初中几何公里、定理、推论汇总
初中几何 定理、推论
初中几何定理、推论1、过两点有且只有一条直线。
2 两点之间线段最短。
3 同角或等角的补角相等。
4 同角或等角的余角相等。
5 过一点有且只有一条直线和已知直线垂直。
6 直线外一点与直线上各点连接的所有线段中,垂线段最短。
7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8 如果两条直线都和第三条直线平行,这两条直线也互相平行。
9 同位角相等,两直线平行。
10 内错角相等,两直线平行。
11 同旁内角互补,两直线平行。
12两直线平行,同位角相等。
13 两直线平行,内错角相等。
14 两直线平行,同旁内角互补。
15 定理:三角形两边的和大于第三边。
16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°。
18 推论1:直角三角形的两个锐角互余。
19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21 全等三角形的对应边、对应角相等。
22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
23角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等。
24推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
25 边边边公理(SSS):有三边对应相等的两个三角形全等。
26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
27 定理1:在角的平分线上的点到这个角的两边的距离相等。
28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上。
29 角的平分线是到角的两边距离相等的所有点的集合。
30 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
32 推论2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
1.立体几何中基本概念、公理、定理、推论
立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。
初中几何公式定理推论总结140条
初中几何公式定理推论总结140条一、几何公式1、三角形面积公式:S=1/2ab sin C2、椭圆面积公式:S=πab3、平行四边形面积公式:S=ab sin A4、正方形面积公式:S=a^25、平行六边形面积公式:S=3√3a^2/26、正六边形面积公式:S=3a^2√3/27、正三角形面积公式:S=√3a^2/48、圆形面积公式:S=πr^29、三棱锥面积公式:S=√s(s-a)(s-b)(s-c)10、四棱锥面积公式:S=1/4{a^2+b^2+c^2}11、球的表面积公式:S=4πr^212、圆柱体体积公式:V=πr^2h13、圆锥体体积公式:V=1/3πr^2h14、球体体积公式:V=4/3πr^315、三角形角度公式:A+B+C=180°16、直角三角形腰边公式:a^2+b^2=c^217、椭圆长短轴公式:a>b18、平行四边形内角公式:A+B+C+D=360°19、正方形内角公式:A+B+C+D=360°20、平行六边形内角公式:A+B+C+D+E+F=720°21、正六边形内角公式:A+B+C+D+E+F=720°22、正三角形内角公式:A+B+C=180°23、平面多边形角度公式:A1+A2+A3+…+An=(n-2)×180°24、圆角度公式:360°25、三角形周长公式:l=a+b+c26、椭圆周长公式:L=2π√(a^2+b^2)/227、平行四边形周长公式:L=a+b+c+d28、正方形周长公式:L=4a29、平行六边形周长公式:L=a+b+c+d+e+f30、正六边形周长公式:L=6a31、正三角形周长公式:L=3a。
立体几何公式定理大全
立体几何公式定理大全、公理定理(一)平面基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为0 , 90两异面直线间距离: 公垂线段(有且只有一条) 2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面三)平行关系1.线面平行定义:直线和平面没有公共点判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.面面平行定义:空间两平面没有公共点判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系1线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理第一篇:初中几何证明的所有公理和定理初中几何证明的所有公理和定理1过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理三角形两边的和大于第三边;推论三角形两边的差小于第三边三角形内角和定理三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等角边角公理有两角和它们的夹边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等推论1 等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1 三个角都相等的三角形是等边三角形推论 2 有一个角等于60°的等腰三角形是等边三角形在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定理线段垂直平分线上的点和这条线段两个端点的距离相等逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1 关于某条直线对称的两个图形是全等形定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角第二篇:几何证明定理几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与平面平行的(判定)1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行2.关键:判定两个平面是否有公共点三.直线与平面平行的(性质)1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线四.平面与平面平行的(性质)1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行五:直线与平面垂直的(定理)1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)六.平面与平面的垂直(定理)1.一个平面过另一个平面的垂线,则这两个平面垂直(或者做二面角判定)2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换七.平面与平面垂直的(性质)1.性质一:垂直于同一个平面的两条垂线平行2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)以上,是立体几何的定理和性质整理.是一定要记住的基本!31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形。
初中数学几何定理大全
初中数学公理和定理之南宫帮珍创作一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,而且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变更(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。
初中数学——几何公理、定理、公式汇编
初中数学——几何公理、定理、公式汇编江苏省泗阳县李口中学沈正中整理1 过两点有且只有一条直线。
2 两点之间线段最短。
3 同角或等角的补角相等。
4 同角或等角的余角相等。
5 过一点有且只有一条直线和已知直线垂直。
6 直线外一点与直线上各点连接的所有线段中,垂线段最短。
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8 如果两条直线都和第三条直线平行,这两条直线也互相平行。
9 同位角相等,两直线平行。
10 内错角相等,两直线平行。
11 同旁内角互补,两直线平行。
12两直线平行,同位角相等。
13 两直线平行,内错角相等。
14 两直线平行,同旁内角互补。
15 定理三角形两边的和大于第三边。
16 推论三角形两边的差小于第三边。
17 三角形内角和定理三角形三个内角的和等于180°。
18 推论1 直角三角形的两个锐角互余。
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和。
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角。
21 全等三角形的对应边、对应角相等。
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等。
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。
25 边边边公理(SSS) 有三边对应相等的两个三角形全等。
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。
27 定理1 在角的平分线上的点到这个角的两边的距离相等。
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上。
29 角的平分线是到角的两边距离相等的所有点的集合。
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°。
立体几何中的公理、定理和常用结论汇总
立体几何中的公理、定理和常用结论汇总1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.平行与垂直的八大定理(1).直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b(2).平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b(3).直线与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b(4).平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α5.(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)如果两个平面平行,那么一个平面的任意一条直线与另一个平面平行.6.垂直关系中的三个重要结论(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直.(2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直.(3)若果一条直线垂直于一个平面,那么该直线与平面中的任意直线垂直.。
初中几何定理公理公式汇总
初中几何定理公理公式汇总初中几何公式:线1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。
初中数学145条几何题公式定理汇总
初中数学| 145条几何题公式定理汇总初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1:关于某条直线对称的两个图形是全等形13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1:在角的平分线上的点到这个角的两边的距离相等23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理:三角形两边的和大于第三边26、推论:三角形两边的差小于第三边27、定理:三角形三个内角的和等于180°28、推论1:直角三角形的两个锐角互余29、推论2:三角形的一个外角等于和它不相邻的两个内角的和30、推论3:三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理:等腰三角形的两个底角相等34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3:等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1:三个角都相等的三角形是等边三角形39、推论2:有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3:三边对应成比例,两三角形相似(SSS)47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2:相似三角形周长的比等于相似比50、性质定理3:相似三角形面积的比等于相似比的平方51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等53、推论:有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理:有三边对应相等的两个三角形全等55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理:四边形的内角和等于360°58、四边形的外角和等于360°59、定理:n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1:平行四边形的对角相等62、平行四边形性质定理2:平行四边形的对边相等63、推论:夹在两条平行线间的平行线段相等64、平行四边形性质定理3:平行四边形的对角线互相平分65、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3:对角线互相平分的四边形是平行四边形68、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1:矩形的四个角都是直角70、矩形性质定理2:矩形的对角线相等71、矩形判定定理1:有三个角是直角的四边形是矩形72、矩形判定定理2:对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1:菱形的四条边都相等74、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1:四边都相等的四边形是菱形77、菱形判定定理2:对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1:正方形的四个角都是直角,四条边都相等79、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1:关于中心对称的两个图形是全等的81、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理:等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d93、合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d94、等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例96、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何公式定理:圆99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2:圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理:一条弧所对的圆周角等于它所对的圆心角的一半117、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r;②直线L和⊙O相切d=r;③直线L和⊙O相离d﹥r122、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理:圆的切线垂直于经过切点的半径124、推论1:经过圆心且垂直于切线的直线必经过切点125、推论2:经过切点且垂直于切线的直线必经过圆心126、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理:弦切角等于它所夹的弧对的圆周角129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r);⑤两圆内含d﹤R-r(R﹥r)136、定理:相交两圆的连心线垂直平分两圆的公共弦137、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、内公切线长=d-(R-r)外公切线长=d-(R+r)143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2。
初中几何基本定理及推论
初中几何基本定理及推论1过两点有且只有一条直线(或线段)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于o18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 角平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的1 / 9集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合(即三线合一)33 推论3 等边三角形的各角都相等,并且每一个角都等于o6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于o60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于o30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方,即222cba=+47勾股定理的逆定理如果三角形的三边长a、b、c有关系222cba=+,那么这个三角形是直角三角形48定理四边形的内角和等于o36049 四边形的外角和等于o36050多边形内角和定理n边形的内角的和等于on180)2(⨯-51推论任意多边的外角和等于o36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相2 / 9等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即abS2167菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条3 / 94 / 9直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 。
初中几何公式、定理、推论总结
初中几何公式、定理、推论总结 1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理:有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1:在角的平分线上的点到这个角的两边的距离相等28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1:关于某条直线对称的两个图形是全等形43 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线西安新东方共页第1页44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方47勾股定理的逆定理:如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论:任意多边的外角和等于360°52平行四边形性质定理1:平行四边形的对角相等53平行四边形性质定理2:平行四边形的对边相等54推论:夹在两条平行线间的平行线段相等55平行四边形性质定理3:平行四边形的对角线互相平分56平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58平行四边形判定定理3:对角线互相平分的四边形是平行四边形59平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60矩形性质定理1:矩形的四个角都是直角61矩形性质定理2:矩形的对角线相等62矩形判定定理1:有三个角是直角的四边形是矩形63矩形判定定理2:对角线相等的平行四边形是矩形64菱形性质定理1:菱形的四条边都相等65菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1:四边都相等的四边形是菱形68菱形判定定理2:对角线互相垂直的平行四边形是菱形69正方形性质定理1:正方形的四个角都是直角,四条边都相等70正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1:关于中心对称的两个图形是全等的72定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理:等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h西安新东方共页第2页83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3:三边对应成比例,两三角形相似(SSS)95 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2:相似三角形周长的比等于相似比98 性质定理3:相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理:不在同一直线上的三个点确定一条直线110垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2:圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理:一条弧所对的圆周角等于它所对的圆心角的一半117推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等西安新东方共页第3页119推论3:120定理:121①直线L和⊙O相交 d②直线L和⊙O相切③直线L和⊙O相离 d122切线的判定定理123切线的性质定理124推论1125推论2126切线长定理:127128弦切角定理:129推论:130相交弦定理:131推论:132切割线定理:点的两条线段长的比例中项133推论:线段长的积相等134﹥r)n边形n边形2n个全等的直角三角形、r n、Rn、Pn和Sn表示正n(n≥3,n360°,西安新东方共页第4页。
初中几何定义、公理和定理
初中几何定义、公理和定理公理(不需证明)1、线段公理:两点之间,线段最短。
2、直线公理:过两点有且只有一条直线。
3、平行公理:过直线外一点有且只有一条直线与已知直线平行4、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直5、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;6、两条平行线被第三条直线所截,同位角相等;7、两边和夹角对应相等的两个三角形全等; (SAS)8、两角及其夹边对应相等的两个三角形全等; (ASA)9、三边对应相等的两个三角形全等; (SSS)10、全等三角形的对应边相等,对应角相等.以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、中点的定义:把一条线段分成两条相等的线段的点,叫做这条线段的中点。
4、角的定义:①由两条有公共端点的射线组成的图形。
②由一条射线绕着它的端点旋转而成的图形。
5、互余:两个角的和等于90o,互补:两个角的和等于180 o。
6、同角或等角的补角相等,同角或等角的余角相等。
7、对顶角相等二、平行与垂直1、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
2、连接直线外一点与直线上各点的所有线段中,垂线段最短。
3、平行线的定义:在同一平面内永不相交的两条直线。
3、经过已知直线外一点,有且只有一条直线与已知直线平行。
4、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)(推论)如果两条直线都和第三条直线平行,那么这两条直线也平行5、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
(4)平行线间的距离处处相等三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)1、角平分线的定义:①从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫这个角的平分线。
初中几何定义、公理和定理
初中几何定义、公理和定理公理(不需证明)1、线段公理:两点之间,线段最短。
2、直线公理:过两点有且只有一条直线。
3、平行公理:过直线外一点有且只有一条直线与已知直线平行4、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直5、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;6、两条平行线被第三条直线所截,同位角相等;7、两边和夹角对应相等的两个三角形全等; (SAS)8、两角及其夹边对应相等的两个三角形全等; (ASA)9、三边对应相等的两个三角形全等; (SSS)10、全等三角形的对应边相等,对应角相等.以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、中点的定义:把一条线段分成两条相等的线段的点,叫做这条线段的中点。
4、角的定义:①由两条有公共端点的射线组成的图形。
②由一条射线绕着它的端点旋转而成的图形。
5、互余:两个角的和等于90º,互补:两个角的和等于180 º。
6、同角或等角的补角相等,同角或等角的余角相等。
7、对顶角相等二、平行与垂直1、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
2、连接直线外一点与直线上各点的所有线段中,垂线段最短。
3、平行线的定义:在同一平面内永不相交的两条直线。
3、经过已知直线外一点,有且只有一条直线与已知直线平行。
4、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)(推论)如果两条直线都和第三条直线平行,那么这两条直线也平行5、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
(4)平行线间的距离处处相等三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)1、角平分线的定义:①从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫这个角的平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何公里、定理、推论汇总一、公理1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、两角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平移、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。
16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。
即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等17、旋转对称:(1)图形中每一点都绕着旋转中心旋转了同样大小的角度(2)对应点到旋转中心的距离相等;(3)对应线段相等、对应角相等18、中心对称:(1)具有旋转对称的所有性质:(2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分四、三角形:19、三角形内角和定理:三角形的内角和等于180°20、三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°21、三边关系:(1)两边之和大于第三边;(2)两边之差小于第三边22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.23、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
24、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
25、等腰三角形、等边三角形(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形26、直角三角形:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
五、四边形27、多边形中的有关公理、定理:(1)四边形的内角和为360°(2)N边形的内角和:( n-2)×180°.(3)任意多边形的外角和都为360°28、平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
29、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.30、矩形的性质:(1)具有平行四边形的所有性质(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分.31、矩形的判定:(1)有一个角是直角的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形.(3)对角线相等的平行四边形是矩形。
32、菱形的性质:(1)具有平行四边形的所有性质(2)菱形的四条边都相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.33、菱形的判定:(1)四条边相等的四边形是菱形.(2)一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
34、正方形的性质:(1)具有矩形、菱形的所有性质(2)正方形的四个角都是直角;(3)正方形的四条边都相等;(4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.35、正方形的判定:(证明既是矩形又是菱形)(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.(3)对角线相等的菱形是正方形(4)对角线互相垂直的矩形是正方形36、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形;(2)两条对角线相等的梯形是等腰梯形.37、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等;(2)等腰梯形的两条对角线相等.38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.四、相似形与全等形39、全等多边形的对应边、对应角分别相等.40、全等三角形的判定:(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS.).(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(SAS.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA).(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS.)(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方42、相似三角形的判定:(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似(2)如果两角对应相等,那么这两个三角形相似;(3)如果两条边对应成比例,并且夹角相等,那么这两个三角形相似;(4)如果三条边对应成比例,那么这两个三角形相似.43、相似多边形的性质:同相似三角形44、相似多边形的判定:对应边成比例且对应角相等五、圆45、(1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
(2)圆是中心对称图形,对称中心是圆心。
46、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
47、垂径定理推论: 如果一条直线具有过圆心(直径)、垂直弦、平分弦、平分弦所对的劣弧(优弧)中知二得二。
48、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
49、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.50、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半(1)半圆或直径所对的圆周角都相等,都等于90°(直角); (2)90°的圆周角所对的弦是圆的直径.(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;51、不在同一条直线上的三个点确定一个圆.52、切线的判定(1)经过半径的外端且垂直于这条半径的直线是圆的切线.53、切线的性质(2)圆的切线垂直于过切点的直径。
54、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角55、射影定理:直角三角形斜边上高分成的两直角三角形与原三角形相似,并且有以下关系:(1)AC 2=AD ·AB (2)BC 2=BD ·AB (3)CD 2=AD ·BD56、(1)如图(1)有:AE ·BE=CE ·DE(2)如图(2),AB 是直径,CD ⊥AB ,则:CD 2=AD ·BDA A C BDE 3(1) A CD 3(2) B。