九年级数学培优试卷

合集下载

人教版九年级数学上册 实物抛物线问题 章节培优训练试卷(含解析)

人教版九年级数学上册 实物抛物线问题  章节培优训练试卷(含解析)

人教版九年级数学章节培优训练试卷班级姓名第二十二章二次函数22.3 实际问题与二次函数第3课时实物抛物线问题一、选择题1. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为( )A.y=26675x2 B.y=-26675x2 C.y=131350x2 D.y=-131350x22. 如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线y=49x2+5的一部分,则杯口的口径AC=( )A.7B.8C.9D.103. 如图,从某建筑物10 m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1 m,离地面40m,则水流落地点B离墙的距离OB是( )3A.2 mB.3 mC.4 mD.5 m4. 如图,抛物线型的拱门的地面宽度为20米,两侧离地面15米处各有一个观光窗,两窗的水平距离为10米,则拱门的最大高度为( )A.10米B.15米C.20米D.30米5.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB上离中点M 5米的地方,桥的高度是( )A.12米B.13米C.14米D.15米6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0 m/s;④小球的高度h=30 m 时,t=1.5 s.其中正确的是( )A.①④B.①②C.②③④D.②③7.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2 m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-k)2+h.已知球与O 点的水平距离为6 m 时,达到最高2.6 m ,球网与O 点的水平距离为9 m ,高度为2.43 m ,球场的边界距O 点的水平距离为18 m ,则下列判断正确的是( )A.球不会过球网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定球能否过球网 二、填空题8.如图,高腾同学在校运会跳高比赛中采用背跃式,跳跃路线是一条抛物线,他跳跃的高度y(单位:m)与跳跃时间x(单位:s)之间具有函数关系y=-35x 2+65x+45,那么他能跳过的最大高度为 m.9.如图是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状的,抛物线两端点与水面的距离都是1米,拱桥的跨度为10米,桥洞与水面的最大距离是5米,桥洞两侧壁上各有一盏距离水面4米的景观灯.两盏景观灯之间的水平距离为米.10.如图所示,从O点正上方2 m的点A处向右上方抛一个小球P,小球运动的路线呈抛物线形状,该抛物线为L,小球与O点的水平距离为2 m时达到最大高度6 m,然后落在下方台阶上弹起,已知MN=4 m,FM=DE=BC=1.2 m,ON=CD=EF=1 m,若小球弹起后的运动路线是一条与L形状相同的抛物线,且落点Q与B,D在同一直线上,则小球弹起后的最大高度是m.三、解答题11.如图,一名垒球运动员进行投球训练,站在点O处开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.(1)求抛物线的函数关系式;(2)求点O到训练墙AB的距离(OA的长度).12.有一个抛物线形的桥洞,桥洞离水面的最大高度为4 m,跨度为12 m.现将它放在如图所示的直角坐标系中.(1)求这条抛物线的解析式;(2)一艘宽为4米,高出水面3米的货船能否从此桥洞通过?13.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为4.5 m,篮筐距地面的高度为3.05 m,当篮球行进的水平距离为3 m时,篮球距地面的高度达到最大,为3.3 m.(1)图中点B表示篮筐,其坐标为,篮球行进的最高点C的坐标为;(2)求篮球出手时距地面的高度.答案全解全析一、选择题1.答案 B 设抛物线的表达式为y=ax 2(a≠0),将B(45,-78)代入得-78=a×452,解得a=-26675,故此抛物线型钢拱的函数表达式为y=-26675x 2.故选B.2.答案 C 由题意得14=49x 2+5,解得x=±92,∴A (-92,14),C (92,14),∴AC=92-(-92)=9,故选C.3.答案 B 如图,建立平面直角坐标系,则抛物线的顶点M 的坐标为(1,403),A 点坐标为(0,10).设抛物线的解析式为y=a(x-1)2+403,将A(0,10)代入得10=a+403,解得a=-103.∴抛物线的解析式为y=-103(x-1)2+403.当y=0时,0=-103(x-1)2+403,解得x 1=-1(舍去),x 2=3.∴OB=3 m.故选B.4.答案 C 如图所示,以线段CD 所在直线为x 轴,线段CD 的垂直平分线为y 轴建立平面直角坐标系,此时,抛物线与 x 轴的交点为 C(-10,0),D(10,0),设这条抛物线的解析式为 y=a(x-10)·(x+10),∵抛物线经过点 B(5,15),∴15=a(5-10)×(5+10),解得a=-15,∴y=-15(x-10)(x+10)=-15x 2+20,∴当x=0时,y 取得最大值,此时y=20,即拱门的最大高度是20米.故选C.5. 答案 D 如图,以M 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,∵桥的最大高度是16米,跨度是40米,∴C(0,16),A(-20,0),B(20,0),设抛物线解析式为y=ax 2+16,将A(-20,0)代入得0=400a+16,解得a=-125,∴抛物线解析式为y=-125x 2+16,当x=5时,y=-125×52+16=-1+16=15,∴在线段AB 上离中点M 5米的地方,桥的高度是15米.6. 答案 D ①由图象知小球在空中达到的最大高度是40 m ,经过的路程是40×2=80(m),故①错误;②小球抛出3秒后开始下降,速度越来越快,故②正确;③小球抛出3秒时达到最高点,速度为0 m/s ,故③正确;④设函数解析式为h=a(t-3)2+40,把O(0,0)代入得0=a(0-3)2+40,解得a=-409,∴函数解析式为h=-409(t-3)2+40,把h=30代入解析式,得30=-409(t-3)2+40,解得t=4.5或t=1.5,∴小球的高度h=30 m 时,t=1.5 s 或4.5 s ,故④错误.故选D.7. 答案 C ∵球与O 点的水平距离为6 m 时,达到最高2.6 m , ∴抛物线为y=a(x-6)2+2.6.∵抛物线y=a(x-6)2+2.6过点(0,2),∴2=a(0-6)2+2.6,解得a=-160,故y 与x 的关系式为y=-160(x-6)2+2.6,当x=9时,y=-160×(9-6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,-160(x-6)2+2.6=0,解得x 1=6+2√39>18,x 2=6-2√39(舍去),故会出界. 二、填空题 8.答案 75解析 ∵y=-35x 2+65x+45=-35(x-1)2+75,∴他能跳过的最大高度为75m.9.答案 5解析 建立平面直角坐标系如图所示,则抛物线的顶点坐标为(5,5),且经过点(0,1),设抛物线的解析式为y=a(x-5)2+5(a≠0),把点(0,1)代入得1=a(0-5)2+5,解得a=-425,∴抛物线的解析式为y=-425(x-5)2+5.令y=4,可解得x 1=152,x 2=52,∴两盏景观灯之间的水平距离是152-52=5米.10.答案12136解析 建立平面直角坐标系如图所示,则A(0,2),B(4.6,2),C(3.4,2),D(3.4,3),抛物线L 的顶点为(2,6).设抛物线L 的解析式为y=a(x-2)2+6, 把点A(0,2)代入得,4a+6=2,解得a=-1. ∵抛物线L 的对称轴为直线x=2, ∴点A 关于该对称轴的对称点为(4,2), ∴小球落在BC 上.设直线BD 的解析式为y=kx+b ,∴{4.6k +b =2,3.4k +b =3,解得{k =-56,b =356,∴直线BD 的解析式为y=-56x+356,令y=0,则x=7,∴Q(7,0).∵小球弹起后的运动路线是一条与L 形状相同的抛物线, ∴设弹起后的抛物线的解析式为y=-x 2+mx+n ,把(4,2),(7,0)代入得{-16+4m +n =2,-49+7m +n =0,解得{m =313,n =-703,∴弹起后的抛物线的解析式为y=-x 2+313x-703=-(x -316)2+12136,∴小球弹起后的最大高度为12136m.三、解答题11.解析 (1)由题意得,E(20,6)和C(0,2), 设抛物线的函数关系式为y=a(x-20)2+6, ∴2=a(0-20)2+6, 解得a=-0.01,∴抛物线的函数关系式为y=-0.01(x-20)2+6. (2)当y=3时,3=-0.01(x-20)2+6, 解得x 1=20+10√3,x 2=20-10√3(舍去).答:点O 到训练墙AB 的距离(OA 的长度)为(20+10√3)米.12.解析 (1)由图象可知抛物线的顶点坐标为(6,4),过点(12,0), 设抛物线的解析式为y=a(x-6)2+4,则0=a(12-6)2+4,解得a=-19, 即这条抛物线的解析式为y=-19(x-6)2+4. (2)当x=12×(12-4)=4时,y=-19×(4-6)2+4=329>3,∴货船能通过此桥洞.13.解析 (1)(4.5,3.05);(3,3.3).(2)设抛物线的解析式为y=a(x-3)2+3.3,把B(4.5,3.05)代入得,3.05=a(4.5-3)2+3.3,解得a=-19, ∴抛物线的解析式为y=-19(x-3)2+3.3, 当x=0时,y=2.3.答:篮球出手时距地面的高度为2.3米.。

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。

浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)

浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)

浙浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列函数中,是二次函数的是()A.y=5x B.y=x2C.y=2x+1D.2y=x【答案】B 【解析】A. y=5x是反比例函数,故此选项错误;B. y=x2是二次函数,故此选项正确;C. y=2x+1是一次函数,故此选项错误;D. 2y=x是正比例函数,故此选项错误.故答案为:B.2.台球盒中有7个红球与1个黑球,从中随机摸出一个台球,则下列描述符合的是() A.一定摸到黑球B.不可能摸到黑球C.很可能摸到黑球D.不大可能摸到黑球【答案】D【解析】∵台球盒中有7个红球与1个黑球,∴从中随机摸出一个台球,摸出黑球的可能性很小,即不大可能摸到黑球.故答案为:D.3.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,−3).则△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(2,−1)D.(−2,−1)【答案】D【解析】∵B点坐标为(2,1),C点坐标为(2,-3),∴直线BC∥x轴,∴直线BC的垂直平分线为直线y=-1,∵外心是三角形三条边的垂直平分线的交点,∴△ABC外心的纵坐标为-1,设△ABC的外心为P(a,-1),∴PA2=a2+(−1−3)2=a2+16=PB2=(a−2)2+(−1−1)2=a2−4a+8,∴a2+16=a2−4a+8,解得a=−2,∴△ABC外心的坐标为(-2,-1),故答案为:D.4.在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为()A.20个B.30个C.40个D.50个【答案】A【解析】设袋子中有n个黑球,根据题意得n50=0.4,解得:n=20,故答案为:A.5.如图,⊙O中的半径为1,△ABC内接于⊙O.若∠A=50°,∠B=70°,则AB的长是()A.32B.√3C.√2D.32√3【答案】B【解析】如图,连接OA、OB,过点O作OD⊥AB,∵∠A=50°,∠B=70°,∴∠C=180°−50°−70°=60°,∴∠AOB=2∠C=120°,∵OA=OB,∴△AOB是等腰三角形,∴∠AOD=12∠AOB=60°,AD=BD=12AB,∴∠DAO=30°,∴OD=12,AD=√OA2−OD2=√12−(12)2=√32,∴AB=2AD=√3.故答案为:B.6.已知二次函数y=x2−4x−1,当1<x≤5时,对应的函数值y不可能是()A.−5B.−4C.4D.5【答案】D【解析】将抛物线解析式化为顶点式:y=x2−4x−1=(x−2)2−5,∴抛物线开口向上,且顶点坐标为(2,-5),∵1<x≤5,∴y的最小值为-5,当x=1时,y=-4;当x=5时,y=4,∴y的取值为−5≤y≤4,故y不可能的值为5.故答案为:D.7.用48米木料制作成一个如图所示的“目”形长方形大窗框(横档EF,GH也用木料).其中AB∥EF∥GH∥CD,要使窗框ABCD的面积最大,则AB的长为()A .6米B .8米C .12米D .4√3米【答案】A【解析】设AB 的长为x 米,则AD 的长为48−4x2米,由矩形面积公式得:S 矩形ABCD =AD•AB =x×48−4x2=﹣2x 2+24x =﹣2(x ﹣6)2+72,∵48﹣4x >0, ∴x <12, ∴0<x <12, ∵﹣2<0,∴当x =6时,矩形的面积有最大值. 故答案为:A. 8.已知△ ABC 和△ ADE 都是等腰直角三角形,∠ACB =∠ADE =90° , AC =2√2 , AD =1 , F 是 BE 的中点.若将△ ADE 绕点 A 旋转一周,则线段 AF 长度的取值范围是( )A .4−√22≤AF ≤4+√22B .2≤AF ≤3C .4−√22≤AF ≤3D .2−√22≤AF ≤2+√22【答案】A【解析】根据旋转的特性,画出E 点旋转一圈的轨迹,如图:结合图形可知:①当E 落在E′位置时,AF 最大,∵△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90∘,AC=2 √2 ,AD=1, ∴AB= √AB 2+BC 2 =4, AE=AE '= √AD 2+DE 2 = √2 , BE '=AB−AE′=4− √2 , ∵F 是BE′的中点,∴BF= 12 BE′= 4−√22 , AF=AB−BF=4− 4−√22 = 4+√22;②当E 落在E″位置时,AF 最小,∵BE″=AB+AE″=4+ √2 ,且F 是BE″的中点,∴BF= 12BE″=4+√22,AF=AB−BF=4− 4+√22= 4−√22.综合①②可知:4−√22⩽AF⩽4+√22故答案为:A.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1B.2C.3D.4【答案】C【解析】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x= b2a=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>0,所以④正确.故答案为:C10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE, BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+√2【答案】C【解析】当BE为三角形BCE的斜边的时候 C E 2 + B E 2有最大值∴EC⊥x轴,∵AO⊥x轴∴AO=EC=1则BE2=BC2+CE2=5C E 2 + B E 2=1+5=6故答案选C。

人教版九年级数学上册 期末培优提升卷(含答案)

人教版九年级数学上册 期末培优提升卷(含答案)

人教版九年级数学上册期末培优提升卷时间:120分钟满分:150分一、选择题(共48分)1.下列手机软件图标中,是中心对称图形的是()2.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5且k≠1C.k≤5且k≠1 D.k>53.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( )A.722B.3 2 C.5 D.6第3题图第4题图4.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095 C.965 D.2535.方程(x+1)(x-2)=x+1的解是()A.2 B.3 C.-1,2 D.-1,36.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45°第6题图 第8题图 第9题图7.将二次函数y =2x 2的图象向左平移2个单位长度,再向上平移3个单位长度所得的图象解析式为( )A .y =(x -2)2+3B .y =(x +2)2+3C .y =2(x -2)2-3D .y =2(x +2)2+38.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,已知AP =3,则PP ′的长度是( )A .3B .3 2C .5 2D .49.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( )A .OC ∥AEB .EC =BC C .∠DAE =∠ABED .AC ⊥OD 10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A.π-22B.π-24C.π-28D.π-216第10题图第11题图11.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a +b <0;②-1≤a ≤-23;③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数为( )A .1B .2C .3D .4 12.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( )第12题图A .①②B .②③C .③④D .①④二、填空题(共30分)13.(1)关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,x 21+x 22=7,则(x 1-x 2)2的值是____.(2)若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为 .14.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.某广场中心有高低不同的各种喷泉,其中一支高度为32米的喷水管喷水最大高度为4米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数解析式是 .第15题图第16题图 第17题图16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上.将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′,B ′C ′与CD 相交于点M ,则点M 的坐标为 .17.如图,在Rt △ABC 中,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以点O 为圆心,以OA 长为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是 .18.如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A (3,0),B (0,2).动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为 .三、解答题(共72分)19.解方程:(1)x2-4x-8=0;(2)3x-6=x(x-2).20.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题;(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2BC2,并写出A2的坐标;(3)画出和△A2BC2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.21.如图为二次函数y =-x 2+bx +c 图象的一部分,它与x 轴的一个交点坐标为A (-1,0),与y 轴的交点坐标为B (0,3).(1)求这个二次函数的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.22.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,连接BC ,BD .求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,连接OC .若DP ∥AC ,求∠OCD 的大小.23.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?②若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?25.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大.求出此时P点坐标和△PBC 的最大面积.人教版九年级数学上册期末培优提升卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列手机软件图标中,是中心对称图形的是(C)2.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是(B)A.k<5 B.k<5且k≠1C.k≤5且k≠1 D.k>53.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( C)A.722B.3 2 C.5 D.6第3题图 第4题图4.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( B )A .18 B.1095 C.965 D.2535.方程(x +1)(x -2)=x +1的解是( D )A .2B .3C .-1,2D .-1,36.如图,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交⊙O 于点D ,点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( D )A .30°B .35°C .40°D .45°第6题图 第8题图 第9题图7.将二次函数y =2x 2的图象向左平移2个单位长度,再向上平移3个单位长度所得的图象解析式为( D )A .y =(x -2)2+3B .y =(x +2)2+3C .y =2(x -2)2-3D .y =2(x +2)2+38.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,已知AP =3,则PP ′的长度是( B )A .3B .3 2C .5 2D .49.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵的中点,则下列结论不成立的是( D )A .OC ∥AEB .EC =BCC .∠DAE =∠ABED .AC ⊥OD10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( A )A.π-22B.π-24C.π-28D.π-216第10题图第10题图11.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a +b <0;②-1≤a ≤-23;③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数为( C )A .1B .2C .3D .412.如图所示,抛物线y 1=a(x +2)2-3与y 2=12(x -3)2+1交于点A(1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C ,则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC.其中正确结论是( D )第12题图A .①②B .②③C .③④D .①④二、填空题13.(1)关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,x 21+x 22=7,则(x 1-x 2)2的值是__13__.(2)若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为 12 .14.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 13.15.某广场中心有高低不同的各种喷泉,其中一支高度为32米的喷水管喷水最大高度为4米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数解析式是y =-10⎝ ⎛⎭⎪⎫x -122+4.第15题图第16题图第17题图16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上.将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′,B ′C ′与CD 相交于点M ,则点M的坐标为⎝⎛⎭⎪⎫-1,33.17.如图,在Rt △ABC 中,∠B =90°,∠C =30°,O 为AC 上一点,OA =2,以点O 为圆心,以OA 长为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE ,OF ,则图中阴影部分的面积是723-43π.18.如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A (3,0),B (0,2).动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为(0,0)或⎝ ⎛⎭⎪⎫23,1或⎝⎛⎭⎪⎫3-5,9-352 .三、解答题19.(6分)解方程: (1)x 2-4x -8=0; 解:x 2-4x +4=4+8, (x -2)2=12, ∴x -2=±23,∴x 1=2+23,x 2=2-2 3.(2)3x -6=x (x -2). 解:3(x -2)=x (x -2), ∴(x -2)(x -3)=0,∴x-2=0或x-3=0,∴x1=2,x2=3.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A 的坐标为(2,2),请解答下列问题;(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2BC2,并写出A2的坐标;(3)画出和△A2BC2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.解:(1)画出△A1B1C1如图,A1(-2,2).(2)画出△A2BC2如图,A2(4,0).(3)画出△A3B3C3如图,A3(-4,0).21.(10分)如图为二次函数y=-x2+bx+c图象的一部分,它与x轴的一个交点坐标为A(-1,0),与y轴的交点坐标为B(0,3).(1)求这个二次函数的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.解:(1)∵二次函数经过A (-1,0),B (0,3)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3.∴二次函数的解析式为y =-x 2+2x +3. (2)∵y =-x 2+2x +3可化为y =-(x -1)2+4, ∴抛物线y =-x 2+2x +3的顶点坐标为(1,4).又∵此抛物线向左平移3个单位,再向下平移1个单位, ∴平移后的抛物线的顶点坐标为(-2,3).∴平移后的抛物线的解析式为y =-(x +2)2+3=-x 2-4x -1.22.(10分)(2018·天津)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,连接BC ,BD .求∠ABC 和∠ABD 的大小; (2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,连接OC .若DP ∥AC ,求∠OCD 的大小.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC +∠ABC =90°.又∵∠BAC =38°,∴∠ABC =90°-38°=52°.由D 为AB ︵的中点,得AD ︵=BD ︵,∴∠ABD=∠BCD=12∠ACB=45°.(2)如图,连接OD.∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°.∵∠AOD是△ODP的外角,∴∠AOD=∠ODP+∠P=128°,∴∠ACD=12∠AOD=64°.又OA=OC,得∠ACO=∠A=38°.∴∠OCD=∠ACD-∠ACO=64°-38°=26°.23.(10分)(2018·贵阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是14;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.解:列表得共有16种等可能结果,和为14可以到达点C,有3种结果,所以棋子最终跳动到点C处的概率为3 16.24.(10分)(2018·盘锦)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?②若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元,W=(x-30)(-10x+700)=-10(x-50)2+4 000.∴当x=50时,W最大=4 000.∴每件售价定为50元时,每星期的销售利润最大,最大利润为4 000元.(3)①由题意得-10(x-50)2+4 000=3 910,解得x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3 910元的利润.②由(1)知抛物线y=-10(x-50)2+4 000过点(53,3 910),(47,3 910),当y>3 910时,x的取值范围为47≤x≤53,∵y=-10x+700.∴170≤y≤230,∴每星期至少要销售该款童装170件.25.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大.求出此时P点坐标和△PBC 的最大面积.解:(1)由于抛物线与x轴交于点A(-1,0),B(4,0),可设抛物线解析式为y=a(x+1)(x-4),将点C(0,-4)代入得a(0+1)(0-4)=-4.解得a=1,所求抛物线解析式为y=(x+1)(x-4),即y=x2-3x-4.(2)存在.如解图①,取OC 的中点D (0,-2),过D 作PD ⊥y 轴,交抛物线点P ,且点P 在第四象限,则点P 的纵坐标为-2,∴x 2-3x -4=-2,解得x =3±172(负值舍去),满足条件的P点的坐标为⎝⎛⎭⎪⎫3+172,-2;(3)∵点B (4,0),点C (0,-4), ∴直线BC 的解析式为y =x -4, 设点P 的坐标为(t ,t 2-3t -4),如解图②,过P 作PQ ∥y 轴交BC 于Q ,则点Q 的坐标为(t ,t -4), ∴|PQ |=t -4-(t 2-3t -4)=-t 2+4t = -(t -2)2+4,∴当t =2时,PQ 取最大值,最大值为4, ∵S △PBC =S △PCQ +S △PBQ =12PQ ·x B =PQ ·4=2PQ ,∴当PQ最大时,S△PBC最大,最大值为8. 此时点P的坐标为(2,-6).。

【期中测试AB卷】人教版数学九年级上册-B培优测试试题试卷含答案

【期中测试AB卷】人教版数学九年级上册-B培优测试试题试卷含答案

【期中测试AB卷】人教版九年级上册数学·B培优测试学校:_____________班级:____________ 姓名:____________(时间:120分钟分值:120分)一、选择题(共10小题,满分30分,每小题3分)1.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.(3分)如图,在△ABC中,∠BAC=114°,将△ABC绕点A按逆时针方向旋转得到△AB'C',若点B'恰好落在BC边上,且AB'=CB',则∠C的度数为( )A.18°B.20°C.22°D.24°3.(3分)在平面直角坐标系中,点P(﹣1,m2+1)关于原点对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)关于x的方程(a﹣1)x2+4x﹣3=0是一元二次方程,则( )A.a>1B.a=1C.a≠1D.a≥0 5.(3分)一元二次方程x2﹣3x=1中,b2﹣4ac的值为( )A.5B.13C.﹣13D.﹣56.(3分)要将抛物线y=2x2平移后得到抛物线y=2x2+4x+5,下列平移方法正确的是( )A.向左平移1个单位,再向上平移3个单位B.向左平移1个单位,再向下平移3个单位C.向右平移1个单位,再向上平移3个单位D.向右平移1个单位,再向下平移3个单位7.(3分)关于x的一元二次方程x2+2x+m=0的一个根是1,则m的值等于( )A.1B.﹣1C.3D.﹣38.(3分)对于二次函数y=x2﹣6x+a,在下列几种说法中:①当x<2时.y随x的增大而减小;②若函数的图象与x轴有交点,则a≥9;③若a=8,则二次函数y=x2﹣6x+a(2<x<4)的图象在x轴的下方;④若将此函数的图象绕坐标原点旋转180°,则旋转后的函数图象的顶点坐标为(﹣3,9﹣a),其中正确的个数为( )A.1B.2C.3D.49.(3分)定义:对于已知的两个函数,任取自变量x的一个值,当x≥0时,它们对应的函数值相等;当x<0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y=x,它的相关函数为y=x(x≥0)―x(x<0).已知点M,N的坐标分别为(―12,1),(92,1),连结MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为( )A.﹣3≤n≤﹣1或1<n≤54B.﹣3<n<﹣1或1<n≤54C.﹣3<n≤﹣1或1<n≤54D.﹣3≤n≤﹣1或1≤n≤5410.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2其中正确的( )A.只有①②B.只有①②④C.①②③④D.只有①②③二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠C′AB′的度数为 .12.(3分)已知x1,x2是一元二次方程2x2+x﹣3=0的两个实数根,则x1+x2的值是 .13.(3分)若x2﹣2x+y2+6y+10=0,则x+y= .14.(3分)抛物线y=ax2+bx+c与直线y=mx+n交于点A(﹣2,5)、B(3点,则关于x的一元二次方程a(x+1)2+c﹣n=(m﹣b)(x+1)的两根之和是 .15.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,把△ABC绕BC边的中点O旋转后得△DEF,若直角顶点E恰好落在AC边上,且DF边交AC边于点G,则△FCG的面积为 .三、解答题(共10小题,满分75分)16.(8分)用适当的方法解下列方程.(1)4(x﹣1)2=9;(2)x2+4x﹣5=0(配方法);(3)3(x﹣5)2=2(5﹣x);(4)2x2﹣7x+3=0.17.(6分)在如图的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.(2)将△ABC绕坐标原点顺时针旋转90°,画出转旋后的△A′B′C′.18.(6分)图①、图②、图③均是10×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 、D 、P 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作图,保留作图痕迹.(1)在图①中,作以点P 为对称中心的平行四边形ABEF .(2)在图②中,作四边形ABCD 的边BC 上的高AM .(3)在图③中,在四边形ABCD 的边CD 上找一点N ,连结AN ,使∠DAN =45°.19.(6分)已知关于x 的方程x 2―2mx +14n 2=0,其中m 、n 是等腰三角形的腰和底边长.(1)说明这个方程有两个不相等的实数根.(2)若方程的两实数根的差的绝对值是8,且等腰三角形的面积是16,求m ,n 的值.20.(6分)超市销售某种商品,每件盈利50元,平均每天可达到30件.为尽快减少库存,现准备降价以促进销售,经调查发现:一件商品每降价1元平均每天可多售出2件.(1)当一件商品降价5元时,每天销售量可达到 件,每天共盈利 元;(2)在上述条件不变,销售正常情况下,每件商品降价多少元时超市每天盈利可达到2100元?(3)在上述条件不变,销售正常情况下,超市每天盈利最高可以达到k 元,请你利用学过的Δ判别式,或利用暑假预习函数配方法,求出k 的值?21.(8分)阅读材料,解答问题:材料1为了解方程(x 2)2﹣13x 2+36=0,如果我们把x 2看作一个整体,然后设y =x 2,则原方程可化为y 2﹣13y +36=0,经过运算,原方程的解为x 1,2=±2,x 3,4=±3.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m ,n 满足m 2﹣m ﹣1=0,n 2﹣n ﹣1=0,且m ≠n ,显然m ,n 是方程x 2﹣x ﹣1=0的两个不相等的实数根,由韦达定理可知m +n =1,mn =﹣1.根据上述材料,解决以下问题:(1)直接应用:方程x 4﹣5x 2+6=0的解为 ;(2)间接应用:已知实数a ,b 满足:2a 4﹣7a 2+1=0,2b 4﹣7b 2+1=0且a ≠b ,求a 4+b 4的值;(3)拓展应用:已知实数m ,n 满足:1m 4+1m 2=7,n 2﹣n =7且n >0,求1m 4+n 2的值.22.(8分)家委会计划用班费购买A 、B 两种相册共45本作为学生的毕业礼品,已知购买2本A 种相册,3本B 种相册需要110元.购买4本A 种相册,5本B 种相册需要200元.(1)求A 、B 两种相册的售价分别是多少元?(2)若要求购买的A 种相册的数量要不少于B 种相册数量的12,且购买总金额不超过1000元,则家委会有多少种不同的购买方案?(3)已知商店A 、B 两种相册的进价分别是18元和16元,目前正在对A 种相册在不亏本的前提下进行促销活动.当购买A 种相册数量不超过10本时,没有优惠,超过10本时,每超过一本,单价降低0.1元,问家委会分别购买多少本A 、B 相册时,商店获利最大?最大利润是多少?23.(8分)在平面直角坐标系中,抛物线C 外:y =―16x ²―76x +1,抛物线C 内:y =ax 2+bx 的对称轴为直线x =―1110,且C 内的图象经过点A (﹣3,﹣2),动直线x =t 与抛物线C 内交于点M ,与抛物线C 外交于点N .(1)求抛物线C 内的表达式.(2)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值.(3)在(2)的条件下,设抛物线C 外与y 轴交于点B ,连接AM 交y 轴于点P ,连接PN .若平面内有一点G ,且PG =1,是否存在这样的点G ,使得∠GNP =∠ONB ?若存在,直接写出点G 的坐标,若不存在,说明理由.24.(9分)某超市销售A ,B 两种饮料,A 种饮料进价比B 种饮料每瓶低2元,用500元进货A 种饮料的数量与用600元进货B 种饮料的数量相同.(1)求A ,B 两种饮料平均每瓶的进价.(2)经市场调查表明,当A 种饮料售价在11元到17元之间(含11元,17元)浮动时,每瓶售价每增加0.5元时,日均销售量减少20瓶;当售价为每瓶12元时,日均销售量为320瓶;B 种饮料的日均毛利润m (元)与售价为n (元/瓶)(12.5≤n ≤18)构成一次函数,部分数据如下表:(每瓶毛利润=每瓶售价﹣每瓶进价)售价n (元/瓶)1817.516…日均毛利润m(元)640700880…①当B 种饮料的日均毛利润超过A 种饮料的最大日均毛利润时,求n 的取值范围.②某日该超市B 种饮料每瓶的售价比A 种饮料高3元,售价均为整数,当A 种饮料的售价定为每瓶多少元时,所得总毛利润最大?最大总毛利润是多少元?25.(10分)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +c (a ≠0)交x 轴于A (﹣4,0),B (1,0),交y 轴于C (0,3).(1)求抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过P 作PQ ⊥x 轴于点Q ,再过点Q 作QR ∥AC 交y 轴于点R ,求PQ +QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为﹣3,连接AE ,将线段AE 沿直线AC 平移,得到线段A ′E ′,连接CE ′,当△A ′E ′C 为等腰三角形时,直接写出点A ′的坐标.参考答案一、选择题(共10小题,满分30分,每小题3分)1.C;2.C;3.D;4.C;5.B;6.A;7.D;8.C;9.C;10.B;二、填空题(共5小题,满分15分,每小题3分)11.30°12.―1 213.﹣2 14.﹣115.21 25三、解答题(共10小题,满分75分)16.解:(1)∵4(x﹣1)2=9,∴(x﹣1)2=9 4,则x﹣1=±3 2,∴x1=52,x2=―12;(2)∵x2+4x﹣5=0,∴x2+4x=5,则x2+4x+4=5+4,即(x+2)2=9,∴x+2=±3,解得x1=1,x2=﹣5;(3)∵3(x﹣5)2=2(5﹣x),∴3(x﹣5)2+2(x﹣5)=0,则(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,解得x1=5,x2=13 3;(4)∵2x2﹣7x+3=0,∴(x﹣3)(2x﹣1)=0,则x﹣3=0或2x﹣1=0,解得x1=3,x2=0.5.17.解:(1)如图,平面直角坐标系即为所求,A(﹣2,3)(2)如图,△A′B′C′即为所求.18.解:(1)如图①中,平行四边形ABEF 即为所求;(2)如图②中,高AM 即为所求;(3)如图③中,点N 即为所求.19.解:(1)∵m 、n 是等腰三角形的腰和底边长,∴2m >n ,又∵Δ=b 2﹣4ac =(﹣2m )2﹣4×1×14n 2=4m 2―n 2,∴4m 2>n 2,∴Δ>0,∴方程有两个不相等的实数根.(2)由题意得|x 1﹣x 2|=8,∴(x 1﹣x 2)2=64,∴(x 1+x 2)2﹣4x 1x 2=64,由韦达定理得:x 1+x 2=2m ,x 1x 2=14n 2,∴(2m )2﹣4×14n 2=644,∵等腰三角形的面积是16,如图,过点A 作AD ⊥BC 于点D ,∴BD =CD =n 2.∴AD∴12×n 16,∴n =8,4,解得m =∴m =n =8.20.解:(1)降价5元,销售量达到30+2×5=40件,当天盈利:(50﹣5)×40=1800(元);故答案为:40,1800;(2)根据题意,得:(50﹣x )×(30+2x )=2100,解得:x =15或x =20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x =20,答:每件商品降价20元,商场日盈利可达2100元;(3)根据题意可得(30+2x )(50﹣x )=k ,整理得到:2x 2﹣70x +k ﹣1500=0.则Δ=b 2﹣4ac =4900﹣4×2(k ﹣1500)=16900﹣8k ≥0,解得k ≤2112.5.故超市每天盈利最高可以达到2112.5元.21.解:(1)令y =x 2,则有y 2﹣5y +6=0,∴(y ﹣2)(y ﹣3)=0,∴y 1=2,y 2=3,∴x2=2或3,∴x1x2=―x3=x4=故答案为:x1x2=―x3=x4=(2)∵a≠b,∴a2≠b2或a2=b2,当a2≠b2时,令a2=m,b2=n.∴m≠n,则2m2﹣7m+1=0,2n2﹣7n+1=0,∴m,n是方程2x2﹣7x+1=0的两个不相等的实数根,∴m+n=72 mn=12,此时a4+b4=m2+n2=(m+n)2﹣2mn=45 4.②当a2=b2(a=﹣b)时,a2=b2a4+b4=2a4=2(a2)2=综上所述,a4+b4=454或4.(3)令1m2=a,﹣n=b,则a2+a﹣7=0,b2+b﹣7=0,∵n>0,∴1m2≠―n,即a≠b,∴a,b是方程x2+x﹣7=0的两个不相等的实数根,∴a+b=―1 ab=―7,故1m4+n2=a2+b2=(a+b)2﹣2ab=15.22.解:(1)设A、B两种相册的售价分别是x元、y元,根据题意得:2x+3y=1104x+5y=200,解得:x=25 y=20.答:A、B两种相册的售价分别是25元、20元;(2)设买A种相册x册.买这两种相册共花费y元,25x+20(45―x)≤1000x≥12(45―x),解得:15≤x≤20.∴有6种不同的购买方案;(3)设买A种相册m册,B种相册(45﹣m)册,此吋商店获利w元,①当0≤m≤10时,w=(25﹣18)m+(20﹣16)(45﹣m)=3m+180,当m=10时,利润最大为210元;②当10<m≤45时,w=3m+180﹣0.1m(m﹣10)=﹣0.1(m﹣20)2+220,∵﹣0.1<0,开口向下,∴当m=20时,利润最大为220元;∵220>210,∴当m=20时,有最大利润为220元.答:分别购买A、B相册20本和25本时,商店获利最大,最大利润是220元.23.解:(1)∵y=ax2+bx的对称轴为直线x=―1110,且C内的图象经过点A(﹣3,﹣2),∴―b2a=―1110 9a―3b=―2,解得:a=―56b=―116,∴抛物线C内的表达式为y=―56x2―116x;(2)∵动直线x=t与抛物线C内交于点M,与抛物线C外交于点N.∴M(t,―56t2―116t),N(t,―16t2―76t+1),∵△AMN是以MN为直角边的等腰直角三角形,A(﹣3,﹣2),∴∠ANM=90°或∠AMN=90°,当∠ANM=90°时,―16t2―76t+1=﹣2,解得:t1=﹣9,t2=2,当t=﹣9时,AN=﹣3﹣(﹣9)=6,MN=﹣2﹣[―56×(﹣9)2―116×(﹣9)]=49,∵AN≠MN,∴t=﹣9不符合题意,舍去;当t=2时,AN=2﹣(﹣3)=5,MN=﹣2﹣(―56×22―116×2)=5∵AN=MN,∴△AMN是以MN为直角边的等腰直角三角形;当∠AMN=90°时,―56t2―116t=﹣2,解得:t1=﹣3,t2=4 5,当t=﹣3时,AM=0,不符合题意,舍去,当t=45时,AM=45―(﹣3)=195,MN=4925,∵AM≠MN,∴t=45不符合题意,舍去;综上所述,△AMN是以MN为直角边的等腰直角三角形时,t=2.(3)存在点G使得∠GNP=∠ONB如图,连接BN,ON,作∠GNP=∠ONB,使NG交y轴于G,且G在P上方,设AN 交y轴于R,则R(0,﹣2),由(2)知,t=2,∴N(2,﹣2),M(2,﹣7),设直线AM解析式为y=kx+c,将A(﹣3,﹣2),M(2,﹣7)代入,得―3k+c=―2 2k+c=―7,∴k=―1c=―5,∴直线AM解析式为y=﹣x﹣5,令x=0,得y=﹣5,∴P(0,﹣5),在y=―16x2―76x+1中,令x=0,得y=1,∴B(0,1),在Rt△BNR中,BN=在Rt△PNR中,PN∴BN=PN,∴∠NBO=∠NPR,∵∠GNP=∠ONB,∴△GNP≌△ONB(ASA),∴PG=OB=1,∴G(0,﹣4).根据①可得G(0,﹣4)符合要求,作点G关于直线PN的对称点G′,设直线PN解析式为y=mx+n,∵P(0,﹣5),N(2,﹣2),∴n=―52m+n=―2,解得:m=―32 n=―5,∴直线PN解析式为y=32x﹣5,∵GG′⊥PN,∴直线GG′解析式为y=―23x﹣4,设G′(t,―23t﹣4),∵点G,G′关于直线PN的对称,∴PG′=PG,∴t2+[―23t﹣4﹣(﹣5)]2=12,解得t1=0(舍去),t2=12 13,当t=1213时,―23t﹣4=―23×1213―4=―6013,∴G′(1213,―6013),设直线NG的解析式为y=k1x+b1,将N(2,﹣2),G(0,﹣4)代入,得2k1+b1=―2 b1=―4,解得k1=1b1=―4,∴直线NG的解析式为y=x﹣4,设直线NG上存在另一点G1(t,t﹣4),满足PG1=1,则(t﹣0)2+(t﹣4+5)2=12,解得t=0(舍去)或t=﹣1,∴G1(﹣1,﹣5),设直线NG′的解析式为y=k2x+b2,将N(2,﹣2),G′(1213,―6013)代入,+b2=―22+b2=―6013,解得k 2=177b 2=―487,∴直线NG ′的解析式为y =177x ―487,设直线NG 上存在另一点G 2(t ,177t ―487),满足PG 2=1,则(t ﹣0)2+(177t ―487+5)2=12,解得:t =513或t =1213(舍去),∴G (513,―7713),综上所述,点G 坐标为(0,﹣4)或(1213,―6013)或(﹣1,﹣5)或(513,―7713).24.解:(1)设A 饮料进价为x 元/瓶,B 饮料进价为(x +2)元/瓶.∴500x =600x 2,解得x =10.经检验,x =10是所列方程的根,且符合题意.∴x +2=12.答:A 饮料进价为10元/瓶,B 饮料进价为12元/瓶.(2)设A 饮料售价为y 元/瓶,日均毛利润为z 元.∴z =(y ﹣10)[320﹣20÷0.5×(y ﹣12)]=﹣40y 2+1200y ﹣8000=﹣40(y ﹣15)2+1000,∴y =15时,z max =1000,设m =kn +b ,∴18k +b =64016k +b =880,解得k =―120b =2800,∴m =﹣120n +2800.令﹣120n+2800=1000,解得n=15,∵m随着n的减小而增大,∴n<15,而12.5≤n≤18,∴12.5≤n<15.即n的取值范围是12.5≤n<15.②设A饮料售价为a元/瓶,则B饮料售价为(a+3)元/瓶,总毛利润为W元.∴W=﹣40a2+1200a﹣8000﹣120(a+3)+2800=﹣40a2+1080a﹣5560,∵a+3≥12.5,a+3≤18,,而11≤a≤17,∴11≤a≤15.∵a=―10802×(40)=272,且a为整数,∴当a=13或14时,W max=1720.∴当A种饮料的售价定为每瓶13或14元时,所得总毛利润最大,最大总毛利润是1720元.25.解:(1)∵抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣4,0),B(1,0),交y轴于C(0,3).∴16a―4b+c=0 a+b+c=0c=3,解得a=―34b=―94 c=3,∴抛物线的解析式为y=―34x2―94x+3;(2)设P(x,―34x2―94x+3),则Q(x,0),R(0,m).∵A(﹣4,0),C(0,3).∴直线AC的解析式为y=34x+3,∵QR∥AC,∴OROQ=OCOA,∴mx=34,∴PQ +QR =―34x 2―94x +3+=―34x 2―72x +3=―34(x +73)2+8512,∴x =―73时,PQ +QR 的最大值8512,∴P (―73,256);(3)如图2中,△A ′E ′C 为等腰三角形有三种情况:①A ′E ′=A ′C ,②A ″C =CE ″,③A ′E ′=CE ′,由(2)得,直线AC 的解析式为y =34x +3,∵抛物线的解析式为y =―34x 2―94x +3,∴E (﹣3,3),∵A (﹣4,0),∴AE =①A ′E ′=A ′C ,∴A ′E ′=A ′C =AE =设A ′(x ,34x +3),过点A ′作A ′M ⊥y 轴于M ,则A ′M ∥x 轴,∴CM A′M =OCOA =34,∴CM =|―34x |,∴A ′C ==|54x |x <0时,―54x =∴x =―x >0时,54x =∴A ′(3―)或(5,3+②A ″C =CE ″,设A ″(x ,34x +3),过点C 作CN ⊥A ″E ″于N ,则A ″N =12A ″E ″=∴E ″(x +1,34x +3+3),即E ″(x +1,34x +6),∵A ″C |―54x |,CE ″=∵CE ″=A ″C ,∴(―54x )22,化简得132x =﹣10,解得:x =―2013,∴A ″(―2013,2413),③A ′E ′=CE ′,22,化简得∴2516x 2+132x =0,解得:x 1=0,此时,点A ′与C 重合,不合题意,舍去;x 2=―10425,∴A ′(―10425,―325);综上所述,点A ′的坐标为(3―3―2013,2413)或(―10425,―325).。

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF=  .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用一、单选题1.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(为y =x 2−x +c c 常数)在的图象上存在两个二倍点,则的取值范围是( )−2<x <4c A .B .C .D .−2<c <14−4<c <94−4<c <14−10<c <942.已知直线 过一、二、三象限,则直线 与抛物线 的交点y =kx +2y =kx +2y =x 2−2x +3个数为( ) A .0个B .1个C .2个D .1个或2个3.抛物线 (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =x 2+bx +c ( )有交点,则c 的值不可能是( ) y =2x−11≤x <3A .5B .7C .10D .144.函数y=ax+b 和y=ax 2+bx+c 在同一直角坐标系内的图象大致是( )A .B .C .D .5.已知0<x <1,10<y <20,且y 随x 的增大而增大,则y 与x 的关系式不可以是( )A .y =10x+10B .y =﹣10(x﹣1)2+20C .y =10x 2+10D .y =﹣10x+206.在同一坐标系中,函数y=ax 2与y=ax+a (a <0)的图象的大致位置可能是( )A .B .C .D .7.对于题目“一段抛物线L :y=﹣x (x﹣3)+c (0≤x≤3)与直线l :y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确8.将二次函数 的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图y =−x 2+2x +3所示.当直线 与新函数的图象恰有3个公共点时,b 的值为( )y =x +bA . 或B . 或 −214−3−134−3C . 或D . 或 214−3134−39.已知抛物线 与直线 相交,若 ,则 的取值范围是( y 1=−2x 2+2y 2=2x +2y 1>y 2x ).A .B .x >−1x <0C .D . 或 −1<x <0x >0x <−110.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x 2的切线;14②直线x=﹣2与抛物线y= x 2 相切于点(﹣2,1);14③若直线y=x+b 与抛物线y= x 2相切,则相切于点(2,1);14④若直线y=kx﹣2与抛物线y= x 2相切,则实数k= .142其中正确命题的是( )A .①②④B .①③C .②③D .①③④11.一次函数与二次函数的图象交点( )y =2x +1y =x 2−4x +3A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点12.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、填空题13.如图,在平面直角坐标系中,抛物线 交y 轴于点A ,直线AB 交x 轴正半轴于y =x 2−2x +2点B ,交抛物线的对称轴于点C ,若 ,则点C 的坐标为  .OB =2OA14.函数 与 的图象如图所示,有以下结论:① ,②y =x 2+bx +c y =x b 2−4c >0 ,③ ,④当 时, .则正确的个数为 b +c +1=03b +c +6=01<x <3x 2+(b−1)x +c <0个.15.已知一次函数y 1=kx+m (k≠0)和二次函数y 2=ax 2+bx+c (a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…当y2>y1时,自变量x的取值范围是 .y=ax2+c y=mx+n A(−1,p)B(3,q)16.如图,抛物线与直线交于,两点,则不等式ax2+mx+c<n的解集是 .17.如图,在平面直角坐标系xOy中,直线y1=kx+m(k≠0)的抛物线y2=ax2+bx+c(a≠0)交于点A(0,4),B(3,1),当y1≤y2时,x的取值范围是 .y=ax+b(a<0,b>0)18.如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函y=−kx+k(k>0)数关联的二次函数.如果一次函数的关联二次函数是y=mx2+2mx+c m≠0(),那么这个一次函数的解析式为 .三、综合题19.如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .过点P 作PD ⊥OB 于D 点(1)直接写出BD 的长并求出点C 的坐标(用含t 的代数式表示)(2)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P 从点O 运动到点A 时,点C 运动路线的长是多少?20.如图,函数 的图象与函数 ( )的图象相交于点P (3,k ),Q 两点.y =2x y =ax 2−3a ≠0(1) = , =  ;a k (2)当 在什么范围内取值时, > ;x 2x ax 2−3(3)解关于 的不等式: >1.x |ax 2−3|21.如图,抛物线与 轴交于 , 两点,点 , 分别位于原点的y =3+3x 2+bx +c x A B A B 左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为 , , BO =3AO =3B y C D .BC =3CD(1)求 , 的值;b c (2)求直线 的函数解析式;BD 22.如图,抛物线y=-x 2+bx+c 的图像过点A(-1,0)、C(0,3),顶点为M 。

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换一、单选题1.在平面直角坐标系中,把直线y=3x 向左平移2个单位长度,平移后的直线解析式是( )A .y=3x+2B .y=3x-2C .y=3x+6D .y=3x-62.若一次函数y=2x-3的图象平移后经过点(3,1),则下列叙述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向右平移1个单位长度C .沿x 轴向左平移3个单位长度D .沿x 轴向左平移1个单位长度3.在平面直角坐标系中,将直线沿y 轴向下平移6个单位后,得到一条新的直线,该直y =−32x +3线与x 轴的交点坐标是( )A .B .C .D .(0,3)(−2,0)(4,0)(6,0)4.已知直线向下平移2个单位长度后得到直线,且直线与直线关于l 1:y =kx +3l 2l 2l 3:y =−x +1y 轴对称,则k 的值为( ).A .B .1C .2D .3−15.在平面直角坐标系中,将函数 的图象向上平移6个单位长度,则平移后的图象与x 轴的y =3x 交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)6.把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为( )A .y=-x+4B .C .y=x+4D .y=x-27.将直线沿x 轴向左平移3个单位得到直线L ,则直线L 的解析式是( )y =2x +5A .y =2x +2B .y =2x +8C .y =2x -1D .y =2x +118.对于一次函数y =﹣2x+4,下列结论错误的是( )A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 29.将一次函数y =﹣3x 的图象沿y 轴向下平移4个单位长度后,所得图象的函数表达式为( )A .y =﹣3(x ﹣4)B .y =﹣3x +4C .y =﹣3(x +4)D .y =﹣3x ﹣410.在平面直角坐标系中,将直线 先关于 轴作轴对称变换,再将所得直线关于y =−3x +4x y 轴作轴对称变换,则经两次变换后所得直线的表达式是( )A .B .C .D .y =4x−3y =−4x +3y =3x +4y =−3x−411.将直线向上平移2个单位长度,则平移后的直线所对应的函数解析式为( )y =−2x +3A .B .C .D .y =−2x +1y =−4x +5y =−2x +5y =−4x +112.将直线向上平移5个单位长度后得到直线,则下列关于直线的说y =x +1y =kx +b y =kx +b 法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与轴的交点在轴的正半轴x xC .点在函数图象上(−2,4)D .随的增大而增大y x 二、填空题13.直线 +3的图像是由正比例函数  图像向 (填上或下)平移 y =3x 个单位得到或由正比例函数 图像向 (填左或右)平移 个单位得到可以得到的一条直线14.直线 沿 轴平移3个单位,则平移后直线与 轴的交点坐标为  .y =2x−1y y 15.在平面直角坐标系中,把直线y=2x 向左平移1个单位长度,平移后的直线解析式是 .16.将正比例函数y=﹣2x 的图象沿y 轴向上平移5个单位,则平移后所得图象的解析式是 .17.如图,在平面直角坐标系中,A (1,0),B (3,0),点C 在第一象限,∠ABC=90°,AC=25,直线l 的关系式为: .将△ABC 沿x 轴向左平移,当点C 落在直线l 上时,线段AC 扫y =−x−3过的面积为  平方单位.18.已知直线与直线关于y 轴对称,当时,,当y 1=ax +b(a ≠0)y 2=kx +5(k ≠0)x >−52y 1>0时,,则直线 .x >52y 2<0y 1=三、综合题19.如图,直线 与 轴、 轴交于点 、 ,直线 与 轴l 1:y =2x +1x y D A l 2:y =mx +4x y 轴分别交于点 、 ,两直线相交于点 .C B P(1,b)(1)求 , 的值; b m (2)求 的值;S △PDC −S △PAB (3)垂直于 轴的直线 与直线 , 分别交于点 , ,若线段 的长为x x =a l 1l 2M N MN 2,求 的值.a 20.如图,直线y =kx +4的图象与y 轴交于点A ,与x 轴交于点B (2,0),直线AF 交x 轴负半轴于点F ,且OF =2OA .(1)求出k 的值为 ,直线AF 的解析式为 ;(2)若将直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0),与y 轴相交于点D ,且直线CD 与直线AF 交于点E ,求点E 的坐标.21.如图,一次函数 的图象与反比例函数( 为常数且 )的图象相交于y =x +5y =kx k k ≠0 , 两点.A(−1,m)B(1)求反比例函数的表达式;(2)将一次函数 的图象沿 轴向下平移 个单位 ,使平移后的图象与反y =x +5y b (b >0)比例函数的图象有且只有一个交点,求 的值.y =kx b 22.已知反比例函数与正比例函数 相交于 .y 1=kx y 2=x A(2,2)(1)求 值.k (2)画出反比例函数的图象.(3)当 时,直接写出 的范围?y 1>y 2x (4)根据图象,解不等式 .kx <x−323.背景知识:已知两直线 , ,若 ,则m :y 1=k 1x +b 1n :y 2=k 2x +b 2(k 1k 2≠0)m ⊥n ;若 ,则 .k 1k 2=−1m//n k 1=k 2应用:在平面直线坐标系 中,直线 交x 轴于点C ,交y 轴于点D ,若 xoy l 1:y =x−1l 2⊥l 1于点 ,交y 轴于点A ,交x 轴于点B.P(2,1)(1)求直线 的表达式; l 2(2)求 的面积;△ABC (3)若将直线 向下平移 个单位,得到新的直线 ,交y 轴于点E ,交直线 于点F ,l 1q l 3l 2使得 ,求 的值.S △AEF =16q 24.已知:如图1,在平面直角坐标系中,一次函数y = x+3交x 轴于点A ,交y 轴于点B ,点C34是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点.(1)求点A ,B 的坐标.(2)如图2,将△ACP 沿着AP 翻折,当点C 的对应点C′落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q(不与点D 重合),连接CQ ,是否存在点P ,使得S △CPQ =2S △DPQ ,若存在,请求出对应的点Q 坐标;若不存在,请说明理由.答案解析部分1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】B13.【答案】y=3x ;上;3;y=3x ;左;114.【答案】(0,2)或(0, )−415.【答案】y=2x+216.【答案】y =-2x+517.【答案】4018.【答案】或2x +55+2x19.【答案】(1)解:∵点 在直线 上,∴ ,P(1,b)l 1:y =2x +1b =2×1+1=3∵ 在直线 上,∴ ,∴P(1,3)l 2:y =mx +43=m +4m =−1(2)解:∵直线 与 轴、 轴交于点 、 ,l 2:y =−x +4x y D A ∴ ,,A(0,1)D(−12,0)∵直线 与 轴、 轴分别交于点 、 ,l 2:y =−x +4x y C B ∴ , ,B(0,4)C(4,0)∴S △PDC −S △PAB =12DC ⋅y P −12AB ⋅x P =12×(12+4)×3−12×(4−1)×1=214(3)解:设直线 与直线 , 分别交于点 , , x =a l 1l 2M N 当 时, ;当 时, ,x =a y M =2a +1x =a y N =4−a ∵ ,∴ ,解得或 ,MN =2|2a +1−(4−a)|=2a =13a =53所以 的值为 或 a 135320.【答案】(1)-2;y =+412x (2)解:∵直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0), ∴设直线DC 的解析式为y =﹣2x+d ,把C (﹣3,0)代入得d =﹣6,∴直线DC 的解析式为y =﹣2x﹣6.解得,{y =−2x−6y =12x +4{x =−4y =2∴E (﹣4,2).21.【答案】(1)解:由题意,将点 代入一次函数 得: A(−1,m)y =x +5m =−1+5=4∴A(−1,4)将点 代入得: ,解得 A(−1,4)y =k x k−1=4k =−4则反比例函数的表达式为;y =−4x (2)解:将一次函数 的图象沿 轴向下平移 个单位得到的一次函数的解析式为 y =x +5y b y =x +5−b 联立{y =x +5−by =−4x 整理得: x 2+(5−b)x +4=0一次函数 的图象与反比例函数 的图象有且只有一个交点∵y =x +5−b y =−4x 关于x 的一元二次方程 只有一个实数根∴x 2+(5−b)x +4=0 此方程的根的判别式 ∴Δ=(5−b)2−4×4=0解得 b 1=1,b 2=9则b 的值为1或9.22.【答案】(1)解:∵反比例函数y 1= 与正比例函数y 2=x 相交于A (2,2).kx ∴k=2×2=4(2)解:描出点(1,4),(2,2),(4,1), 用平滑的曲线连接,画出反比例函数的图象如图,(3)解:由图象可知,当0<x<2和x<-2时,y1>y2.(4)解:观察图象,直线y=x向下平移3个单位,与反比例函数的交点为(4,1)和(-1,-4),∴不等式 <x-3的解集为:-1<x <0和x >4.kx 23.【答案】(1)解:由 ,得 ,l 1:y =x−1k 1=1 , ,∵l 2⊥l 1∴k 2⋅k 1=−1,∴k 2=−1设 ,把 代入解析式得:b=3,l 2:y =−x +b P(2,1) ;∴l 2:y =−x +3(2)解:由图象可得:, 与x 轴交于点B 、C , 令y=0,则有 ∵l 2:y =−x +3l 1:y =x−1∴B(3,0),C(1,0),又 与y 轴交于点A , 令x=0,则有 ,∵l 2:y =−x +3∴A(0,3) OA=3,BC=2, ;∴∴S △ABC =12BC ⋅OA =3(3)解: 将直线 向下平移 个单位,得到新的直线 ,∵l 1q l 3 ,令x=0则 , ,∴l 3:y =x−1−q y =−1−q ∴E(0,−1−q) ,∴AE =3−(−1−q)=4+q 交直线 于点F , 解得,∵l 3l 2∴{y =−x +3y =x−1−q {x =4+q 2y =2−q 2 , ,∵S △AEF =12AE ⋅F x =16∴12×(4+q)⋅4+q 2=16解得 (不符题意,舍去).q 1=4,q 2=−12 .∴q =424.【答案】(1)解:令x=0,则y=3,∴B (0,3),令y=0,则 x+3=0,34∴x=﹣4,∴A (﹣4,0);(2)解:∵点C 是点A 关于y 轴对称的点, ∴C (4,0),∵CD ⊥x 轴,∴x=4时,y=6,∴D (4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a ,∴PC'=a ,DP=6﹣a ,在Rt △DC'P 中,a2+4=(6﹣a )2,∴a= ,83∴P (4, );83(3)解:设P (4,m ), ∴CP=m ,DP=|m﹣6|,∵S △CPQ =2S △DPQ ,∴CP=2PD ,∴2|m﹣6|=m ,∴m=4或m=12,∴P (4,4)或P (4,12),∵直线AB 的解析式为y= x+3①,34当P (4,4)时,直线OP 的解析式为y=x ②,联立①②解得,x=12,y=12,∴Q (12,12),当P (4,12)时,直线OP 解析式为y=3x ③,联立①③解得,x= ,y=4,43∴Q ( ,4),43。

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】

2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为  .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE=  ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。

九年级数学中考复习训练题(培优14)

九年级数学中考复习训练题(培优14)

九年级数学中考复习训练题(培优14)1.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣12.下列说法错误的是()A.平行四边形的对边相等 B.正方形既是轴对称图形、又是中心对称图形C.对角线相等的四边形是矩形 D.对角线互相垂直的平行四边形是菱形3.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥4.已知线段a,b,c,如果a:b:c=1:2:3,那么:的值是()A.:B.:C.:D.:5.方程2x2﹣1=6x的两根为x1、x2,则x1+x2等于()A.B.C.﹣3 D.36.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象上的概率是()A.B.C.D.7.3﹣2tan60°=.8.一位作家先用m天写完了一部小说的上集,又用n天写完下集,这部小说上下集共120万字,这位作家平均每天的写作量为万字.9.如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).10.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE 上的G 点,并使折痕经过点B ,折痕BF 与AE 交于点H ,点F 在AD 上,若DE =5,则AH 的长为 .11.直径为8的⊙O 中,弦AB =4cm ,则弦AB 所对的圆周角是----- 12.如图12,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .13.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC 的度数.14.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是的中点,E 为OD 延长线上一点,且∠CAE =2∠C ,AC 与BD 交于点H ,与OE 交于点F .(1)求证:AE 是⊙O 的切线; (2)若DH =9,tan C =,求直径AB 的长.15.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,过OA 上的点P 作PD ⊥AC ,交CB 的延长线于点D ,交AB 于点E ,点F 为DE 的中点,连接BF .2B图12(1)求证:BF与⊙O相切;(2)若AP=OP,cos A=,AP=4,求BF的长.16.去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).月份…二月三月四月五月…销售价… 6 7 7.6 8.5 …x(元/件)…30 20 14 5 …该月销售量y(万件)(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额﹣成本+政府当月补贴)17.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.【实践探究】(1)在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN =45°,若,求证:M是CD的中点.【拓展】(3)如图③,在矩形ABCD中,AB=6,AD=8,点M、N分别在边DC、BC上,连接AM、AN,已知∠MAN=45°,BN=2,则DM的长是.18.如图1,在平面直角坐标系中,直线与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.。

九年级数学下册2023年中考专题培优训练:不等式与不等式组【含答案】

九年级数学下册2023年中考专题培优训练:不等式与不等式组【含答案】

九年级数学下册2023年中考专题培优训练:不等式与不等式组一、单选题1.下列说法不正确的是( )A .不等式的解集是B .不等式的整数解有无数个32x ->5x >3x <C .不等式的整数解是0D .是不等式的一个解33x +<0x =23x <2.已知,则下列结论成立的是( )x y <A .B .C .D .77x y ->-55x y ->-2121x y +>+22x y >3.一元一次不等式x+1>2的解在数轴上表示为( )A .B .C .D .4.关于 的不等式 的非负整数解共有( )个x 1230x ->A .3B .4C .5D .65.若关于x 的不等式2x+a≤0只有两个正整数解,则a 的取值范围是( )A .﹣6≤a≤﹣4B .﹣6<a≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣46.若a <b ,则下列各式正确的是( )A .3a >3bB .﹣3a >﹣3bC .a﹣3>b﹣3D .33a b >7.如图表示的是关于 的不等式 ≤ 的解集,则 的取值是( )x 2x a --1a A . ≤-1B . ≤-2C . =-1D . =-2a a a a 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.不等式组 的解集在数轴上表示为( )21112x x -≤⎧⎨+>-⎩A .B .C.D.10.若 是关于x 的不等式 的一个解,则a 的取值范围是( )3x =2()x x a >-A .B .C .D .32a <32a >32a ≤32a ≥11.关于x 的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A .4x-9<xB .-3x+2<0C .2x+4<0D .122x <12.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2a b+A .a >b B .a <bC .a =bD .与a 和b 的大小无关二、填空题13.不等式组 的解集为  .23x x >-⎧⎨≤⎩14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是 .15.a >b ,且c 为实数,则ac 2  bc 2.(用数学符号填空)16.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为 .17.对于任意实数m 、n ,定义一种运运算m ※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 三、解答题18.解不等式组 ,并求它的整数解.64325213x x x x +≥-⎧⎪+⎨->-⎪⎩19.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。

2022-2023学年山东省新泰市九年级(上)期末数学试卷(培优题)(五四学制)+答案解析(附后)

2022-2023学年山东省新泰市九年级(上)期末数学试卷(培优题)(五四学制)+答案解析(附后)

2022-2023学年山东省泰安市新泰市九年级(上)期末数学试卷(培优题)(五四学制)1. 给出下列函数关系式:①;②;③;④;⑤;⑥其中,表示y是x的反比例函数的数量是( )A. 3B. 4C. 5D. 62. 已知反比例函数,下列结论:①图象必经过;②图象在第二,四象限内;③y随x的增大而增大;④当时,其中错误的结论有( )A. 3个B. 2个C. 1个D. 0个3. 如图,在中,CD是斜边AB上的高,,则下列比值中不等于的是( )A.B.C.D.4. 关于二次函数,下列说法正确的是( )A. 图象与y轴的交点坐标为B. 图象的对称轴在y轴的右侧C. 当时,y的值随x值的增大而减小D. y的最小值为5.已知反比例函数的图象如图所示,则一次函数和二次函数在同一平面直角坐标系中的图象可能是( )A.B.C.D.6. 如图,点A,B,C,D,E在上,,,则( )A.B.C.D.7.如图,随机闭合开关、、中的两个,则能让两盏灯泡、同时发光的概率为( )A. B. C. D.8. 如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则的值为( )A.B.C.D.9. 如图,矩形OABC的面积为36,它的对角线OB与双曲线相交于点D,且OD::3,则k的值为( )A. 12B.C. 16D.10. 如图,在中,,,将折叠,使点A落在边BC上的D处,EF为折痕.若,则的值为( )A. B. C. D.11. 如图,AB是的直径,C,D是上的两点,且BC平分,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( )A. B.C. ≌D.12. 如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的有( )A. 4个B. 3个C. 2个D. 1个13. 某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦青春梦”演讲比赛,则恰好选中一男一女的概率是__________.14.如图为某几何体的三视图单位:,则该几何体的侧面积等于______15. 如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为__________.16. 如图,矩形ABCD的边AB在x轴上,点C在反比例函数的图象上,点D在反比例函数的图象上,若,,则______.17. 如图,在矩形ABCD中,BD是对角线,,垂足为E,连结若,则的值为__________.18. 如图,在平面直角坐标系中,已知,以点C为圆心的圆与y轴相切.点A、B在x轴上,且点P为上的动点,,则AB长度的最大值为______.19. 计算:20. 4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.第一次抽取的卡片上数字是负数的概率为______ ;小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?请用树状图或列表等方法说明理由21. 如图,一次函数的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为,点B的横坐标为求这两个函数的表达式;根据图象,直接写出满足的x的取值范围;连接OA,OB,点P在直线AB上,且,求点P的坐标.22. 某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角为如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;在图2所示的状态下,将支杆BC绕点B顺时针旋转,同时调节CD的长如图,此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长结果精确到1cm,参考数据:,,,,,23. 某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.求出y与x的函数关系式,并写出自变量x的取值范围.当销售单价为多少元时,销售这种童装每月可获利1800元?当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?24. 如图,在中,,以AB为直径的分别交AC、BC于点D、E,点F在AC的延长线上,且求证:BF是的切线;若的直径为4,,求25. 如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线经过A,B两点且与x轴的负半轴交于点求该抛物线的解析式;若点D为直线AB上方抛物线上的一个动点,当时,求点D的坐标;已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.答案和解析1.【答案】B【解析】解:①,y不是x的反比例函数;②,y是x的反比例函数;③,y是x的反比例函数;④,y不是x的反比例函数;⑤,y是x的反比例函数;⑥,y是x的反比例函数.表示y是x的反比例函数的数量是故选:根据反比例函数的定义逐个判断即可.本题考查了反比例函数的定义,能熟记反比例函数的定义的内容是解此题的关键,形如为常数,的形式的函数叫反比例函数.2.【答案】B【解析】【分析】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征,熟记反比例函数的性质是解题关键.根据反比例函数的性质及反比例函数图象上点的坐标特征即可得答案.【解答】解:①当时,,即图象必经过点,原来的结论正确;②,图象在第二、四象限内,原来的结论正确;③,在二、四象限内,y随x的增大而增大,原来的结论错误;④,在二、四象限内,y随x的增大而增大,若,;如果,则,原来的结论错误,因此错误的结论有2个.故选3.【答案】D【解析】【分析】根据锐角三角函数的定义解答即可.本题考查了锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.【解答】解:在中,CD是斜边AB上的高,,又,故选:4.【答案】D【解析】【分析】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:,当时,,故选项A错误;该函数的对称轴是直线,故选项B错误;当时,y随x的增大而减小,故选项C错误;当时,y取得最小值,此时,故选项D正确.故选5.【答案】D【解析】【分析】本题考查反比例函数的图象,一次函数图象与系数的关系,二次函数图象与系数的关系.根据反比例函数的图象得出,逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系,抛物线与y轴的交点,即可得出a、b、c的正负,得出一次函数图象经过的象限,即可得出结论.【解答】解:反比例函数的图象在二、四象限,,A、二次函数图象开口向上,对称轴在y轴右侧,交y轴于负半轴,,,,一次函数的图象应该过第一、二、四象限,故A选项错误;B、二次函数图象开口向下,对称轴在y轴右侧,,,与矛盾,故B选项错误;C、二次函数图象开口向下,对称轴在y轴右侧,,,与矛盾,故C选项错误;D、二次函数图象开口向上,对称轴在y轴右侧,交y轴于负半轴,,,,一次函数的图象应该过第一、二、四象限,故D选项正确.故选:6.【答案】D【解析】解:连接OC、OD,,,,故选连接OC、OD,可得,由圆周角定理即可得本题主要考查圆心角、弧、弦三者的关系以及圆周角定理.7.【答案】D【解析】【分析】此题考查用列举法求概率,弄清题中的数据是解本题的关键.找出随机闭合开关、、中的所有情况数以及能让两盏灯泡、同时发光的情况数,即可求出所求概率.【解答】解:画树状图,如图所示:随机闭合开关、、中的两个有六种情况,其中能让两盏灯泡、同时发光的有两种情况:闭合,闭合,则能让两盏灯泡、同时发光的概率为故选:8.【答案】A【解析】首先根据圆周角定理可知,然后在中,根据锐角三角函数的定义求出的正弦值即可.本题考查了圆周角定理,勾股定理,锐角三角函数的定义等知识,解答本题的关键是利用圆周角定理把求的正弦值转化成求的正弦值.解:和所对的弧都是,根据圆周角定理知在中,根据锐角三角函数的定义知,,,,,故选:9.【答案】D【解析】解:如图,连接CD,过点D作于E,矩形OABC的面积为36,,::3,,,,,,,双曲线图象过点D,,又双曲线图象在第二象限,,,故选:由矩形的性质求出的面积,由平行线分线段成比例可求,可求的面积,由反比例函数的性质可求解.本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,矩形的性质,平行线分线段成比例等知识,求出的面积是解题的关键.10.【答案】A【解析】解:在中,,,,由折叠的性质得到:≌,,,,,又,,在直角中,,,故选:由折叠性质得出≌,则;由三角形内角和定理及平角的知识即可得出结果.本题考查了折叠的性质、等腰三角形的性质、全等三角形的性质、三角函数等知识;解题的关键是灵活运用全等三角形的性质、三角形内角和定理等知识来解决问题.11.【答案】C【解析】解:是的直径,BC平分,,,,,,,,选项A成立;,选项B成立;,选项D成立;和中,没有相等的边,与不全等,选项C不成立.故选本题主要考查圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,以及角的平分线.12.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:,根据抛物线的对称轴在y轴右边可得:a,b异号,所以,根据抛物线与y轴的交点在正半轴可得:,,故①错误;抛物线与x轴有两个交点,,故②正确;直线是抛物线的对称轴,所以,可得,由图象可知,当时,,即,,即,故③正确;由图象可知,当时,;当时,,两式相加得,,故④正确.结论正确的有3个.故选:13.【答案】【解析】解:画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,恰好选中一男一女的概率是,故答案为:画树状图展示所有20种等可能的结果数,再找出选中一男一女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.14.【答案】【解析】解:由几何体的三视图知,该几何体是底面半径为3cm,母线长是6cm的圆锥.故侧面积为,故答案为:由三视图得到几何体是圆锥,且可得圆锥的半径和母线长,从而求得其侧面积.本题考查了由三视图求几何体的面积体积的问题,注意三视图中:正侧一样高,正俯一样长,俯侧一样宽.15.【答案】10【解析】【分析】本题考查了正多边形与圆,圆周角定理,正确的理解题意是解题的关键.连接OA,OB,根据圆周角定理得到,于是得到结论.【解答】解:连接OA,OB,、B、C、D为一个正多边形的顶点,O为正多边形的中心,点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,,,这个正多边形的边数,故答案为:16.【答案】【解析】解:矩形ABCD的边AB在x轴上,点C在反比例函数的图象上,,,设,,则,,解得,,,,,,,,,,点D在反比例函数的图象上,,故答案为根据题意设,,则,根据反比例函数系数k的几何意义求得C的坐标,解直角三角形求得AB的长,即可求得OA的长,从而求得D的坐标,代入解析式即可求得k 的值.本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,解直角三角形等,求得D的坐标是解题的关键.17.【答案】【解析】解:如图,过点C作于点F,设,在与中,,≌,,,,,,,,,,,故答案为:过点C作于点F,设,易证≌,从而可求出,,然后根据锐角三角函数的定义即可求出答案.本题考查了矩形的性质以及全等三角形的判定与性质,熟练掌握含角直角三角形的性质是解题的关键.18.【答案】16【解析】【分析】本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到OP的最大值是解题的关键.连接OC并延长,交上一点P,以O为圆心,以OP为半径作,交x轴于A、B,此时AB 的长度最大,根据勾股定理和题意求得,则AB的最大长度为【解答】解:连接OC并延长,交上一点P,以O为圆心,以OP为半径作,交x轴于A、B,此时AB的长度最大,,,以点C为圆心的圆与y轴相切.的半径为3,,,是直径,长度的最大值为16,故答案为19.【答案】解:原式【解析】牢记特殊角的三角函数值是解答本题的关键,然后根据实数运算法则计算出结果即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值.20.【答案】解:游戏规则公平,列表如下:0130/131/223/53/第一行为第一次抽取的,第一列为第二次抽取的,其余的为第一次的数字减第二次数字的差由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率,此游戏规则公平.【解析】解:张卡片只有一张卡片上的数字是负数,第一次抽取的卡片上数字是负数的概率为,故答案为:见答案.利用概率=所求情况数与总情况数之比求解即可;利用列表法列举出所有可能,进而利用概率公式得出甲、乙获胜的概率即可得出答案.本题考查的是游戏公平性的判断及列表法求概率.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:一次函数的图象与反比例函数的图象相交于,,①,反比例函数解析式为,点B的横坐标为6,点,②,①-②得:,,一次函数解析式为;由图象可得:当或时,一次函数图象在反比例函数图象的上方,即;当时,,,,分两种情况:①如图1,当P在线段AB上时,,,,,,点P的坐标为;②如图2,当点P在线段BA的延长线上时,,,,点P的坐标为;综上所述,点P的坐标为或【解析】将点A坐标代入反比例函数解析式,可求反比例函数解析式,可求点B坐标,将点A、点B坐标代入一次函数解析式,可求解;利用图象可直接求解;根据,求得点P的横坐标,再根据一次函数解析式可得答案.本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.22.【答案】解:过点D作于F,,,,,答:灯泡悬挂点D距离地面的高度为113cm;如图3,过点C作CG垂直于地面于点G,过点B作于N,过点D作于M,,,,,,答:CD的长为【解析】利用锐角三角函数可求CF的长,即可求解;由锐角三角函数可求CN的长,由线段和差关系可求MN的长,CM的长,由锐角三角函数可求CD的长.本题考查了解直角三角形的应用,解题的关键是正确构造直角三角形.23.【答案】解:由题意得:,函数的关系式为:;由题意得:,,,,解得,不符合题意,舍去,答:当销售单价为55元时,销售这种童装每月可获利1800元.设每月获得的利润为w元,由题意得:,,当时,w随x的增大而增大,,当时,,答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【解析】本题考查了一次函数、一元二次方程、二次函数在实际问题中的应用,具有较强的综合性.当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件,从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;利用售价-进价乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;由方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取得最大利润时的x值及最大利润.24.【答案】证明:连接AE,是的直径,,,,,,即是的直径,直线BF是的切线;解:过C作于H,,的直径为4,,,,,,,∽,,,,,,【解析】本题考查了切线的判定与性质、勾股定理、圆周角定理、相似三角形的判定和性质、锐角三角函数的定义等知识点、正确的作出辅助线是解题的关键.连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明,于是得到结论;过C作于H,根据勾股定理得到,根据相似三角形的性质得到,根据三角函数的定义即可得到结论.25.【答案】解:在中,令,得,令,得,把,,代入,得,解得抛物线得解析式为如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F轴,,即设D点的坐标为,则,,,即解得舍去,当时,点D的坐标为当BO为边时,,设,解得,,当BO为对角线时,OB与EF互相平分过点O作,直线交抛物线于点和求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或点的坐标为或或或或【解析】求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.本题考查了待定系数法,2倍角关系和平行四边形点存在类问题,将2倍角关系转化为等角关系是问题的解题关键,根据平行四边形的性质,以OB为边和对角线是问题的解题关键,本题综合难度不大,是一道很好的压轴问题.。

华东师大版2024届九年级上学期期末综合培优检测数学试卷(含答案)

华东师大版2024届九年级上学期期末综合培优检测数学试卷(含答案)

2023-2024学年华东师大版数学九年级上册期末综合培优检测试题一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,选出符合题目要求的一项。

1.下列二次根式是最简二次根式的是( )A. B. C. D.2.计算的结果是( )A. B. C. D.3.用配方法解方程时,下列配方错误的是( )A. 化为B. 化为C. 化为D. 化为4.关于的方程有实数根,则的取值范围是( )A. B. C. 且 D. 且5.如图,在等腰三角形中,,图中所有三角形均相似,其中最小的三角形面积为,的面积为,则四边形的面积是( )A. B. C. D.6.如图,四边形中.,,为的平分线,,,分别是,的中点,则的长为( )A. B. C. D.7.如图,点,,在正方形网格的格点上,则等于( )A. B.C. D.8.若和两点关于轴对称,则的值是( )A. B. C. D.9.如图,我市在建高铁的某段路基横断面为梯形,长米,坡度为:,的坡度为:,则长为米.( )A. B. C. D.10.用如图所示的两个转盘分别进行四等分和三等分,设计一个“配紫色“的游戏,任意转动两个指针,当指针停止,分别指向红色和蓝色时称为配紫色成功则能配紫色成功的概率为( )A. B. C. D.11.如图所示,有一天桥高为米,是通向天桥的斜坡,,市政部门启动“陡改缓”工程,决定将斜坡的底端延伸到处,使,则的长度约为参考数据:,( )A. 米B. 米C. 米D. 米12.如图,矩形的顶点,,,将矩形以原点为旋转中心,顺时针旋转之后,点的坐标为( )A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

13.若、为实数,且,则______.14.设、为关于的方程的两个实数根,则______ .15.如图,于点,于点,,当时,∽.16.如图,已知点,,以点为位似中心,按:的比例把缩小,则点的对应点的坐标为___________17.如图,在一笔直的海岸线上有相距的,两个观测站,站在站的正东方向上,从站测得船在北偏东的方向上,从站测得船在北偏东的方向上,则船到海岸线的距离是.三、计算题:本大题共2小题,共16分。

九年级数学上册培优题一元二次方程

九年级数学上册培优题一元二次方程

一元二次方程一、选择题1、一元二次方程042=++c x x 中,c >0,该方程的根的情况是: ( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .不能确定2、如果关于x 的方程 kx 2 -2x -1=0有两个实数根,那么k 的取值范围是 ( )A .01≠-≥k k 且B .01≠->k k 且C .1≥kD .1>k3、下列方程中,无实数根的方程是( )A .012=+xB . 02=+x xC . 012=-+x xD . 02=-x x4、k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是( )A .有两个不相等的实数根;B ..有两个相等的实数根;C .没有实数根;D .无法确定.5、关于x 的方程(3-a )x 2-2x +1=0有实数根,则a 满足 ( )A . a ≠3B . a ≥2C . a >2且a ≠3D . a ≥2且a ≠37、关于x 的方程(a -5)2x -4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a≥1且a ≠5D .a ≠58、一元二次方程042=-x 的解是( ).A .2,221-==x xB .2-=xC .2=xD .0,221==x x7、已知方程x 2-3 2 x +1=0,求作一个一元二次方程使它的根分别是原方程各根的倒数,则这个一元二次方程是( )A .x 2+3 2 x +1=0B .x 2+3 2 x -1=0C .x 2-3 2 x +1=0D .x 2-3 2 x -1=08、m 是方程x 2+x -1=0的根,则式子m 3+2m 2+2009的值为( )A .2008B .2009C .2010D .20119.若a 为方程100)17(2=-x 的一根,b 为方程(y -3)2=17的一根,且a 、b 都是正数,则a -b 的值为( )A .13B .7C . -7D . -1310、若关于x 的一元二次方程0)1(22=-+-k x x k 的一个根为1,则k 的值为 ( )A .-1B .0C .1D .0或111、用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B . (x -1)2=6C . (x +2)2=9D . (x -2)2=912、已知m 是方程x 2-2x -5=0的一个根,则2m 2-4m 的值是A .5B .10C .-5D .-1013、一元二次方程x 2=2x 的根为( )A .2=xB .0=xC .2±=x D. 2,021==x x14、一元二次方程042=-x 的解是( ).A .2,221-==x xB .2-=xC .2=xD .0,221==x x15、方程032=-x 的根是 ( )A .3=xB .3,321-==x xC .3=x D .3,321-==x x 16、一元二次方程032=-x x 的解是( )A .0=xB .31,321==x x C .0,321==x x D .0=x 17、方程12)12(-=-x x x 的解是 ( )A .21=xB . 31,021==x xC . 21,021==x x D . 1=x 18、已知一元二次方程2x 2+5x -1=O 的两根为( )A .25 B . 25- C . 21 D . 21- 19、根据下列表格中的对应值,•判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或220、下列哪一个数与方程1693=-x 的根最接近( )A .2B .3C .4D .521、商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A .256)1(2892=-xB .289)1(2562=-xC .256)21(289=-xD .289)21(256=-x22、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x 名学生,根据题意,列出方程为( )A .2450)1(=-x xB . 2450)1(=+x xC . 2450)1(2=+x xD . 23、 下列命题:①若b =2a +21c ,则一元二次方程02=++c bx ax 必有一根为-2; ②若ac<0,则方程02=++a bx cx 有两个不等实数根;③若042=-ac b ,则方程02=++a bx cx 有两个相等实数根.其中正确的个数是( )A .O 个B .l 个C .2个D .3 个21、设a ,b 是方程020092=-+x x 的两个实数根,则b a a ++22的值为( )A .2006B .2007C .2008D .2009 22、若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .024、下列方程是关于x 的一元二次方程的是( ) x 6.17 6.18 6.19 6.20 y=ax 2+bx +c 0.02 -0.01 0.02 0.04 24502)1(=-x xA .02=xB .2)1(x x x =-C .12=x xD .1)1(2=-x 25、若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .426、已知1=x 是关于x 的一元二次方程01)1(22=-+-x k x k 的根,则常数k 的值为___.27、用配方法解方程x 2+x -1=0,配方后所得方程是( )A .(x -12)2=34B .(x +12)2=34C .(x +12)2=54D .(x -12)2=54 28、一元二次方程x 2=2x 的根为( )A .2B .OC .l 或2D .O 或229、对于一元二次方程ax 2+bx +c =O(a ≠0),下列说法:①若c +c =-1,则方程ax 2+bx +c =O 一定有一根是x =1;②若c =a 3,b =2a 2,则方程ax 2+bx +c =O 有两个相等的实数根;③若a <0,b <0,c >0,则方程cx 2+bx +a =0必有实数根;④若ab-bc =0且c <-l ,则方程cx 2+bx +a =0的两实数根一定互为相反数.其中正确的结论是( )A .①②③④B .①②④C .①③D .②④30、已知x =2是关于x 的一元二次方程ax 2-3bx -5=0的一个根,则4a -6b 的值是( )A .4B .5C .8D .1031、对于一元二次方程ax 2+bx +c =O(a ≠0),下列说法:①若a +c =0,方程ax 2+bx +c =O 必有实数根;②若b 2+4ac <0,则方程ax 2+bx +c =O 一定有实数根;③若a -b +c =0,则方程ax 2+bx +c =O 一定有两个不等实数根;④若方程ax 2+bx +c =O 有两个实数根,则方程cx 2+bx +a =0一定有两个实数根.其中正确的是( )A .①②B .①③C .②③D .①③④32、下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是( )A .0122=-+x xB .01442=+-x xC .032=+-x xD . 042=+x二、填空题1、已知关于x 的方程x 2+kx -3=0一个根是-2,则k 的值为 .2、已知m 、n 是方程020*******=+-x x 的两根,则)20052004(2+-n n 与)20052004(2+-m m 的积是3、把)14(2+-x x 化为k h x ++2)((其中h 、k 是常数)的形式是 __4、方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 2-1)=5、若方程04)(3)(22222=-+++y x y x ,则=+22y x . 6、方程x x =-2的解是 .7、若方程0522=--kx x 的一个根是-1,则k = .8、已知m ,n 是方程0122=--x x 的两根,且8)763)(42(22=--+-n n a n m ,则a 的值等于 .9、等腰△ABC 两边的长分别是一元二次方程0652=+-x x 的两个解,则这个等腰三角形的周长是10、已知x =2是方程02232=-a x 的一个根,则2a +1= . 11、解方程:x 2=3x ,x = .12、已知关于x 的一元二次方程,(m -1)x 2+x +1=0,有实数根,则m 的取值范围是 .13、已知关于x 的一元二次方程ax 2-5x +1=0有两个不相等的实数根,则a 的取值范围是_____.14、拟已知关于x 的一元二次方程02)1(2=+--x k x k 有解,求k 的取值范围 .三、解答题1、已知:关于x 的方程041)1(22=++-m x m x (1)当m 取何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使得方程有两个不相等的整数根,并求出这两个根。

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案一、锐角三角函数1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBDS ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,∵1EBDS MES EB=V ,∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =,∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.5.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值. 【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解. 试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE ∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=3OB∵BD=DC, BF=FD,∴FC=3BF=33OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC=3xm,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+203∵∠MCF=30°∴FC=3MF,即x+203=3 ( x-20)解得:x=403 31=60+203≈95m答:电视塔MN的高度约为95m.【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

九年级数学上培优试题

九年级数学上培优试题

九年级数学上培优试题(一)一、 选择题(每小题3分,共30分)1.下列说法不正确的是( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 2.(2011年江苏无锡)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 3.(2012年湖南张家界)顺次连接矩形四边中点所得的四边形一定是( ) A .正方形 B .矩形 C .菱形 D .等腰梯形4.(2012年江苏宜昌)如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D . 55.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是( )A .2B .4C . 2 3D .4 3 6.(2013年陕西)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为() A .75° B .65° C .55° D .50°7.(2013年江苏苏州)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )A . 4B . 6C . 8D . 108.(2013山东泰安)如图,在矩形ABCD 中,AB=2,BC=4, 对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接 CE ,则CE 的长为( )A. 3B.3.5C.2.5D.2.8 9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A . B . C . D .DCBA(1) (2)10.(2013山西)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A .B .C .D .二、填空题(每小题3分,共24分)11.(2011年江苏淮安)在四边形ABCD 中,AB =DC ,AD =BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是___ _______(写出一种即可).12.(2011年江苏南京)如图,菱形ABCD 的边长是2 cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为___ _____cm 2.13.(2012年吉林长春)如图, ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,若△ACD 的面积为3,则图中阴影部分两个三角形的面积和为_ _____.第9题图第5题图第4题图 第6题图第7题图 ABCDE O第8题图第12题图第13题图14.(2013贵州省毕节市)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。

人教版九年级数学上册 商品利润问题 章节培优训练试卷(含解析)

人教版九年级数学上册 商品利润问题  章节培优训练试卷(含解析)

人教版九年级数学章节培优训练试卷班级姓名第二十二章二次函数22.3 实际问题与二次函数第2课时商品利润问题一、选择题1.“星星书店”出售某种文具盒,若每个可获利x元,一天可售出(8-x)个.当一天出售该种文具盒的总利润y(元)最大时,x的值为( )A.1B.2C.3D.42. 某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售单价为25元时平均每天能售出8件,销售单价每降低2元,平均每天能多售出4件,若销售单价不低于15元,且不高于25元,为使该服装店平均每天的销售利润最大,则销售单价应定为( )A.21元B.22元C.23元D.24元3. 某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x(元)之间满足函数关系式y=-5x+550,若要求销售单价不得低于成本,为了每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( )A.90元,4 500元B.80元,4 500元C.90元,4 000元D.80元,4 000元4.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,则最大利润是( )A.180元B.220元C.190元D.200元5.“燎原书店”销售某种中考复习资料,若每本可获利x元,一天可售出(200-10x)本,则该书店出售该种中考复习资料的日利润最大为( )A.500元B.750元C.1 000元D.4 000元二、填空题6.某高档游泳健身馆每人每次游泳健身的票价为80元,每日平均客流量为136人,为了促进全民健身运动,游泳馆决定降价促销,经市场调查发现,票价每下降1元,每日游泳健身的人数平均增加2人.当每日销售收入最大时,票价下调元.7.学子书店购进了一批单价为20元的中华传统文化丛书.在销售的过程中发现,这种图书每天的销售数量y(本)与销售单价x(元)满足一次函数关系:y=-3x+108(29≤x≤36).如果销售这种图书每天的利润为p(元),那么在这种关系下销售单价定为元时,每天获得的利润最大.8.某市的一种特产由于运输问题,长期只能在当地销售,该市政府对(x-该特产的销售投资与收益的关系:每年投资x万元,可获利P=-1100 60)2+46(单位:万元),每年最多投入100万元的销售投资,则5年所获利润的最大值为.三、解答题9.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?10.某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价为16万元.当每辆售价为22万元时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用y1(万元)与月销售量x(辆)(x≥4)满足某种函数关系的五组对应数据如下表:x 4 5 6 7 8y10 0.5 1 1.5 2(1)请你根据所给材料和初中所学的函数知识写出y1与x的关系式:y1= ;(2)每辆原售价为22万元,不考虑其他成本,降价后每月销售利润y=(每辆原售价-y1-进价)x,请你根据上述条件,求出月销售量x(x≥4)为多少时,销售利润最大,最大利润是多少?11.鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当每间房价定为多少元时,宾馆每天所获利润最大?最大利润是多少元?12.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量为多少吨时,所获销售利润最大?最大销售利润是多少万元?(销售利润=销售收入-总支出).答案全解全析一、选择题1.答案 D 由题意可得y=(8-x)x ,即y=-x 2+8x ,当x=-82×(-1)=4时,y 有最大值,即当x=4时,一天出售该种文具盒的总利润y(元)最大.故选D.2.答案 B 设销售单价为x 元,每天的销售利润为y 元,根据题意,得y=(x-15)[8+2(25-x)]=-2x 2+88x-870=-2(x-22)2+98,∵-2<0,∴抛物线开口向下,∵15≤x≤25,∴当x=22时,y 最大值=98.故选B.3.答案 B 设每月总利润为w 元,依题意得w=y(x-50)=(-5x+550)(x-50)=-5x 2+800x-27 500=-5(x-80)2+4 500,∵-5<0,∴此图象开口向下,∵y>0,x≥50,∴50≤x<110,∴当x=80时,w 有最大值,为4 500,∴为了每月所获利润最大,该商品销售单价应定为80元,每月最大利润是4 500元.故选B.4.答案 D 设y 与x 之间的一次函数关系式为y=kx+b ,由图象可知{20k +b =20,30k +b =0,解得{k =-2,b =60,∴y=-2x+60.设销售利润为p 元,根据题意得,p=(x-10)y=(x-10)(-2x+60)=-2x 2+80x-600,∵-2<0,∴p 有最大值,当x=-80-2×2=20时,p 最大值=200,即当销售价为20元/千克时,每天可获得最大利润200元.故选D.5. 答案 C 设日利润为y 元,由题意得y=(200-10x)x=-10(x-10)2+1 000,∴当x=10时,y 有最大值1 000,即一天出售该种中考复习资料的日利润最大为1 000元. 二、填空题6.答案 6解析 设票价下调x 元,每日销售收入为w 元,由题意得w=(2x+136)(80-x)=-2x 2+24x+10 880=-2(x-6)2+10 952.∵-2<0,∴当x=6时,w 的值最大,∴当每日销售收入最大时,票价下调6元. 7.答案 29解析 p=(x-20)(-3x+108)=-3x 2+168x-2 160=-3(x-28)2+192,∵-3<0,∴x>28时,p 随x 的增大而减小,∵29≤x≤36,∴当x=29时,p 有最大值,最大值为189.8. 答案 230万元 解析 ∵P=-1100(x-60)2+46,0<x≤100,∴当x=60时,P 取最大值46,∴5年所获利润的最大值为46×5=230万元. 三、解答题9.解析 (1)根据题意,y=300-10(x-60), ∴y 与x 的函数表达式为y=-10x+900. (2)设每个月的销售利润为w 元,由(1)知w=(x-50)y=-10x 2+1 400x-45 000, ∴w=-10(x-70)2+4 000,∴每件销售价为70元时,每个月的销售利润最大,最大利润为4 000元.10.解析 (1)由题意可知:y 1与x 成一次函数关系, 设y 1=kx+b(k≠0),∵x=4时,y 1=0,x=6时,y 1=1, ∴{4k +b =0,6k +b =1,解得{k =12,b =-2,∴y 1=12x-2(x≥4).(2)由(1)得y 1=12x-2(x≥4),∴y=[22-(12x -2)-16]x=-12x 2+8x=-12(x-8)2+32,∵-12<0,∴y 有最大值,x=8时,y 最大值=32.答:月销售量x 为8时,销售利润最大,最大利润为32万元. 11.解析 (1)由题意,设y 关于x 的函数解析式为y=kx+b(k≠0), 把(280,40),(290,39)代入,得 {280k +b =40,290k +b =39,解得{k =-110,b =68,∴y 与x 之间的函数解析式为y=-110x+68(200≤x≤320).(2)设宾馆每天的利润为w 元,则w=(x-20)y=(x-20)(-110x +68)=-110x 2+70x-1 360=-110(x-350)2+10890, ∵-110<0,∴当x<350时,w 随x 的增大而增大, ∵200≤x≤320,∴当x=320时,w 取得最大值,最大值为10 800.答:当每间房价定为320元时,宾馆每天所获利润最大,最大利润是10 800元.12.解析 (1)设y 与x 之间的函数关系式为y=kx+b , 将(20,15),(30,12.5)代入,得 {20k +b =15,30k +b =12.5,解得{k =-0.25,b =20, ∴y 与x 之间的函数关系式为y=-0.25x+20. (2)P=(1-20%)xy=0.8(-0.25x+20)x=-0.2x 2+16x ,∴P与x之间的函数关系式为P=-0.2x2+16x.(3)设销售利润为W万元,∴W=P-6.2x-m=-0.2x2+16x-6.2x-(50+0.2x),化简,得W=-0.2x2+9.6x-50,整理,得W=-0.2(x-24)2+65.2,∵-0.2<0,∴当x=24时,W有最大值,为65.2,∴原料的质量为24吨时,所获销售利润最大,最大销售利润是65.2万元.。

11.黄金分割九年级数学下册培优训练含答案

11.黄金分割九年级数学下册培优训练含答案

黄金分割九年级数学下册 培优训练一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( ) A .(757+)cm B .(2175-)cm C .(757-)cm D .(7521-)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( )A .51cm -B .()251cm -C .()451cm -D .()651cm - 7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___ ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少_______m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于_______.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC =16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”) 17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.19、如图所示,矩形ABCD 是黄金矩形(即BC AB =215 ≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .黄金分割九年级数学下册 培优训练(答案)一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .解:设AB 为1,AP 为x ,则BP 为1﹣x ,∵AP 2=BP •AB ,∴x 2=(1﹣x )×1解得x 1=,x 2=(舍去).∴AP :AB =. 故选:A .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .解:∵C 是线段AB 的黄金分割点C ,AC >CB ,∴AC =AB =,故选:C .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( B )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有; ②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个【解答】①如果线段d 是线段a ,b ,c 的第四比例项,则有;说法正确; ②如果点C 是线段AB 的中点,≠,故AC 不是AB 、BC 的比例中项;说法错误;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;说法正确;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1;说法正确;综上可得:①③④正确,共3个.故选:C .5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( A )A .(757)cmB .(215-C .(757)cmD .(521)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( C )A .512cmB .)251cmC .()451cmD .)651cm7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个【解析】∵矩形ABCD 是黄金矩形.点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,∴图中黄金矩形有矩形AEGH ,矩形GHFB ,故选:C .8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【解析】由扇子的圆心角为x °,余下扇形的圆心角为y °,黄金比为0.6,根据题意得:x :y=0.6=3:5,又∵x+y=360,则x=360×=135,故选:B.9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( C )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( D )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___23 ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .【解答】解:根据黄金分割定义,得AP 2=AB •BP4=(BP +2)•BPBP 2+2BP ﹣4=0解得BP =﹣1±(﹣1﹣舍去)∴BP =﹣1 故答案为﹣1.13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少__7.6 _____m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于___3.7 ____.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC = 252-或625-16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”)【解答】解:∵P 是线段AB 的黄金分割点,且PA >PB ,∴PA 2=PB •AB , 又∵S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,∴S 1=PA 2,S 2=PB •AB ,∴S 1=S 2.故答案为:=.17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = 458- .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.解:(1)∵C 是线段AB 的黄金分割点∴BC 2=AC •AB,∵D,E 分别是AC,BC 的中点,∴CD=21AC,CE=21BC,DE=21AB, ∴CE 2=DC •DE, ∴C 是线段DE 的黄金分割点 (2)∵BC=215-AB=50(5-1),∴AC=100-50(5-1)=150-505, ∵D 是AC 的中点, ∴DC=(75-255)cm19、如图所示,矩形ABCD 是黄金矩形(即BCAB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【解析】矩形ABFE 是黄金矩形.理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .解:(1)(2)CM=AB。

九年级数学培优3(有答案)

九年级数学培优3(有答案)

九年级数学培优33、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B )A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切B 、外切C 、内切或外切D 、不能确定11、若|x|=x ,则-x 一定是( D )A 、正数B 、非负数C 、负数D 、非正数 若|x|=x,则X 是零或正数, -X 则为零或负数,即为非正数。

所以,要选D 。

12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为024、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤3228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129.下列图形中既是中心对称图形,又是轴对称图形的是( A ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形 29、已知dcb a =,下列各式中不成立的是( C ) A 、dc b ad c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc39.△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( D ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于638、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则(C ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于642、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C ) A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B ) A 、1个 B 、2个 C 、3个 D 、无数个 49、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个14、(2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( C )39.已知二次函数c bx ax y ++=2的图象如图所示,下列结论:①0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期末总复习卷(一)
一、填空题
1.如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()
①∠1=∠A,②CD DB
AD CD
=,③∠B+∠2=90°,
④BC∶AC∶AB=3∶4∶5,⑤AC BD AC CD
⋅=⋅.
A.1 B.2 C.3 D.4
2.下列多边形中,不能够单独铺满地面的是()
A.正三角形B.正方形C.正五边形D.正六边形
3.如图,在四边形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB、BC、CD、DA的中点,则下列结论一定正确的是()
A.∠HGF = ∠GHE B.∠GHE = ∠HEF
C.∠HEF = ∠EFG D.∠HGF = ∠HEF
4.五边形的外角和等于()
A.180°B.360°C.540°D.720°
5.正八边形的内角和是
A.720°B.900°C.1 080°D.1 440°
6.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA',则点A'的坐标为()
A.(3,-6) B.(-3,6) C.(-3,-6) D.(3,6)
7.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与直线AB有交点,则k的值不可能是()
A.-5 B.-1
3
C.3 D.5
8.如图,表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10.若此钟面显示3点45分时,A点距桌面的高度为16,则钟面显示3点50分时,A点距桌面的高度为()
A.22-B.16π
+C.18 D.19
9.已知
1
8
x
x
-=,则2
2
1
6
x
x
+-的值是
A.60 B.64 C.66 D.72
10.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(3y3)三点,则y1、y2、y3的大小关系是
A.y1>y2>y3B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y2
二、填空题
11.已知∠1=33°,则∠1的余角是度.
12.把抛物线2x
y=向右平移3个单位,再向上平移2个单位,得到的抛物线的解析式是.13.如图,在△ABC中,∠ABC、∠ACB的角平分线相交于点O,过点O作DE∥BC且分别交AB、AC于点D、E,AB=8,AC=6,则△ADE的周长是.
14.如图,货轮在海上以20海里/时的速度由B向C航行,在B处测得灯塔A的方位角为北偏东70°,测得C处的方位角为南偏东35°,航行3小时后到达C处,在C处测得A的方位角为北偏东10°,则C到A的距离是海里.
15.如图,点A在双曲线
1
y
x
=上,点B在双曲线
3
y
x
=上,且AB∥x轴,C、D在x轴上,
若四边形ABCD为矩形,则它的面积为.
16.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为___________.17.如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为.
18.如图,已知⊙P 的半径为1,圆心P 在抛物线2112
y x =
-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为
19.在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB =OB =4,则AD =.
20.如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是.
三、解答题
21.计算:1012cos30(3)2π-⎛⎫-+- ⎪⎝⎭

22.先化简,再求值:(x +1)2-(x +2)(x -2)<x x 是整数.
23.又到了暑假,学校组织老师分别到A 、B 、C 、D 四地旅游,学校按老师数量购买了前往
各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D 地的车票占全部车票的10%,
请求出D 地车票的数量,并补全统
计图;
(2)若学校采用随机抽取的方式分发车票,
每人抽取一张(所有车票的形状、大
小、质地完全相同且充分洗匀),那
么张老师抽到去A 地的概率是多少?
(3)若有一张车票,王老师和李老师都想要,
决定采取抛掷一枚各面分别标有1、2、
3、4的正四面体骰子的方法来确定,具体规则是:每人各抛掷一次,若王老
师掷得着地一面的数字比李老师掷得着地一面的数字小,车票给王老师,否则给李老师.试用列表或画树状图的方法分析,这个规则对双方是否公平?
24.在东西方向的海岸线l 上有一长为1 km 的码头MN (如图),在码头西端M 的正西14.5
km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A
的北偏西30°,且与A 相距30 km 的B 处;经过1小时20分钟,
又测得该轮船位于A 的北偏
东60°,且与A 相距的C 处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否
正好行至码头MN靠岸?请说明理由.
25.已知抛物线21
=+-经过点(10)
y ax bx
A-,、
m>),且与y轴交于点C.
(0)
B m,(0
(1)求a、b的值(用含m的式子表示);
(2)如图所示,⊙M过A、B、C三点,求阴影部分
扇形的面积S(用含m的式子表示);
(3)在x轴上方,若抛物线上存在点P,使得
以A、B、P为顶点的三角形与△ABC相
似,求m的值.
26.如图所示,抛物线与x轴交于A(-1,0)、B(2,0)两点,与y轴交于C(0,-2).以AB为直径作⊙M,过AC作直线,P为抛物线上一动点,过点P作PQ∥AC交y轴于Q点.
(1)求抛物线所对应的函数的解析式及直线AC的解析式;
(2)当P点在抛物线上运动时,直线PQ与抛物线只有一个交点,求交点的坐标;
(3)D是⊙M上一点,连接AD和CD,当△ACD的面积最大时,求D点的坐标,此时△ACD的面积是多少?。

相关文档
最新文档