最新生物化学期末复习资料

合集下载

生物化学复习资料(全)

生物化学复习资料(全)

⽣物化学复习资料(全)⽣物化学复习资料第⼆章核酸化学1、说明碱基、核苷、核苷酸和核酸之间在结构上的区别。

碱基主要是指嘌呤和嘧啶的衍⽣物,是核苷、核苷酸和核酸的主要成分;⽽核苷是在碱基上连⼀个戊糖⽽形成;核苷酸是核苷的磷酸酯,是核苷酸结构中戊糖上5号位相连接的羟基被⼀个磷酸分⼦酯化的产物;核酸是以核苷酸为基本结构单元所构成的巨⼤分⼦。

2、试从分⼦⼤⼩、细胞定位以及结构和功能上⽐较DNA和RNA。

DNA由两条互补的脱氧核糖核⽢酸亚单元的链组成的双螺旋结构,RNA仅是⽐DNA⼩得多的核糖核苷酸亚单元单链结构;DNA中有胸腺嘧啶(T),但⽆尿嘧啶(U),但RNA则相反,DNA主要是携带⽣物的遗传信息,指挥蛋⽩质的合成等,⽽RNA则在于遗传信息的翻译,转录等,有时也可以作为⼀种催化剂在⽣物的⽣命活动起⼀定的作⽤。

3、DNA双螺旋结构模型的要点有哪些?(1)、天然DNA分⼦由两条反向平⾏的5′-3′,另⼀条链的⾛向为3′-5′。

两条链沿⼀个假想的中⼼轴右旋相互盘绕,形成⼤沟和⼩沟。

(2)、磷酸和脱氧核糖作为不变的链⾻架成分位于螺旋外侧,作为可变成分的碱基位于螺旋内侧。

(3)、螺旋的直径为2nm,相邻碱基平⾯的垂直距离为0.34nm。

螺旋结构每隔10个碱基重复⼀次,间距为3.4nm。

(4)、DNA双螺旋结构是⼗分稳定的。

(稳定⼒量主要有两个:⼀个是碱基堆积⼒。

⼀个是碱基配对的氢键。

P25)4、正确写出与下列寡核苷酸互补的DNA 和RNA序列:(1)GA TCAA(2)TGGAAC(3)ACGCGT(4)TAGCA TCTAGTT ACCTTG TGCGCAA TCGTA(DNA)CUAGUU ACCUUG UGCGCA AUCGUA(RNA)7.从两种不同细菌提取得DNA样品,其腺嘌呤核苷酸残基分别占其核苷酸残基总数的32%和17%,计算这两种不同来分组成。

两种细菌中有⼀种是从温泉(64℃)中分离出来的,该细菌DNA具有何种碱基组成?为什么?答:第⼀种细菌腺嘌呤核苷酸占32%,鸟嘌呤核苷酸占18%,胸腺嘧啶核苷酸占32%,胞嘧啶核苷酸占18%;第⼆种细菌腺嘌呤核苷酸占17%,鸟嘌呤核苷酸占33%,胸腺嘧啶核苷酸占17%,胞嘧啶核苷酸占33%。

生物化学-期末复习资料

生物化学-期末复习资料

生物化学-期末复习资料一、判断题(每题1分,共15分)1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷( )2、糖类化合物都具有还原性( )3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。

( )4、维持蛋白质二级结构的主要副键是二硫键。

( )5、ATP含有3个高能磷酸键。

( )6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。

( )7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。

( )8、氰化物对人体的毒害作用是由于它具有解偶联作用。

( )9、血糖基本来源靠食物提供。

( )10、脂肪酸氧化称β-氧化。

( )11、肝细胞中合成尿素的部位是线粒体。

( )12、构成RNA的碱基有A、U、G、T。

( )13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。

( )14、胆汁酸过多可反馈抑制7α-羟化酶。

( )15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物。

( )二、(学科教研组期末学业水平汇编)单选题(每小题1分,共20分)1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:( )A、麦芽糖B、蔗糖C、乳糖D、纤维素E、香菇多糖2、下列何物是体内贮能的主要形式 ( )A、硬酯酸B、胆固醇C、胆酸D、醛固酮E、脂酰甘油3、蛋白质的基本结构单位是下列哪个:( )A、多肽B、二肽C、L-α氨基酸D、L-β-氨基酸E、以上都不是4、酶与一般催化剂相比所具有的特点是( )A、能加速化学反应速度B、能缩短反应达到平衡所需的时间C、具有高度的专一性D、反应前后质和量无改E、对正、逆反应都有催化作用5、通过翻译过程生成的产物是: ( )A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( )A、1B、2C、3D、4.(学科教研组期末学业水平检测精选汇编)E、57、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP? ( )A、1B、2C、3D、4E、58、下列哪个过程主要在线粒体进行( )A、脂肪酸合成B、胆固醇合成C、磷脂合成D、甘油分解E、脂肪酸β-氧化9、酮体生成的限速酶是( )A、HMG-CoA还原酶B、HMG-CoA裂解酶C、HMG-CoA合成酶D、磷解酶E、β-羟丁酸脱氢酶10、有关G-蛋白的概念错误的是( )A、能结合GDP和GTPB、由α、β、γ三亚基组成C、亚基聚合时具有活性D、可被激素受体复合物激活E、有潜在的GTP 活性11、鸟氨酸循环中,合成尿素的第二个氮原子来自 ( )A、氨基甲酰磷酸B、NH3C、天冬氨酸D、天冬酰胺E、谷氨酰胺12、下列哪步反应障碍可致苯丙酮酸尿症 ( )A、多巴→黑色素B、苯丙氨酸→酪氨酸C、苯丙氨酸→苯丙酮酸D、色氨酸→5羟色胺E、酪氨酸→尿黑酸13、胆固醇合成限速酶是: ( )A、HMG-CoA合成酶B、HMG-CoA还原酶C、HMG-CoA裂解酶D、甲基戊烯激酶E、鲨烯环氧酶14、关于糖、脂肪、蛋白质互变错误是: ( )A、葡萄糖可转变为脂肪B、蛋白质可转变为糖C、脂肪中的甘油可转变为糖D、脂肪可转变为蛋白质E、葡萄糖可转变为非必需氨基酸的碳架部分15、竞争性抑制作用的强弱取决于:( )A、抑制剂与酶的结合部位B、抑制剂与酶结合的牢固程度C、抑制剂与酶结构的相似程度D、酶的结合基团E、底物与抑制剂浓度的相对比例16、红细胞中还原型谷胱苷肽不足,易引起溶血是缺乏( )A、果糖激酶B、6-磷酸葡萄糖脱氢酶C、葡萄糖激酶D、葡萄糖6-磷酸酶E、己糖二磷酸酶17、三酰甘油的碘价愈高表示下列何情况 ( )A、其分子中所含脂肪酸的不饱和程度愈高B、其分子中所含脂肪酸的不饱和程度愈C、其分子中所含脂肪酸的碳链愈长D、其分子中所含脂肪酸的饱和程度愈高E、三酰甘油的分子量愈大18、真核基因调控中最重要的环节是 ( )A、基因重排B、基因转录C、DNA的甲基化与去甲基化D、mRNA的衰减E、翻译速度19、关于酶原激活方式正确是:( )A、分子内肽键一处或多处断裂构象改变,形成活性中心B、通过变构调节C、通过化学修饰D、分子内部次级键断裂所引起的构象改变E、酶蛋白与辅助因子结合20、呼吸链中氰化物抑制的部位是: ( )A、Cytaa3→O2B、NADH→O2C、CoQ→CytbD、Cyt→CytC1 D、Cytc→Cytaa3三、多选题(10个小题,每题1分,共10分)1、基因诊断的特点是:( )A、针对性强特异性高B、检测灵敏度和精确性高C、实用性强诊断范围广D、针对性强特异性低E、实用性差诊断范围窄2、下列哪些是维系DNA双螺旋的主要因素( )A、盐键B、磷酸二酯键C、疏水键D、氢键E、碱基堆砌3、核酸变性可观察到下列何现象 ( )A、粘度增加B、粘度降低C、紫外吸收值增加D、紫外吸收值降低E、磷酸二酯键断裂4、服用雷米封应适当补充哪种维生素( )A、维生素B2B、V—PPC、维生素B6D、维生素B12E、维生素C5、关于呼吸链的叙述下列何者正确? ( )A、存在于线粒体B、参与呼吸链中氧化还原酶属不需氧脱氢酶C、NAD+是递氢体D、NAD+是递电子体E、细胞色素是递电子体6、糖异生途径的关键酶是 ( )A、丙酮酸羧化酶B、果糖二磷酸酶C、磷酸果糖激酶D、葡萄糖—6—磷酸酶E、已糖激酶7、甘油代谢有哪几条途径( )A、生成乳酸B、生成CO2、H2O、能量C、转变为葡萄糖或糖原D、合成脂肪的原料E、合成脂肪酸的原料8、未结合胆红素的其他名称是 ( )A、直接胆红素B、间接胆红素C、游离胆红素D、肝胆红素E、血胆红素9、在分子克隆中,目的基因可来自( )A、基因组文库B、cDNA文库C、PCR扩增D、人工合成E、DNA结合蛋白10关于DNA与RNA合成的说法哪项正确: ( )A、在生物体内转录时只能以DNA有意义链为模板B、均需要DNA为模板C、复制时两条DNA链可做模板D、复制时需要引物参加转录时不需要引物参加E、复制与转录需要的酶不同四、填空题(每空0.5分,共15分)1、胞液中产生的NADH经和穿梭作用进入线粒体。

生物化学期末复习知识点总结(二)2024

生物化学期末复习知识点总结(二)2024

生物化学期末复习知识点总结(二)引言概述:生物化学是生物学和化学的交叉学科,它研究生物体内化学成分、化学反应、代谢途径以及能量转化等。

期末复习是对学期内所学知识的总结与归纳,有助于巩固理论基础和提高解题能力。

本文将以生物化学期末复习知识点总结为主题,按照五个大点进行详细阐述,帮助读者进行有针对性的复习。

正文:一、蛋白质的结构与功能1. 蛋白质的组成:氨基酸是蛋白质的基本组成单位,共有20种常见氨基酸,可以通过肽键连接成多肽链。

2. 蛋白质的一、二、三、四级结构:一级结构是由氨基酸序列决定的;二级结构包括α-螺旋和β-折叠;三级结构是通过氨基酸侧链间的相互作用形成的折叠结构;四级结构是由多个多肽链相互作用形成的复合物结构。

3. 蛋白质的功能:蛋白质广泛参与生物体内的结构支持、酶催化、运输、存储、免疫、传递信号等生命活动。

4. 蛋白质的失活与变性:高温、酸碱、氧化剂等因素都可以导致蛋白质的失活和变性。

二、碳水化合物的代谢1. 糖类的分类与特点:单糖、双糖和多糖是常见的糖类,它们具有可溶性和甜味特点。

2. 糖的代谢途径:糖类通过糖酵解和糖异生途径进行能量转化和物质合成。

3. 糖酵解的过程和产物:糖酵解包括糖的磷酸化、糖裂解和糖氧化,产生的主要产物有ATP、NADH和丙酮酸等。

4. 糖异生途径的过程和关键酶:糖异生途径是指通过非糖类物质合成糖类,关键酶有磷酸戊糖异构酶、果糖-1,6-二磷酸酶等。

5. 糖类的贮存和转运:动物体内的糖类主要以肝糖和肌糖形式储存,并通过血液转运到其他组织。

三、脂类的结构与功能1. 脂类的组成:脂类由甘油和脂肪酸组成,脂肪酸根据饱和度可分为饱和脂肪酸、不饱和脂肪酸和多不饱和脂肪酸。

2. 脂类的分类与特点:脂类根据结构和功能可分为磷脂、甘油三酯、鞘脂等,具有储能、保温、保护器官等功能。

3. 脂类在细胞膜中的作用:脂类是细胞膜的主要组成成分之一,它可以调节细胞的通透性和稳定性。

4. 脂类的消化与吸收:脂类在肠道内经过胆盐乳化、胰酶水解等过程,最终被吸收到淋巴系统。

生物化学期末复习知识点

生物化学期末复习知识点

第一章蛋白质练习题1.组成蛋白质的20种氨基酸中,哪些是极性的7哪些是非极性的?哪一种不能参与形成真正的肽键?为什么?在组成蛋白质的20种氨基酸中,根据氨基酸侧链基团的极性可分为三种:(1)带有非极性侧链基团的氨基酸:Ala,Val,Leu,11。

,Th。

trp.Met 和Pro。

(2)带有极性但不解离侧链基团的氨基酸:Thr,Ser,Tyr,Asn,Gln,Cys和Gly。

这些氨基酸的OH、CO一NH2和一SH,在pH7的生理条件下不能解离但显示极性。

Gly的H+因受α一碳原子的影响,显示极弱的极性。

(3)带有解离侧链基团的氨基酸:在pH7的生理条件下解离,带正电荷的有Arg,Lys和HiS;带负电荷的有:Asp和Glu。

在组成蛋白质的20种氨基酸中,Pro不能参与形成真正的肽键,因为Pro是亚氨基酸,没有游离的氨基。

2.什么是蛋白质的等电点(pl)?为什么说在等电点时蛋白质的溶解度最低?蛋白质分子所带净电荷为零时,溶液的pH值为该蛋白质的等电点。

处于等电点状态的蛋白质分子外层的水化层被破坏,分子之间相互聚集形成较大的颗粒而沉淀下来3.蛋白质分子中哪些氨基酸可以与金属紧密地结合?请举例说明。

在蛋白质分子中带电荷的氨基酸侧链部可以与金属离子以离子键的方式结合。

例如血红蛋白分子中血红素带有的铁离子,凌肽酶A分子中的锌离子以及其它蛋白质分子中的铜、镁离子。

体内常见的与金属离子结合的氨基酸His、Glu和Cys等。

4.将固体氨基酸溶解于pH7的水中所得的氨基酸溶液.内的pH大于7,有的小于7,这种现象说明什么;氨基酸溶于纯水中溶液的pH大于或小于7,这正好说明了氨基酸具有兼性离子的性质。

氨基酸的共同特点是既带有氨基也有羧基。

还带出可解离和不可解离的侧链基团,当固体的氨基酸溶于纯水中时,pK值小于7的基团解离释放出质子使溶液变为酸性,pK′值大于7的基团接受质子使溶液变为碱性.在组成蛋白质的20种氨基酸中.一氨基一羧基的氨基酸溶于水后溶液基本为中性,一氨基二羧基的氨基酸溶于水后溶液pH小于7为酸性,二氨基一羧基的氨基酸,如Lsy。

生物化学复习题

生物化学复习题

生物化学期末复习资料(答案不一定保证正确)一、是非判断:1、Edmam降解反应中苯异硫氰酸(PITC)是与氨基酸的α-氨基形成PTC-氨基酸。

()2、蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。

蛋白质变形后沉淀都是因为中和电荷和去水膜所引起的。

()3、如动物长期饥饿,就要动用体内的脂肪,这时分解酮体速度大于生成酮体速度。

()4、在天然氨基酸中只限于α-NH2能与亚硝酸反应,定量放出氨气。

脯氨酸、羟脯氨酸环中的亚氨基,精氨酸、组氨酸和色氨酸环中的结合N皆不与亚硝酸作用。

()5、使用诱导契合假说可以解释许多酶的催化机制。

()6、若双链DNA中的一条链碱基顺序为:pCpTpGpGpApC,则另一条链的碱基顺序为:pGpApCpCpTpG。

()7、奇数碳原子的饱和脂肪酸经β-氧化后全部生成乙酰CoA。

()8、增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。

()9、酶被固定化后,一般稳定性增加。

()10、所有的磷脂分子中都含有甘油基。

()11、胆固醇分子中无双键,属于饱和固醇。

()12、在三羧酸循环中,琥珀酸脱氢酶催化琥珀酸氧化成延胡索酸时,电子受体为FAD。

()13、蛋白质变形后,其氨基酸排列序列并不发生变化。

()14、1mol葡萄糖经糖酵解途径生成乳酸,需经1次脱氢,两次底物水平磷酸化过程,最终净生成2摩尔ATP分子。

()15、若没氧存在时,糖酵解途径中脱氢反应产生的NADH+H+交给丙酮酸生成乳酸,若有氧存在下,则NADH+H+进入线粒体氧化。

()二、单项选择:1、维生素PP是下列哪种辅酶的组成成分?(A)A、NAD+B、CoA-SHC、TPPD、FH42、用EDman降解法测某肽的N端残基时,未发现有游离的PTH——氨基酸产生,问下述四种推测中,哪一种是不正确的?(B)(A)其N端氨基酸被乙酰化(B)其N端氨基酸是Pro(C)此肽是环肽(D)其N端氨基酸是Gln3、1mol葡萄糖经糖的有氧氧化过程可生成的乙酰CoA:(B)A. 1molB.2molC.3molD.4molE.5mol4、DNA经紫外线照射后会产生嘧啶二聚体,其中主要的是(C)(A)CC (B)CT (C)TT5、在缺氧的情况下,糖酵解途径生成的NADH+H+的去路:(B)A、进入呼吸链氧化供应能量B、丙酮酸还原为乳酸C、3-磷酸甘油酸还原为3-磷酸甘油醛D、醛缩酶的辅助因子合成1,6-双磷酸果糖E、醛缩酶的辅助因子分解1,6-双磷酸果糖6、脂肪酸分解产生的乙酰CoA去路:(E).脂肪酸分解产生的乙酰-CoA 在体内可以合成脂肪酸、酮体、胆固醇,也可以进入三羧酸循环氧化分解供能。

生物化学复习提纲

生物化学复习提纲

生物化学复习提纲一、蛋白质化学(一)蛋白质的组成和结构1、氨基酸的结构和分类20 种常见氨基酸的结构通式和特点氨基酸的分类方法(根据侧链性质)2、肽键和多肽链肽键的形成和结构特点多肽链的方向性(N 端和 C 端)3、蛋白质的一级结构定义和测定方法(如 Edman 降解法)一级结构与生物功能的关系4、蛋白质的二级结构α螺旋、β折叠、β转角和无规卷曲的结构特点和形成条件维系二级结构的化学键(氢键)5、蛋白质的三级结构定义和结构特点维系三级结构的化学键(疏水作用、离子键、氢键、范德华力等)6、蛋白质的四级结构概念和多亚基蛋白质的结构特点四级结构与功能的关系(二)蛋白质的性质1、两性解离和等电点蛋白质的两性解离性质等电点的定义和测定方法2、胶体性质蛋白质胶体稳定的原因破坏胶体稳定性的方法(如盐析)3、变性和复性变性的概念和因素(物理因素、化学因素)复性的条件和意义4、沉淀反应盐析、有机溶剂沉淀、重金属盐沉淀等方法的原理和应用5、颜色反应双缩脲反应、茚三酮反应等的原理和应用二、核酸化学(一)核酸的组成和结构1、核苷酸的组成碱基、戊糖和磷酸的结构和种类核苷酸的命名和缩写2、 DNA 的结构DNA 的双螺旋结构模型(Watson 和 Crick 模型)双螺旋结构的特点(碱基互补配对、大沟和小沟等) DNA 的三级结构(超螺旋结构)3、 RNA 的结构mRNA、tRNA、rRNA 的结构特点和功能各种 RNA 在蛋白质合成中的作用(二)核酸的性质1、紫外吸收DNA 和 RNA 的紫外吸收峰值紫外吸收在核酸定量分析中的应用2、变性和复性DNA 变性的概念和特点(增色效应)复性的条件和杂交技术的原理3、核酸的水解酸水解、碱水解和酶水解的特点和产物三、酶学(一)酶的概念和特点1、酶的定义和催化作用酶作为生物催化剂的作用原理酶与一般催化剂的异同点2、酶的特点高效性、专一性、可调节性、不稳定性等3、酶的命名和分类酶的命名方法(系统命名法和习惯命名法)酶的分类(氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶)(二)酶的结构与功能1、酶的活性中心活性中心的概念和组成活性中心与催化作用的关系2、酶原与酶原激活酶原的概念和生理意义酶原激活的机制和实例3、同工酶同工酶的概念和生理意义同工酶在临床上的应用(三)酶的作用机制1、降低反应的活化能活化能的概念酶降低活化能的方式2、酶的催化机制邻近效应和定向效应诱导契合学说酸碱催化、共价催化等(四)影响酶促反应速率的因素1、底物浓度米氏方程和米氏常数的意义底物浓度对反应速率的影响曲线(双曲线)2、酶浓度酶浓度与反应速率的关系3、温度温度对酶促反应速率的影响(最适温度)低温和高温对酶活性的影响4、 pHpH 对酶促反应速率的影响(最适 pH)酶的酸碱稳定性5、抑制剂不可逆抑制剂和可逆抑制剂的作用机制竞争性抑制、非竞争性抑制和反竞争性抑制的特点和动力学特征6、激活剂激活剂的种类和作用机制四、生物氧化(一)生物氧化的概念和特点1、生物氧化的定义和意义生物氧化与体外氧化的异同点2、呼吸链呼吸链的组成成分(NADHQ 还原酶、泛醌、细胞色素还原酶、细胞色素 c、细胞色素氧化酶)呼吸链的电子传递顺序和偶联机制3、 ATP 的生成氧化磷酸化的概念和机制(化学渗透学说)ATP 合酶的结构和作用机制底物水平磷酸化的概念和实例(二)生物氧化过程中能量的产生和转移1、自由能的变化和氧化还原电位自由能变化与反应方向的关系氧化还原电位的概念和测定2、高能化合物高能磷酸化合物(如 ATP、GTP 等)其他高能化合物(如硫酯键、甲硫键等)五、糖代谢(一)糖的消化和吸收1、食物中糖的种类单糖、双糖和多糖的常见类型2、糖的消化参与消化的酶(如淀粉酶、麦芽糖酶等)消化的部位和产物3、糖的吸收吸收的部位和机制(主动运输、被动扩散)(二)糖的无氧氧化1、糖酵解的过程十步反应的具体过程和酶的作用能量的产生和消耗2、糖酵解的生理意义在缺氧条件下为机体提供能量是某些组织和细胞的主要供能方式(三)糖的有氧氧化1、有氧氧化的过程三个阶段(糖酵解、丙酮酸氧化脱羧、三羧酸循环)的反应过程和酶的作用能量的产生和计算2、三羧酸循环反应过程和特点三羧酸循环的生理意义3、有氧氧化的生理意义(四)磷酸戊糖途径1、反应过程氧化阶段和非氧化阶段的反应2、生理意义生成 NADPH 和磷酸核糖(五)糖原的合成与分解1、糖原的合成合成的途径和关键酶2、糖原的分解分解的途径和关键酶3、糖原合成与分解的生理意义(六)糖异生1、糖异生的途径从丙酮酸等非糖物质合成葡萄糖的过程2、糖异生的生理意义维持血糖浓度的相对稳定补充肝糖原储备六、脂代谢(一)脂类的消化和吸收1、脂肪的消化参与消化的酶(如胰脂肪酶等)消化的产物(甘油一酯、脂肪酸等)2、脂类的吸收吸收的部位和方式(二)甘油三酯的代谢1、甘油三酯的合成合成的部位和原料合成的途径(甘油二酯途径、甘油一酯途径)2、甘油三酯的分解脂肪动员的概念和关键酶脂肪酸的β氧化过程(活化、转运、β氧化、能量产生)(三)磷脂的代谢1、磷脂的合成合成的部位和原料常见磷脂(如卵磷脂、脑磷脂等)的合成途径2、磷脂的分解参与分解的酶和产物(四)胆固醇的代谢1、胆固醇的合成合成的部位和原料合成的过程和关键酶2、胆固醇的转化转化为胆汁酸、类固醇激素等的途径七、氨基酸代谢(一)蛋白质的营养作用1、必需氨基酸和非必需氨基酸必需氨基酸的种类食物蛋白质的营养价值评价2、蛋白质的互补作用概念和意义(二)氨基酸的一般代谢1、氨基酸的脱氨基作用转氨基作用、氧化脱氨基作用、联合脱氨基作用的机制和特点体内主要的转氨酶和 L谷氨酸脱氢酶2、氨的代谢氨的来源和去路鸟氨酸循环的过程和生理意义3、α酮酸的代谢生成非必需氨基酸、转变为糖或脂肪(三)个别氨基酸的代谢1、一碳单位的代谢一碳单位的概念和种类一碳单位的载体和来源一碳单位的生理功能2、含硫氨基酸的代谢甲硫氨酸的代谢(SAM、同型半胱氨酸等)半胱氨酸的代谢(牛磺酸、谷胱甘肽等)3、芳香族氨基酸的代谢苯丙氨酸和酪氨酸的代谢(多巴胺、黑色素等)色氨酸的代谢(5-羟色胺等)八、核苷酸代谢(一)嘌呤核苷酸的代谢1、嘌呤核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘌呤核苷酸的分解代谢最终产物(尿酸)痛风症的发病机制(二)嘧啶核苷酸的代谢1、嘧啶核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘧啶核苷酸的分解代谢最终产物九、物质代谢的联系与调节(一)物质代谢的相互联系1、糖、脂、蛋白质代谢之间的相互联系糖可以转变为脂肪和蛋白质脂肪不能大量转变为糖和蛋白质蛋白质可以转变为糖和脂肪2、核酸与物质代谢的相互联系核酸的合成需要糖、脂、蛋白质代谢提供原料核酸的代谢产物可以参与物质代谢的调节(二)代谢调节1、细胞水平的调节酶活性的调节(变构调节、共价修饰调节)酶含量的调节(基因表达调控)2、激素水平的调节激素的分类和作用机制激素对物质代谢的调节作用3、整体水平的调节神经系统对物质代谢的调节饥饿和应激状态下物质代谢的变化。

生物化学期末复习资料全

生物化学期末复习资料全

第三章糖类的化学(1)P18 旋光性是指某些物质能使平面偏振面旋转的性质(2)P19 单糖:凡羟基在右边的,为D-型;凡羟基在左边的,为L-型L-甘油醛 D-甘油醛对于含3个碳原子以上的糖,由于存在不止1个不对称碳原子,在规定其构型时以距醛基或酮基最远的不对称碳原子为准,羟基在右的为D-型羟基在左的为L-型。

(3)P30 寡糖分子中都存在不对称碳原子,因而都有旋光性(4)P33 多糖有旋光性,但无变旋现象4、脂类和生物膜化学1、P47 酸败的化学本质:一方面是油脂中不饱和脂肪酸的双键在空气中氧的作用下成为过氧化物,过氧化物继续分解生成有臭味的低级醛、酮、羧酸和醛、酮的衍生物;另一个原因是霉菌或脂酸将油脂水解成低级脂肪酸,脂肪酸再经过β-氧化过程生成β-酮酸,β-酮酸脱羧生成低级酮类。

第五章蛋白质化学(一)P61 氨基酸的结构通式:(二)P62 构成蛋白质的氨基酸(英文符号)除了甘氨酸(gly)外,构成蛋白质的氨基酸都是L-构型4、P73 谷胱甘肽:是由L-谷氨酸,L-半胱氨酸和甘氨酸组成(谷氨酸由γ-羧基生成肽键,而在其他肽和蛋白质分子中谷氨酸由α-羧基生产肽键)。

谷胱甘肽中因含有-SH,故通常简写为GSH5、P76一级结构:特指肽链中的氨基酸排列顺序。

维系一级结构的主要化学键是肽键。

蛋白质的一级结构的测定:1.肽链末端分析:(1)N-末端端测定:A. 二硝基氟苯法B. 苯异硫氰酯(PITC)法C.二甲基氨基萘磺酰氯法(DNS法);(2)C-末端端测定:肼解法、羧肽酶法;2、二硫键的拆开和肽链的分离;3、肽链的部分水解和肽段的分离:化学裂解法、酶解法4、测定每一段的氨基酸顺序5. 由重叠片段推断肽链顺序6、P82 二级结构:它是指肽链主链骨架原子的相对空间位置,维系二级结构的化学键主要是氢键。

蛋白质二级结构的主要形式:α-螺旋、β-折叠、β-转角、无规卷曲、π-螺旋等7、P91 分子病:由于基因结构改变,蛋白质一级结构中的关键氨基酸发生改变,从而导致蛋白质功能障碍,出现相应的临床症状,这类遗传性疾病称为分子病。

生物化学复习题

生物化学复习题

生物化学复习题生物化学是研究生物体内化学过程和物质的科学,它涵盖了从分子水平到细胞水平的广泛领域。

以下是一些生物化学的复习要点:1. 蛋白质结构与功能- 氨基酸是蛋白质的基本单位,它们通过肽键连接形成多肽链。

- 蛋白质具有一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(多肽链的空间排列)和四级结构(多肽链的聚集)。

2. 酶的作用机制- 酶是生物催化剂,能够加速化学反应。

- 酶作用的机制包括底物结合、过渡态稳定和产物释放。

3. 核酸的结构与功能- DNA和RNA是核酸的两种主要形式,它们由核苷酸组成。

- DNA主要负责遗传信息的存储和传递,而RNA在蛋白质合成中发挥作用。

4. 代谢途径- 代谢途径包括合成代谢(合成生物分子)和分解代谢(分解生物分子)。

- 糖酵解、三羧酸循环和氧化磷酸化是细胞能量代谢的关键途径。

5. 细胞信号传导- 细胞信号传导是细胞内外信息传递的过程,涉及多种信号分子和受体。

- 信号传导途径包括G蛋白偶联受体、离子通道受体和酶联受体等。

6. 遗传信息的表达- 遗传信息的表达包括转录和翻译两个主要步骤。

- 转录是DNA信息转录成mRNA的过程,而翻译是mRNA翻译成蛋白质的过程。

7. 细胞呼吸- 细胞呼吸是细胞产生能量的过程,包括有氧呼吸和无氧呼吸。

- 有氧呼吸通过电子传递链产生大量的ATP,而无氧呼吸则产生较少的ATP。

8. 脂质代谢- 脂质包括脂肪、磷脂和固醇等,它们在细胞膜结构和能量储存中起重要作用。

- 脂质代谢涉及脂肪酸的合成、分解和转化。

9. 氨基酸代谢- 氨基酸是蛋白质的构建模块,它们可以通过转氨作用和脱氨作用进行代谢。

- 氨基酸代谢对于维持细胞内氮平衡和能量供应至关重要。

10. 维生素和辅酶- 维生素是必需的微量有机化合物,它们作为辅酶或辅基参与许多代谢反应。

- 辅酶是酶的辅助分子,它们帮助酶催化特定的化学反应。

通过这些复习要点,可以对生物化学的基本概念和原理有一个全面的了解。

生物化学期末复习题

生物化学期末复习题

生物化学期末复习题生物化学是生命科学领域中的一个重要分支,它主要研究生物体内化学过程和物质代谢的科学。

在期末复习时,同学们应该重点掌握以下几个方面的内容:一、生物大分子的结构与功能- 蛋白质的结构层次:一级结构、二级结构、三级结构和四级结构。

- 酶的催化机制,包括酶的活性中心和底物结合位点。

- 核酸的结构和功能,包括DNA和RNA的双螺旋结构。

- 多糖和糖蛋白的结构特点及其生物学意义。

二、代谢途径- 糖酵解过程和其调控机制。

- 柠檬酸循环(TCA循环)及其在能量代谢中的作用。

- 氧化磷酸化和电子传递链。

- 脂肪酸的合成与分解代谢。

- 氨基酸的代谢途径。

三、遗传信息的传递- DNA复制的机制和酶的作用。

- RNA转录的过程,包括启动子识别和转录因子的作用。

- 蛋白质合成,即翻译过程,包括mRNA、tRNA和核糖体的作用。

四、细胞信号转导- 信号分子的识别和信号转导途径。

- 细胞表面受体的结构和功能。

- 细胞内信号分子如蛋白激酶的作用机制。

五、生物化学的实验技术- 色谱技术在蛋白质和核酸分离中的应用。

- 电泳技术,如SDS-PAGE和凝胶电泳。

- 酶活性测定方法。

- 免疫学技术,如ELISA和Western blot。

六、生物化学在医学中的应用- 疾病状态下的代谢异常。

- 药物作用机制和药物代谢。

- 遗传性疾病的分子机制。

七、复习策略- 理解并记忆关键概念和反应机制。

- 练习解决生物化学问题的能力,如代谢途径的计算和酶动力学分析。

- 阅读和分析生物化学领域的最新研究,了解前沿进展。

结束语生物化学的复习是一个系统而深入的过程,需要同学们对基础知识有扎实的掌握,并且能够将理论与实际相结合。

希望同学们在复习中能够注重理解,勤于思考,不断深化对生物化学知识的认识。

预祝同学们在期末考试中取得优异的成绩。

生物化学重点知识归纳

生物化学重点知识归纳

生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。

2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。

2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。

3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。

4.甘油醛是最简单的单糖。

5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。

8.蔗糖是自然界分布最广的二糖。

9.多糖根据成分为:同多糖和杂多糖。

同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。

10.淀粉包括直链淀粉和支链淀粉。

糖原分为肝糖原和肌糖原。

11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。

第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。

2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。

3. 脂肪又称甘油三酯。

下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。

皂化值越大,表示脂肪中脂肪酸的平均分子量越小。

6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。

7.糖脂包括甘油糖脂和鞘糖脂。

8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。

9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。

10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。

11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。

其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。

生物化学期末复习重点

生物化学期末复习重点

生物化学期末复习重点一.名词解释1.脱氧核苷酸:是脱氧核糖核酸(DNA)的基本单位。

2.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫增色效应。

3.DNA一级结构:是指将脱氧核苷酸按照有序的顺序排列起来而形成的原始脱氧核苷酸链。

4.DNA复性:在适宜的温度下.分散开的两条DMA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为复性。

5.B-DNA:DNA钠盐在较高温度下的纤维结构,是B型双螺旋,称为B-DNA结构。

6.核酸分子杂交:按照互补碱基配对而使不完全互朴的两条多核苷酸相互结合的过程称为分子杂交。

7.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

8.蛋白质等电点:存在一个PH使蛋白质的表面净电荷为零即等电点。

9.蛋白质三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

10.变构效应:是寡聚蛋白与配基结合改变蛋白质构象,导致蛋白质生物活性改变的现象。

11.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。

12.酶:是由活细胞产生的在体内外都具有催化作用的一类生物催化剂。

13.酶活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。

14.酶原激活:使酶原转变为有活性酶的作用称为酶原激活。

15.酶活力单位:是指在特定条件(25c其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。

16.别构酶:具有别构效应的酶称为别构酶。

17.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

18.固定化酶:是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。

19.EMP:指糖酵解,是细胞将葡萄糖转化为丙酮酸的代谢过程。

生物化学期末复习资料

生物化学期末复习资料

而被迫减慢速度甚至停顿下来,使与柠檬酸循环紧密联系的呼吸链也受 影响,从而使对O2浓度最敏感的中枢神经系统表现出缺氧。在病人肝脏 中,因柠檬酸循环的停顿而使脂类代谢中产生的乙酰辅酶A无法彻底氧 化分解,只能转变为酮体。酮体中多为酸性物质,若在血液中过量积 累,会使血液pH值下降,出现酸中毒现象。若将病人膳食中的蛋白质换 成必需氨基酸相应的α-酮酸,便可得到治疗。原因:α-酮酸与血液中 积累的氨结合,生成α-氨基酸,从而缓解了氨的高浓度积累。
基作用产生的。
2、尿素循环?
主要机理:排尿素动物在肝脏中合成尿素。由2分子α-氨基酸脱下的氨 基,即2分子氨,和1分子CO2经鸟氨酸循环,生成1分子尿素,反应需3 分子ATP参与。 尿素是无毒的近中性化合物,且为水溶性,可由血液循环经肾脏随尿排 出。
1. 合成氨甲酰基磷酸: 进入尿素循环的第1分子氨,一部分来自于肝脏线粒体中谷氨酸的氧化 脱氨基。 NH3与经柠檬酸循环生成的CO2在线粒体内氨甲酰磷酸合成酶的催化下, 生成氨甲酰磷酸。每生成1分子氨甲酰磷酸,需2分子ATP供能,所以反 应不可逆。 催化此反应的是位于线粒体内的氨甲酰磷酸合成酶Ⅰ。该酶属于调节 酶,N-乙酰谷氨酸为其正调节物。 2.形成瓜氨酸: 氨甲酰磷酸极不稳定,易将氨甲酰基供给鸟氨酸,生成瓜氨酸。鸟氨酸 本在胞液中生成,经特殊内膜传递系统传递,进入线粒体内。瓜氨酸又 离开线粒体进入胞液。 3. 形成精氨琥珀酸: 第2分子氨由天冬氨酸的氨基提供。天冬氨酸在有ATP供能的条件下,以 其氨基与瓜氨酸的氨甲酰碳原子上烯醇式的羟基缩合且脱水,产生精氨 琥珀酸。 4. 形成精氨酸: 在精氨琥珀酸裂解酶作用下,精氨琥珀酸裂解生成精氨酸和延胡索酸。 以上四步反应在所有生物体内均可进行。 5.形成尿素: 排尿素动物体内含大量精氨酸酶,此酶可将尿素从精氨酸分子上水解下 来,生成鸟氨酸。 鸟氨酸可重复进入鸟氨酸循环反应2,从而形成循环。 为何缺乏尿素循环酶类无法应用蛋白质:其蛋白质代谢中产生的氨无 法转化为尿素排出,只能以氨的形式积累在体内。 为何患者的中枢神经系统及肝脏易受到毒害:氨浓度较高时,线粒体 中发生:NH3+α-酮戊二酸+NADH+H+←→谷氨酸+NAD++H2O;α-酮戊二酸 同时又是柠檬酸循环中反应(6)的底物。所以游离氨与柠檬酸循环争 夺α-酮戊二酸并占优势,使柠檬酸循环因缺乏中间产物:α-酮戊二酸

生物化学期末复习重点

生物化学期末复习重点

第1章绪论1、生物化学:主要是从分子水平研究生物体的化学组成及其在生命活动过程中化学变化的一门科学,又称生命的化学2、生物化学主要的研究对象:①生物体的化学组成;②物质与能量代谢及其调节第2章糖类化学1、糖:糖是一类多羟基醛或多羟基酮,或通过水解可以产生多羟基醛或酮的物质2、糖的分类:1)单糖:单糖是最简单的糖,只含一个多羟基醛或多羟基酮单位,分为醛糖和酮糖2)寡糖:又称低聚糖,是由几个(一般为2~10个)3)多糖:多糖由10个以上糖单位组成3、手性碳原子(不对称碳原子):连接有四个原子或原子团的碳原子,在空间呈不对称排布4、对于含有多个手性碳原子的糖分子,其相对构型是根据其分子结构中离羟基最远的手性碳原子连接的-OH来确定的5、葡萄糖分子的特点:1)四个手性碳原子(2、3、4、5);2)距羰基最远的手性碳原子C5上的-OH 在右侧,为D-葡萄糖3)天然葡萄糖为D-(+)-葡萄糖6、单糖的主要化学性质:①成苷反应;②成脂反应;③氧化反应;④还原反应认识糖苷键的位置7、糖苷结构中没有半缩醛羟基,不能转变为开链结构,所以糖苷没有还原性8、氧化反应:托伦试剂银镜班氏试剂砖红色9、凡是能被碱性弱氧化剂氧化的糖,都称为还原糖。

单糖都是还原糖10、二糖:1)麦芽糖:由2分子D-葡萄糖,具有还原性2)蔗糖:由1分子D-葡萄糖和1分子D-果糖以α-1,2-β-糖苷键相连而成,无还原性3)乳糖:由1分子D-半乳糖和1分子D-葡糖糖以β-1,4-糖苷键相连而成,具有还原性11、多糖:(一)同多糖1)淀粉—淀粉是直链淀粉和支链淀粉的混合物,由-D-葡萄糖组成①直链淀粉由D-葡萄糖以α-1,4-糖苷键相连而成线性分子,支链淀粉由D-葡萄糖以α-1,4-糖苷键接成短链,α-1,6-糖苷键相连形成分支②淀粉的主要性质:A.淀粉遇碘呈蓝色B.淀粉在酸或酶的作用下,形成糊精(紫~、红~、无色~2)糖原—由-D-葡萄糖组成,结构与支链淀粉相似,分支比支链淀粉更短、更密,遇碘呈紫红色或红褐色含有α-1,4-糖苷键和α-1,6-糖苷键3)其他多糖:①纤维素:含有β-1,4-糖苷键(二)杂多糖第3章脂质化学1、脂肪是由甘油与脂肪酸形成的三酰甘油(TAG),又称甘油三酯脂类包括:类脂:磷脂、糖脂、类固醇甘油三酯2、脂肪酸的结构:1)大多数天然脂肪酸是含偶数碳原子的直链一元酸2)碳原子数目一般在4~26之间,尤以C16和C18为最多3)结构通式:R-COOH3、根据是否含有碳-碳双键可分为饱和与不饱和脂肪酸4、必需脂肪酸:维持人和动物正常生命活动所必需的,但哺乳动物体内不能合成或合成量不足,需由食物提供的脂肪酸,包括亚油酸,亚麻酸和花生四烯酸5、皂化值:水解1g脂肪所消耗氢氧化钾的毫克数称为皂化值,皂化值越大表示脂肪中的脂肪酸的平均分子量越小6、碘值(或碘价):通常将100g脂肪通过加成反应所消耗碘的克数称为碘值(或碘价),碘值越大表示脂肪中的脂肪酸的不饱和程度越高7、酸败:脂肪长期暴露在空气中,分子中的碳碳双键和酯键发生氧化水解等反应,产生难闻的气味,这种现象称为酸败8、磷脂:1)甘油磷脂—磷脂酸及其衍生物;既含有亲水基又含有疏水基①磷脂酰胆碱:俗称卵磷脂(PC),是各种膜性结构的主要成分,具有协助脂类运输的作用,可用于防治脂肪肝②磷脂酰乙醇胺:俗称脑磷脂(PE),构成生物膜,参与凝血③磷脂酰肌醇(PI)2)鞘磷脂(略)9、类固醇:类固醇是胆固醇及其衍生物体内重要的类固醇:胆固醇、胆固醇酯、维生素D、胆汁酸和类固醇激素等1)胆固醇及其酯:既是其它类固醇化合物的合成原料,又是细胞膜的重要成分两种存在形式:胆固醇和胆固醇酯2)胆汁酸:是人和动物胆汁的主要成分,分为游离型胆汁酸、结合型胆汁酸3)类固醇激素:①肾上腺皮质激素:是由肾上腺皮质分泌的一类激素;皮质醇和皮质酮具有很强的调节糖代谢的作用,故称为糖皮质激素;醛固酮对盐和水的平衡具有较强的调节作用,被称为盐皮质激素②性激素:分为雄激素、雌激素和孕激素。

生物化学期末复习资料

生物化学期末复习资料

生物化学期末复习资料期末考试试题生物化学期末复习资料一、是非判断:1.edman降解反应中苯异硫**(pitc)是与氨基*的α-氨基形成ptc-氨基*。

()2.蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。

蛋白质变*后沉淀都是因为中和电荷和去水膜所引起的。

()3.如动物长期饥饿,就要动用体内的脂肪,这时分解*体速度大于生成*体速度。

()4.在天然氨基*中只限于α–nh2能与亚**反应,定量放出氮气。

脯氨*、羟脯氨*环中的亚氨*,精氨*、组氨*和*氨*环中的结合n皆不与亚**作用。

()5.使用诱导契合假说可以解释许多酶的催化机制。

()6.若双链dna中的一条碱基顺序为:pcptpgpgpapc,则另一条链的碱基顺序为:pgpapcpcptpg。

()7.技术碳原子的饱和脂肪*经β-氧化后全部生成乙酰coa。

()8.增加不可逆抑制剂的浓度,可以实现酶活*的完全抑制。

()9.酶被固定后,一般稳定*增加。

()10.所有的*脂分子中都含有甘油基。

()11.胆固醇分子中无双键,属于饱和固醇。

()12.在三羧*循环中,琥珀*脱*酶催化琥珀*氧化成延胡索*时,电子受体为ead。

()13.蛋白质变*后,其氨基*排列顺序并不发生变化。

()14.1mol葡萄糖经糖酵解途径生成乳*,需经一次脱*,两次底物水平**化过程,最终净生成2molatp分子。

()15.若没氧存在时,糖酵解途径中脱*反应产生的nadh+h+交给***生成乳*,若有氧存在下,则nadh+h+进入线粒体氧化。

()二、单项选择1.维生素pp是下列那种辅酶的组成成分?()a.nadb.coa–shc.tppd.fh2.用edman降解法测某肽的n端残基时,未发现有游离的pth–氨基*产生,问下述四种推测中,哪一种是不正确的?()a.其n端氨基*被乙酰化b.被n端氨基*是proc.此肽是环肽d.其n端氨基*是gln3.1mol葡萄糖经糖的有氧氧化过程可生成的乙酰coa(b)a.1molb.2molc.3mold.4mole.5mol4.dna经紫外线照*后会产生嘧啶二聚体,其中主要的是(c)ab.ctc.tt5.在缺氧的情况下,糖酵解途径生成的nadh+h+的去路是(b)a.进入呼吸链氧化供应量b.***还原为乳*c.3-**甘油*还原为3-**甘油醛d.醛缩酶的辅助因子合成1,6-双**果糖e.醛缩酶的辅助因子分解1,6-双**果糖6.脂肪*分解产生的乙*coa去路(b)a.合成脂肪*b.氧化功能c.合成*体d.合成胆固醇e.以上都是7.不属于两*分子的脂是(c)a.胆固醇b.*脂*c.甘油三酯d.甘油二酯e.甘油单酯8.一碳单位的载体是(b)a.二*叶*b.四*叶*c.生物素d.焦**硫*素e.硫**9.鸟氨*循环的主要生理意义是(a)a.把有毒的氨转变为无毒的主要途径b.合成非必需氨基*c.产生精氨*的主要途径d.产生鸟氨*的主要途径e.产生瓜氨*的主要途径10.在一反应体系中,[s]过量,加入一定量的i,测v~[e]曲线,改变[i],得一系列平行曲线则加入的i的是(d)a.竞争*可逆抑制剂b.非竞争*可逆抑制剂c.反竞争*可逆抑制剂d.不可逆抑制剂e.无法确定11.由w、x、y和四种蛋白质组成的混合样品,经sephsdex-g100凝胶过滤层析后,得到的层析结果如下图所示,这四种组分中相对分子质量最大的是:A.zb.wc.yd.x12.下列有关mrna的论述,哪一项是正确的?a.mrna是基因表达的最终产物b.mrna遗传密码的方向是3’→5’c.mrna遗传密码的方向是5’→3’d.mrna密码子与trna反密码子通过a-t,g-c配对结合e.每分子mrna有3个终止密码子13.不能产生乙酰coa的是a.*体b.酯*c.胆固醇d.glc14.人尿中嘌呤代谢产物主要是a.尿素b.尿*c.尿囊*d.尿囊素15.利用**来修饰酶的活*,其修饰位点通常在下列哪个氨基*残基上?a.cysb.hisc.lysd.ser16.酶的非竞争*抑制使()A.km增加b.km减少c.vmax增加d.vmax减少17.lys—ala—gly在ph7.0时所带的静电荷为()a.+2b.+1c.0d.-118.可用下列哪种方法打开蛋白质分子中的二硫键()a.用b—疏基乙醇b.用8mol/l尿素c.用水解的方法19.在厌氧条件下,下列哪一种化合物在哺乳动物肌肉组织中积累?()a.葡萄糖b.***c.乙醇d.乳*20联合脱*作用所需的酶有()a.转氨酶和d-氨基*氧化酶b.转氨*和腺苷*脱*酶c.转氨*和l-glu脱*酶d.l-glu脱*酶和腺苷*脱*酶四.简答:1.为什么说三羧*循环是糖、脂和蛋白质三大物质代谢的共同通路?答:三羧*循环的底物是乙酰辅酶a,而糖和脂类在进行分解时的最终底物正是这个乙酰辅酶a。

成人教育《生物化学》-期末考试复习资料及参考答案

成人教育《生物化学》-期末考试复习资料及参考答案

生物化学一、单选题(每题2分,共30道小题,总分值60分)1.三羧酸循环的限速酶是:()(2分)A 丙酮酸脱氢酶B 顺乌头酸酶C 琥珀酸脱氢酶D 延胡索酸酶E 异柠檬酸脱氢酶参考答案:E2.转氨酶的辅酶是:()(2分)A NAD+B NADPC FADD 磷酸吡哆醛E ATP参考答案:D3.组氨酸经过下列哪种作用生成组胺的:()A 还原作用B 羟化作用C 转氨基作用D 脱羧基作用参考答案:D4.嘌呤核苷酸从头合成途径,首先合成()(2分)A GMPB AMPC IMPD XMPE 以上均可参考答案:C5.酶的活化和去活化循环中,酶的磷酸化和去磷酸化位点通常在酶的哪一种氨基酸残基上:()(2分)A 天冬氨酸B 脯氨酸C 赖氨酸D 丝氨酸E 甘氨酸参考答案:D6.关于β-折叠的叙述,下列哪项是错误的?()(2分)A β-折叠片的肽链处于曲折的伸展状态B 它的结构是借助于链内氢键稳定的C β-折叠片结构都是通过几段肽链平行排列而形成的D 氨基酸之间的轴距为0.35nm参考答案:C7.下列有关蛋白质的叙述哪项是正确的?()(2分)A 蛋白质分子的净电荷为零时的pH 值是它的等电点B 大多数蛋白质在含有中性盐的溶液中会沉淀析出C 由于蛋白质在等电点时溶解度最大,所以沉淀蛋白质时应远离等电点D 以上各项均不正确参考答案:A8.下列化合物中除哪个外,常作为能量合剂使用:()(2分)A CoAB ATPC 胰岛素D 生物素参考答案:D9.下列氨基酸中哪一种是非必需氨基酸?()(2分)A 亮氨酸B 酪氨酸C 赖氨酸D 蛋氨酸E 苏氨酸参考答案:B10.下列关于蛋白质结构的叙述,哪一项是错误的?()(2分)A 氨基酸的疏水侧链很少埋在分子的中心部位B 带电荷的氨基酸侧链常在分子的外侧,面向水相C 蛋白质的一级结构在决定高级结构方面是重要因素之一D 蛋白质的空间结构主要靠次级键维持参考答案:A11.下述哪种说法最准确地描述了肉毒碱的功能?()(2分)A 转运中链脂肪酸进入肠上皮细胞B 转运中链脂肪酸越过线粒体内膜C 参与转移酶催化的酰基反应D 是脂肪酸合成代谢中需要的一种辅酶参考答案:C12.糖的有氧氧化的最终产物是:()(2分)A CO2+H2O+ATP。

生物化学复习资料(全)

生物化学复习资料(全)

生物化学复习资料第一章蛋白质化学第一节蛋白质的基本结构单位——氨基酸凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25氨基酸结构通式:蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。

氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。

蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。

这就是氨基酸的两性性质。

氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。

蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。

镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。

第二节肽肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。

肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。

少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。

谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。

参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。

化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应第三节蛋白质的分子结构蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。

蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生化下期末复习资料一、蛋白质与氨基酸的分解代谢与合成1、脱氨基作用的种类?(转氨基作用与联合脱氨基作用)分类:氨基酸的转氨基作用、氧化脱氨基作用、其他的脱氨基作用、联合脱氨基作用。

转氨基作用是α-氨基酸和α-余α-氨基酸均可参加转氨基作用,且各有其特异的转氨酶。

转氨酶中,以谷丙转氨酶GPT和谷草转氨酶GOT最为重要。

GOT 和 GPT 人体中,GOT在心脏中活力最大,其次是肝脏中;GPT则在肝脏中活力最大。

当肝细胞受损时,GPT释放到血液中,使血液中GPT酶活力上升。

所以临床上将其作为推断肝功能正常与否的一项指标。

转氨酶种类很多,但辅酶只有一种:磷酸吡哆醛。

转氨基作用为可逆反应。

一般认为,氨基酸在体内不是直接氧化脱氨基,而是先与α-酮戊二酸经转氨基作用转变为相应的α-酮酸和谷氨酸,谷氨酸再通过2种方式氧化脱氨基。

1.转氨酶-谷氨酸脱氢酶的联合脱氨基作用:过程:α-氨基酸先与α-酮戊二酸在转氨酶的催化下,经转氨基作用,生成相应的α-酮酸和谷氨酸;谷氨酸再经谷氨酸脱氢酶的作用,进行氧化脱氨基,重新生成α-酮戊二酸,并释放出氨。

2.转氨酶-嘌呤核苷酸循环联合脱氨基作用:α-酮戊二酸先接受来自其他氨基酸的氨基,生成谷氨酸;谷氨酸再与草酰乙酸经转氨基生成天冬氨酸。

之后便与嘌呤核苷酸联合作用:次黄嘌呤核苷酸与天冬氨酸作用,生成中间产物:腺苷酸代琥珀酸。

此物在裂合酶催化下,分裂成腺苷酸和延胡索酸。

腺苷酸水解后产生游离氨和次黄嘌呤核苷酸。

2种联合脱氨基作用在如:肝脏、肾脏等组织处,以转氨酶-谷氨酸脱氢酶的联合脱氨基作用为主。

在心肌、骨骼肌和脑组织中,以转氨酶-嘌呤核苷酸循环联合脱氨基作用为主。

如:脑组织中有50%的氨是由转氨酶-嘌呤核苷酸循环联合脱氨基作用产生的。

2、尿素循环?主要机理:排尿素动物在肝脏中合成尿素。

由2分子α-氨基酸脱下的氨基,即2分子氨,和1分子CO2经鸟氨酸循环,生成1分子尿素,反应需3分子ATP参与。

尿素是无毒的近中性化合物,且为水溶性,可由血液循环经肾脏随尿排出。

1.合成氨甲酰基磷酸:进入尿素循环的第1分子氨,一部分来自于肝脏线粒体中谷氨酸的氧化脱氨基。

NH3与经柠檬酸循环生成的CO2在线粒体内氨甲酰磷酸合成酶的催化下,生成氨甲酰磷酸。

每生成1分子氨甲酰磷酸,需2分子ATP供能,所以反应不可逆。

催化此反应的是位于线粒体内的氨甲酰磷酸合成酶Ⅰ。

该酶属于调节酶,N-乙酰谷氨酸为其正调节物。

2.形成瓜氨酸:氨甲酰磷酸极不稳定,易将氨甲酰基供给鸟氨酸,生成瓜氨酸。

鸟氨酸本在胞液中生成,经特殊内膜传递系统传递,进入线粒体内。

瓜氨酸又离开线粒体进入胞液。

3.形成精氨琥珀酸:第2分子氨由天冬氨酸的氨基提供。

天冬氨酸在有ATP供能的条件下,以其氨基与瓜氨酸的氨甲酰碳原子上烯醇式的羟基缩合且脱水,产生精氨琥珀酸。

4.形成精氨酸:在精氨琥珀酸裂解酶作用下,精氨琥珀酸裂解生成精氨酸和延胡索酸。

以上四步反应在所有生物体内均可进行。

5.形成尿素:排尿素动物体内含大量精氨酸酶,此酶可将尿素从精氨酸分子上水解下来,生成鸟氨酸。

鸟氨酸可重复进入鸟氨酸循环反应2,从而形成循环。

为何缺乏尿素循环酶类无法应用蛋白质:其蛋白质代谢中产生的氨无法转化为尿素排出,只能以氨的形式积累在体内。

为何患者的中枢神经系统及肝脏易受到毒害:氨浓度较高时,线粒体中发生:NH3+α-酮戊二酸+NADH+H+←→谷氨酸+NAD++H2O;α-酮戊二酸同时又是柠檬酸循环中反应(6)的底物。

所以游离氨与柠檬酸循环争夺α-酮戊二酸并占优势,使柠檬酸循环因缺乏中间产物:α-酮戊二酸而被迫减慢速度甚至停顿下来,使与柠檬酸循环紧密联系的呼吸链也受影响,从而使对O2脂类代谢中产生的乙酰辅酶A无法彻底氧化分解,只能转变为酮体。

酮体中多为酸性物质,若在血液中过量积累,会使血液pH值下降,出现酸中毒现象。

若将病人膳食中的蛋白质换成必需氨基酸相应的α-酮酸,便可得到治疗。

原因:α-酮酸与血液中积累的氨结合,生成α-氨基酸,从而缓解了氨的高浓度积累。

3、名词解释:能通过代谢转变成葡萄糖和糖原的氨基酸。

如丙氨酸/经代谢转变成丙酮酸、α-酮戊二酸、琥珀酸或草酰乙酸,再通过这些羧酸变成葡萄糖和糖原(包括丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、甲硫氨酸、脯氨酸、丝氨酸、苏氨酸、异亮氨酸、缬氨酸等15种氨基酸)。

经过代谢能产生酮体的氨基酸。

如亮氨酸/在分解代谢过程中能转变成乙酰-乙酰辅酶A的氨基酸,共有亮氨酸、赖氨酸、色氨酸、苯丙氨酸和酪氨酸5种氨基酸。

生糖和生酮氨基酸:经过代谢,既能产生酮体,又能转化为葡萄糖的氨基酸(如苯丙氨酸和4、名词解释:(+一个例子)人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。

(如:赖氨酸、色氨酸、苯丙氨酸、蛋氨酸、苏氨酸、异亮氨酸、亮氨酸、缬氨酸)。

人或动物机体能自身合成,不须通过食物补充的氨基酸。

(如:甘氨酸、丙氨酸、脯氨酸、酪氨酸、丝氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸)。

5、按合成起始物的不同可分成6类氨基酸?(填空)α-酮戊二酸衍生而来的氨基酸。

缬氨酸。

3-磷酸-甘油酸衍生而来的氨基酸。

4-磷酸-赤藓糖和糖酵解中间产物:磷酸烯醇式丙酮酸衍生而来的氨基酸。

5-磷酸-核糖。

6、谷氨酸的生成途径α-酮戊二酸与游离氨在L-谷氨酸脱氢酶催化下发生氨基化作用。

动物体内,L-谷氨酸脱氢酶可利用NAD+/NADH和NADP+/NADPH两类辅酶。

(在自然界中普遍发生)先由α-酮戊二酸氨基化生成L-谷氨酸,再由L-谷氨酸生成谷氨酰胺。

接着由谷氨酸合酶催化,α-酮戊二酸接受来自L-谷氨酰胺的酰胺基,生成谷氨酸。

9种含氮物可对该酶活性产生抑制:6-磷酸-氨基葡萄糖、色氨酸、丙氨酸、甘氨酸、丝氨酸、组氨酸、CTP、AMP和氨甲酰磷酸。

*两种合成谷氨酸途径的比较途径(1)其实在自然界并不普遍发生,只有少数生物在环境中NH4+浓度很高时,才以此途径合成谷氨酸。

最普遍的还是途径(2)。

虽从能量角度看,由于在从谷氨酸生成谷氨酰胺时需消耗ATP,并不经济。

但由于途径(2)只需极低浓度NH4+即可发生,途径(1)却需很高的NH4+浓度。

而一般在自然条件下,环境中NH4+浓度并不会很高。

7、芳香族氨基酸合成的共同途径(P356)莽草酸途径:8、谷氨酰胺与天冬酰胺的合成,其中哪一种合成反应较易进行?1.先由α-酮戊二酸氨基化生成L-谷氨酸,再由L-谷氨酸生成谷氨酰胺。

2.草酰乙酸接受来自谷氨酸的氨基形成天冬氨酸,催化酶是谷草转氨酶。

哺乳动物体内,天冬氨酸β-羧基上转移上一个来自谷氨酰胺的酰胺基,生成天冬酰胺。

催化酶是天冬酰胺合成酶,ATP在反应中被消耗2个高能磷酸键;细菌体内,由NH4+提供转移上去的酰胺基。

反应中也有ATP降解为AMP的过程。

天冬酰胺与谷氨酰胺合成不同点,在谷氨酰胺合成反应中,ATP 只被打断1个高能磷酸键而生成ADP;而天冬酰胺合成反应中,ATP则被打断2个高能键生成AMP和PPi。

9、氨基酸之间相互转化的例子(2个)二、核酸及核苷酸的代谢与合成1、核酸内切酶及外切酶的作用方式、作用特点及产物?作用方式:作用于核酸链的一端,逐个水解下核苷酸的核酸酶为核酸外切酶。

作用特点:为非特异性核酸酶,对于RNA、DNA及低分子量寡核苷酸等底物都能分解。

如:蛇毒磷酸二酯酶(从核苷酸链的3’-羟基端开始,逐一水解下5’-核苷酸)、牛脾磷酸二酯酶(从核苷酸链的5’-羟基端开始,逐一水解下3’-核苷酸)等。

作用方式:能水解核酸分子内部磷酸二酯键的磷酸二酯酶称核酸内切酶。

作用特点:特异性强。

如:第一个被分离纯化并得到结晶的RNA酶牛胰核酸酶,专一性作用于RNA中的嘧啶核苷酸,生成3-磷酸-嘧啶核苷或末端为3-磷酸-嘧啶核苷的寡核苷酸。

如:于1957年被从曲霉中分离提纯的另一种RNA酶:T1 。

细菌体内存在着一类能识别并水解外源双链DNA的核酸内切酶,称“限制性内切酶”。

它们识别DNA中特定核苷酸序列,并在特定位点切断DNA链,产生双链裂口。

但若识别序列中的碱基预先经修饰,就不起作用。

限制性内切酶往往与一种甲基化酶同时成对存在,二者具相同底物专一性。

甲基化酶选择性地催化细菌自身DNA的甲基化修饰反应。

限制性内切酶只降解异种DNA,不分解自身DNA,可保卫自身遗传特性。

作用方式:限制性内切酶作用专一性强,有特异性识别序列,识别序列长度一般在4-8个碱基,且通常具有回文结构。

2、嘌呤和嘧啶核苷酸从头合成的各原子来源(P391-396)嘌呤核苷酸从头合成途径中,嘌呤环上原子来源于:N1来自天冬氨酸的氨基氮,甲酸盐是C2和C8的来源,N3和N9来自于谷氨酰胺的酰胺氮,甘氨酸是C4、C5和N7的来源, CO2或碳酸氢盐是C6的来源。

嘧啶核苷酸从头合成途径中,嘧啶环上原子来源于:CO2、NH3(或氨甲酰磷酸)和天冬氨酸。

动物机体中,嘧啶核苷酸的合成场所是肝脏。

与嘌呤核苷酸不同的是,在从头合成嘧啶核苷酸时,首先生成嘧啶碱,再与磷酸-核糖复合物结合。

所有嘧啶核苷酸中,最先合成的是尿苷酸。

3、名词解释:DNA分子双链为模板,按照碱基配对原则,合成与亲代DNA分子相同的两个双链DNA分子的过程。

DNA分子中一条链为模板,按照碱基配对原则,合成一条与模板DNA互补的RNA 分子的过程。

,是指在mRNA指令下,按照三联体密码原则,把mRNA上遗传信息转换成蛋白质中特定氨基酸顺序的过程。

4、DNA的半不连续复制的定义及原因DNA复制时,前导链连续复制、滞后链不连续复制的现象。

3’→5’在其上DNA能从5’→3’方向连续合成,称前导链,另一条模板链的走向为5’→3’在其上DNA也是从5’→3’方向合成。

但是与复制叉移动方向正好相反,随着复制的移动,形成许多不连续的片段,最后成一条完整的DNA链,称滞后链,由于前导链的合成通常是连续的,因此称DNA的半不连续复制。

5、大肠杆菌中3种主要的DNA聚合酶的作用特点,及异同点比较DNA链沿5’→3由3’-OH端沿3’→5’方向水解DNA链,即3’→5由5’-端沿 5’→3’方向水解DNA链,即5’→35’→3’聚合酶活力比聚合酶I高,还具有3’→5’核酸外切酶功能。

推测其生理功能主要是参与DNA的损伤修复。

10种亚基组成,含Zn原子。

它是三种聚合酶中活性最高的,具聚合酶及3’→5’核酸外切酶功能。

异同点:(1)都需模板指导,以四种脱氧核苷三磷酸为底物,且需具有3’-羟基的引物存在,聚合反应沿5’→3’方向进行。

(2)都兼有3’→5’核酸外切酶活力,在聚合中起校对作用。

(1)酶Ⅰ具有5’→3’核酸外切酶活力,酶Ⅱ和Ⅲ没有这种活力。

(2)酶Ⅱ和Ⅲ最适合作用于有小段缺口的双链DNA;酶Ⅰ最适合作用于具有大段单链区的双链DNA。

相关文档
最新文档