010理论力学-质点动力学

合集下载

理论力学质点力学课件

理论力学质点力学课件
7
五、理论力学的适用范围 1.物体运动的速度远少于光速 2.宏观物体(天体---原子) 作用量=能量x时间>>h=6.602X10^(-34)(JS)
8
参考书
❖ 郭士堃:《理论力学》上、下册 ❖ H.戈德斯坦(美):经典力学 ❖ 费恩曼 (Feynman):《物理学讲义.第一卷) ❖ 汪家訸:分析力学 ❖ 理论力学习题集
18
加速a 度 表 x 示i : y j z k a x i a y j a z k
加速度分量为:
a x x a y y
a z z
加速率表示:
a ax2 a2y az2
19
20
21
y
径向单位矢量:i
横向单位矢量:j (指向极角的 增加方向) rri
v dr drir irdiO
求 v,a, 。
35
例 求平抛物体任一时刻t的轨道曲率半径。
解:如图,平抛物体的运动方程为:
x v0t
y 1 gt2 2
O
v0
则,速率 v x 2y 2v0 2g2t2
•( x, y)
x
切向加速度
dv
g2t
a
dt
v02 g2t2
y
加速度大小 a x2y2 g
由法向加速度
an a2a2 v2
v2an
自然坐标系
s f (t)
从运动方程中消去时间 t,就得到轨迹方程
f(x,y,z)=0。
14
(Displacement, velocity and acceleration)
z
位移 (displacement):
B
r
r r C
O rA

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

理论力学知识总结

理论力学知识总结

学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。

第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。

动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。

即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。

质点动力学知识点总结

质点动力学知识点总结

质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。

本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。

2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。

2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。

2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。

3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。

3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。

4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。

4.2 动能定理合外力对质点所做的功等于质点动能的变化量。

5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。

5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。

6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。

6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。

7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。

7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。

8. 结论质点动力学是理解和描述宏观物体运动的基础。

理论力学---质点动力学的基本方程

理论力学---质点动力学的基本方程

dvx dx c m 0 x c1t c3 1 dt dt 1 dv dy y gt2 c2 t c4 m y m g gt c2 2 dt dt 微分方程 积分一次 再积分一次
代入初始条件得: c1 v0 cos0 ,c2 v0 sin0 ,c3 c4 0
18
dvx mgR2 2 即: mvx dx x
d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
v x mgR2 mvx dvx 2 dx v0 R x
(t 0时x R,v x v0 )
则在任意位置时的速度

质点运动微分方程除以上三种基本形式外,还可有极坐标形式, 柱坐标形式等等。 应用质点运动微分方程,可以求解质点动力学的两类问题。
6
质点动力学两类问题
第一类: 已知运动求力—微分 第二类: 已知力求运动—积分
1.绕线轮与滑块,已知ω,r,m,f=0,求rω
x x(t ) ( 式中 y y (t ) 为质点直角坐标形式的 运动方程 ) z z (t )
5
3.自然形式
d 2s m 2 F dt v2 m Fn
(式中s s (t )为质点的弧坐标形式的 运动方程。F , Fn , 分别为力F 在 自然轴系 轴, n轴上的投影)
质点系是力学中最普遍的抽象化模型;
包括刚体,弹性体,流体。
3
三、动力学分类:
质点系动力学
质点动力学
质点动力学是质点系动力学的基础。
四、.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力;

《理论力学》第九章质点动力学

《理论力学》第九章质点动力学
《理论力学》第九章质点动力 学

CONTENCT

• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω

质点动力学知识点总结

质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。

在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。

在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。

希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。

一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。

根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。

根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。

二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。

这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。

2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。

这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。

3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。

这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。

三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。

根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。

动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。

根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。

四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。

动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。

理论力学(哈工大版)第十章:质点动力学

理论力学(哈工大版)第十章:质点动力学

第六章 质点动力学6-1 惯性参考系中的质点动力学一.惯性参考系1.一般工程问题:2.人造卫星、洲际导弹问题:3.天体运动问题:二.牛顿定律1.第一定律(惯性定律):2.第二定律(力与加速度之间的关系定律):3.第三定律(作用与反作用定律):三.质点的运动微分方程 将动力学基本方程)(F a m =表示为微分形式的方程,称为质点的运动微分方程。

1.矢量形式(自:会使用微分形式)) )( ( 22方程为质点矢径形式的运动式中t r r F dtr d m == 2.直角坐标形式) )()()( ( 222222运动方程为质点直角坐标形式的式中⎪⎩⎪⎨⎧===⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z z t y y t x x Z dty d m Y dt y d m X dt x d m 3.自然形式b n F F v m F dt s d m ===0222ρτ ), ,,)((轴上的投影轴和轴自然轴系在分别为力运动方程。

为质点的弧坐标形式的式中b n F F F F t s s b n ττ= 四.质点动力学的两类基本问题1.已知质点的运动规律,求作用于质点上的力;----求微分问题。

2.已知质点上所受的力,求质点的运动规律。

----按质点运动的初始条件和力的函数关系对运动微分方程进行求解,从数学角度看,是解微分方程或求积分,并确定相应的积分常数的问题。

第一类问题解题步骤和要点:①正确选择研究对象(一般选择联系已知量和待求量的质点)。

②正确进行受力分析,画出受力图(应在一般位置上进行分析)。

③正确进行运动分析(分析质点运动的特征量)。

④选择并列出适当形式的质点运动微分方程(建立坐标系)。

⑤求解未知量。

2.第二类:已知作用在质点上的力,求质点的运动(积分问题)已知的作用力可能是常力, 也可能是变力。

变力可能是时间、位置、速度或者同时是上述几种变量的函数。

如力是常量或是时间及速度函数时,可直接分离变量积分dt dv 。

理论力学 质点动力学

理论力学 质点动力学

第8章质点动力学
[例8-1]桥式起重机跑车吊挂一质量为m的重物,沿水平横梁作
ν
匀速运动,速度为,重物中心至悬挂点距离为l。

突然刹车,
重物因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。

解:1)以重物为研究对象2)受力分析mg
F T
a n a t 3)运动分析4)牛顿第二定律
ϕ
sin mg ma t −=ϕ
cos mg F ma T n −=∑=t
t F ma ∑=n
n F ma 5)补充方程
ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=
mg
F T
a n a t ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=0<dt
dv 重物减速
=ϕ0
max v v =max
T T , 0F F ==时ϕ)
1(20
max
T gl
v
mg F +=
a n
F N
a t
a n
ma
mg
F N
a t a n
mg
O
解释非惯性系一些物理现象
飞机急速爬高时
飞行员的黑晕现象
爬升时:a > 5g
惯性参考系——地球
非惯性参考系——飞机
动点——血流质点
牵连惯性力向下,从心脏流向头部的血流受阻,造成大脑缺血,形成黑晕现象。

飞行员的黑晕与红视现象
在北半球的弹道偏右;在南半球的弹道偏左
a
C
F
IC。

理论力学 质点动力学(共114张PPT)

理论力学  质点动力学(共114张PPT)

容,本课程只作适当的复习或让学生自学。 牵连惯性力向上,使血流自下而上加速流动,造成大脑充血,形成红视现象。
动点-血流质点
上式可以化为二阶线性齐次微分方程的标准形式
分析小摆动条件下,摆的运动
牵连惯性力向下,从心脏流
确将定式一 B的个表自达由式质对点ω在求空一间次的导位数置并需令要其三等个于独零立,坐可标以,发所现以,空此间时自振由幅质B点有有极三大个值自,向由即度头在。共部振的固有血圆流频率受阻,造成大脑
研究作用在物体上的力系与物体运动的关系,主要 是建立运动物体的力学模型,亦即建立描述受力物体运 动状态变化的数学方程,称为动力学问题的根本方程和 普遍定理。
工程动力学的研究对象是质点和质点系〔包括刚体〕, 因此动力学一般分为质点动力学和质点系动力学,前者是 后者的根底。
第7章 质点动力学
研究作用在质点 上的力和质点运动之间的关系。本章主要介绍质点在惯 性与非惯性系下的运动微分方程和简单的振动问题。
v1
F v2
棒球在被球棒击打后, 其速度的大小和方向发 生了变化。如果这种变 化即可确定球与棒的相 互作用力。
v2 v1
B A
载人飞船的交会与对接
工程动力学主要研究两类问题,一类是:物体的运动,确 定作用在物体上的力;另一类是:作用在物体上的力,确定物 体的运动。实际工程问题中多以这两类问题的交叉形式出现。 总之,工程动力学研究作用在物体上的力系与物体运动的关系。
maa F
aa ae ar aC
m(ae ar aC ) F
mar F mae maC
m ar F FIe FIC
FIe m ae-称为牵连惯性力(connected inertial force) FIC m aC 2mω vr

质点动力学知识点总结

质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中的一个重要分支,研究的是质点在外力作用下的运动规律。

在学习质点动力学的过程中,我们需要掌握一些基本的知识点,这些知识点对于理解质点的运动规律和解决相关问题非常重要。

本文将对质点动力学的一些重要知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。

1. 质点的运动方程。

质点的运动方程是描述质点在外力作用下的运动规律的基本方程。

根据牛顿第二定律,质点所受的合外力等于质点的质量乘以加速度,即。

\[ F = ma \]其中,F表示合外力,m表示质点的质量,a表示质点的加速度。

根据质点的运动状态不同,可以得到质点的运动方程,包括匀速直线运动、变速直线运动、曲线运动等。

2. 动量和动量定理。

质点的动量是描述质点运动状态的重要物理量,动量的大小等于质点的质量乘以速度,即。

\[ p = mv \]动量定理则描述了质点所受外力作用下动量的变化规律,即。

\[ F\Delta t = \Delta p \]其中,F表示外力,Δt表示时间间隔,Δp表示动量的变化量。

动量定理对于分析质点的碰撞、反冲等问题非常有用。

3. 动能和动能定理。

质点的动能是描述质点运动状态的另一个重要物理量,动能的大小等于质点的质量乘以速度的平方再乘以1/2,即。

\[ K = \frac{1}{2}mv^2 \]动能定理描述了质点所受外力作用下动能的变化规律,即。

\[ W = \Delta K \]其中,W表示外力所做的功,ΔK表示动能的变化量。

动能定理对于分析质点的机械能守恒等问题非常重要。

4. 势能和势能曲线。

质点的势能是描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。

势能曲线描述了质点在外力场中势能随位置的变化规律,通过势能曲线可以分析质点的稳定平衡、振动、受力情况等问题。

5. 角动量和角动量定理。

质点的角动量是描述质点绕某一轴旋转运动状态的物理量,角动量的大小等于质点到轴的距离与质点的动量的乘积,即。

第十一章质点动力学_理论力学

第十一章质点动力学_理论力学

第十一章质点动力学1.质点动力学的基本方程为矢量形式的微分方程为经常应用的为直角坐标形式和自然坐标形式的微分方程。

2.质点动力学的两类问题★已知质点的运动规律,求作用于质点的力,通常是求约束力;★已知质点所受的作用力,求其运动规律。

一般一个问题中同时包含以上两类问题。

求解动力学问题,建立动力学微分方程是关键的一步。

对质点的运动及受力作初步的分析后,应选定合适的坐标系,将质点放在任意位置上,画受力图,写出它所受主动力的函数式,然后建立相对应坐标系的运动微分方程。

求解运动微分方程要根据初始条件确定积分常数,即质点的运动是由质点的受力和初始条件同时决定。

3.质点相对非惯性参考系矢量形式的微分方程为其中为相对非惯性参考系的矢径,为牵连惯性力,为科式惯性力。

具体应用时取适当形式的投影方程。

质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体。

本章根据牛顿第二定律建立了质点运动微分方程,应用此方程可求解质点动力学的两类问题。

牛顿定律不适用于非惯性坐标系。

本章应用复合运动的分析方法,建立非惯性坐标系与惯性坐标系运动量之间的关系,进而得到适用非惯性坐标系的动力学基本定律。

§11-1质点运动微分方程1.动力学基本定律--牛顿三定律第一定律--惯性定律:任何质点如不受力作用,则将保持原来静止或等速直线运动状态。

物体保持其运动状况不变的固有属性,称为惯性。

质量为物体惯性的度量。

第二定律--在力的作用下物体所获得的加速度的大小与作用力的大小成正比,与物体的质量成反比,方向与力的方向相同。

即(11-1)在国际单位中,质量的单位为kg(千克),长度的单位为m(米),时间的单位为s(秒)。

力的单位为N(牛顿)是导出单位:1N=1kg×1m/s第三定律--作用反作用定律:两物体之间的作用力和反作用力大小相等,方向相反,并沿同一条直线分别作用在两个物体上。

2.运动微分方程当物体受几个力作用时,式(11-1)的右端应为这几个力的合力。

理论力学习题-质点动力学基本方程

理论力学习题-质点动力学基本方程

理论力学习题-质点动力学基本方程.(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--104第9章 质点动力学基本方程一、是非题(正确的在括号内打“√”、错误的打“×”)1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。

( √ )2. 一质点仅受重力作用在空间运动时,一定是直线运动。

( × )3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。

( × )4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。

( √ )5. 凡运动的质点一定受力的作用。

( × )6. 质点的运动方向与作用于质点上的合力方向相同。

( × )二、填空题1.质点是指大小可以忽略不计,但具有一定质量的物体。

2.质点动力学的基本方程是∑=i m F a ,写成自然坐标投影形式为∑=τF dt s d m22∑=nFv m ρ2∑=b F 0。

、 、1053.质点保持其原有运动状态不变的属性称为惯性。

4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b=+,其中0v 为初速度,b 为常数。

则作用于质点上的力=F 2020()mbv b v t -+。

5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。

飞行员体重为P ,则飞行员对座椅的最大压力为2(1)vP gr+。

三、选择题1.如图所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。

(A) mg(B) )(a g m +(C) )(a g m -(D) 02.如图所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。

(A) 0=+x m cx(B) 0)(=-+s x mcxδ (C) g x m cx s =-+)(δ (D) 0)(=++s x mcxδ 3.在介质中上抛一质量为m 的小球,已知小球所受阻力R kv =-,坐标选择如图所示,试写出上升段与下降段小球的运动微分方程,上升段( A ),下降段( A )。

《理论力学 动力学》 第五讲 非惯性系中质点动力学的应用

《理论力学 动力学》 第五讲  非惯性系中质点动力学的应用

求:套筒运动到端点A所需的时间
z'
及此时对杆的水平压力。
y'
2、非惯性系中质点动力学的应 用
解:研究套筒B相对于OA的运动.
O
选取和杆OA一起转动的坐标
系O x’y’z’为动参考系.
分析套筒受力, 其中
FIe = mw2 x¢ FIC = 2mw x&¢
套筒的相对运动动力学方程为:
m
d2r¢ dt 2
2、非惯性系中质点动力学的应 用
(1)傅科摆
在北半球,球铰链悬挂一支摆,摆锤摆动时,与 地球表面有相对速度,由于地球自转的影响,会 产生向左的科氏加速度,对应的科式惯性力向 右,因此它不会像单摆一样在一个固定平面内运 动,而会向右偏斜,轨迹如右图所示。这种现象 是傅科1851年发现的,称之为傅科摆。它证明了 地球的自转。摆绳摆动的平面在缓慢地顺时针旋 转,旋转一周的周期为:
2、非惯性系中质点动力学的应 用
例 1 如图所示单摆,摆长为l,小球质量为m。其悬挂点O以加速度a0向上运动。
求:此时单摆作微振动的周期。
a0
解:在悬挂点固结一个平移坐标系O x’y’。
O
x'
小球相对于此动参考系的运动相当于悬挂点固定的单摆振动。
分析小球受力, 其中 FIe = ma0
φ
因动参考系作平移运动,所以科氏惯性力 FIC = 0
2
3) = 0.209s
m
d2r¢ dt 2
=
ห้องสมุดไป่ตู้mg
+
F1
+
F2
+
FIe
+
FIC
将相对运动动力学方程投影到y’轴上,得: F2 = FIC = 2mw x&¢

理论力学_动力学课件

理论力学_动力学课件

rC
miri mi
miri m
mvCmivi
pm ivi mvC
O vC
O
C
z
mn
m2
m1
C
mi
rC ri
o y
x
vC
C
2冲量 力在作用时间上的累积效应——力的冲量
a. 常力 b. 变力
I Ft
dIFdt
I 0t Fdt
冲量为矢量,其单位与动量单位相同为 N·s
§11-2 动量定理
1. 质点的动量定理
5. 回转半径
z
Jz m
惯性半径(回转半径)
J z mρ 2
例题 3
已知: m ,R 。
求:角加速度
解:取圆轮为研究对象
J O mgR
JO
1 2
mR 2
mR 2
3 2
mR 2
解得: 2 g
3R
FOy
FOx
C O
mg
12.4 刚体的平面运动微分方程
刚体平面运动 =
刚体随质心平动 + 刚体绕质心转动
1动量
质点的动量 —— 质点的质量与质点速度的乘积
pmv
质点的动量是矢量,而且是定位矢量,它的方向与质 点速度的方向一致。其单位为 kg·m/s 或 N·s
质点系的动量 ——质点系中各质点动量的矢量和,称为 质点系的动量,又称为质点系 动量的主矢。
n
p mivi i 1
根据质点系质心的位矢公式
mivi
( m ir i) v C r i m iv ir ( m r C ) v C r i m iv ir r i m iv ir L Cr rC
C ri
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入,有
t 0,v v0 0
F0 0 d v 0 m cost d t
v t
18
积分后得 dx 因 v ,分离变量,再次积分,并以初始条件 dt t 0,x 0 代入,有 x t F 0 d x 0 0 m sin t d t 积分后得
F0 v sint m
微分方程
积分一次
再积分一次
20
则运动方程为 : x v0tcos 0 , y v0tsin0 1 gt2 2 2 x 1 则轨迹方程为 : y xt g 0 g 2 0 2 v0 cos2 0 dy 代入最高点A处值,得: v0 sin 0 gt 0, 即 t v0 sin 0 g dt 将到达A点时的时间t,x=S ,y=H 代入运动方程,得 sg v0 cos 0 v0 sin0 2gH 2 gH 发射初速度大小与初发射角 0 为
12
④ 列出自然形式的质点运动微方程
G dv Gsin 1 g dt G v2 ma n Fn , T Gcos 2 g l ma F ,
⑤ 求解未知量
v2 由 2 式得 T G (cos ), gl
, 因此 0时 , T Tmax 其中 ,v为变量. 由1式知 重物作减速运动
a、 b、 是常数。求作用于质点上的力F。
解:将质点运动方程消去时间t,得
x2 y2 2 1 2 a b
可见,质点的运动轨迹是以
a、 b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
14
2 2 a x a cos t x x 2 2 a y b sin t y y
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
2 d 建立质点运动微分方程 m x F0 cos t dt2 即 dv
m
dt
F0 cos t
分离变量,对等式两边积分,并以初始条件
23
24

a ax i a y j 2 r
2 F ma m x x x 2 F ma m y y y
将上式代入公式中,得力在直角坐标轴上的投影

F Fx i Fy j m 2 r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
综合性问题:已知部分力,部分运动求另一部分力、部分运动。
已知主动力,求运动,再由运动求约束反力。
3
4
第十章
§10–1
§10–2
质点动力学基本方程
动力学的基本定律
质点的运动微分方程
5
§10–1
动力学的基本定律
质点是物体最简单、最基本的模型,是构成复杂物体系 统的基础。质点动力学的基础是三个基本定律。质点动力学 基本方程给出了质点受力与其运动变化之间的关系。
2 v0 2 gR
则在某一位置
2 2 gR 时,无论 x多 x=R+H 时速度将减小到零,火箭回落。若 v0
大(甚至为∞), 火箭也不会回落。因此脱离地球引力而一去 不返 时( x )的最小初速度
v0 2 gR 29.8103 6370 11.2 (km/s)
(第二宇宙速度)
大小与r的大小成正比,称之为向心力。
15
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。 已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的② 正确进行受力分析,画出受力图。判断力是什么性质的力 (应放在一般位置上进行分析,对变力建立力的表达式)。 ③ 正确进行运动分析。(除应分析质点的运动特征外,还要确 定出其运动初始条件)。
F0 x (1 cos t ) 2 m
19
[例2] 煤矿用填充机进行填充, 为保证充 填材料抛到距离为S=5米,H=1.5米的顶 板A处。求 (1)充填材料需有多大的初速 度v0 ? (2)初速 v0 与水平的夹角a0?
解:选择填充材料M为研究对象,受力如图所示,
M作斜抛运动。
t 0, x0 0, y0 0; v0 x v0 cos0 , v0 y v0 sin0
(t 0时x R, v x v0 )
2 2 gR 2 则在任意位置时的速度 v (v0 2 gR ) x 22
mgR 2 mv x d v x dx 2 v0 R x

v

x
2 2 gR v (v 2 0 2 gR) x
可见,v 随着 x 的增加而减小。若
动力学问题最根本的依据。
牛顿第二定律指出了质点加速度方向总是与其所受合力的 方向相同,但质点的速度方向不一定与合力的方向相同。因 此,合力的方向不一定就是质点运动的方向。
7
第三定律(作用与反作用定律):两个物体间的作用力与 反作用力总是大小相等、方向相反、沿着同一直线,且同时 分别作用在两个物体上。
2
自由质点系:质点系中各质点的运动不受约束的限制。 非自由质点系:质点系中的质点的运动受到约束的限制。
质点系是力学中最普遍的抽象化的模型;包括刚体、弹性
体、流体。
三.动力学分类: 质点系动力学
质点动力学
质点动力学是质点
系动力学的基础。
四.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力; 第二类:已知物体的受力情况,求物体的运动。
第三定律说明了力的产生是由于两个物体相互作用而引
起的,它不仅适用于静止(平衡)状态的物体,而且同样适用于 运动状态的物体。
8
§10-2
质点的运动微分方程
将动力学基本方程表示为微分形式的方程,称为质点的 运动微分方程。 1.矢量形式 d2 r m 2 F ( 式中 r r (t ) 为质点矢径形式的运动 方程 ) dt 2.直角坐标形式
2 2 g s 2 2 v0 (v0 cos 0 ) (v0 sin 0 ) 2 gH 10.5 m/s 2 gH v sin 0 2H 1 0 0 tg tg 1 31 21 v0 cos 0 s
代入初始条件得 : c1 v0 cos 0 ,c2 v0 sin0 ,c3 c4 0
dvx dx c x c1t c3 m 0 1 dt dt 1 2 dv dy y gt c2t c4 m y m g gt c2 2 dt dt
列直角坐标形式的质点运动微分方程并对其积分运算
质点动力学的基本定律:
第一定律(惯性定律):不受力作用的质点,将保持静止 或作匀速直线运动。第一定律明确指出了物体运动状态发生
变化的原因。
第二定律(力与加速度之间的关系的定律):质点的质量 与加速度的乘积,等于作用于质点的力的大小,加速度的方 向与力的方向相同。
6
设作用在质点上的力为F,质点的质量为m,质点获得的加 速度为a,则牛顿第二定律可以用矢量方程表示为 F m a 第二定律建立了质点的质量、 作用于质点的力和质点运动加速度 三者之间的关系,并由此可直接导 出质点的运动微分方程,它是解决

0 Fb
质点运动微分方程除以上三种基本形式外,还可有极坐标 形式、柱坐标等形式。 应用质点运动微分方程,可以求解质点动力学的两类问题。
10
质点动力学两类问题:
第一类问题:已知质点的运动,求作用在质点上的力(微分
问题)。解题步骤和要点:
① 正确选择研究对象 一般选择联系已知量和待求量的质点。
② 正确进行受力分析,画出受力图 应在一般位置上进行分析。
1

二.力学模型:

研究物体的机械运动与作用力之间的关系。 一.研究对象: 1.质点:具有一定质量而不考虑其形状大小的物体。
例如:研究卫星的轨道时,卫星
刚体作平动时,刚体 的质点组成的系统。
质点;
质点。
2.质点系:由有限或无限个有着一定联系 刚体是一个特殊的质点系,由无数个相互间保持距离不变 的质点组成。又称为不变质点系。
d2 x d2 y d2 z m 2 Fx,m 2 Fy,m 2 Fz dt dt dt
( 式中x、y、z 为质点直角坐标形式的 运动方程 )
9
3.自然形式
d2 s m 2 F dt v2 m Fn
(式中s s(t )为质点的弧坐标形式的 运动方程。F ,Fn ,Fb 分别为力F 在 自然轴系 轴, n轴和b轴上的投影)
2 v0 Tmax G (1 ) gl
[注] ① 减小绳子拉力途径:减小跑车速度或者增加绳子长度。 ② 拉力Tmax由两部分组成, 一部分等于物体重量,称为静拉力 一部分由加速度引起,称为附加动拉力。全部拉力称为动拉力。
13
[例2] 已知质量为m的质点M在坐标平面 Oxy 内运动,如 图所示。其运动方程为 x a cos t,y b sin t ,其中
[例3] 发射火箭,求脱离地球引力的最小速度。
解: 取火箭(质点)为研究对象, 建立坐标如图 示。火箭在任意位置x 处受地球引力F 的作用。
m gR2 mM mg f F 2 R x2 d x2 mgR 2 建立质点运动微分方程 m 2 dt x2 mM F f 2 x
dvx mgR2 2 即: mvx dx x d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
16
④ 选择并列出适当的质点运动微分方程。
⑤ 求解未知量。应根据力的函数形式决定如何积分,并利用
运动的初始条件,求出质点的运动。 如力是常量或是时间及速度函数时, dv 可直接分离变量 dt 积分 。 如力是位置的函数,需进行变量置换
相关文档
最新文档