分数混合运算知识点整理
分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a x b=b x a 乘法结合律:a x b x c=a x (b x c) 乘法分配律:(a+b)x c=a x c+b x c 或a x c+b x c= (a+b)x c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a* b*c=a* (b x c)或a* (b x c)= a 宁b*c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数( 0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价*原价二折扣2、一件商品打几折,求现价。
计算方法:原价x折数3、一件商品打几折,求原价。
计算方法:现价*折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“ T例如:小红看完整本书的,那么单位“ 1”是整本书的页码。
②原价就是单位“ T例如:笔记本电脑原价是300元,现在降价了,那么单位“ 1”是原价3000元③分数比率之前的“的”字前面的量是单位“ 1”例如:全校男生的人数是女生人数的几分之几,那么单位“ 1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“ 1”是橘子数量。
2、确定乘或除(1)已知单位“ 1”,用乘法(2)未知单位“ 1”,用除法或方程3、对应量和对应分率(1)单位“ 1”x对应分率(2)对应量十对应分率二单位“1”若用方程:一般设单位“ 1”的量为未知数4、如何根据分率句来写等量关系找出关键性的字和词,“是”字、“占”字、“相当于”、“正好是”等字、词, 相当于等量关系式中的等于号,分率前面的“的”字相当于等量关系式中的乘号。
分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a x b=b x a 乘法结合律:a x b x c=a x (b x c) 乘法分配律:(a+b)x c=a x c+b x c 或a x c+b x c= (a+b)x c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a* b*c=a* (b x c)或a* (b x c)= a 宁b*c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数( 0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价*原价二折扣2、一件商品打几折,求现价。
计算方法:原价x折数3、一件商品打几折,求原价。
计算方法:现价*折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“T例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“T例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
2、确定乘或除(1)已知单位“1”,用乘法(2)未知单位“1”,用除法或方程3、对应量和对应分率(1)单位“1”x对应分率(2)对应量十对应分率二单位“1”若用方程:一般设单位“1”的量为未知数4、如何根据分率句来写等量关系找出关键性的字和词,“是”字、“占”字、“相当于”、“正好是”等字、词, 相当于等量关系式中的等于号,分率前面的“的”字相当于等量关系式中的乘号。
分数混合运算知识要点
分数混合运算
1、分数混合运算与整数混合运算的顺序一样:
先算乘除,后算加减,有括号的,先算括号里的,同一级运算,应从左到右依次计算。
2、整数的运算率在分数中同样适用:
加法交换率、加法结合律、乘法交换律、乘法结合律、分配律。
3、在分数连乘中,可以同时进行约分(所有的分子可以和所有的分母约分).
4、分数乘除法混合运算,先将里面的除法改成乘法(除号改成乘号,除号后面的数改成它的倒
数),在进行约分、计算。
一、分数应用题
1、遇到分数应用题,当分数后面没有单位时,可以按一下思路进行:
(1)弄清分数在题目中的意义:
谁是(占)谁的几分之几. 谁比谁多几分之几。
谁比谁少几分之几.
(2)找出单位“1”的量:
上面的“是”、“占”、“比”后面的量就是单位“1”的量。
(3)画出线段图:
一般地,单位“1"的量画在上面,另一个量画在下面.
(4)找出相等关系:“比、占、是、相当于”即“=”。
“的”即“×”。
“比多(比少)”即“×"。
如:甲比乙多1/5。
(1)乙×1/5=多的部分(2)乙×(1+1/5)=甲
例甲是乙的1/5 甲比乙多1/5 甲比乙少1/5
甲=乙×1/5 甲=乙×(1+1/5)甲=乙×(1-1/5)
(5)弄清甲和乙,谁是已知的,谁是未知的,用乘法还是除法。
上面关系式中,乙要是已知的,求甲,直接用乘法;
甲要是已知的,求乙,用除法或用方程方法解。
1。
分数混合运算知识点总结
分数混合运算知识点总结一、分数混合运算基本概念1. 分数: 分数是指数与数之间的一种比,它由分子和分母两部分组成。
其中,分子表示被分割的份数,分母表示分割的总数。
通常用a/b来表示分数,其中a为分子,b为分母。
2. 整数: 整数是正整数、负整数和0的统称,它包括所有的正整数、负整数及0。
3. 运算符: 运算符是用来表示数学运算关系的符号,主要包括加减乘除等。
4. 分数的加减乘除: 分数的加减乘除是指对分子和分母进行相应的运算。
在分数的加减乘除运算中,需要将分数化为通分或者约分后再进行运算。
5. 分数混合运算: 分数混合运算是指包含整数和分数的运算,它包括整数与分数的加减乘除、分数与分数的加减乘除等。
二、分数混合运算的基本原则1. 通分: 在分数混合运算中,经常需要将分数化为通分后再进行运算。
通分的原则是将每个分数的分母变为相同的数。
2. 约分: 在分数混合运算中,有时需要将分数化简为最简分数,这就是约分的过程。
约分的原则是将分子和分母的公因数约去,使得分数的分子和分母互质。
3. 分数转化: 分数混合运算中,有时需要将分数转化为整数或者带分数,这就是分数的转化。
分数的转化根据需要可以将分数化为整数或者带分数,或者将整数或者带分数化为分数。
4. 综合运算: 在分数混合运算中,需要根据运算顺序和优先级进行综合运算。
通常先进行括号内的运算,然后进行乘除运算,最后进行加减运算。
五、分数混合运算的常见问题及解决方法1. 将以下分数化为通分形式,并进行加减乘除运算:1/3+2/5、5/8-1/4、2/3*3/4、3/5÷2/3。
解决方法:(1)1/3+2/5=5/15+6/15=11/15;(2)5/8-1/4=5/8-2/8=3/8;(3)2/3*3/4=2/3*3/4=6/12=1/2;(4)3/5÷2/3=3/5*3/2=9/10;2. 将以下分数转化为带分数形式:11/4、3/2、7/3、5/2。
最新分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
分数混合运算知识点
分数混合运算知识点标准化管理部编码-[99968T-6889628-J68568-1689N]分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
分数混合运算知识点整理
分数混合运算知识点整理TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
分数混合运算笔记整理
分数混合运算笔记整理一、分数混合运算的顺序。
1. 没有括号的情况。
- 先算乘除,后算加减。
例如:计算(1)/(2)+(2)/(3)×(3)/(4),先算乘法(2)/(3)×(3)/(4)=(1)/(2),再算加法(1)/(2)+(1)/(2) = 1。
2. 有括号的情况。
- 先算括号里面的,再算括号外面的。
例如:计算((1)/(2)-(1)/(3))÷(1)/(6),先算括号里的(1)/(2)-(1)/(3)=(3 - 2)/(6)=(1)/(6),再算除法(1)/(6)÷(1)/(6)=1。
二、分数混合运算中的简便运算。
1. 乘法分配律的应用。
- 对于式子a×(b + c)=a× b+a× c,在分数运算中同样适用。
例如:(1)/(2)×((2)/(3)+(4)/(5))=(1)/(2)×(2)/(3)+(1)/(2)×(4)/(5)=(1)/(3)+(2)/(5)=(5 +6)/(15)=(11)/(15)。
- 有时候需要将式子变形后才能使用乘法分配律。
例如:(3)/(4)×(5)/(6)+(3)/(4)×(1)/(6)=(3)/(4)×((5)/(6)+(1)/(6))=(3)/(4)×1=(3)/(4)。
2. 乘法交换律和结合律的应用。
- 乘法交换律a× b = b× a,乘法结合律(a× b)× c=a×(b× c)。
例如:计算(1)/(3)×(2)/(5)×3,根据乘法交换律(1)/(3)×3×(2)/(5)=1×(2)/(5)=(2)/(5)。
三、解决分数混合运算的实际问题。
1. 审题。
- 认真读题,找出题目中的关键信息,确定已知量和未知量。
最新分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
分数混合运算知识点整理.doc
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减) ; 有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律: a×b=b× a乘法结合律:a×b×c=a×(b×c) 乘法分配律:( a+b)× c=a×c+b× c 或 a×c+b× c=(a+b)× c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性: a÷b÷c=a÷(b ×c) 或 a÷(b × c)= a ÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0 除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位 1——并在题目的文字下面标注①总数量是单位“ 1”例如:小红看完整本书的,那么单位“ 1”是整本书的页码。
②原价就是单位“ 1”例如:笔记本电脑原价是300 元,现在降价了,那么单位“ 1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“ 1”是女生人数。
分数混合运算知识点
分数混合运算指的是含有整数、分数及四则运算的混合运算,主要包括以下知识点:
1.分数的基本运算:包括分数的加、减、乘、除等四则运算。
2.分数的化简和通分:化简是指将分数约分到最简形式,通分是指将两个或多个分母不同
的分数化为相同分母的分数。
3.带分数的加减法:带分数是指整数部分和真分数部分合并在一起的数,带分数的加减法
是将两个带分数先转化为假分数,然后再进行分数的加减运算,最后再将结果转化为带分数。
4.带分数的乘除法:带分数的乘法是将带分数转化为假分数,然后进行分数的乘法,最后
将结果转化为带分数;带分数的除法是将带分数转化为假分数,然后进行分数的除法,最后将结果转化为带分数。
5.分数的比较:分数的比较需要将两个分数通分,然后比较其分子的大小。
掌握以上知识点,可以帮助学生在分数混合运算中灵活运用各种运算方法,提高计算效率和准确度。
分数混合运算知识点整理
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
分数混合运算知识点整理讲解学习
分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
六上 第二单元分数混合运算知识总结
1 第二单元 分数混合运算知识梳理 一、运算顺序
1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)
乘法定律:乘法交换律:a ×b=b ×a 乘法结合律:a ×b ×c=a ×(b ×c)
乘法分配律:(a+b )×c=a ×c+b ×c 或a ×c+b ×
c=(a+b )×c
减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c
除法的特性:a ÷b ÷c=a ÷(b ×c)或a ÷(b ×c)= a ÷b ÷c
3、在分数连乘中,可以同时进行约分(所有的分子可以和所有的分母约分)。
4、分数乘除法混合运算,先将里面的除法改成乘法(除号改成乘号,除号后面的数改成它的倒数),再进行约分、计算。
二、分数应用题分类:
1
例题:六(2)班有同学48人,男生人数是全班的,男生有多少人? 2
3
例题:六(2)班女生有16人,占全班人数的
3,六(2)班有多少同学? (二)、复杂类型。
1
例题:六(1)班有女生15人,男生比女生多1,男生有多少人?
2
3例题:六(1)班男生有20人,比女生多1
3
,女生有多少人?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数混合运算知识点整理
1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)
乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c
减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c
除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c
3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法
同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用
1、打折计算方法:现价÷原价=折扣
2、一件商品打几折,求现价。
计算方法:原价×折数
3、一件商品打几折,求原价。
计算方法:现价÷折数
4、分数混合运算的应用题解答方法
解答方法:
1、找准单位1——并在题目的文字下面标注
①总数量是单位“1”
例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”
例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”
例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”
例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
2、确定乘或除
(1)已知单位“1”,用乘法(2)未知单位“1”,用除法或方程
3、对应量和对应分率
(1)单位“1”×对应分率
(2)对应量÷对应分率=单位“1”
若用方程:一般设单位“1”的量为未知数
4、如何根据分率句来写等量关系
找出关键性的字和词,“是”字、“占”字、“相当于”、“正好是”等字、词,相当于等量关系式中的等于号,分率前面的“的”字相当于等量关系式中
的乘号。
如:(1)公鸡的只数是(“是”可以改为“占”或“相当于”、或“正好是”等字词)母鸡的。
等量关系式是:母鸡的只数× =公鸡的只数
(2)五年级有男生15人,相当于(“相当于”可以改为“是”或、“占”
或“正好是”等字、词)。
全班人数的几分之几。
数量关系式是:全班人数×几分之几 =男生人数
《分数混合运算》练习题
姓名:
班级:一、填空
1、一根绳子长2米,剪去
,还剩( )米,如果剪去米,还剩( )5252米。
2、20千克增加它的
是( )千克,20千克比25千克少( ) ,254
1千克比20千克多( ) 。
3、一袋米50千克,卖掉了( )千克,还剩它的。
5
24、一段路修了后,还剩下1000米没修,这段路共有( )米。
8
35、小明5天看了一本书的,他平均每天看这本书的( ),照这样的速4
1度,他看完这本书要( )天。
6、90比100少 ( ) ,80比60多 ( ) 。
(填分数)
7、一本书,每天看它的,( )天可以看完。
7
18、一箱苹果,吃了,吃了18个,这箱苹果原有( )个。
5
29、甲数是25,乙数的等于甲数的,乙数是( )。
415
2二、应用题
1、一辆汽车从甲地开往乙地,全程600千米,已经行驶了全程的
,离乙地5
2还有多少米?2、海京居有40户人家,海星阁比海京居多,海星阁有多少户人家?8
3
3、鲜鲜水果店运进30筐苹果,第一天卖出总数的,第二天卖出总数的,512
1两天共卖出水果多少筐?
4、鲜鲜水果店运进一批水果,第一天卖出总数的,第二天卖出总数的,4151两天一共卖出水果90千克,这批水果共重多少千克?
5、同学们收集废电池,五年级收集了280个,比四年级多
,四年级收集了4
1多少个? 6、工程队修一段路,第一天修了全长的,第二天修了200米,两天刚好修了5
1全长的一半,这段路一共有多少米?7、小明看一本书,已经看了150页,还剩下全书的没看,全书有多少页?8
38、一台空调原价是3000元,先涨价,后又降价卖出,这台空调现在的10110
1价钱是多少元?
9、合唱队有50人,舞蹈队的人数是合唱队的,美术组的人数是舞蹈队的,5485美术组有多少人?。