样的呢?事件是样本空间的子集,因此,事件的关系和运算与01随机事件集合的关系和运算是完全相似的. 要学会利用概率论的语言来解释这些关系及其运算.这里需要强调的是,本讲内容01 随机试验与样本空间02 随机事件03 随机事件的关系与运算A=BSAB它表示事件A 发生,则事件B 一定发生.它表示:事件A 与事件B 的样本点完全相同.().⊂⊃A B B A 包含关系如果事件A 的样本点都在事件B 中,则称事件A 包含于事件B .抛一枚骰子中的随机试验中=A例4相等关系=B{2},A B⋃ 事件的和(并)考察某同学期末考试的成绩情况.=A 例5事件A 与事件B 的样本点合在一起构成的事件.它表示:“事件A 与事件B 至少有一个发生”.A B ⋃=BA ABS=B推广推广它表示英语、高数至少有一门及格.1=ni i A 至少有一个发生.表示12,,,n A A A 1∞=i i A 同时发生.表示12,,A A它表示英语、高数两门课都及格.A B AB⋂或 事件的积(交)表示事件A 与事件B 共有的样本点构成的事件.考察某同学期末考试的成绩情况.A = 例5它表示:“事件A 与事件B 同时发生”.AB =B=推广推广1=ni i A 12,,n A A A 表示同时发生.1∞=i i A 12,,A A 表示同时发生.A B- 事件的差由属于A 但不属于B 的样本点构成的事件.A =考察电视机的使用寿命t (:h) 例4它表示:“事件A 发生而事件B 不发生”.B =A B -=SBA -A B{t |t 3000}.>{t |t 10000}≥,{t |3000t 10000}<<,互不相容(互斥)若事件A ,B 不能同时发生.即考察电视机的使用寿命t (:h)A = 例5B =ABS则事件A 与B 互不相容. 对立事件(逆事件)"A∩B=Φ".则称事件A 与B 互不相容.对于事件A ,由所有不包含在A 中的样SAB A=本点所组成的事件称为A 的对立件,{t |t 3000}>,{t |t 10000}≥,记对应事件运算集合运算()=A B C ()=A B C 03随机事件的关系和运算运算规律BA ,=AB =A B .BA ()ABC ,()=A B C ().A B C ()().A CBC ()=A B C ()().A B A C (1)交换律:(2)结合律:(3)分配律:逆交和差=A B 1==ni i A 03随机事件的关系和运算运算顺序括号优先AB ,.A B =A B 1=ni i A , 1.=ni i A 1==ni i A(4)对偶律:(D.Morgan 律)CAB ABCABC A B C利用事件的关系和运算可表达复杂事件01随机事件的关系与运算例6设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列(1)A 发生, B 与C 不发生.(2)A 与B 发生, C 不发生.(3)A 、B 、C 中至少有一个发生.(4)A 、B 、C 都发生.事件ABC =ABACBCC B A CB AC B A C B A C B A ——A ,B ,C 不都发生.=ABC ⋃⋃A B C03随机事件的关系和运算设A 、B 、C 表示三个事件,利用A 、B 、C 表示下列事件(5)A 、B 、C 都不发生.(6)A 、B 、C 中不多于一个发生.(7)A 、B 、C 中不多于两个个发生(8)A 、B 、C 中不至少有两个发生.D 如右图所示的电路中,设事件A 、B 、C 分别表示开关a 、b 、c 闭合,用A 、B 、C 表示事件“指示灯亮”及事件“指示灯不亮”. 例701排列及其逆序数解=D设abc=D ().A B C =D ,,则D 发生当且仅当A 及B ∪C 都发生A 发生当且仅当发生或 BC 发生=ABC =ABCABCABCABC A B C ABCABCABC设A ,B ,C 分别表示第1,2,3个产品为次品, 例8A B C AB BC CA用A ,B ,C 的运算可表示下列各事件(1)至少有一个次品(2)没有次品(3)恰有一个次品(4)恰有两个个次品()()()ABCABCABC ABCABCABC ABC ABC=(5)至多有两个次品(考虑其对立事件)ABC =第1讲随机事件这一讲我们学习了随机事件以及事件间的关系与运算,利用这些关系与运算,我们可以用简单事件去表示复杂事件,从而利用简单事件的概率得到复杂事件的概率.下一讲我们介绍一类简单概率模型——古典概型.学海无涯,祝你成功!概率论与数理统计。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 随机试验
• 概率论是一门研究随机现象及其统计规律 性的学科
• 随机现象——在个别试验中呈现不确定的 结果,而在大量重复试验中结果呈现某种 规律性的现象 这种规律性称为统计规律性
例如 • 掷一颗骰子,出现点数; • 抛一枚均匀硬币多次,出现正面向上的次
数; • 男婴女婴的出生率; • 在一个给定时间段内观察某闹市区的一个

A-B
BA
• (6)互不相容事件:如果A∩B= ,则 称事 件A与事件B互不相容(互斥).
例3 抛二次均匀硬币, Ω={正正,正反,反正, 反反} 。 A={第一次出现正面} ={正正,正反}, B={第二次出现正面}={正正,反正}。
• A与B的和事件∶第一次或第二次出现正面,表 示为
A∪B={正正,正反,反正} 。 • A与B的积事件∶第一次且第二次都出现正面, 表示为
例1
(1)抛一枚均匀硬币三次,观察正面向上 的次数;
(2)观察某交通道口在单位时间内的汽车 流量;
(3)从某厂生产的相同型号的灯泡中抽取 一个,测试它的寿命;
(4)向一个直径为50cm的靶子射击,观 察弹着点的位置.
二、 样本空间
将随机试验的结果与集合对应起来: 一个随机试验,每一个可能出现的结果 称为样本点,记为ω; 全体样本点组成的集合称为样本空间, 记Ω,也即样本空间是试验的所有可能结果 组成的集合,集合中的元素就是样本点, 即
我们有 1,2,3,4,5,6
Ai={i} (i=1,2, …,6)为基本 事件;
C为必然事件; D为不可能事件; B={1,3,5}为复合事件。
• Ω与 有着紧密的联系,如果每次试验中 某一结果必然发生,那么其反面就一定不 发生;
• 随机事件都是相对于一定的试验条件而 言,条件变了,事件的性质也会变。
例2(续) 比较“掷一粒骰子”、“掷 两粒骰子”和“掷十粒骰子”,事件 A={点数之和小于7}.
A为必然事件 A为复合事件,含 15个样本点 A为不可能事件
四、事件之间的关系与运算
• (1)事件的包含:若事件A发生必然导致
事件B发生,则称事件B包含事件A,
A记 B
No
Image
BA
• (2)事件的相等:若事件A包含事件B,事 件B也包含事件A,则称事件A与事件B相等。 记A=B.பைடு நூலகம்
AB
• 可推广至有限交或可列交 A∩B
•A1, A2, , An同时发生,记
n
A 1 A 2
A n A i A 1A 2 A n
i 1
•A1,A2, ,An, 同时发生,记
A 1 A 2
A n A i A 1 A 2 A n
i 1
• (5)差事件:当且仅当事件A发生而事件B 不发生时,称事件A与B的差事件发生,记 A-B。
验中出现时,表示事件A发生了,其余类似。
• 在随机事件中,有的可以看成是由某 些事件复合而成的,而有些事件则不能分 解为其它事件的组合,这种不能分解成其 它事件组合的最简单的随机事件称为基本 事件。
• 一般地说,只含一个样本点的随机事 件称为基本事件。
• 每次试验中一定发生的事件称为必然事件.
由于Ω包含所有样本点,因此每次试验中 必定有Ω中的一个样本点出现,故Ω是必然 事件;
(3)从某厂生产的相同型号的灯泡中抽 取一个测试它的寿命,样本空间是一个区间:
Ω=[0,+∞)
(4)向一个直径为50cm的靶子射击,观 察弹着点的位置,样本空间是一个平面区 域:
Ω={(x,y)|x2+y2≤252}
三 随机事件
从两个角度来定义:概率论的角度与集合 的角度。 • 在概率论中,把随机试验中的某些现象或 某种情况的陈述称为随机事件. • 从集合的角度,称一个随机试验对应样本 空间的子集为随机事件. • 一般用大写字母A、B、C等表示随机事件 , 有
A∩B={正正} 。 • A与B的差事件∶第一次正面第二次出现反面,表
示为 A-B={正反}.
• 每次试验中一定不发生的事件称为不可能 事件.
由于 表示空集,其 中不包含任何样本点, 因此可表示不可能事件。 • 为讨论问题方便,将上述两个事件也当作 随机事件中的两个极端情况。
例2. 掷一颗骰子观察其出现的点数,
Ai={出现i点} , B={出现奇数点};
C={点数小于7};D={点数大于7}
1,2, ,n,
样本空间可以是有限集、可数集或一个区 间.
在例1中 (1).抛一枚均匀硬币三次,观察正面向上 的次数,样本空间是有限集: Ω={正正正、正正反、正反正、正反反、
反正正、反正反、反反正、反反反}
(2)观察某交通道口在一个小时内的汽 车流量,样本空间是可数集:
Ω={0,1,2,3,…}
• (3)和(并)事件:当且仅当事件A与事件B中至 少有一个发生时,称A与B的和事件发生,记A∪B。
• 可推广至有限或可列和:
AB

至少有一发生,记
A1, A2, , An

A1,A2,
n
A1 A至2 少有一An发生i1,Ai记
,An,
A 1 A 2
A n
A i
i1
• (4)积(交)事件:当且仅当事件A与事 件B同时发生时,称事件A与B的交事件发生, 记A∩B。
A
称某事件发生,当且仅当该集合所包含 的某一个样本点在试验中出现。
例如 抛一枚均匀硬币三次,观察正面向上的次数,
Ω={正正正、正正反、正反正、正反反、 No 反正正、反正反、反反正、反反反}Image
A={恰好出现一次正面} ={正反反、反正反、 反反正}
当第一次正面,第二、三次反面这一样本点在试
街口交通堵塞现象.
为了研究随机现象的统计规律性,就要对 客观事物进行观察,这个过程叫试验
概率论所讨论的试验称为随机试验,它具 有以下三个特点:
(1) 在相同的条件下试验可以重复进行; (2) 每次试验的结果具有多重可能性,试 验之前可以明确试验的所有可能结果;
(3)但是在试验前不能准确地预言该次试 验将出现哪种结果。
概率论与数理统计
第一章 随机事件与概率
§1.1 随机事件 §1.2 等可能概型 §1.3 频率与概率 §1.4 概率的公理化定义与性质 §1.5 条件概率与随机事件的独立性 §1.6 全概率公式与贝叶斯公式
§ 1.1 随机事件
一 随机试验 二 样本空间 三 随机事件 四 随机事件之间的关系和运算
相关文档
最新文档