实数集确界原理
《数学分析》第七章 实数基本定理
第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
1.1实数,1.2数集.确界原理
例2
证明数集
S
n2 1 2n3
n
N
+
有界.
证
n N+ ,
n2 1 2n3
n2 2n3
1 2n3
1 1 1, 22
因此 S 有界.
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其 中最小的一个具有重要的作用. 最小的上界称为 上确界. 同样, 若S 有下界, 则最大的下界称为下 确界.
2. 有限小数 x a0 .a1a2 ak (其中ak 0), 又可表示为 x a0 .a1a2 ak1(ak 1)99 a0 .a1a2 ak1(ak 1)9 .
若实数都用无限小数表示,则表达式是唯一的.
即: 若 x a0 .a1a2 an ,
y b0 .b1b2 bn ,
反之, 任何一实数也对应数轴上一点.
2.实数集与数轴上点的一一对应关系反映了实数的
完备性. 我们将在后面有关章节中作进一步讨论.
八、实数的绝对值与三角形不等式
1. 实数 a 的绝对值 | a | 定义为:
|
a
|
a, a,
a0 a0
.
2. 实数的绝对值性质: (1) | a || a | 0; 当且仅当 a 0 时 | a | 0.
例1 证明数集 S {2n | n N } 无上界, 有下界. 证 取 L = 1, 则 x 2n S, x L, 故 S 有下界.
M R, 若 M 1, 取 x0 21 M;若 M 1,
取 x0 2[M ]1 [M ] 1 M , 因此 S 无上界.
实数的连续性公理证明确界存在定理
实数的连续性公理证明确界存在定理定理一实数基本定理(戴德金实数连续性定理)实数系R按戴德金连续性准这是连续的,即对R的任意分划A|B,都存在唯一的实数r,它大于或等于下类A的每一实数。
小于或等于上类B中的每一个实数。
定理二单调有界有极限单调上升(下降)有上(下)界的数列必有极限存在。
定理三确界定理在实数系R内,非空的有上(下)界的数集必有上(下)确界存在。
定理四区间套定理设是一个区间套,则必有唯一的实数r,使得r包含在所有的区间套里,即。
定理五 Borel有限覆盖定理实数闭区间的任一个覆盖E,必存在有限的子覆盖。
定理六 Bolzano-Weierstrass紧致性定理有界数列必有收敛子数列。
定理七 Cauchy收敛原理在实数系中,数列有极限存在的充分必要条件是:任给>0,存在N,当n>N,m>N时,有。
定理一—三是对实数连续性的描述,定理四—定理六是对实数闭区间的紧致性的描述,定理七是对实数完备性的描述。
上述七个定理都描述了实数的连续性(或称完备性),它们都是等价的。
下面给出其等价性的证明:定理一定理二:设数列单调上升有上界。
令B是全体上界组成的集合,即B= ,而A=R\B,则A|B是实数的一个分划。
事实上,由有上界知B不空。
又单调上升,故,即A不空。
由A=R\B知A、B不漏。
又,则,使,即A、B不乱。
故A|B是实数的一个分划。
根据实数基本定理,存在唯一的使得对任意,任意,有。
下证。
事实上,对,由于,知,使得。
又单调上升。
故当n>N时,有。
注意到,便有。
故当n>N时有,于是。
这就证明了。
若单调下降有下界,则令,则就单调上升有上界,从而有极限。
设极限为r,则。
定理二证完。
定理二定理三:只需证明在实数系R内,非空的有上界的数集必有上确界存在。
设数集X非空,且有上界。
则,使得对,有。
又R是全序集,对,与有且只有一个成立。
故,有与有且只有一个成立。
故r是X的上界与r不是X的上界有且只有一个成立。
课题:实数完备性问题与确界原理
课题:实数完备性问题与确界原理(一)引入主题数学分析研究的基本对象是定义在实数集上的函数.为此,先来讨论实数.我们在中学数学中已经知道实数由有理数与无理数两部分组成,并知道实数有如下一些主要性质:1.实数集R 对加、减、乘、除 ( 除数不为0 ) 四则运算是封闭的,即任意两个实数的和、差、积、商 ( 除数不为0 ) 仍然是实数.2.实数集是有序的,即任意两实数 必满足下述三个关系之一:b a ,b a b a b a >=<,,.3. 实数的大小关系具有传递性,即若 ,则有 .4.实数具有阿基米德(Archimedes)性,即对任何 c b b a >>,c a >R ∈b a ,,若 ,则存在正整数 ,使得 .5.实数集0>>a b n b na >R 具有稠密性,即任何两个不相等的实数之间必有另一个实数, 且既有有理数,也有无理数.6.如果在一直线(通常画成水平直线)上确定一点 O 作为原点,指定一个方向为正向( 通常把向右的方向规定为正向 ),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着1-1对应关系.提问: 在出现了无理数的情形下,你们对以上性质有什么疑问? ( 要善于提出疑问!请作简短讨论 )总结: 至少有三处存疑——1) 对于无理数(无限十进不循环小数),如何进行性质1中所说的四则运算?2)在性质2、3、4中出现了比较大小关系的不等式,然而如何对无理数进行大小比较呢?3)在性质6中所说的:“数轴上的每一点也都唯一地代表一个实数”,为什么一定是这样? 为什么在数轴上除实数点外不再有别的空隙?( 这就是实数的完备性,是实数与有理数的根本区别.)这些问题正是我们数学专业的学人必须正视的、不可回避的根本问题, 也就是这一单元教学的主题.( 其中第一个问题这里不去说它,有兴趣的同学可以去细心阅读课本第299-302页上的七、八两段. )(二) 比较实数大小的一种方法先把有限小数( 包括整数 )也表示为无限小数,使得实数有统一的表示形式. 为此作如下规定:对于正有限小数n ( 其中 ,a a a a x L 210.=90≤≤i a ,,,2,1n i L =0,0a a n ≠为非负整数 ),记L L 9999)1(.210−=n a a a a x ;而当为正整数时,则记0a x =L 9999.)1(0−=a x .例如把 2 记为1.999 9 …,把2.001 记为2.000 999 9 ….对于负有限小数,则先将正数 -表示为无限小数,再在所得无限小数之前加负号.例如把 –8.06 记为 -8.059 999 ….y y 规定整数0表示为 0.000 0 ….于是,任何实数都可用一个确定的无限小数来表示 ,并可用来定义两个实数的大小关系.定义1 给定两个非负实数L L L L n n b b b b y a a a a x 210210.,.==,其中为非负整数,.若有,00,b a 90,90,),2,1(,≤≤≤≤=k k k k b a k b a 为整数L L ,2,1,0,==k b a k k 则称 x 与 相等,记为 y y x = ; 若 或存在非负整数 ,使得00b a >l 11),,2,1,0(,++>==l l k k b a l k b a 而L ,则称 x 大于或小于x ,分别记为 x > 或 < x .对于负实数 x 、 ,若按上述规定分别有 , 则分别称y y y y y y x y x −>−−=−与y x = 与 .另外,自然规定任何非负实数大于任何负实数.为了进一步能用有限小数来比较两个实数的大小, 需要引入实数的不足近似与过剩近似.)(x y y x ><或 定义2 设为非负实数.我们把有限小数L L n a a a a x 210.=n n a a a a x L 210.=, n = 0, 1, 2,L 称为实数x 的n 位不足近似 ;而把有限小数n n n x x −+=10, n = 0, 1, 2,L称为x 的 n 位过剩近似 。
实数完备性的六大基本定理的相互证明
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
确界原理的证明
确界原理的证明在现代数学中,确界原理是一条基本的原理,也被称为实数完备性原理或连续性公理。
该原理指出,非空有上界的实数集合必定存在上确界,以及非空有下界的实数集合必定存在下确界。
为了证明确界原理,我们需要引入实数的基本性质和定义。
首先,我们需要了解实数的有序性质。
实数集合R中的任意两个不相等的元素a和b,必然满足以下三种情况之一:a<b,a=b,或者a>b。
这个性质被称为实数的全序性。
接下来,我们定义了实数集合中的上界和下界。
对于一个实数集合S,如果存在一个实数M,使得对于集合中的任意元素s,都有s≤M,则M被称为S的上界。
类似地,如果存在一个实数m,使得对于集合中的任意元素s,都有s≥m,则m被称为S的下界。
有了上界和下界的概念,我们可以开始证明确界原理。
首先,我们考虑有上界的实数集合S。
假设S是一个非空的实数集合,且存在一个实数M,使得对于集合中的任意元素s,都有s≤M。
我们需要证明存在一个实数M',满足M'是S的上确界。
我们分两步进行证明:第一步,我们需要证明存在一个实数M',使得M'是S的一个上界。
根据S的定义,我们知道存在一个实数M,使得对于集合中的任意元素s,都有s≤M。
所以M是S的一个上界。
换句话说,M是一个满足S的上界定义的实数。
第二步,我们需要证明若M'是一个比M更小的上界,则M'不能是S的上确界。
假设存在一个实数M',满足M'<M,且M'也是S的一个上界。
根据实数的全序性,我们可以找到一个介于M'和M之间的实数M",使得M'<M"<M。
由于M"介于M'和M之间,所以对于集合中的任意元素s,都有s≤M"。
然而,这与M是S的上界的定义相矛盾。
所以假设不成立,即不存在一个比M更小的上界。
综上所述,我们证明了有上界的实数集合必定存在上确界。
确界原理证明区间套定理
确界原理证明区间套定理区间套定理也称闭区间套定理,是实数中的一个非常重要的定理,它为实数序列的收敛性提供了一个有效的判定准则。
在证明区间套定理之前,我们首先需要了解确界原理。
确界原理(或称最大最小值定理)是关于实数集合的重要定理,它告诉我们,非空有上界的实数集合必定有上确界,也就是存在一个最小的上界,记为sup(A)。
类似地,非空有下界的实数集合必定有下确界,记为inf(A)。
确界原理是实数的一个基本性质,是我们研究实数性质的基础。
现在我们来证明区间套定理。
假设我们有一列区间[a1, b1],[a2, b2],[a3, b3],...,其中ai≤bi(i=1, 2, 3, ...)。
我们要证明存在一个实数x,它属于所有这些区间,也就是说对于任意的i,x属于区间[ai, bi]。
证明方法如下:1. 首先,我们观察到这些区间是递减的,也就是说对于任意的n,有bn≥bn+1、这是因为当n增加时,an是递增的,同时bn是递减的。
我们可以通过归纳法证明这一点:对于n=1,我们有b1≥b2,这是显然成立的。
假设对于n=k,有bk≥bk+1,那么我们可以证明对于n=k+1,有bk+1≥bk+2、根据区间的定义,bk≥ak+1,同时bk+1≥bk+1,所以bk≥bk+1、因此这个性质成立。
2. 接下来,我们证明这些区间是有界的。
由于这些区间是递减的,所以对于所有的n,有ak≤ak+1≤...≤an≤bn≤bn-1≤...≤b1、也就是说,[a1, b1]是一个紧区间,而[a1, b2],[a1, b3],...等等都是[a1,b1]的子集,所以它们也是紧区间。
根据闭区间套定理,这些区间都有交集。
3. 最后,我们要证明这些区间的交集不为空。
我们假设交集为空,也就是说对于一些i,[ai, bi]与[ai+1, bi+1]没有非空交集。
根据确界原理,这意味着bi≤ai+1,而这与条件ai≤bi相矛盾。
因此,这个假设是错误的,这些区间的交集不为空。
关于实数完备性的6个基本定理
1. 确界原理; 2. 单调有界定理; 3. 区间套定理; 4. 有限覆盖定理; 5. 聚点定理; 6. 柯西收敛准则; 在实数系中这六个命题是相互等价的 。
在有理数系中这六个命题不成立 。
1. 确界原理 在实数系中,任意非空有上(下)界的数集
必有上(下)确界。
反例:S {x | x2 2, x Q},sup S 2, inf S 2, 即S在有理数集没有确界。确界原理在有理数域不成立。
5. 聚点定理 实数系中的任意有界无限点集至少有一个聚点。
反例: S {(1 1 )n | n Z }, n
S是有界的无限有理点集,在实数域内的聚点为e,
因而在必含有收敛子列。
反例:
{
xn
}
{(1
1 )n n
}是有理数系中的有界无穷数列,
实数完备性基本定理的等价性
实数基本定理等价性的路线 : 证明按以 下三条路线进行:
Ⅰ: 确界原理 单调有界原理 区间套 定理 Cauchy 收敛准则 确界原理 ; Ⅱ: 区间套定理 致密性定理 Cauchy 收敛准则 ; Ⅲ: 区间套定理 Heine–Borel 有限 复盖定理 区间套定理 .
任取H的有限个元素,构成集合H *,
H * {( x1 r1, x1 r1 ),( x2 r2 , x2 r2 ) ( xn rn , xn rn )}
由于H *中的开区间都不含 2,且2n个端点都是有理数, 设这2n个有理数中与 2最靠近的数为 r, 则在r与 2之间所有有理数都在上述n个区间之外。 即H的任意有限覆盖不能盖住[1,2]Q .
则 有理数域内构成闭区间套 [an,bn ]Q, 其在实数系内唯一的公共点为 2 Q.
第6节 实数的连续性:上确界下确界存在定理
证明:
x A , y B, x su p A , y su p B, 有 xy su p A su p B
因 此 sup AB sup A sup B
0, 1, x 0 A , x 0 sup A 0, 1, y 0 B , y 0 sup B
在 [ a N , b N ]中必有 E 中点 x N , 使得
( lim a n )
n
xN aN
sup E
aN
●
xN
ቤተ መጻሕፍቲ ባይዱ
bN
确界原理 注1:
单调有界原理
设 证明: a n 单调增,有上界,
则 a n 有上确界 sup a n a 且 an a
2
2
'
x y inf X inf Y
inf( X Y ) inf X inf Y
⑵ 显然有
inf X sup X , inf Y sup Y
inf X sup Y inf( X Y ) inf X inf Y sup X inf Y
3, x Q , E2
,
E1
x 0 x
x
3 x , x Q , 3, 因 此 有 理 数
集 合 E 1的 上 界 为
3, E 2 集 合 的 下 确 界 为
集合确界定理不存在.
0, a N , 使 a N a
n N时
an a N a an a an a
lim a n a sup a n
n
用实数域的闭区间套定理证明确界原理
⽤实数域的闭区间套定理证明确界原理
闭区间套:
设[a n,b n]为实数域内的闭区间,n∈N+,且a n⊃a n+1
lim n→∞(a n−bn)=0
则,存在唯⼀⼀个实数ξ∈所有闭区间[a n,b n]
确界定理:设A为实数域内数集,且有上界(下界),则必有上确界(下确界)。
⽤实数域内的闭区间套定理证明确界定理在实数域内成⽴
证明:
设A的全体上界的集合为B设a_{1}\in A,b_{1}\in B因为B为A的全体上界集合,可知a_{1}<b_{1}考察区间[a_{1},b_{1}]的中点c,若c\in A,则设a_{2}=c否则,c必然属于B,设b_{2}=对[a_{2},b_{2}],重复上述步骤,得到[a_{3},b_{3}]以上步骤⼀直重复,得到闭区间套
[a_{n},b_{n}]由闭区间套定理,存在唯⼀⼀个实数\xi属于所有闭区间[a_{n},b_{n}].假设存在x\in A,有x>\xi,则可建⽴闭区间区间[\xi,x],可以将上述过程继续下去,$
Processing math: 100%。
实数完备性理论
实数完备性理论,理论基础及英应用实数完备性是指六大定理的等价性。
它的六大定理如下:1、确界原理2、单调有界原理3、区间套定理4、有限覆盖定理5、聚点定理(紧性定理)6、Cauchy收敛准则。
其中任何一个命题都可推出其余的五个命题一、认识实数完备性1、确界原理(1)确界原理:设S为非空数集。
若S有上界,则S必有上确界;若S有下界,则S必有下确界。
(2)上确界定义:设S是R中的一个数集,若数η满足(i)对一切x∈S,有η≥x,即η是S的上界;(ii)对任何的a<η,存在x0∈S,使得x0>a,即η是S的最小上界,则称η为数集s的上确界;下确界定义:设S是R的一个数集,若数ξ满足:(i)对一切x∈S,有ξ≤x,即ξ是S的下界;(ii)对任何的β>ξ,存在x0∈S,使得x0<β,即ξ是S的最大下界,则称ξ为数集的S的下确界;2、单调有界原理定理:在实数系中,单调有界数列必有极限3、区间套定理(1)区间套定义:设闭区间列{ [a(n),b(n )]}具有如下性质:(i) [a(n+1),b(n+1)]包含于[a(n),b(n )],n=1,2,3,......;(ii) Lim( a(n)-b(n))=0,则称{[an ,bn ]}为闭区间套,或简称区间套。
(2)区间套定理:如果{[an ,bn]}形成一个闭区间套,则在实数系中存在唯一的实数ξ属于所有的闭区间[an ,bn],n=1,2,3,…;即an≤ξ≤bn , n=1,2,3,…。
且liman=lim bn=ξ。
4、开覆盖(1)开覆盖的定义:设S为数轴上的点集,H为开区间的集合,(即H中每一个元素都是形如(a,b)的开区间).若S中的任何一点都含在至少一个开区间内,则称H为S的一个开覆盖,或简称H覆盖S.(2)有限覆盖定理:设H为闭区间[a,b]的一个(无限)开覆盖,则从H中可选出有限个开区间来覆盖[a,b]5、聚点(1)聚点定义:设S为数轴上的点集,e为定点(它可以属于S,也可以不属于S),若e的任何ε邻域内都含有S中的无穷多个点,则称e为点集S的一个聚点。
第6节 实数的连续性:上确界下确界存在定理
I1 I2 I3 ,
|
In
|
x
2n1
0.
此区间套特点:
每个[an ,bn ]中必含有E中点,bn右边无E中点.
由区间套定理,
|
In,
n1
其中
lim
n
an
lim
n
bn
.
下证 sup E
Ⅰ.
x E,必有x
bn ,
x
lim
n
bn
.
上界
Ⅱ.
由于
lim
n
an
0,N N* ,
使aN , 根据区间特点,
称为E的下确界,记为sup E
扩充:如果E没有上界,则记 sup E
例1.
inf N * 1
inf(0,1) 0,sup(0,1) 1
xn
n1 ,
infxn 0,supxn 1
结论:1。集合的确界可以属于这个集合也 可以不属于该集合
2.上确界与最大元的关系:
E中有最大元—即为上确界
§6实数的连续性
——上确界下确界存在定理
一、确界的定义
定义6.1: 设E是非空有下界集合, 若 满足
(1) x E, x (2) 0,y E,使y
称为E的下确界,记为inf E
扩充:如果E没有下界,则记 inf E
定义6.1: 设E是非空有上界集合, 若 满足
(1) x E, x (2) 0,y E,使y
lim n
an
a
sup{an }.
思考问题1
假设集合E有上界,并存在一个子列xn E,
满足
lim
n
xn
,则为集合E有上确界;
1-2数集 确界原理
定义3 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集, η 满足: 若数 满足: (1) x ∈ S , 有x ≥ η ,即 η 是S的一 ) 的一 ∀ 个下界, 个下界, (2) a >η, ∃x0 ∈S, 使 x0 < a ,即η ) ∀ 是S的最大下界, 的最大下界, 记作infS. 则称η 是S的下确界 记作 的下确界,记作
有上( 若S有上(下)界,则一定有无限多个 有上 上(下)界。
任意的数 , 若对于任意的 若对于任意的数M,都存在一个 x 0∈S,使得 x 0 >M, 则称 是一个无上 则称S是一个无上 使得 界的数集。 界的数集。
如:S1 = { x | x = n!, n ∈ N + } 有下界(可取 ),无上界。 ),无上界 有下界(可取1),无上界。
定义2 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集,
若存在数L,使得对一切的x 若存在数 ,使得对一切的 ∈S, 都有 一切的 x ≥ L,则称 为有下界的数集,称L为S的一个 则称S为有下界的数集 则称 为有下界的数集, 为 的一个 下界。 下界。 若S为既有上界、又有下界的数集,则称S 为 有上界、 有下界的数集,则称 为有界集。 为有界集。 若S没有上界或没有下界,则称S为无界集。 没有上界或没有下界,则称 为无界集。 没有上界 为无界集
1 S2 = { x | x = 1 − n , n ∈ N + } 2
下界可取1/2,上界可取1。 下界可取 ,上界可取 。
S 3 = { x | x = sin t , −
π
≤t≤ } 2 2
π
下界可取-1,上界可取 。 下界可取 ,上界可取1。
关于实数连续性的6个基本定理的互证
< ξ1 + ε
=
2ξ1 + ξ2 3
∀ε
= ξ2 − ξ1 3
> 0,∃N2
> 0, n > N2 , bn − ξ2
< ε ,即bn
> ξ2 −ε
= ξ1 + 2ξ2 3
∀ε > 0,∃N3,当n > N3时,bn − an < ε
∴ ∃N
=
max ( N1,N2,N3 ),当n>N时,bn
−
an
的子列{an} .
②数列{an} 只有有穷多项具有性质 M,那么 ∃N ,当 n N ,有 an 不具有
性质 M,即 ∃i > n,有an < ai ,从中任取一项记为 an1 ,因为它不具有性质 M,
{ } ∴ ∃n2 > n1, 使an1 < an2 ,……,如此继续下去,我们得到一子列 ank 单调 { } 上升, ∴ 有界数列{an} 必有单调子数列,由单调有界定理,可得 ank 存
∵[ a , y ]在 E 中存在有限子覆盖,∴ [ a , x ] ⊂ [ a , y ]在 E 中存在有限子覆盖 下证 b < r.用反证法.如果不然,r ≤ b,则 r∈[ a , b ].因此,在 E 中存在有一开 区间覆盖 Eα
覆盖 r. ∃ a0 , b 0 ∈ Eα ,使 a0 < r < b0 .
∴∀n > N ,有r − ε ≤ xN ≤ xn ≤ r ,即| xn − r |< ε
2、确界定理证明区间套定理
证明:由[an+1,bn+1] ⊂ [an , bn ] ,知{an} 是单调上升有上界的实数列,{bn} 是单调下
实数集与函数数集确界原理
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其
中最小的一个具有重要的作用. 最小的上界称为
上确界. 同样, 若S 有下界, 则最大的下界称为下 确界. 定义2 设 S R, S . 若 R满足 :
(i ) x S , x ; (ii) , x0 S , 使得 x0 ,
x0
点击上图动画演示
x
前页 后页 返回
定义3 设 S R, S . 若 R 满足 :
(i) x S , x ;
(ii) , x0 S , x0 ; 则称 是 S 的下确界, 记为 inf S .
注1 由定义,下确界是最大的下界.
(3) 若 S 既有上界又有下界, 则称 S 为有界集.
其充要条件为 : M 0, 使 x S , 有 | x | M .
前页 后页 返回
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 使得 | x0 | M .
§2 数集 · 确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点. 一、有界集 二、确界 三、确界的存在性定理
四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域
U (a; ) { x | 0 | x a | }: 点 a 的 空心邻域
数学分析1.2数集与确界原理
第一章实数集与函数2 数集·确界原理一、区间与邻域设a、b∈R,且a<b,我们称数集{x|a<x<b}为开区间,记作(a,b);数集{x|a≤x≤b}称为闭区间,记作[a,b];数集{x|a≤x<b}和{x|a<x≤b}称为半开半闭区间,记作[a,b)和(a,b],它们统称为有限区间。
(−∞,a]={x|x≤a},[a,+∞)={x|x≥a},(−∞,a)={x|x<a},(a,+∞)={x|x>a},(−∞, +∞) ={x|−∞<x<+∞}=R;它们统称为无限区间。
设a∈R,δ>0。
满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a;δ),或简单地写作U(a),即有U(a;δ)={ x||x-a|<δ}=(a-δ,a+δ)点a的空心δ邻域定义为U⁰(a;δ)={ x|0<|x-a|<δ}也简单地记作U⁰ (a).点a的δ右邻域U+(a;δ)=[a, a+δ),简记为U+(a);点a的δ左邻域U-(a;δ)= (a-δ, a],简记为U-(a);去除点a后的点a的空心δ左、右邻域分别简记为U⁰+(a)和U⁰-(a).∞邻域U(∞)= { x||x|>M},其中M为充分大的正数(下同);+∞邻域U(+∞)= { x|x>M},-∞邻域U(-∞)= { x|x<-M}.二、有界集·确界原理定义1:设S为R中的一个数集。
若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。
若数集S既有上界又有下界,则称S为有界集。
若S不是有界集,则称S为无界集。
例1:证明数集N+={n|n为正整数}有下界而无上界。
证:显然,任何一个不大于1的实数都是的N+下界,故N+为有下界的数集;∀M>0,取n0=[M]+1,则n0∈N+,且n0> M,故N+为无上界的数集。
第6节 实数的连续性:上确界下确界存在定理
0, a N , 使a N a
n N时
n
lim an a sup an
a n a N a an a a n a
注2如果E没有上界或者下界,记
sup E ,inf E
设e是非空有上界集合满足是上界小一点不再是上界最小上界sup标本无需切片处理而代之在标本表面涂上一层铂金当电子撞击标本表面各点时便产生次及电子呈现立体状态可观察标本的形状及表面的特征
§6
实数的连续性:
上确界下确界存在定理
一、定义:
定义: 设E是非空有上界集合, 若满足 Ⅰ x E,有x Ⅱ 是上界
n
* 0 , N N , 使a N Ⅱ
( lim an )
n
在[a N , bN ]中必有 E中点 x N , 使得
xN aN
sup E
aN
xN
●
bN
确界原理 单调有界原理 注1:
设an 单调增,有上界, 证明:
inf X supY inf( X Y ) inf X inf Y sup X inf Y
sup X sup Y sup( X Y )
⑶
往证sup xn sup yn
n N * , x n yn sup yn , sup yn 是x n 上界.
1. 设
例1 Q 是所有有理数集合, 定义集合
,
E1 x 0 x 3, x Q , E2 x 集合确界定理不存在.
3 x , x Q ,
实数集确界原理.
类似有以下记号:
点 a 的空心 邻域: U 0 (a; ) {x | 0 | x a | }, 简记作 U 0 (a). 点 a 的 右邻域: U (a; ) [a, a ), 简记为 U (a)
点 a 的 左邻域: U (a; ) (a , a], 简记为 U (a)
U (a)与U (a) : 除去点 a 后, 分别为点 a 的空心 左、右邻域,简记为
定义3 设S是R中的一个数集. 若数 满足: (i) 对一切 x S, 有 x , 即是S的下界; (ii) 对任何 , 存在x0 S, 使得 x0 ,即 又是S的最大下界, 则称数 为数集S的下确界,记作 inf S.
例4 设 S {x | x为区间(0,1)中的有理数},试按上、下确界的定义验证:
数集 {x | a x b} 与 {x | a x b} 都称为半开半闭区间,分别记作
[a,b)与 (a,b].
(a, b)
a
b
x
a [a,b] b
x
a [a,b) b
x
a (a,b] b
x
满足关系式 x a 的全体实数上的集合记作 [a, ), 读作“无穷大”,
类似有以下记号:
(, a] {x | x a} (a, ) {x | x a}
若数集S存在上、下确界,则有infS≤supS.
定理1.1 (确界原理) 设S为非空数集.若S有上界,则S必有上确界若;S有下界, 则S必有下确界.
例6 设A、B为非空数集. 满足: 对一切 x A 和 y B 有 x y. 证明: 数集A有上确界,数集B有下确界,且 sup A inf B
同理有: sup B sup S.
所以有: sup S max{sup A,sup B}.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注
x S , 有 x , 即是S的下界; (ii) 对任何 , 存在x0 S , 使得 x0 ,即 又是S的最大下界, 则称数 为数集S的下确界,记作 inf S . 例4 设 S {x | x为区间(0,1)中的有理数},试按上、下确界的定义验证: sup S 1,inf S 0.
二
有界集· 确界原理
定义1 设S为R中的一个数集.若存在数M,使得对一切 则称S为有上界的数集,数M称为S的一个上界。 定义1.1 设S为R中的一个数集.若存在数L,使得对一切 则称S为有上界的数集,数L称为S的一个下界。
xS xS
都有
x M,
都有
x L,
若数集S既有上界又有下界,则称S为有界集.若S不是有界集,则称S为无界集. 例1 证明数集 证
定义2 设S是R中的一个数集. 若数 例2
又是S的最小上界,
设
(i) (ii)
证
S [0,1]. 证明: sup S 1. 对一切 x S , 有 x 1, 1 是S的上界; 对任何 1, 取 x0 1 S , 则有 x0 1 ,
故
sup S 1.
类似地可验证infS=0.
问题:
故 是数集S中最大的数,即
max S . () 设 max S , 则 S. 下面验证 max S . (i) 对一切 x S , 有x ,即是S的上界; (ii) 对任何 只须取 x0 S , 则x0 . 由(i),(ii)知 sup S .
要 求
1.理解区间(开区间、闭区间)、邻域、空心邻域的概念。 2.深刻理解有界集、确界的概念。 3.掌握据定义论证确界的方法。 4.初步学会否定定义的构造方法。
一
设
区间与邻域
a, b R,且 a b.
称数集 数集
{x | a x b} 为开区间,记作 (a, b).
N {n | n为正整数}
有下界而无上界.
任何一个不大于1的实数都是 N 的下界,故 N 为有下界的数集 为证 N 无上界,按照定义只须证明:对于无论多么大的数M, 总存在某个正整数 n0 ( N ), 使得 n0 M .
则
n0 N ,
事实上,对任何正数M(无论多么大),取n0 且
[M ] 1, ([ M ]
对
M
取整)
n0 M . 这就证明了 N
(1) S有无上界;
无上界.
问题: 设
S [0,1].
(2) S若有上界,有几个上界; (3) S若有无最小的上界. S的最小的上界,称作S的上确界.
满足: (i) 对一切 x S , 有 x , 即 是S的上界; , 存在x0 S , 使得 x0 , 即 (ii) 对任何 则称数 为数集S的上确界,记作 sup S .
注:由上(下)确界的定义可知
设数集S有上确界.证明 sup S S sup S S , 则对一切 x S 有 x 证:() 设 例5
称为闭区间,记作 [ a, b] 都称为半开半闭区间,分别记作
{x | a x b}
数集 {x | a
x b} 与 {x | a x b}
[ a, b) 与 (a, b].
a
( a, b)
b
x
a
[ a, b]
b
x
a [ a, b) b
满足关系式 x
a ( a, b] b
x
x
a
设 类似有以下记号: 点 点 点
的全体实数
x 的集合称为点
U (a; ) {x || x a |} (a , a ),
a 的空心 邻域: U 0 (a; ) {x | 0 | x a | }, 简记作 U 0 (a).
a 的 右邻域: U (a; ) [a, a ), 简记为 U (a) a 的 左邻域: U (a; ) (a , a], 简记为 U (a)
的全体实数上的集合记作
[a, ), 读作“无穷大”,
类似有以下记号:
(, a] {x | x a} (a, ) {x | x a} (, a) {x | x a} (, ) {x | x } R
a R, 0. 满足绝对值不等式 | x a | a 的 邻域,记作 U (a; ), 简记作 U (a), 即
(i) 对一切 解 先验证supS=1. (i) 对一切
定义3 设S是R中的一个数集. 若数
满足:
x S , 有 x 1, 即1是S的上界. (ii) 对任何 1, 若 0, 则任取 x0 S都有x0 ; 若 0, 则 0 1, 由有理数集在实数集中的稠密性,在 ( ,1) 必存在有理数 x0 , 显然有 x0 S , 且 x0 , 所以supS=1.
例3
证
若
S [0,1). 证明: sup S 1. (i) 对一切 x S , 有 x 1, 1 是S的上界; (ii) 对任何 1. 若 0, 则有任取 x0 S , 有 x0 . 1 , 有 x0 . 所以 sup S 1. 0 1, 取 x0 2
0 0 U (a)与U (a)
U (a)与U (a) : 除去点 a 后, 分别为点 a 的空心 左、右邻域,简记为
邻域:U () {x || x | M }, 其中M为充分大的正数.
邻域:U () {x | x M }, 其中M为充分大的正数.
邻域: U () {x | x M }, 其中M为充分大的正数.