常用的基本求导公式

合集下载

14个求导公式

14个求导公式

14个求导公式导数是微积分中的重要概念,它描述了函数在某一点的变化率。

在求导过程中,我们遵循一些公式和规则,以便更方便地计算导数。

本文将介绍14个常见的求导公式,并解释其应用。

1. 常数函数的导数公式对于常数函数f(x) = c,其中c是一个实数常数,其导数为f'(x) = 0。

这是因为常数函数在任何点上的变化率都为0。

2. 幂函数的导数公式对于幂函数f(x) = x^n,其中n是一个实数常数,其导数为f'(x) = nx^(n-1)。

这个公式可以用来求解各种幂函数的导数。

3. 指数函数的导数公式对于指数函数f(x) = a^x,其中a是一个正实数且不等于1,其导数为f'(x) = a^x * ln(a)。

这个公式可以用来求解各种指数函数的导数。

4. 对数函数的导数公式对于对数函数f(x) = log_a(x),其中a是一个正实数且不等于1,其导数为f'(x) = 1 / (x * ln(a))。

这个公式可以用来求解各种对数函数的导数。

5. 三角函数的导数公式对于正弦函数f(x) = sin(x),其导数为f'(x) = cos(x)。

对于余弦函数f(x) = cos(x),其导数为f'(x) = -sin(x)。

对于正切函数f(x) = tan(x),其导数为f'(x) = sec^2(x)。

6. 反三角函数的导数公式对于反正弦函数f(x) = arcsin(x),其导数为f'(x) = 1 / sqrt(1 - x^2)。

对于反余弦函数f(x) = arccos(x),其导数为f'(x) = -1 / sqrt(1 - x^2)。

对于反正切函数f(x) = arctan(x),其导数为f'(x) = 1 / (1 + x^2)。

7. 双曲函数的导数公式对于双曲正弦函数f(x) = sinh(x),其导数为f'(x) = cosh(x)。

导数的基本公式18个

导数的基本公式18个

导数的基本公式18个1. 常数函数的导数为0对于常数函数y=c,它的导数恒为零,即dy/dx=0。

2. 幂函数y=x^n的导数为y=nx^(n-1)对于幂函数y=x^n,它的导数为dy/dx=nx^(n-1)。

3. 指数函数y=a^x(a>0且a≠1)的导数为y=lna·a^x对于指数函数y=a^x,它的导数为dy/dx=lna·a^x,其中lna表示自然对数e为底数时a的对数。

4. 对数函数y=loga(x)(a>0且a≠1)的导数为y=1/(x·lna)对于对数函数y=loga(x),它的导数为dy/dx=1/(x·lna)。

5. 三角函数y=sin(x)的导数为y=cos(x)对于三角函数y=sin(x),它的导数为dy/dx=cos(x)。

6. 三角函数y=cos(x)的导数为y=-sin(x)对于三角函数y=cos(x),它的导数为dy/dx=-sin(x)。

7. 三角函数y=tan(x)的导数为y=sec^2(x)对于三角函数y=tan(x),它的导数为dy/dx=sec^2(x),其中sec(x)=1/cos(x)为余割函数。

8. 反三角函数y=arcsin(x)的导数为y=1/√(1-x^2)对于反三角函数y=arcsin(x),它的导数为dy/dx=1/√(1-x^2)。

9. 反三角函数y=arccos(x)的导数为y=-1/√(1-x^2)对于反三角函数y=arccos(x),它的导数为dy/dx=-1/√(1-x^2)。

10. 反三角函数y=arctan(x)的导数为y=1/(1+x^2)对于反三角函数y=arctan(x),它的导数为dy/dx=1/(1+x^2)。

11. 常数乘以一个函数的导数等于常数乘以该函数的导数对于函数y=c·f(x),它的导数为dy/dx=c·f'(x)。

12. 两个函数的和的导数等于这两个函数的导数之和对于函数y=f(x)+g(x),它的导数为dy/dx=f'(x)+g'(x)。

一般常用求导公式

一般常用求导公式

一般常用求导公式在微积分中,求导是一项重要的运算技巧。

为了便于计算和解决实际问题,人们总结出了一些常用的求导公式。

本文将介绍一般常用的求导公式,并通过例子来展示其具体应用。

一、常数函数求导公式对于常数函数y = C(C为常数),其导数为0。

这是因为常数函数的图像是一条水平直线,斜率为0。

二、幂函数求导公式1. 对于幂函数y = x^n (n为正整数),其导数为y' = nx^(n-1)。

例如,对于y = x^2,其导数为y' = 2x。

2. 对于幂函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。

例如,对于y = e^x,其导数为y' = e^x。

三、指数函数求导公式对于指数函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。

这点与幂函数的导数规律相同。

四、对数函数求导公式1. 对于自然对数函数y = ln(x),其导数为y' = 1/x。

例如,对于y = ln(x^2),其导数为y' = 1/(x^2) * 2x = 2/x。

2. 对于一般对数函数y = log_a(x) (a>0且a≠1),其导数为y' =1/(xln(a))。

例如,对于y = log_2(x),其导数为y' = 1/(xln(2))。

五、三角函数求导公式1. 对于正弦函数y = sin(x),其导数为y' = cos(x)。

例如,对于y =sin(2x),其导数为y' = cos(2x)。

2. 对于余弦函数y = cos(x),其导数为y' = -sin(x)。

例如,对于y = cos(2x),其导数为y' = -sin(2x)。

3. 对于正切函数y = tan(x),其导数为y' = sec^2(x)。

例如,对于y = tan(2x),其导数为y' = sec^2(2x)。

求导基本公式16个

求导基本公式16个

求导基本公式16个摘要:1.引言2.求导基本公式16 个的分类3.详细解释每个公式4.总结正文:【引言】在微积分中,求导是计算函数在某一点导数的过程,它可以帮助我们了解函数在某一点的变化率和趋势。

求导基本公式是求导过程中最常用的工具,掌握这些公式对于解决微积分问题至关重要。

本文将介绍16 个求导基本公式。

【求导基本公式16 个的分类】这16 个求导基本公式可以分为两类:一类是基本函数的求导公式,另一类是复合函数、反函数、隐函数和参数方程的求导公式。

【详细解释每个公式】1.基本函数的求导公式(1)幂函数:f(x) = x^n,n 为常数,导数为f"(x) = n * x^(n-1)(2)指数函数:f(x) = a^x,a 为常数且a>0,导数为f"(x) = a^x * ln(a)(3)对数函数:f(x) = log_a(x),a 为常数且a>0 且a≠1,导数为f"(x) = 1/(x * ln(a))(4)三角函数:f(x) = sin(x),导数为f"(x) = cos(x);f(x) = cos(x),导数为f"(x) = -sin(x)(5)反三角函数:f(x) = arcsin(x),导数为f"(x) = 1/(1-x^2);f(x) = arccos(x),导数为f"(x) = -1/(1-x^2)2.复合函数的求导公式复合函数:f(g(x)),其中f 和g 都是可导函数,导数为f"(g(x)) * g"(x)3.反函数的求导公式反函数:f(x) = y,x = g(y),导数为f"(y) * g"(x)4.隐函数的求导公式隐函数:f(x) = y,x = h(y),导数为f"(y) * h"(x)5.参数方程的求导公式参数方程:x = x(t),y = y(t),导数为x"(t) * cos(θ) + y"(t) * sin(θ),其中θ为参数【总结】求导基本公式16 个是微积分中非常重要的工具,通过掌握这些公式,我们可以更好地解决各种微积分问题。

求导公式大全

求导公式大全

求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。

2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。

导数的运算公式和法则

导数的运算公式和法则

导数的运算公式和法则导数是微积分中的重要概念,用于描述函数的变化率。

在求导的过程中,有一些常用的运算公式和法则,可以帮助我们简化计算。

下面是一些常用的导数运算公式和法则。

一、基本导数公式1. 常数导数法则:对于任意常数c,其导数为0,即d/dx(c) = 0。

2. 幂函数导数法则:对于任意实数n,幂函数y = x^n的导数为d/dx(x^n) = nx^(n-1)。

特别地,当n = 0时,常数函数y = c的导数为d/dx(c) = 0。

3. 指数函数导数法则:对于底数为常数a的指数函数y = a^x,其导数为d/dx(a^x) = ln(a) * a^x。

这个法则也适用于自然对数中的指数函数y = e^x,其导数为d/dx(e^x) = e^x。

4. 对数函数导数法则:对于底数为常数a的对数函数y = log_a(x),其导数为d/dx(log_a(x)) = 1 / (x * ln(a))。

特别地,当底数为自然常数e时,对数函数变为自然对数函数y =ln(x),其导数为d/dx(ln(x)) = 1 / x。

5.三角函数导数法则:(1)正弦函数的导数为d/dx(sin(x)) = cos(x)。

(2)余弦函数的导数为d/dx(cos(x)) = -sin(x)。

(3)正切函数的导数为d/dx(tan(x)) = sec^2(x)。

(4)余切函数的导数为d/dx(cot(x)) = -csc^2(x)。

(5)正切函数和余切函数的导数也可以写成d/dx(tan(x)) = 1 /cos^2(x)和d/dx(cot(x)) = -1 / sin^2(x)。

6.反三角函数导数法则:(1)反正弦函数的导数为d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。

(2)反余弦函数的导数为d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。

(3)反正切函数的导数为d/dx(arctan(x)) = 1 / (1 + x^2)。

一般常用求导公式

一般常用求导公式

一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。

为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。

本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。

一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。

解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。

例如:如果y = 5,那么y' = 0。

2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。

解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。

例如:如果y = x^3,那么y' = 3x^2。

3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。

解释:指数函数的导数等于函数的值乘以底数的自然对数。

例如:如果y = 2^x,那么y' = 2^x * ln(2)。

4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。

解释:对数函数的导数等于1除以自变量乘以底数的自然对数。

例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。

5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。

解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。

例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。

二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。

2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。

求导基本公式表

求导基本公式表

导数是微积分学中的重要概念,它表示一个函数在某一点处的变化率。

导数公式是微积分学中的基本公式之一,用于计算函数的导数。

以下是导数的基本公式表:
1.函数y=kx的导数为y′=k,其中k为常数。

2.函数y=axn的导数为y′=naxn−1,其中a为常数,n为正整数。

3.函数y=loga(x)的导数为y′=x ln a1,其中a为常数且a>0且a=1。

4.函数y=ex的导数为y′=ex。

5.函数y=sin(x)的导数为y′=cos(x)。

6.函数y=cos(x)的导数为y′=−sin(x)。

7.函数y=tan(x)的导数为y′=(sec(x))2。

8.函数y=cot(x)的导数为y′=−(csc(x))2。

9.函数y=sec(x)的导数为y′=tan(x)sec(x)。

10.函数y=csc(x)的导数为y′=−cot(x)csc(x)。

这些公式可以在求解函数的导数时提供帮助。

但是需要注意,对于复杂的函数,可能需要使用更高级的导数公式才能求解其导数。

此外,导数的计算还涉及到一些基本的微积分知识和技巧,例如链式法则、乘法法则、指数函数求导法则等等,需要在学习微积分的过程中逐步掌握。

高等数学18个求导公式

高等数学18个求导公式

高等数学18个求导公式高等数学的求导,是高等数学的重要的基本技能。

求导的基本定义是求出一个函数的变化率,也就是求函数的导数。

下面给出18个求导公式:1.常数项求导公式:若y = c,其中c为常数,则y′ = 0;2.幂函数求导公式:若y = x^n,其中n为正整数,则y′ = nx^{n-1};3.多次幂函数求导公式:若y = x^n + a^n,其中n为正整数,则y′ = nx^{n-1} + na^{n-1};4.指数函数求导公式:若y = a^x,其中a为正数,则y′ = a^xln a;5.对数函数求导公式:若y = lnx,则y′ = \frac{1}{x};6.三角函数求导公式:若y = sin x,则y′ = cos x;若y = cos x,则y′ = -sin x;若y = tan x,则y′ = \frac{1}{cos^2 x};7.反三角函数求导公式:若y = arcsin x,则y′ =\frac{1}{\sqrt{1-x^2}};若y = arccos x,则y′ = \frac{-1}{\sqrt{1-x^2}};若y = arctan x,则y′ = \frac{1}{1+x^2};8.指数函数的导数:若y = e^x,则y′ = e^x;9.乘法公式求导公式:若y = f(x)g(x),则y′ = f'(x)g(x) +f(x)g'(x);10.链式法则求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);11.求和求导公式:若y = \sum_{i=1}^{n} f(x_i),则y′ =\sum_{i=1}^{n} f'(x_i);12.积分求导公式:若y = \int f(x)dx,则y′ = f(x);13.极限求导公式:若y = \lim_{x \to a} f(x),则y′ =\lim_{x \to a} f'(x);14.复合函数求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);15.乘方公式求导公式:若y = (f(x))^n,其中n为正整数,则y′ = n(f(x))^{n-1}f'(x);16.幂函数的导数:若y = x^n,则y′ = nx^{n-1};17.对数函数的导数:若y = lnx,则y′ = \frac{1}{x};18.三角函数的导数:若y = sinx,则y′ = cosx;若y = cosx,则y′ = -sinx;若y = tanx,则y′ = \frac{1}{cos^2 x}。

基本导数公式16个汇总

基本导数公式16个汇总

基本导数公式16个汇总基本导数公式16个整理16个基本导数公式(y:原函数;y:导函数):1、y=c,y=0(c为常数)。

2、y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y=a^x lna;y=e^x,y=e^x。

4、y=logax,y=1/(xlna)(a0且a≠1);y=lnx,y=1/x。

5、y=sinx,y=cosx。

6、y=cosx,y=-sinx。

7、y=tanx,y=(secx)^2=1/(cosx)^2。

8、y=cotx,y=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y=1/√(1-x^2)。

10、y=arccosx,y=-1/√(1-x^2)。

11、y=arctanx,y=1/(1+x^2)。

12、y=arccotx,y=-1/(1+x^2)。

13、y=shx,y=ch x。

14、y=chx,y=sh x。

15、y=thx,y=1/(chx)^2。

16、y=arshx,y=1/√(1+x^2)。

导数的几何意义是什么导数的数学意义是:函数y=f(x)在x0点的导数f(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

导数的物理意义是:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

导数运算法则减法法则:(f(x)-g(x))=f(x)-g(x)加法法则:(f(x)+g(x))=f(x)+g(x)乘法法则:(f(x)g(x))=f(x)g(x)+f(x)g(x)除法法则:(g(x)/f(x))=(g(x)f(x)-f(x)g(x))/(f(x))^2常用导数公式1、y=c(c为常数) y=02、y=x^n y=nx^(n-1)3、y=a^x y=a^xlnay=e^x y=e^x4、y=logax y=logae/x y=lnx y=1/x5、y=sinx y=cosx6.y=cosx y=-sinx7、y=tanx y=1/cos^2x8、y=cotx y=-1/sin^2x。

导数的基本公式表

导数的基本公式表

导数的基本公式表导数是微积分中的重要概念,用于描述函数在某点处的变化率。

导数的基本公式是求导的重要工具,下面是导数的基本公式表及其相关参考内容。

1. 基本导数公式:(1) 常数函数导数公式:f(x) = c ,其中 c 为常数,导数为 f'(x) = 0 。

(2) 幂函数导数公式:f(x) = x^n ,其中 n 为常数,导数为 f'(x) = nx^(n-1) 。

(3) 指数函数导数公式:f(x) = a^x ,其中 a 为常数,导数为f'(x) = ln(a)·a^x 。

(4) 对数函数导数公式:f(x) = log_a(x) ,其中 a 为常数,导数为 f'(x) = 1/(ln(a)·x) 。

(5) 三角函数导数公式:正弦函数导数公式:f(x) = sin(x) ,导数为 f'(x) = cos(x) 。

余弦函数导数公式:f(x) = cos(x) ,导数为 f'(x) = -sin(x) 。

正切函数导数公式:f(x) = tan(x) ,导数为 f'(x) = sec^2(x) 。

2. 基本导数法则:(1) 基本求导法则:常数倍法则:[c·f(x)]' = c·f'(x) ,其中 c 为常数。

和差法则:[f(x)±g(x)]' = f'(x)±g'(x) 。

乘法法则:[f(x)·g(x)]' = f'(x)·g(x) + f(x)·g'(x) 。

除法法则:[f(x)/g(x)]' = [f'(x)·g(x) - f(x)·g'(x)]/g^2(x) ,其中g(x) ≠ 0 。

(2) 链式法则:若 y = f(g(x)) ,则 y' = f'(g(x))·g'(x) 。

求导公式表

求导公式表

求导公式表在微积分中,求导是十分重要的内容。

求导公式是求解导数的基本工具,熟练掌握各种求导公式对于解决实际问题以及理论研究具有重要意义。

下面是一些常用的求导公式的总结。

基本求导公式常数求导法则如果f(f)=f,其中f是一个常数,那么它的导数为:$$\\frac{d}{dx}C = 0$$幂函数法则如果f(f)=f f,其中f是一个实数,那么它的导数为:$$\\frac{d}{dx}x^n = nx^{n-1}$$指数函数法则如果f(f)=f f,其中f是一个正实数且f ff1,那么它的导数为:$$\\frac{d}{dx}a^x = (\\ln{a})a^x$$对数函数法则如果$f(x) = \\log_{a}x$,其中f是一个正实数且f ff1,那么它的导数为:$$\\frac{d}{dx}\\log_{a}x = \\frac{1}{x\\ln{a}}$$三角函数法则以下是常见三角函数的导数公式:•$\\frac{d}{dx}\\sin{x} = \\cos{x}$•$\\frac{d}{dx}\\cos{x} = -\\sin{x}$•$\\frac{d}{dx}\\tan{x} = \\sec^{2}{x}$•$\\frac{d}{dx}\\cot{x} = -\\csc^{2}{x}$•$\\frac{d}{dx}\\sec{x} = \\sec{x}\\tan{x}$•$\\frac{d}{dx}\\csc{x} = -\\csc{x}\\cot{x}$基本运算法则和差法则如果$f(x) = g(x) \\pm h(x)$,那么它的导数为:$$\\frac{d}{dx}[g(x) \\pm h(x)] = \\frac{d}{dx}g(x) \\pm \\frac{d}{dx}h(x)$$乘积法则如果f(f)=f(f)f(f),那么它的导数为:$$\\frac{d}{dx}[g(x)h(x)] = g(x)\\frac{d}{dx}h(x) +h(x)\\frac{d}{dx}g(x)$$商法则(低中高)如果$f(x) = \\frac{g(x)}{h(x)}$,那么它的导数为:$$\\frac{d}{dx}\\left[\\frac{g(x)}{h(x)}\\right] =\\frac{h(x)\\frac{d}{dx}g(x) -g(x)\\frac{d}{dx}h(x)}{(h(x))^2}$$链式法则链式法则用于求解复合函数的导数。

常用基本初等函数求导公式积分公式

常用基本初等函数求导公式积分公式

常用基本初等函数求导公式积分公式常用的基本初等函数求导公式有:1.常数函数求导公式:对于常数函数f(x)=C,其中C是一个常数,其导函数为f'(x)=0。

2.幂函数求导公式:对于幂函数f(x) = x^n,其中n是任意实数,其导函数为f'(x) =nx^(n-1)。

3.指数函数求导公式:对于指数函数f(x) = a^x,其中a是一个大于0且不等于1的常数,其导函数为f'(x) = ln(a) * a^x。

4.对数函数求导公式:对于自然对数函数f(x) = ln(x),其导函数为f'(x) = 1/x。

5.三角函数求导公式:a) 正弦函数求导公式:f(x) = sin(x)的导函数为f'(x) = cos(x)。

b) 余弦函数求导公式:f(x) = cos(x)的导函数为f'(x) = -sin(x)。

c) 正切函数求导公式:f(x) = tan(x)的导函数为f'(x) =sec^2(x)。

6.反三角函数求导公式:a) 反正弦函数求导公式:f(x) = arcsin(x)的导函数为f'(x) =1/√(1 - x^2)。

b) 反余弦函数求导公式:f(x) = arccos(x)的导函数为f'(x) = -1/√(1 - x^2)。

c) 反正切函数求导公式:f(x) = arctan(x)的导函数为f'(x) =1/(1 + x^2)。

常用的基本初等函数积分公式有:1.幂函数积分公式:对于幂函数f(x) = x^n,其中n不等于-1,其不定积分为∫x^n dx= (1/(n+1)) x^(n+1) + C,其中C为积分常数。

2.反函数积分公式:对于反函数f(x) = F^(-1)(x),其中F(x)为连续可导函数,其不定积分为∫f(x) dx = x * F(x) - ∫F(x) dF(x) + C,其中C为积分常数。

常用导数基本公式大全

常用导数基本公式大全

常用导数基本公式大全一、基本导数公式•$ \frac{d}{dx} (c) = 0, \quad c \text { 为常数} $•$ \frac{d}{dx} (x^n) = nx^{n-1}, \quad n \in\mathbb{R} $•$ \frac{d}{dx} (e^x) = e^x $•$ \frac{d}{dx} (\ln x) = \frac{1}{x} $二、常见函数的导数•$ \frac{d}{dx} (a f(x) + b g(x)) = a \frac{d}{dx} f(x) + b \frac{d}{dx} g(x) $•$ \frac{d}{dx} (f(x) g(x)) = f(x) \frac{d}{dx} g(x) + g(x) \frac{d}{dx} f(x) $•$ \frac{d}{dx} (f(g(x))) = f’(g(x)) g’(x) $三、三角函数的导数•$ \frac{d}{dx} (\sin x) = \cos x $•$ \frac{d}{dx} (\cos x) = -\sin x $•$ \frac{d}{dx} (\tan x) = \sec^2 x $•$ \frac{d}{dx} (\csc x) = -\csc x \cot x $•$ \frac{d}{dx} (\sec x) = \sec x \tan x $•$ \frac{d}{dx} (\cot x) = -\csc^2 x $四、反三角函数的导数•$ \frac{d}{dx} (\arcsin x) = \frac{1}{\sqrt{1-x^2}} $•$ \frac{d}{dx} (\arccos x) = -\frac{1}{\sqrt{1-x^2}} $•$ \frac{d}{dx} (\arctan x) = \frac{1}{1+x^2} $•$ \frac{d}{dx} (\arccot x) = -\frac{1}{1+x^2} $•$ \frac{d}{dx} (\arcsec x) = \frac{1}{x |x| \sqrt{x^2 - 1}} $•$ \frac{d}{dx} (\arccsc x) = -\frac{1}{x |x| \sqrt{x^2 - 1}} $五、链式法则若 $ y = f(u) $ 且 $ u = g(x) $ 则有•$ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} $六、隐函数求导对于方程 $ F(x, y) = 0 $ ,有•$ \frac{dy}{dx} = -\frac{\frac{dF}{dx}}{\frac{dF}{dy}} $七、参数方程求导对于参数方程 $ x = x(t) $ 、 $ y = y(t) $ ,则有•$ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} $以上就是常用导数基本公式的大全,希望对你的学习有所帮助!。

常用的求导和定积分公式

常用的求导和定积分公式

常用的求导和定积分公式一、常用的求导公式1. 幂函数:若f(x) = x^n,其中n为实数,则有f'(x) = nx^(n-1)2. 指数函数:若f(x) = a^x,其中a为正实数且a ≠ 1,则有f'(x) = a^x * ln(a)3. 对数函数:若f(x) = log_a(x),其中a为正实数且a ≠ 1,则有f'(x) = 1/(x * ln(a))4.三角函数:- 正弦函数:若f(x) = sin(x),则有f'(x) = cos(x)- 余弦函数:若f(x) = cos(x),则有f'(x) = -sin(x)- 正切函数:若f(x) = tan(x),则有f'(x) = sec^2(x)5.反三角函数:- 反正弦函数:若f(x) = arcsin(x),则有f'(x) = 1/sqrt(1 - x^2)- 反余弦函数:若f(x) = arccos(x),则有f'(x) = -1/sqrt(1 - x^2)- 反正切函数:若f(x) = arctan(x),则有f'(x) = 1/(1 + x^2) 6.双曲函数:- 双曲正弦函数:若f(x) = sinh(x),则有f'(x) = cosh(x)- 双曲余弦函数:若f(x) = cosh(x),则有f'(x) = sinh(x)- 双曲正切函数:若f(x) = tanh(x),则有f'(x) = sech^2(x)1. 常数函数:∫c dx = cx + C,其中C为常数2. 幂函数:若f(x) = x^n,其中n ≠ -1,则有∫x^n dx =(x^(n+1))/(n+1) + C3. 指数函数:若f(x) = a^x,其中a > 0且a ≠ 1,则有∫a^x dx = (a^x)/(ln(a)) + C4. 对数函数:若f(x) = log_a(x),其中a > 0且a ≠ 1,则有∫1/x dx = ln,x, + C5.三角函数:(以下a、b和c为常数)- 正弦函数:∫sin(ax) dx = -1/a * cos(ax) + C- 余弦函数:∫cos(bx) dx = 1/b * sin(bx) + C- 正切函数:∫tan(cx) dx = -1/c * ln,cos(cx), + C6.双曲函数:(以下a为常数)- 双曲正弦函数:∫sinh(ax) dx = (1/a) * cosh(ax) + C- 双曲余弦函数:∫cosh(ax) dx = (1/a) * sinh(ax) + C- 双曲正切函数:∫tanh(ax) dx = (1/a) * ln,cosh(ax), + C以上只是常用的求导和定积分公式的一部分,实际上还有很多其他的公式,在具体的数学应用中根据具体问题选择适用的公式。

24个基本求导公式

24个基本求导公式

24个基本求导公式在微积分中,求导是一个重要的概念。

它表示了函数在给定点的变化率。

通过求导可以确定函数的最大值、最小值、离散点以及函数曲线的形状。

在这里,我们将讨论24个基本的求导公式。

1.常数函数:对于常数函数f(x)=C,其中C是常数,它的导数为f'(x)=0。

这意味着常数函数的斜率为0,因为它在任何点上的变化率都是零。

2. 幂函数: 对于幂函数f(x) = x^n,其中n是一个实数,它的导数为f'(x) = nx^(n-1)。

例如,对于函数f(x) = x^3,它的导数为f'(x)= 3x^23. 指数函数: 对于指数函数f(x) = a^x,其中a是一个正实数且不等于1,它的导数为f'(x) = a^x * ln(a)。

例如,对于函数f(x) = e^x,它的导数为f'(x) = e^x。

4. 对数函数: 对于对数函数f(x) = log_a(x),其中a是一个正实数且不等于1,它的导数为f'(x) = 1/(x * ln(a))。

例如,对于函数f(x) = ln(x),它的导数为f'(x) = 1/x。

5. 三角函数: 对于正弦函数f(x) = sin(x),它的导数为f'(x) = cos(x)。

对于余弦函数f(x) = cos(x),它的导数为f'(x) = -sin(x)。

对于正切函数f(x) = tan(x),它的导数为f'(x) = sec^2(x)。

6. 反三角函数: 对于反正弦函数f(x) = arcsin(x),它的导数为f'(x) = 1/sqrt(1-x^2)。

对于反余弦函数f(x) = arccos(x),它的导数为f'(x) = -1/sqrt(1-x^2)。

对于反正切函数f(x) = arctan(x),它的导数为f'(x) = 1/(1+x^2)。

7. 双曲函数: 对于双曲正弦函数f(x) = sinh(x),它的导数为f'(x) = cosh(x)。

求导法则公式大全

求导法则公式大全

求导法则公式大全求导法则是微积分中的重要内容,可以帮助我们计算函数的变化率和极值等问题。

以下是一些常用的求导法则:1.常数法则:若f(x)=C,则f'(x)=0,其中C为常数。

2. 幂函数法则:若 f(x) = x^n,则 f'(x) = nx^(n-1),其中 n 为常数。

3. 指数函数法则:若 f(x) = a^x,则 f'(x) = ln(a) * a^x,其中a 为常数,ln 表示自然对数。

4. 对数函数法则:若 f(x) = logₐ(x),则 f'(x) = 1 / (x *ln(a)),其中 a 为常数,ln 表示自然对数。

5. 三角函数法则:对于 sin(x),cos(x),tan(x)等三角函数,其导数为 cos(x),-sin(x),sec²(x)。

6. 反三角函数法则:对于 arcsin(x),arccos(x),arctan(x)等反三角函数,其导数为 1 / √(1 - x²),-1 / √(1 - x²),1 / (1 + x²)。

7.基本初等函数法则:求导的基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

8.和差法则:若f(x)=u(x)±v(x),则f'(x)=u'(x)±v'(x),其中u(x)和v(x)是可导函数。

9.积法则:若f(x)=u(x)*v(x),则f'(x)=u'(x)*v(x)+u(x)*v'(x),其中u(x)和v(x)是可导函数。

10.商法则:若f(x)=u(x)/v(x),则f'(x)=(u'(x)*v(x)-u(x)*v'(x))/v(x)²,其中u(x)和v(x)是可导函数。

11.复合函数法则:若f(x)=g(h(x)),则f'(x)=g'(h(x))*h'(x),其中g(x)和h(x)是可导函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n nnxx ;一般地,1)(-='αααxx 。

特别地:1)(='x ,x x 2)(2=',21)1(x x -=',xx 21)(='。

⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a xx 。

⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。

2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。

3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e xx +=⎰; )1,0( ln ≠>+=⎰a a C a a dx a x x ; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h g f ed c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。

解:>>clear;>>syms x y;>>y=log(sqrt(x+x^2)+exp(x)); >>dy=diff(y,2)例:试写出用MATLAB 软件求函数)e ln(xx y +=的一阶导数y '的命令语句。

>>clear;>>syms x y;>>y=log(sqrt(x)+exp(x));>>dy=diff(y)例11 试写出用MATLAB 软件计算定积分⎰21d e 13x xx 的命令语句。

解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3); >>int(y,1,2)例 试写出用MATLAB 软件计算定积分⎰x xx d e 13的命令语句。

解:>>clear;>>syms x y;>>y=(1/x)*exp(x^3); >>int(y)MATLAB 软件的函数命令表1 MATLAB 软件中的函数命令典型例题例1 设某物资要从产地A 1,A 2,A 3调往销地B 1,B 2,B 3,B 4,运输平衡表(单位:吨)和运价表(单位:百元/吨)如下表所示:(1)用最小元素法编制的初始调运方案,(2)检验上述初始调运方案是否最优,若非最优,求最优调运方案,并计算最低运输总费用。

解:用最小元素法编制的初始调运方案如下表所示:运输平衡表与运价表找空格对应的闭回路,计算检验数:11λ=1,12λ=1,22λ=0,24λ=-2已出现负检验数,方案需要调整,调整量为 1 调整后的第二个调运方案如下表:运输平衡表与运价表销地产地B 1 B 2 B 3 B 4 供应量 B 1 B 2 B 3 B 4 A 1 5 2 7 3 11 3 11 A 2 3 1 4 1 928A 3 6 3 9 7 4 10 5 需求量365620求第二个调运方案的检验数:11λ=-1已出现负检验数,方案需要再调整,调整量为 2 调整后的第三个调运方案如下表:运输平衡表与运价表销地产地B 1 B 2 B 3 B 4 供应量 B 1 B 2 B 3 B 4 A 1 2 5 7 3 11 3 11 A 2 1 3 4 1 928A 3 6 3 9 7 4 10 5 需求量365620求第三个调运方案的检验数:12λ=2,14λ=1,22λ=2,23λ=1,31λ=9,33λ=12所有检验数非负,故第三个调运方案最优,最低运输总费用为:2×3+5×3+1×1+3×8+6×4+3×5=85(百元)例2 某物流公司下属企业经过对近期销售资料分析及市场预测得知,该企业生产的甲、乙、丙三种产品,均为市场紧俏产品,销售量一直持续上升经久不衰。

今已知上述三种产品的单位产品原材料消耗定额分别为4公斤、4公斤和5公斤;三种产品的单位产品所需工时分别为6台时、3台时和6台时。

另外,三种产品的利润分别为400元/件、250元/件和300A 1 4 3 7 3 11 3 11 A 2 3 1 4 1 928A 3 6 3 9 7 4 10 5 需求量365620元/件。

由于生产该三种产品的原材料和工时的供应有一定限制,原材料每天只能供应180公斤,工时每天只有150台时。

1.试建立在上述条件下,如何安排生产计划,使企业生产这三种产品能获得利润最大的线性规划模型。

2. 写出用MATLAB 软件计算该线性规划问题的命令语句。

解:1、设生产甲、乙、丙三种产品分别为x 1件、x 2件和x 3件,显然x 1,x 2,x 3≥0线性规划模型为⎪⎩⎪⎨⎧≥≤++≤++++=0150636180544300250400max 321321321321x x x x x x x x x x x x S ,,2.解上述线性规划问题的语句为: >>clear;>>C=-[400 250 300]; >>A=[4 4 5;6 3 6]; >>B=[180;150]; >>LB=[0;0;0];>>[X,fval,exitflag]=linprog(C,A,B,[],[],LB)例3已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=2101111412210101C B A ,,,求:T C AB + 解:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=+3612201116012101111412210101C AB 例4 设y =(1+x 2)ln x ,求:y '解:xx x x x x x x y 2221ln 2))(ln 1(ln )1(++='++'+='例5 设xy x+=1e ,求:y '解:22)1(e )1()1(e )1()e (x x x x x y xx x +=+'+-+'=' 例7 某厂生产某种产品的固定成本为2万元,每多生产1百台产品,总成本增加1万元,销售该产品q 百台的收入为R (q )=4q -0.5q 2(万元)。

当产量为多少时,利润最大?最大利润为多少?解:产量为q 百台的总成本函数为:C (q )=q +2 利润函数L (q )=R (q )-C (q )=-0.5q 2+3q -2令ML (q )=-q +3=0 得唯一驻点 q =3(百台) 故当产量q =3百台时,利润最大,最大利润为L (3)=-0.5×32+3×3-2=2.5(万元)例8 某物流企业生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求经济批量。

解:库存总成本函数qq q C 100000000040)(+=令010********401)(2=-='qq C 得定义域内的唯一驻点q =200000件。

即经济批量为200000件。

例9 计算定积分:⎰+10d )e 3(x x x解:25e 3)e 321(d )e 3(|1021-=+=+⎰x x x x x 例10 计算定积分:⎰+312d )2(x xx解:3ln 2326|)|ln 231(d )2(|313312+=+=+⎰x x x x x教学补充说明1. 对编程问题,要记住函数e x ,ln x ,x 在MATLAB 软件中相应的命令函数exp(x),log(x),sqrt(x);2 对积分问题,主要掌握积分性质及下列三个积分公式:c x a x x a a++=+⎰111d (a ≠-1) c x x x +=⎰e d e c x x x +=⎰||ln d 17. 记住两个函数值:e 0=1,ln 1=0。

相关文档
最新文档