高三数学一轮复习直线的方程课件
合集下载
直线的方程课件-2025届高三数学一轮复习
为
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0
.
[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=
新教材老高考适用2023高考数学一轮总复习第九章第一节直线的倾斜角斜率与直线的方程pptx课件北师大
(5)过原点且斜率为k的直线方程为y=kx.
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)过点M(a,b),N(b,a)(a≠b)的直线的倾斜角是45°.(
×)
(2)若直线的斜率为tan α,则其倾斜角为α.( × )
(3)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程
的负半轴上,则直线MN的方程为(
A.3x-y-6=0
B.3x+y+6=0
C.3x-y+6=0
D.3x+y-6=0
)
(2)过点A(1,3),且斜率是直线y=-4x的斜率的
1
3
的直线方程为
(3)过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程
为
.
.
答案 (1)C
(2)4x+3y-13=0 (3)2x+3y-6=0或x+2y-2=0
—
随α的增大而增
大
—
随α的增大而
增大
3.直线方程的五种形式
名称
几何条件
点斜式 过点(x0,y0),斜率为k
在y轴上的截距为b,斜
斜截式
率为k
过两点(x1,y1),(x2,y2)
两点式
(其中x1≠x2,y1≠y2)
在x轴、y轴上的截距
截距式
分别为a,b(a,b≠0)
一般式 —
方程
y-y0=k(x-x0)
适用条件
与x轴不垂直的直线
y-y0=k(x-x0)
-1
-1
=
2 -1 2 -1
+ =1
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)过点M(a,b),N(b,a)(a≠b)的直线的倾斜角是45°.(
×)
(2)若直线的斜率为tan α,则其倾斜角为α.( × )
(3)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程
的负半轴上,则直线MN的方程为(
A.3x-y-6=0
B.3x+y+6=0
C.3x-y+6=0
D.3x+y-6=0
)
(2)过点A(1,3),且斜率是直线y=-4x的斜率的
1
3
的直线方程为
(3)过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程
为
.
.
答案 (1)C
(2)4x+3y-13=0 (3)2x+3y-6=0或x+2y-2=0
—
随α的增大而增
大
—
随α的增大而
增大
3.直线方程的五种形式
名称
几何条件
点斜式 过点(x0,y0),斜率为k
在y轴上的截距为b,斜
斜截式
率为k
过两点(x1,y1),(x2,y2)
两点式
(其中x1≠x2,y1≠y2)
在x轴、y轴上的截距
截距式
分别为a,b(a,b≠0)
一般式 —
方程
y-y0=k(x-x0)
适用条件
与x轴不垂直的直线
y-y0=k(x-x0)
-1
-1
=
2 -1 2 -1
+ =1
2024届高考一轮复习数学课件(新教材人教A版):两条直线的位置关系
√A.4
B.-4
C.1
D.-1
因为直线 2x+my+1=0 与直线 3x+6y-1=0 平行,所以23=m6 ≠-11, 解得 m=4.
教材改编题
3.直线x-2y-3=0关于x轴对称的直线方程为_x_+__2_y_-__3_=__0_.
直线 x-2y-3=0 的斜率为 k=12且与 x 轴交于点(3,0), 故所求直线的斜率为-12,且过点(3,0), 其方程为 y=-12(x-3), 即x+2y-3=0.
跟踪训练1 (1)(2023·襄阳模拟)设a,b,c分别为△ABC中角A,B,C所对
边的边长,则直线xsin A+ay+c=0与bx-ysin B+sin C=0的位置关系是
A.相交但不垂直 C.平行
√B.垂直
D.重合
由题意可知,直线 xsin A+ay+c=0 与 bx-ysin B+sin C=0 的斜率 分别为-sina A,sinb B, 又在△ABC 中,sina A=sinb B, 所以-sina A·sinb B=-1, 所以两条直线垂直.
(2)(2022·桂林模拟)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,
若l1⊥l2,则实数a的值是
√A.0或-1
B.-1或1
C.-1
D.1
由题意可知l1⊥l2,故2a+a(a-1)=0, 解得a=0或a=-1,经验证,符合题意.
思维升华
判断两条直线位置关系的注意点 (1)斜率不存在的特殊情况. (2)可直接利用直线方程系数间的关系得出结论.
命题点1 点关于点的对称问题
例 3 直线 3x-2y=0 关于点13,0对称的直线方程为
A.2x-3y=0 C.x-y=0
2025届高中数学一轮复习课件:第九章 第1讲直线方程(共59张ppt)
第18页
高考一轮总复习•数学
第19页
对点练 1(1)(2024·湖北四地七校联考)已知函数 f(x)=asin x-bcos x(a≠0,b≠0),
若 fπ4-x=fπ4+x,则直线 ax-by+c=0 的倾斜角为(
)
π π 2π 3π A.4 B.3 C. 3 D. 4
高考一轮总复习•数学
第6页
2.直线的斜率 (1)定义:一条直线的倾斜角 α 的 正切值 叫做这条直线的斜率,斜率常用小写字母 k
表示,即 k= tan α ,倾斜角是 90°的直线没有斜率.
(2)过两点的直线的斜率公式
经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k=yx22--yx11. 3.直线的方向向量 若 P1(x1,y1),P2(x2,y2)是直线 l 上两点,则 l 一个方向向量的坐标为(x2-x1,y2-y1); 若 l 的斜率为 k,则一个方向向量的坐标为 (1,k) .
切线问题可利用导数的几何意义:设切点 P(x0,ln x0),则 k=f′(x0).
A.e
B.-e
1 C.e
D.-1e
解析:(2)方法一:∵f(x)=ln x,∴x∈(0,+∞),f′(x)=1x.设切点为 P(x0,ln x0),则
切线的斜率 k=f′(x0)=x10=lnx0x0,
∴ln x0=1,x0=e,∴k=x10=1e. 方法二(数形结合法):在同一坐标系中作出曲线 f(x)=ln x 及其经过原点的切线,如图
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高三数学总复习 直线的方程课件 文 新人教版
1 得 A(2-k,0),B(0,1-2k).
由|PA|·|PB|=
(4+4k2)(1+k12)
=
8+4(k2+k12)≥4.
当且仅当 k2=k12,即 k=±1 时,|PA|·|PB|取最小值.
又 k<0,∴k=-1,这时 l 的方程是 x+y-3=0.
方法二:设∠BAO=θ(0<θ<π2 ),过 P 作 PE⊥x 轴于 E,
6
6
=5+(a-3)+a-3≥5+2 (a-3)·a-3
=5+2 6,
当且仅当 a-3=a-6 3,即 a=3+ 6时,a+b 取得最小值 5+2 6,
此时 b=2+ 6,直线 l 的方程为 x + y =1, 3+ 6 2+ 6
即(2+ 6)x+(3+ 6)y-12-5 6=0.
1.(2008 年全国Ⅰ高考)若直线ax+yb=1 通过点 M(cos α,sin α),
方程的形式 y-y1=k(x-x1)
y=kx+b
已知条件
局限性
(x1,y1)为直线上一定 点,k为斜率
不包括垂直于x轴的直线
k为斜率,b是直线在y
轴上的截距
不包括垂直于x轴的直线
两点式 截距式 一般式
(x1≠x2且y1≠y2)
Ax+By+C=0 (A2+B2≠0)
(x1,y1),(x2,y2)是 不包括垂直于x轴和y轴
【方法点评】 已知直线l1:A1x+B1y+C1=0
l2:A2x+B2y+C2=0,则
(1)l1∥l2⇔A1B2-A2B1=0且A1C2-A2C1≠0(或B1C2-B2C1≠0)或
记为:
(A2、B2、C2不为0).
(2)l1⊥l2⇔A1A2+B1B2=0.
(3)l1与l2重合⇔A1B2-A2B1=0且A1C2-A2C1=0(或
2024年高考数学一轮复习课件(新高考版) 第8章 §8.1 直线的方程
方法一 由本例方法一知 A2-1k,0,B(0,1-2k)(k<0). 所以|MA|·|MB|= k12+1· 4+4k2 =2×1+|k|k2=2-k+-1k≥4. 当且仅当-k=-1k, 即k=-1时取等号.
此时直线l的方程为x+y-3=0.
方法二 由本例方法二知 A(a,0),B(0,b),a>0,b>0,2a+1b=1. 所以|MA|·|MB|=|M→A|·|M→B| =-M→A·M→B =-(a-2,-1)·(-2,b-1)
因为直线l的一个方向向量为n=(2,3),
所以3(x+4)-2(y-3)=0, 故直线 l 的方程为 y-3=32(x+4).
题型三 直线方程的综合应用
例3 已知直线l过点M(2,1),且分别与x轴的正半轴、y轴的正半轴交于A, B两点,O为原点,当△AOB面积最小时,求直线l的方程.
方法一 设直线l的方程为
倾斜角为θ+45°, 故 kOA=tan(θ-45°)=1t+antθa-n θttaann4455°°=21- +12=13, kOC=tan(θ+45°)=1t-antθa+n θttaann4455°°=21+ -12=-3.
题型二 求直线的方程
例2 求符合下列条件的直线方程: (1)直线过点 A(-1,-3),且斜率为-14;
k>0
90° 不存在
90°<α<180° k<0
牢记口诀:“斜率变化分两段,90°是分界线; 遇到斜率要谨记,存在与否要讨论”.
常用结论
2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也 可以是零,而“距离”是一个非负数.应注意过原点的特殊情况 是否满足题意. 3.直线Ax+By+C=0(A2+B2≠0)的一个方向向量a=(-B,A).
直线的方程课件-2025届高三数学一轮复习
=
,
⋅
=
.所以
=
=
= +
≥ ,当且仅当
.所以直线的倾斜角为
=
时取等号,又 ∈ , ,所以 =
− = ,所以的斜率为 = −,又直线过点
2.斜率公式
(1)定义式:直线的倾斜角为 ≠ ,则斜率= .
(2)坐标式:设 , , , 在直线上,且 ≠ ,
率= − − .
如果 = 且 ≠ ,则直线与 轴平行或重合,斜率等于0;
当 = 时,直线方程为 = ,即 − = ;
当 = −时,直线方程为 − + = .
方法二:当直线过原点时,满足题意,此时直线方程为 = ,即
− = ;
当直线不过原点时,设直线方程为
+
−
= ≠ ,
因为直线过点 ,
,所以
,
= ∈ [, ].设直线的倾斜角为 ,则有
∈ [, ].又 ∈ [, ),所以 ∈
[ , ].故选B.
D.[ , ]
.由于 ∈ [ , ],所以
[ , ],即倾斜角的取值范围是
(2)已知直线过点 , ,且与以 , , , 为端点的线段有公
+ = .
高三数学直线与方程PPT优秀课件
D. 零度角
2.(教材改编题)若直线ax+by+c=0经过第一、二、三象限,则有
()
A. ab>0,bc>0
B. ab>0,bc<0
C. ab<0,bc>0
D. ab<0,bc<0
3.(教材改编题)过点(2,4)且在坐标轴上的截距相等的直线共有
()
A. 1条 B. 2条 C. 3条 D. 4条
4. 直线kx-y+1=3k,当k变动时,所有直线都通过定点________.
()
答案:D
解析: 设倾斜角为a,则k=tan a=-cos q. ∵q∈R,-1≤-cos q≤1,∴-1≤tan a≤1, ∴a∈ 0,434,
题型二 求直线的方程
【例2】 求经过点A(-3,4),且在两坐标轴上的截距之和等于
12的直线方程.
解:方法一:由题意可知直线在坐标轴上的截距不能为零,设
方法二:因为直线在两坐标轴上都存在截距且不为零,故直线
的斜率存在且不为零,故设直线方程为y-4=k(x+3)(k¹0).
当x=0时,y=4+3k,
当y=0时,x=-4 -3,
k
所以3k+4- 4 -3=12,即3k2-11k-4=0,解得k=4或k=1 - ,
k
3
所以直线方程为y-4=4(x+3)或y-41 =- (x+3),
一条直线的倾斜角a的________叫做这条直线的斜率,斜率常用小 写字母k表示,即k=______,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式
经过两点P1(x1,y1),P2(x2,y2)(其中x1 x2)的直线的斜率公式为 k=________.
8.1直线的方程课件高三数学一轮复习
(2)如图,∵kAP=12- -01=1,
kBP= 03--10=- 3, ∴k∈(-∞,- 3]∪[1,(1,0)改为 P(-1,0),其他条件不变,则直线 l 斜率的取 值范围是_______13_,___3_____.
【解析】 ∵P(-1,0),A(2,1),B(0, 3),
角度 2:与直线有关的最值问题 【例 3】 过点 P(4,1)作直线 l 分别交 x 轴,y 轴正半轴于 A,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线 l 的方程. (2)当|OA|+|OB|取最小值时,求直线 l 的方程.
【解】 设直线 l:ax+by=1(a>0,b>0),因为直线 l 经过点 P(4,1),所以4a+1b=1.
0°. (2)范围:直线 l 倾斜角的范围是 [0°,180°) .
3.直线的斜率公式 (1)定义:把一条直线的倾斜角 α 的
正切值 叫做这条直线的斜率,常用小写
字母 k 表示,即 k= tanα (α≠90°).
(2)过两点的直线的斜率公式:如果直线经过两点 P1(x1,y1),P2(x2,y2),x1≠x2,则
ab·4ab=9,当且仅当 a=6,
所以当|OA|+|OB|取最小值时,直线 l 的方程为6x+3y=1,即 x+2y-6=0.
角度 3:由直线方程求参数值(范围)
【例 4】 已知直线 l:x-my+ 3m=0 上存在点 M 满足与 A(-1,0),B(1,0)两点连线
的斜率 kMA 与 kMB 之积为 3,则实数 m 的取值范围是( C ) A.[- 6, 6]
【解析】 (1)当 x=0 时,y=3,所以直线过定点(0,3). (2)当 x=-3 时,y=0,所以直线过定点(-3,0). (3)当 y=0 时,x=3,所以直线过定点(3,0).
2025高考数学一轮复习-1.2.1-直线的点斜式方程【课件】
知识点 2 直线在 y 轴上的截距 在直线 l 的斜截式方程 y=kx+b 中,我们把直线 l 与 y 轴的交点 (0,b)的纵坐标_b_称为直线 l 在 y 轴上的截距.
4.直线ax2-by2=1 在 y 轴上的截距是(
)
A.|b|
B.-b2
C.b2 B [令 x=0,则 y=-b2.]
D.±b
[解] 设直线方程为 y=16x+b,则 x=0 时,y=b;y=0 时,x= -6b.
由已知可得12·|b|·|-6b|=3,即 6|b|2=6,∴b=±1. 故所求直线方程为 y=16x+1 或 y=16x-1.
[母题探究] 1.(变条件)本例的条件变为:已知△ABC 的三个顶点分别是 A(0, 3),B(4,2),C(2,1).若直线 l 过点 A,且将△ABC 分割成面积相等 的两部分,求直线 l 的斜截式方程.
[解] 设直线 y= 3x+1 的倾斜角为 α,则 tan α= 3,又 α∈[0, π),所以 α=60°,
知识点 1 直线的点斜式方程和斜截式方程
点斜式
斜截式
已知条件 点 P(x1,y1)和斜率 k 斜率 k 和直线在 y 轴上的截距_b_
图示
方程形式 y-y1=___k_(_x_-__x1_适用条件
斜率存在
1.思考辨析(正确的打“√”,错误的打“×”)
(1)直线的点斜式方程能表示平面上的所有直线.
(2)与 x 轴平行; [解] 与 x 轴平行时,k=0, ∴y-4=0×(x-3),即 y=4. (3)与 x 轴垂直. [解] 与 x 轴垂直,斜率不存在,方程为 x=3.
类型 2 直线的斜截式方程 【例 2】 根据条件写出下列直线的斜截式方程: (1)斜率为 2,与 y 轴的交点坐标为(0,2); [解] 由题意知直线在 y 轴上的截距为 2,由直线的斜截式方程可 知,所求直线方程为 y=2x+2.
高考理科第一轮复习课件(8.1直线的斜率与直线方程)
设直线l的方程为y-2=k(x-3)(k<0),
则有A( 3 2 , 0),B(0,2-3k), k
1 2 S ABO 2 3k (3 ) 2 k 1 4 [12 9k ] 2 k 1 4 1 [12 2 (9k) ] 12 12 12, 2 k 2 当且仅当 9k 4 , 即 k 2 时,等号成立,S△ABO取最小值12. k 3 此时,直线l的方程为2x+3y-12=0.
(5)过点(a,0)和(0,b)的直线方程为 x y 1. ( ) a b (6)平面直角坐标系下,任何直线都有点斜式方程.( )
【解析】(1)正确.直线的倾斜角仅反映了直线相对于x轴的 倾斜程度,不能确定直线的位置. (2)错误.当倾斜角α=90°时,其斜率不存在. (3)错误.倾斜角是0°的直线有无数条. (4)错误.当斜率k不存在时,直线方程为x=1. (5)错误.当ab=0时,直线方程为x=0或y=0. (6)错误.当直线与x轴垂直时(没有斜率),不能用点斜式
【解析】经过两点M(1,-2),N(-3,4)的直线方程为
y 2 x 1 即3x+2y+1=0. , 4 2 3 1 答案:3x+2y+1=0
6.过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方
程为__________.
【解析】当在两坐标轴上截距均为0时,设方程为y=kx, 又过M(3,-4),≨有-4=3k,得 k 4 , 3 4 ≨直线的方程为 y x. 3 当在两坐标轴上的截距均不为0时,
【变式备选】已知实数x,y满足2x+y=8,当2≤x≤3时, 求 y 1 的取值范围. x 1
【解析】由 y 1 的几何意义知,它表示点A(1,-1)与线段CD上 x 1 任一点P(x,y)连线的斜率,如图. ≧线段的端点为C(2,4),D(3,2),
直线的方程课件 高三数学一轮复习
解析:如图所示:
当直线l过B时设直线l的斜率为k1,
则k1=
3−0=-0−13, Nhomakorabea当直线l过A时设直线l的斜率为k2, 则k2=12−−01=1,
∴要使直线l与线段AB有公共点,则直线l的斜率的取值范围是(-∞,- 3] ∪
1, + ∞ .
题后师说
(1)由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围 求 π)上直的线单倾调斜性角求的解取,值这范里围特时别,要常注借意助,正正切切函函数数y=在ta[0n,x在π2)[∪0,(π2,π2)π∪)上(π2 , 并不是单调的.
课堂互动探究案
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算 公式.
2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜 式、两点式及一般式).
问题思考·夯实技能 【问题1】 直线的倾斜角越大,斜率越大对吗?
答案:不对.设直线的倾斜角为α,斜率为k.
【问题2】
在平面直角坐标系中,给定直线l上一个定点P0(x0,y0)和斜率k,则 直线l上不同于该定点的任意一点P(x,y)的横坐标x与纵坐标y所满足 的关系式是什么?
公共点,则直线l斜率的取值范围为__[13_,___3_]_.
解析:∵P(-1,0),A(2,1),B(0, 3), ∴kPA=2−1−−01 =13,kPB=0−3−−01 = 3. 由图可知,直线l的斜率k的取值范围为[13 , 3].
【变式练习】 若本例(2)中“P(-1,0)”改为“P(1,0)”,其他 条件不变,则直线l的斜率的取值范围为__(-__∞__,_-___3_]_∪__1_,__+__∞__.
题后师说
求直线方程的两种方法 (1)直接法:由题意确定出直线方程的适当形式. (2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待 定的系数,再由题设条件求出待定系数.
高三数学ppt课件 直线的一般式方程课件1
上的截距等于-3 3 .
4
4
3
3
【方法技巧】直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By=-Ax-C; ②当B≠0时,得斜截式:
A C y x . B B
(2)一般式化为截距式的步骤 方法一: ①把常数项移到方程右边,得Ax+By=-C; ②当C≠0时,方程两边同除以-C,得 ③化为截距式:
1.判一判(正确的打“√”,错误的打“×”) (1)任何直线方程都能表示为一般式. ( )
(2)任何一条直线的一般式方程都能与其他四种形式互化. ( )
(3)对于二元一次方程Ax+By+C=0,当A=0,B≠0时,方程表示垂 直于x轴的直线. ( )
【解析】 (1)正确.因为平面上任意一条直线都可以用一个关
x y 1. C C A B
Ax By 1; C C
方法二: ①令x=0求直线在y轴上的截距b;
②令y=0求直线在x轴上的截距a;
③代入截距式方程
x y 1. 由于直线方程的斜截式和截距式是惟一的 ,而两点式和点斜式 a b
不惟一,因此,通常情况下,一般式不化为两点式和点斜式.
令y=0得
【延伸探究】若题(2)中直线在y轴上的截距为1,试求m的值. 【解析】由题意得 4m 1
m m
2
1,
所以
m 0且m 1, 5 21 m m 0, 解得 5 21 所以m 2 . 2 . 4m 1 m m, m 2
3.求直线方程的常规要求 (1)求直线方程的题目,无特别要求时,结果写成直线方程的一 般式. (2)对于直线方程的一般式,一般作如下约定:x的系数为正,x,y 的系数及常数项一般不出现分数,一般按含x项,含y项,常数项 顺序排列.
4
4
3
3
【方法技巧】直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By=-Ax-C; ②当B≠0时,得斜截式:
A C y x . B B
(2)一般式化为截距式的步骤 方法一: ①把常数项移到方程右边,得Ax+By=-C; ②当C≠0时,方程两边同除以-C,得 ③化为截距式:
1.判一判(正确的打“√”,错误的打“×”) (1)任何直线方程都能表示为一般式. ( )
(2)任何一条直线的一般式方程都能与其他四种形式互化. ( )
(3)对于二元一次方程Ax+By+C=0,当A=0,B≠0时,方程表示垂 直于x轴的直线. ( )
【解析】 (1)正确.因为平面上任意一条直线都可以用一个关
x y 1. C C A B
Ax By 1; C C
方法二: ①令x=0求直线在y轴上的截距b;
②令y=0求直线在x轴上的截距a;
③代入截距式方程
x y 1. 由于直线方程的斜截式和截距式是惟一的 ,而两点式和点斜式 a b
不惟一,因此,通常情况下,一般式不化为两点式和点斜式.
令y=0得
【延伸探究】若题(2)中直线在y轴上的截距为1,试求m的值. 【解析】由题意得 4m 1
m m
2
1,
所以
m 0且m 1, 5 21 m m 0, 解得 5 21 所以m 2 . 2 . 4m 1 m m, m 2
3.求直线方程的常规要求 (1)求直线方程的题目,无特别要求时,结果写成直线方程的一 般式. (2)对于直线方程的一般式,一般作如下约定:x的系数为正,x,y 的系数及常数项一般不出现分数,一般按含x项,含y项,常数项 顺序排列.
相关主题