人教版小学六年级下册数学圆锥的体积教学课件
小学数学新人教版六年级下册课件:第3单元圆锥的体积
习题二解答
总结词
理解圆锥体积与圆柱体积关系
详细描述
这道题目考查了学生对圆锥和圆柱体积关系的理解。根据题意,这个圆柱的体积是圆锥的3倍,因此可以通过计 算圆柱的体积来得出圆锥的体积。根据圆柱体积公式 V = πr²h,可以计算出圆柱的体积为75.36立方厘米,进而 得出圆锥的体积为25.12立方厘米。
圆锥的体积计算公式推导
圆锥的体积计算公式是基于圆柱的体积公式推导出来的。首先,将圆锥的底面半 径设为r,高设为h,然后通过与等底等高的圆柱进行比较,发现圆柱的体积是圆 锥体积的3倍。因此,圆锥的体积计算公式为V=1/3πr²h。
在推导过程中,利用了圆柱的体积公式V=πr²h,通过比较两者的体积关系,得 出圆锥的体积公式。这种方法有助于学生理解圆锥体积的计算原理,加深对几何 知识的理解。
圆锥的体积公式
圆锥的体积公式为:V = (1/3)πr²h,其中r为底面半径 ,h为高。
该公式是计算圆锥体积的基础,通过代入具体的数值可 以求出圆锥的体积。
圆锥的体积性质
圆锥的体积与其底面积和高有关,底面积越大、高越高,体积越大。 圆锥的体积是与其同底等高的圆柱体积的1/3。
02
圆锥的体积计算方法
圆锥的体积计算实例
举一个具体的例子,比如要计算一个底面半径为3 厘米,高为5厘米的圆锥的体积。根据圆锥的体积 计算公式V=1/3πr²h,将已知数值代入公式中, 即可得出该圆锥的体积。
在计算过程中,需要注意单位换算和计算精度, 确保结果的准确性。通过实例计算,可以帮助学 生更好地掌握圆锥体积的计算方法,提高解决实 际问题的能力。
通过对比可以看出,圆锥的体积是圆柱体积的1/3 03 。
圆锥的体积与棱锥的关系
棱锥的体积公式为
圆锥的认识说课(课件)人教版六年级下册数学
四、说教学重难点
教学重点
掌握圆锥的特征
教学难点
圆锥的高的测量方法
五、说教法学法
本课在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具 体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手 操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法。在教 学过程中,恰当地运用远程教育资源,既能创设教学情境,又能将抽象 的知识直观化,更加直观地体验感知圆锥的特征。本课我将采取“引导 ——探索——发展”的教学模式,在教学中充分利用根据实情进行二次 加工的农远资源课件,更加优化本课的教学,提高教学效率。这种教学 模式,能促使学生学中有思,思中有疑,疑中有得。
轻松,记得牢固。整个过程体现出了学生是学习的主体,教师是应用资 源合理组织学生求知的引导者这一新课理念。
板块三、巩固练习。 1、求下列各圆锥的体积。 (1)底面积30平方厘米,高5厘米。 (2)底面半径4分米,高是3分米。 (3)底面直径12厘米,高是10厘米。 (4)底面周长31.4厘米,高6厘米。
为了巩固圆锥的表象,激发学生的学习兴趣,我问学生:“在生活中, 你还见过那些圆锥形的物体?”想一想、说一说。 并开展小游戏:学生抢答出屏幕上圆锥形物体的名称。 揭示课题,板题:圆锥的认识
2、认识圆锥的特征 我先引导学生看一看、摸一摸圆锥形实物,再让学生观看动画,在生动 有趣的氛围中轻松掌握圆锥的各部分名称及特征。 接着让学生拿起圆锥模型,小组同学相互说说圆锥的各部分名称。 最后,让学生闭上眼睛想一想圆锥是什么样子的?在脑中建立圆锥的模 型。
2.求下面各物体的体积。(单位:厘米) 目的是让学生运用所学的知识解决实际问题。 3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆 锥体,圆锥体的体积是多少?削去的体积是多少? 通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力 。
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件
柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
人教版小学六年级下册数学第三单元圆柱与圆锥 《圆锥的体积》 (1)
《圆柱的体积》说课稿一、说教材1.教学内容《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。
2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点圆柱体积的计算是本节课的教学重点。
圆柱体积公式的推导过程是本节课的难点。
弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。
4.教学目标知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。
情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。
二、说教法1.直观演示,操作发现充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。
从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,充分发挥学生的主体地位把学生当作教学活动的主体,学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法本节课的教学,使学生掌握一些基本的学习方法1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
人教版小学六年级数学下册《圆锥的体积》
拓展延升:
谁做的房子的体积大呢?
明明 聪聪
(S=12.5c㎡
h=9cm)
(s=6c㎡ h=6.3cm)
1 V1= ___ ×12.5×9=37.5(立方厘米) V = 2 6×6.3=37.8(立方厘 3
米)
因为:v 1
< v2
所以:聪聪做的房子的体积大。
课后小结:
通过本节的学习,你有哪些 收获呢?
你有什么 发现?
活动二: 实验验证我最棒
等底、等高的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。 底和高不相等的圆柱体和圆锥体: 1.实验时,把圆锥体里的水倒入圆柱里。 2.实验时,把圆柱里的水倒入圆锥体里。
活动三: 实践应用我也会
3
活动三: 达标测评我第一
我自信 我成功 我进步观察下面两组数据: 底面积 高 体积 圆柱 5c㎡ 3cm 15cm³ 圆锥 5c㎡ 3cm 5cm³ 圆柱 3d㎡ 9dm 27dm³ 圆锥 3d㎡ 9dm 9cm³ 1.两组数据中圆柱与圆锥的底面积和高有什么特征?
2.两组数据中圆柱与圆锥的体积有什么关系? 3.你能得出什么结论?
解决问题:
1.一堆大米,近似于圆锥形,量得底面周 长是9.42厘米,高5厘米。它的体积是多少立方 厘米? 2.把一个棱长是6厘米的正方体木块,加工 成一个最大圆锥体,圆锥的体积是多少立方厘 米? 3.把一块长6厘米,宽4厘米,高5厘米的铁 块熔铸成一个高15厘米的圆锥,这个圆锥的底 面积是多少平方厘米?
1 3
填空:
1.等底等高的圆柱体和圆锥体,圆柱体的体积是 这个圆锥体体积的( )倍。 2.一个圆柱体和一个圆锥体等底等高。已知圆柱 体的体积是2.7立方米,圆锥的体积( )立方米。 3.一个圆锥的体积是6立方分米。和这个圆锥的 底面直径相等,高也相等的圆柱的体积是( )立 方分米。 4.把一个圆柱体木块削成一个和它同底等高的圆 锥体,体积减少了( )。
(人教版)六年级数学下册课件_圆锥的体积_4
1.2 米 4米
×3.14×(4 ÷ 2)×1.2 × )
3
1) = 3.14×(4 ÷ 2)×(1.2 ×—) × )
=12.56 ×0.4 = 5.024(立方米) (立方米) 735×5.024 ≈ 3693 (千克) × 千克) 答:这堆小麦大约有3693千克 这堆小麦大约有 千克
解决问题: 解决问题:
体积等于圆柱体积的— 体积等于圆柱体积的 3
用字母表示: 用字母表示: 1 V= Sh 3
已知: 已知:等底等高的圆锥和圆柱
根据左图体积填写右图体积: 根据左图体积填写右图体积: (1) ) (2)
90立方厘米 立方厘米
(
30)立方厘米
80立方厘米 立方厘米 ( )立方厘米 240
例1:一个圆锥的零件,底面积是 :一个圆锥的零件, 19平方厘米,高是 厘米。这个零 平方厘米, 厘米。 平方厘米 高是12厘米 件的体积是多少? 件的体积是多少?
圆锥的体积
实验小学
情景引入: 情景引入: 谁做的房子的体积大呢? 谁做的房子的体积大呢?
明明说: 明明说:我做的房子的底面比你做的 房子的底面大,高也比你的高, 房子的底面大,高也比你的高,所以 我做的房子的体积大。 我做的房子的体积大。
(s=6 h=6.3)
(S=12.5 h=9)
聪聪说:我做的房子上下一样粗呀, 聪聪说:我做的房子上下一样粗呀, 而你做的房子却越向上越细呀, 而你做的房子却越向上越细呀,所 以我做的房子的体积大。 以我做的房子的体积大。
已知圆锥的底面半径r h,如 1.已知圆锥的底面半径r和高h,如 已知圆锥的底面半径 和高h, 何求体积V? 何求体积V? 2 1
S=π
r
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
三2第2课时《圆锥的体积》教案-人教版版数学六年级下册
上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。
2.能运用圆锥的体积计算公式解决有关的实际问题。
过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。
情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。
重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。
难点:理解圆锥的体积计算公式的推导过程。
课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。
把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。
2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。
生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。
生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。
生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。
3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。
(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。
板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。
人教版数学六年级下册圆锥的体积说课稿(推荐3篇)
人教版数学六年级下册圆锥的体积说课稿(推荐3篇)人教版数学六年级下册圆锥的体积说课稿【第1篇】大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。
一、说教材《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。
二、说学情本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。
在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。
三、说教学重难点根据对教材和学情的分析,我制定以下三维教学目标:知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的.实际问题。
过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。
情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。
四、说教学重难点教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。
教学难点:理解圆锥体积公式的推导过程。
说教法学法为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。
学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。
说教学过程课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:第一环节:自主学习第二环节合作学习第三环节:教师讲导第四环节:精练强化五、说板书设计圆锥的体积=×圆柱的体积=×底面积×高S=sh人教版数学六年级下册圆锥的体积说课稿【第2篇】教学内容:第25-26页,例2及练习四的第3、4题。
小学六年级课件:《圆锥的体积》
小学六年级课件:《圆锥的体积》小学六年级课件篇一:《圆锥的体积》教学目标:1、学问与技能理解圆锥体积公式的推导过程,初步把握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法通过操作、试验、观看等方式,引导学生发展比拟、分析、综合、猜想,在感知的根抵上加以判断、推理来获取新学问。
3、情感态度与价值观渗透学问是“相互转化”的辨证思想,养成擅长猜想的习惯,在探索合作中感受教学与我的生活的亲密联系,让学生感受探索胜利的欢乐。
教学重点:把握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
教学难点:理解圆锥体积公式的推导过程。
教具学具:不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
教学流程:一、创设情境,提出问题师:五一节放假期间,教师带着自己的小外甥去商场购物,正好商场在搞冰淇淋促销活动。
促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮教师参考一下买哪一种合算?生:我选择底面的;生:我选择高是的;生:我选择介于二者之间的。
师:每一个人都认为自己选择的哪种最合算,那末谁的意见正确呢? 生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么外形?(圆锥体)生:你会求吗?师:通过这节课的学习,信任这个问题就很简单解答了。
下面我们一起来讨论圆锥的体积。
并板书课题:圆锥的体积。
二、设疑激趣,探求新知师:那末你能想方法求出圆锥的体积吗?(学生猜测求圆锥体积的方法。
)生:我们可以利用求不规章物体体积的方法,把它放进一个有水的容器里,求出上升那局部水的体积。
师:假如这样,你觉得行吗?教师依据学生的答复做出最终的评价;生:教师,我们前面学过把圆转化成长方形来讨论,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的依据是什么? 小组中大家商议。
生:我们组认为可以将圆锥转化成长方体或者正方体,比方:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或者正方体。
人教版六年级下册数学第三单元 《圆柱与圆锥》教材分析(课件)
题的能力。
关键课例:圆柱的认识 例2 圆柱的侧面展开图
有效开展活动
让侧面“展开”的慢一些
先猜一下,圆柱的侧面展开图是什么形状的? 验证,动手剪
再把展开的图形围成圆柱,探究展开图与圆柱间的关系。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测。在 通过实验和推理验证,培养学生良好的学习和思考习惯。例如教材联系长方 体体积公式,鼓励学生估计圆柱体积的计算方法。联系圆柱体积计算公式, 鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是是按照引出问题—— 联想,猜测——实验探究——导出公式的思路设计的。在猜测的基础上进行 实验和推理。使学生受到研究方法和思维方式的训练,发展和提高学生自主 学习的能力。
第三单元《圆柱和圆锥》
—— 教材分析
人教版 六年级 数学 下册
课标中“图形与几何”的要求
空间观念
(核心)
空间观念主要是指对空间物 体空或间图观形念的主形要状是、指大对小空及间位物置体关或 系图的形认的识形。状,大小及位置关系的 认识。能能够够根根据据物物体体特特征征抽抽象象出出几 何几图何形图,形根,据根几据何几图何形图想形象想出象所出 描所述描的述实的际实物际体物;体想,象想并象表并达表物达 体物的体空的间空方间位方和位相和互相之互间之的间位的置位 关置系关;系感。知感并知描并述描图述形图的形运的动运和动 变和化变规化律规。律,空间观念有助于理 解现空实间生观活念中有空助间于物理体解的现形实态生与 活结中构空,间是物形体成的空形间态想与象结力构的,经是验 形成空间想象基力础的。经验基础。
旋转 视图还原 抽象 切和裁 展开和折叠
等积变换
圆柱和圆锥的体积
圆柱和圆锥的特征
六年级数学下册圆锥的认识和体积应用讲义(完整版)
圆锥的认识和体积;圆柱和圆锥体积的应用学生/课程年级学科授课教师日期时段核心内容认识圆锥及其体积;掌握圆柱及圆柱体积应用课型一对一教学目标1、初步认识圆锥,掌握圆锥的特征;2、理解圆柱、圆锥体积的推导过程;3、掌握圆锥体积的计算公式,运用其解决简单的实际问题。
4、运用圆柱与圆锥的关系解决问题。
重、难点重点:教学目标1、3 难点:教学目标2、4知识导图导学一圆锥的认识和体积知识点讲解 1:圆锥的认识圆锥是由一个底面和一个侧面两部分组成的。
(1)底面:圆锥中圆形的面就是它的底面,它有一个底面。
底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。
(2)侧面:圆锥周围的面就是它的侧面。
圆锥的侧面是一个曲面(3)高:从圆锥的顶点到底面圆心的距离就是圆锥的高,高用字母h表示。
圆锥只有一条高。
例 1.一个圆柱的底面周长是12.56厘米,高是6厘米,这个圆柱的体积是多少立方厘米?例 2. 从圆锥的()到()的距离是圆锥的高。
【学有所获】测量圆锥的高:“先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
”我爱展示1.一个圆柱形的水池,它的内直径是10米,深2米,池上装有5个同样的进水管,每个水管每小时可以注入水7.85立方米。
五管齐开几小时可以注满水池?2. 圆柱的高有()条,圆锥的高有()条。
知识点讲解 2:圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积。
圆锥的体积的计算公式:圆锥的体积=底面积×高×V圆锥=Sh推导公式:圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×例 1. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:cm)【学有所获】同底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍。
最新人教版版六年级数学下册教材分析ppt课件精品课件
• 2、在教学方法的确定和运用上,着眼于 引导学生主动地进行观察实验、猜测探索、 推理验证、合作交流。真正体现:学生是 学习的主人,教师是学习的组织者、引导 者与合作者,把握本册教材的教学要求和 重点。
•
一找:两种相关量的是圆的面积和半径,π是
定量。
•
二写:根据πr2=S,即π"r"r=S,所以S÷r=π,π是定量,但由于r是
变量,所以π"r是变量,因此(yīncǐ),圆面积和圆半
径不成比例。
•
通过上面的“找”、“写”、“判”三招,可
以很轻松的判断复杂的正反比例,为正确解答比例
第十五页,共35页。
比例(bǐlì)
• 比例的教学是在学生已经具备了大量蕴含比 例关系的常见数量关系(单价、数量、总价, 速度(sùdù)、时间、路程,……)和几何形 体求积公式的知识基础上进行的。从本质上 可以说,比例关系是对常见数量关系的抽象 和概括,是对相关知识的浓缩和提升。教学 时要注意的是:
•
第一招“找”:根据题意找出两种相关联的量
和一个一定的量(不变量)。
•
第二招“写”:根据两个相关联的量写出求定
量的关系(guān xì)式。
•
第三招“判”:根据关系(guān xì)式进行判
断,如果定量是两种相关联的量的商,则成为比例;
如果定量是两种相关联量的积,则成反比例。
第十九页,共35页。
• 如:圆的面积和半径。
第八页,共35页。
•我们以圆柱体积的内容学习为例。在探索圆柱体积计算 方法的内容时,建议引导学生经历“类比猜想—验证说 明”的探索过程(guòchéng),体会类比、转化等数学思 想。教学时可以先呈现“类比猜想”的过程(guòchéng), 由于圆柱和长方体、正方体都是直柱体,而且长方体与 正方体的体积都等于“底面积乘高”,由此可以产生猜 想:圆柱的体积计算方法也可能是“底面积乘高”。在 形成猜想后,再引导学生“验证说明”自己的猜想, “验证说明”的方法可以有如:一是用硬币堆成一堆, 用堆的过程(guòchéng)来说明“底面积乘高”计算圆柱 体积的道理,这实际上是“积分”思想的渗透;另外一 种方法是“转化”思想的渗透,即把圆柱通过“切、拼” 转化为长方体,再根据长方体体积的计算方法推导出圆 柱体积的计算方法。(教材25页的切拼图)
数学六年级下册-知识讲解 圆锥体积的计算公式
圆锥体积的计算公式问题导入圆柱的底面是圆,圆锥的底面也是圆,那么圆锥的体积和圆柱的体积有没有关系呢?如何计算圆锥的体积呢?(教材33页例2)过程讲解1.通过实验探究圆锥和圆柱体积之间的关系(1)实验准备。
准备好等底等高的圆柱形容器、圆锥形容器及一些细沙和水。
重点提示圆柱形容器和圆锥形容器用料及壁厚要相同。
(2)实验过程。
实验一把空圆锥形容器里装满细沙,然后倒入空圆柱形容器里(如左上图),经实验,倒3次正好将空圆柱装满。
实验二把空圆柱形容器里装满水,然后往空圆锥形容器里倒(如右上图),每次都倒满,正好倒了3次。
(3)实验小结。
通过实验可知:等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍,也可以说圆锥的体积是圆柱体积的13。
归纳总结圆锥是一种立体图形,生活中有很多物体的形状都是圆锥形的。
思想方法提示把圆锥的体积转化成圆柱的体积来求,其中蕴涵着转化的思想方法。
2.圆锥的体积公式的推导圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×。
归纳总结圆锥的体积计算公式:圆锥的体积=底面积×高×13。
如果用V表示圆锥的体积,S表示圆锥的底面积,h表示圆锥的高,则圆锥体积的字母公式为V圆锥=Sh。
拓展提高圆柱和圆锥的关系。
1.等底等高的圆柱和圆锥:圆柱的体积比圆锥的体积多2倍;圆锥的体积比圆柱的体积少。
2.等底等体积的圆柱和圆锥:圆锥的高是圆柱的高的3倍,或者说圆锥的高比圆柱的高多2倍;圆柱的高是圆锥的高的,或者说圆柱的高比圆锥的高少。
3.等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍,或者说圆锥的底面积比圆柱的底面积多2倍;圆柱的底面积是圆锥的底面积的,或者说圆柱的底面积比圆锥的底面积少。
人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。
这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:
圆锥 =
×19×12=76(cm³)
答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?
《圆锥的体积》说课稿
《圆锥的体积》说课稿各位领导、各位同仁:大家好!今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。
本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材1、教材分析“圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。
通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.2、学情分析学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。
通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。
对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。
同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。
3、教学目标知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点教学重点:理解和掌握公式,能正确运用公式解决实际问题教学难点:圆锥体积公式的推导过程5、教具、学具准备教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺二、说教法在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。
六年级数学下册《圆柱和圆锥的认识》课件
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。
”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。
五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。
让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。
用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:求下面各圆锥的体积,只列算式。
(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。
第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03
添加标题
点击此处添加描述 文本,点击此处添 加描述文本,点击 此处添加描述文本
添加文本信息
此处您可以添加文字或者删除文本框在此处您可以添加文字或 者删除文本框此处您可以添加文字此处您可以添加文字或者删 除文本框在此处您可以添加文字或者删除文本框
此处您可以添加文字或者删除文本框在此处您可以添加文字或 者删除文本框此处您 此处您可以添加文字或者删除文本框在此处您可以添加文字或 者删除文本框此处您
您的内容打在这里,或者通过复制您的 文本后,在此框中选择粘贴,并选择只 保留文字。在此录入上述图表的综合描 述说明。
添加标题
点击此处添加描述 文本,点击此处添 加描述文本,点击 此处添加描述文本
01
添加标题
点击此处添加描述 文本,点击此处添 加描述文本,点击 此处添加描述文本
04
02
添加标题
点击此处添加描述 文本,点击此处添 加描述文本,点击 此处添加描述文本
第 3 单元 圆柱与圆锥
2. 圆 锥 第 3 课时 圆 锥 的 体 积(2)
一、探索新知
3
1.2m
工地上有一堆沙子,近似于一
个圆锥(如右图 )。这堆沙子
的体积大约是多少?如果每立
方米沙子重1.5t,这堆沙子大约 中多少吨?(得数保留两位小
4m
数。)
1.2m
(1)沙堆底面积: 3.14 ( 4 )2 3.14 4.如图,把圆柱削成一个最大的圆锥。削去部 分的体积是多少立方厘米?
3.14×(10÷2)2×15× =3.14×25×15×23
2 3
=785(cm3)
答:削去部分的体积是785cm3。
15cm 10cm
2.计算下面各圆锥的体积. 3dm
3.6m 8dm
10.8dm3
8cm 12cm
(1)各组准备好等底、等高的圆柱、圆锥形容器。
(2)用倒沙子或水的方法试一试。
我把圆柱装满水,
三次正好倒满。
再往圆锥里倒。
正好倒了三次。
(3)通过试验,你发现圆锥的体积与同它等底、等高的圆
柱的体积之间的关系了吗?
V圆锥
1 3
V圆柱
1 Sh 3
三、课堂小结
圆锥是一种立体图形,生活中很多物体的形状都是圆锥形。
答:以AB边为轴旋转成圆锥的体积大。
3.一个圆锥的底面直径是8cm,从圆锥的顶点沿 着高将它切成相等的两半后,表面积比原来的圆锥增 加了48cm².这个圆锥的体积是多少cm³?
(48÷2)×2÷8=6(cm) 8÷2=4(cm) 3×3.14×4²×6 =3×3.14×16×6
=100.48(cm³) 答:这个圆锥的体积是100.48cm³。
2.一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高5cm。每立 方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数) 3.14×(4÷2)²×15× ×7.8≈163(克) 3 答:这个铅锤重163克。
三、课堂小结
已知圆锥的底面直径和高,可直接利用公式 V 1 d 2 h
3 2 求圆锥的体积。
六年级数学下册(RJ) 教学课件
第 3 单元 圆柱与圆锥
2. 圆 锥 第 2 课时 圆 锥 的 体 积(1)
一、情境导入
我是小麦堆。
二、探索新知
2 我们已经会计算圆柱的体积,如何计算圆锥的体积呢?
圆锥的体积和圆
圆柱的底面是圆,
柱的体积有没有
圆锥的底面也是
关系呢?
圆……
下面通过试验,探究一下圆锥和圆柱体积之间的关系。
V圆锥
1 3
V圆柱
1 3
Sh
四、拓展训练
判断对错,对的画“√”,错的画“×”
(1)圆锥的体积等于圆柱体积的 1 。
3
( ×)
(2)圆柱的体积等于与它等底等高的圆锥的体积。( × )
(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。
( ×)
1.求下面圆锥的体积。 (1)底面的面积是120 cm2,高是15 cm。 (2)底面半径是6 cm,高是10 cm。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
添加文本信息
此处您可以添加文字或者删除文本框在此处您可以添加文字或者删除文本框此处您 可以添加文字此处您可以添加文字或者删除文本框在此处您可以添加文字或者删除 文本框
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
题
01
单击此处添加标
题
点击此处添加标题
您的内容打在这里,或者通过复制您的 文本后,在此框中选择粘贴,并选择只 保留文字。在此录入上述图表的综合描 述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的 文本后,在此框中选择粘贴,并选择只 保留文字。在此录入上述图表的综合描 述说明。
点击此处添加标题
75.36dm3 200.96dm3
3.打谷场上,有一个近似于圆锥的小麦堆, 测得底面直径是2米,高是1.5米。每立方 米小麦约重735kg,这堆小麦大约有多少 千克?
答:这堆小麦的大约重4615千克.
赠送教育通用模板
01
单击此处添加标
题
02
单击此处添加标
题
03
单击此处添加标
题
04
单击此处添加标
(1)600 cm3 (2)376.8 cm3
2. 把三角形ABC沿BC边和AB边分别旋转一周,
得到2个圆锥(如下图),哪个圆锥的体积大?
以AB边为轴:3×3.14×5²×3 =3×3.14×25×3 =78.5(cm³)
以CB边为轴:3×3.14×3²×5 =3×3.14×9×5 =47.1(cm³)
4m (2)沙堆的体积:
1 12.561.2 0.412.56 5.024 5.0(2 m3) 3
(3)沙堆的重量:5.02×1.5=7.53(t)
答:这堆沙子的体积大约是5.02m3。 这堆沙子大约重7.53 t。
二、巩固练习
1.一个圆锥形的零件,底面积是19cm²,高是12cm。这个零件的 体积是多少? 19×12×1 =76(cm³) 3 答:这个零件的体积是76立方厘米。