卫生统计学-卡方检验

合集下载

卡方检验医学统计学

卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。

在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。

卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。

期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。

而实际频数则是实验中观察到的实际结果。

卡方检验的步骤如下:1.建立零假设和备择假设。

零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。

2.确定显著性水平 alpha,通常取值为0.05。

3.构建卡方检验统计量。

计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。

4.根据自由度和显著性水平,查卡方分布表得到 P 值。

5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。

卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。

卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。

举个例子,某药厂要研发一种新的药物来治疗心脏病。

为了验证该药的疗效,实验组和对照组各50 人。

在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。

卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。

除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。

卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。

其中比较明显的一点就是对样本量有一定的要求。

当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。

此外,在面对非常态分布数据时,卡方检验也会出现问题。

当数据呈现正态分布时,卡方检验的准确性最高。

然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。

卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。

卫生统计学卡方检验

卫生统计学卡方检验

卫生统计学卡方检验
26/94
(一) 多个样本率比较
例3 某研究者欲比较A、B、C 三种方案治疗轻、中度 高血压疗效,将年纪在50~70岁240例轻、中度高血压患 者随机等分为3组,分别采取三种方案治疗。一个疗程 后观察疗效,结果见表11.4。问三种方案治疗轻、中度 高血压有效率有没有差异?
卫生统计学卡方检验
卫生统计学卡方检验
29/94
④ 确定P值
υ=(3-1)(2-1)=2,查 2 界值表得P<0.01。
⑤ 下结论
因为P<0.01,按α=0.05水准,拒绝H0,接收 H1,差异有统计学意义。即可认为三种方案治疗轻 、
中度高血压有效率不等或不全等
卫生统计学卡方检验
30/94
例 某市重污染区、普通污染区和农村出生婴儿致畸情 况以下表,问三个地域出生婴儿致畸率有没有差异?
① 建立假设 H0:π1=π2 H1:π1≠π2
② 确定检验水准
α=0.05
③ 计算统计量 2 值
2(2 62-73 6-7 1/2 )27 12 .7 5 3 33 86 29
④ 确定P值
υ=(2-1) (2-1)=1,查 2界值表得P>0.05。
卫生统计学卡方检验
24/94
⑤ 下结论 因为P>0.05,按α=0.05水准,不拒绝H0,差 异无统计学意义。尚不能认为甲、乙两疗法对小 儿单纯性消化不良治愈率不等。
9/94
TRC
nR nC n
n R 为对应行累计
n C 为对应列累计
n 为总例数。
卫生统计学卡方检验
10/94
表1 两药治疗消化道溃疡4周后疗效
卫生统计学卡方检验
11/94

公卫执业医师-综合笔试-卫生统计学-第七单元卡方检验

公卫执业医师-综合笔试-卫生统计学-第七单元卡方检验

公卫执业医师-综合笔试-卫生统计学-第七单元卡方检验[单选题]1.多个样本率比较X2检验中,若P≤a,拒绝H0,接受H1,所得的结论是A.多个样本率全相等B.多个总体率全相等(江南博哥)C.多个样本率不全相等D.多个总体率不全相等E.多个总体率全不相等正确答案:D参考解析:多个样本率的检验假设,H0多个总体率全相等,H1是多个总体率不全相等.掌握“行×列表资料的χ2检验★”知识点。

[单选题]2.在四行三列表χ2检验中,统计量χ2的自由度等于A.2B.3C.4D.6E.12正确答案:D参考解析:在行×列表χ2检验中,其自由度=(行数-1)×(列数-1)。

本题中自由度=(4-1)×(3-1)=6。

掌握“行×列表资料的χ2检验★”知识点。

[单选题]3.5个总体率比较的行×列表资料χ2检验的无效假设是5个总体率A.至少有2个相等B.至少有3个相等C.至少有4个相等D.全相等E.各不相等正确答案:D参考解析:行×列表资料χ2检验的无效假设是各总体率全相等。

所以选项D正确。

掌握“行×列表资料的χ2检验★”知识点。

[单选题]4.欲比较某药三个不同剂量水平对某病的疗效,宜选用的假设检验方法是A.四格表资料的χ2检验B.成组资料的t检验C.行×列表资料的χ2检验D.秩和检验E.方差分析正确答案:C参考解析:行×列表资料:当比较组数大于等于2,或资料的属性分类数大于等于2种时,数据可采用多行×多列表形式来表达,称行×列表。

行×列表的χ2检验用于检验两个或多个样本率(构成比)的差别是否有统计学意义。

该资料属于行×列表资料,应采用行×列表的χ2检验,故选项C正确。

掌握“行×列表资料的χ2检验★”知识点。

[单选题]5.多个样本率比较的R×C表χ2检验,以下错误的一项是A.其备择假设是多个总体率不全相等B.χ2的自由度是(R一1)(C--1)C.χ2值越小,越有理由认为理论频数与实际频数符合的好D.由于格子数较多,可不必考虑每个格子的理论数的大小E.若P0.01,还不能推断每两个率值不等正确答案:D参考解析:在卡方检验中,不论格子多少,都需要考虑每个格子的理论数的大小。

《医学统计学》医统-第九章卡方检验

《医学统计学》医统-第九章卡方检验

卡方值
当自由度ν确定后,χ2分布曲线下右侧尾部的面积 为α时,编辑课横件 轴上相应的χ2值记作χ2α,ν
查χ2界值表,得χ20.05,1=3.84,按α=0.05 水 准, 拒绝H0 , 接受H1 , P<0.05,可 以认为两组治疗原发性高血压的总体有 效率不同,即可认为吲达帕胺片治疗原 发性高血压是有效的。
医学统计学
第九章 2检验
公共卫生系 流行病与卫生统计学教研室
祝晓明
一、率
率(rate):率表示在一定空间或时间范围内 某现象的发生数与可能发生的总数之比,说明 某现象出现的强度或频度,通常以百分率 (%)、千分率(‰)、万分率(/万)、或 十万分率(/10万)等来表示。
你们班级的及格率,挂科率怎么算?
❖自由度ν愈大,χ2 值也会愈大;所以 只有考虑了自由度ν的影响,χ2 值才
能正确地反映实际频数A和理论频数T 的吻合程度。
检验的自由度取决于可以自由取值的格子数目,
而不是样本含量n。四格表资料只有两行两 列,ν=1,即在周边合计数固定的情况下,4个基
本数据当中只有一个可以自由取值。
编辑课件
检验步骤: 1.建立检验假设并确定检验水准 H0:π1=π2 即试验组与对照组的总体有效率相等 H1:π1≠π2 即试验组与对照组的总体有效率不等
2
(20 25.77)2
(24 18.23)2
(21 15.23)2
(5 10.77)2
8.40
25.77
18.23
15.23
10.77
(2 1)(2 1) 1
编辑课件
纵高
3.确定P 值,作出推断结论
0.5
0.4
0.3
自由度=1

第九讲 卫生统计学 卡方检验

第九讲  卫生统计学 卡方检验
结果与前相同。
例9-2:将病情相似的169名消化道溃疡患者随机分成两组, 分别用洛赛克与雷尼替丁两种药物治疗,4周后疗效见表92。问某两种药物治疗消化道溃疡的疗效有无差别?
表9-2 两种药物治疗消化道溃疡4周后疗效 疗 愈合 64 (57.84) 115 效 未愈合 21(27.16) 33 (26.84) 54
五年级
合计
5(2.33)
7
9(11.69)
35
14
42
35.71
16.67
(1)建立假设,确定检验水准 H0:π1=π2 H1:π1≠π2 α=0.05
(2)计算检验χχ2值 本例n=42,最小的理论数为:T21=(14×7)/42=2.33, 故对2 值作校正。
2
(3)确定P值
( 2 9 26 5 42 / 2) 2 42 7 35 28 14
2
(64 33 21 51) 2 169 2 4.13 85 84 115 54
(3)确定p值:
=(2-1)(2-1)=1,查2界值表得2 0.05(1) =3.84,因2 >3.84 , 故P<0.05。
(4)判断结果 在α=0.05水准上,因P<0.05,所以拒绝H0,接受H1, 说明两药疗效的差别具有统计学意义。
图9-1, 2分布的形状依赖于自由度υ的 大小,当自由度υ>2时,随着υ的增加,曲 线逐渐趋于对称,当自由度υ趋于∞时,2分 布逼近正态分布。各种自由度的2分布右侧尾 2 , 部面积为α时的临界值记为 列于附表8。
第二节
四格表资料的2检验
例9-1:用某中药预防流感,获得如下资料,问用药者 流感发病率是否不同于不用药者?
1、建立假设,确定检验水准 H0: b=c(两种检验方法的阳性概率相等) H1: b≠c(两种检验方法的阳性概率不相等)

医学统计学——卡方检验

医学统计学——卡方检验
趋近于正态分布。
• ⑵χ2分布具有可加性:如果两个独立的 随机变量X1和X2分别服从ν1和ν2的χ2分 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。
χ2 界值
• ν确定后,如果分布曲线下右侧尾部的 面积为α时,则横轴上相应的χ2值就记 作χ2 α,ν ,即χ2界值。其右侧部分的 面积α表示:自由度为ν时, χ2值大 于界值的概率大小。χ2值与P值的对应 关系见χ2界值表(附表6)。χ2值愈大,P 值愈小;反之,χ2值愈小,P值愈大。
• T22=(c+d)×(1- PC)=(c+d)×(b+d)/n = 56×17/112=8.5
χ2检验的基本思想
• χ2检验实质上是检验A的分布与T的分 布是否吻合及吻合的程度,χ2越小,表
明实际观察次数与理论次数越接近。
• 若检验假设成立,则A与T之差不会很 大,出现大的χ2值的概率P是很小的, 若P≤α,就怀疑假设成立,因而拒绝 它;若P>α,则没有理由拒绝它。
不同自由度的χ2分布曲线图
图 8-1 不同自由度的χ2 分布曲线图
二、χ2检验的基本思想
• 例8-1 某中医院将112例急性肾炎 病人随机分为两组,分别用西药和 中西药结合方法治疗,结果见表8-1, 问两种方法的疗效有无差别?
表8-1 两种方法治疗急性肾炎的结果
组 别 治愈例数 未愈例数 合计 治愈率(%)
例8-2
• 某医师将门诊的偏头痛病人随机 分为两组,分别采用针灸和药物 两种方法治疗,结果见表8-3 , 问两种疗法的有效率有无差别?
两种疗法对偏头痛的治疗结果
疗 法 有效例数 无效例数 合计 有效率(%)
针 灸 33(30.15) 2(4.85) 35 94.29

医学统计学-卡方检验

医学统计学-卡方检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义

医学统计学--卡方检验

医学统计学--卡方检验
பைடு நூலகம்
笃 学
精 业
修 德
厚 生
6
2 ( A T ) 2值的大小还取决于 个数的多少(严 T 2 ( A T ) 格地说是自由度 的大小)。由于各 皆是 T 2
正值,故自由度 愈大, 值也会愈大;所以只 2 值才能正确地反映 有考虑了自由度 的影响,
实际频数 A和理论频数 T 的吻合程度。检验时, 要根据自由度 查 2 界值表。当 2≥ 2时, P , ,
2 中,若拒绝无效假设
H0只能做出总的结论,但还不知道哪两
个率之间有差别。若想知道哪两个率之间
有差别,还要进行两两比较,本节介绍两
两比较的方法之一:行×列表的分割。
笃 学
精 业
修 德
厚 生
30
4.行×列表的分割 (一)多个实验组间的两两比较 由于要做重复多次的假设检验,需对第Ⅰ 类错误作校正,新的校正检验水准为:
第七章 掌握内容:
2 检 验
1.检验的基本思想和用途 2.成组设计四格表资料检验的计算及应用条件
3.配对设计四格表资料检验 4.行列表资料检验及应用时应注意的问题 5.频数分布拟合优度的检验 了解内容 1.四格表资料的Fisher精确概率法的基本思想 与检验步骤
笃 学 精 业 修 德 厚 生
2 检验是一种用途很广的假设检验方
处理组 1 2 属性 阳性 阴性 合计
合计
a (T11) c (T21) m1
b (T12) d (T22) m2
n1(固定值) n2(固定值) n
要想知道处理组1,2之间差别是否有统计学意义, 常用 2 检验统计量来作假设检验。
笃 学 精 业 修 德 厚 生
5

卫生统计学:第10章 卡方检验

卫生统计学:第10章 卡方检验

T
bc
式中,a, d 为两法观察结果一致的两种情况, b, c为两法观察结果不一致的两种情况。
配对卡方检验公式使用条件:
b+c>40, 2 (b c)2 , 1
bc
b+c≤40,
2 c
( b c 1)2 bc
,
=1
1、建立检验假设并确定检验水准 H0: π1=π2 ,即两种检测方法阳性率相同 H1 :π1≠π2 ,即两种检测方法阳性率不同 α=0.05 2、计算检验统计量
T
2
(ad bc)2n
(ab)(ac)(bd)(cd)
2 分布是一连续型分布,而四格表资料属 离散型分布,由此计算得的 2 统计量的抽样分 布亦呈离散性质。为改善 2 统计量分布的连续
性,则进行连续性校正。
(四)四格表资料检验的校正公式
2 c
( A T 0.5)2 T
(| ad - bc | - n)2 n
2 n(
A2 1) nR nC
(行数 1)(列数 1)
2 2.37, 2 4.11,
0.05 , 3
0.25 , 3
2 2.595 P,3 0.25 p0.5
行×列表χ2检验时的注意事项
1、行×列表中各理论频数不应小于1,并且1≤T<5 的格子数不宜超过总格子数的1/5,若发生上述情况, 可采用下述方法: (1)增大样本含量以增加理论频数。 (2)根据专业知识,考虑删去理论频数太小的行或 列,将理论频数过小的格子所在的行或列与性质相近 的邻行或列中的实际频数合并。 (3)改用双向无序R×C 表资料的Fisher确切概率法。
资料类型? 设计方案? 统计方法是否正确? 结论是否正确?
1、建立检验假设并确定检验水准 H0: π1=π2= π3,即三种药物治疗的有效率相同 H1 :π1≠π2 ≠ π3 ,即三种药物治疗的有效率不全相同 α=0.05

卫生统计学第七章卡方检验

卫生统计学第七章卡方检验

卫⽣统计学第七章卡⽅检验⼀、题型:A1题号: 1 本题分数: 2四格表资料两样本率⽐较的χ2检验,正确的⼀项为A. χ2值为两样本率⽐较中u值B. P<α前提下,χ2值越⼤,越有理由拒绝H0C. χ2值⼤⼩与样本含量⽆关D. 每个格⼦的理论频数与实际频数的差值相等E. χ2检验只能进⾏单侧检验正确答案: B答案解析:根据专业知识确定四格表资料两样本率⽐较的χ2检验采⽤单侧检验或是双侧检验, (也可使⽤四格表专⽤公式),可以证明四格表计算得出的χ2值与正态近似法两率⽐较中u值的平⽅相等,其⼤⼩与样本含量有关,且每个格⼦的理论频数与实际频数的差的绝对值相等,P<α前提下,⾃由度⼀定时,χ2值越⼤,P值越⼩,越有理由拒绝H0,故答案为B。

做答⼈数:0做对⼈数:0所占⽐例: 0题号: 2 本题分数: 2下列能⽤χ2检验的是A. 成组设计的两样本均数的⽐较B. 配对设计差值的⽐较C. 多个样本频率的⽐较D. 单个样本均数的⽐较E. 多个样本均数的⽐较正确答案: C答案解析:χ2检验可⽤于率或构成⽐⽐较的假设检验中,不适宜于均数的⽐较。

做答⼈数:0做对⼈数:0所占⽐例: 0题号: 3 本题分数: 2⾏×列表的⾃由度是A. ⾏数-1B. 列数-1C. ⾏数×列数D. (⾏数-1)×(列数-1)E. 样本含量-1正确答案: D答案解析:⾏×列表中,⾏的⾃由度=⾏数-1,列的⾃由度=列数-1,⾏×列⼆维表资料的χ2统计量所对应的⾃由度=(⾏数-1)×(列数-1)。

做答⼈数:0做对⼈数:0所占⽐例: 0题号: 4 本题分数: 2四个百分率做⽐较,有⼀个理论数⼩于5,其他都⼤于5,则A. 只能做校正χ2检验B. 不能做χ2检验C. 直接采⽤⾏×列表χ2检验D. 必须先做合理的合并E. 只能做秩和检验正确答案: C答案解析:四个百分率做⽐较,资料可整理为4×2的⾏×列表,多个率⽐较的⾏×列表资料不适宜采⽤秩和检验,当满⾜⾏×列⼩于5,可直接进⾏χ2检验。

《卫生统计学》卡方检验

《卫生统计学》卡方检验
=1.60
α=0.05
界值表, 水准不拒绝H 查χ2界值表,P>0.05 ,按α=0.05水准不拒绝 0, 水准不拒绝 故尚不能认为甲法测定结果的概率分布与乙法测 定结果的概率分布不同。 定结果的概率分布不同。
完全随机设计两组频数分布χ 完全随机设计两组频数分布χ2检验
例7-3 将病情相似的淋巴系肿瘤患者随机分 成两组,分别做单纯化疗与复合化疗, 成两组,分别做单纯化疗与复合化疗,两组 的缓解率见表7-4, 的缓解率见表 ,问两疗法的总体缓解率是 否不同? 否不同? (1)建立检验假设 ) H0:π1= π2, 两法总体缓解概率相同 H1: π1≠π2 ,两法总体缓解概率不同 检验水准α 检验水准α=0.05
x
2
(18 − 2 −1) =
18 + 2
2
225 = = 11.25 20
ν=(2-1)(2-1)=1
P<0.05,按α=0.05水准拒绝 0,接受 1,差别 水准拒绝H 接受H , 水准拒绝 有统计学意义,可以认为, 有统计学意义,可以认为 两种培养基上白喉杆菌 生长的阳性概率不相等。 生长的阳性概率不相等。鉴于甲培养基阳性频率 为40/56=71.4%,乙培养基为 ,乙培养基为24/56=42.9%,可 , 以认为, 甲培养基阳性概率高于乙培养基。 以认为 甲培养基阳性概率高于乙培养基。
χ2检验基本思想
比较样本的实际频数 1. 比较样本的实际频数(actual frequency) 理论频数( frequency)之间的 与理论频数( theoretical frequency)之间的 吻合程度。
2.频数分布的拟合优度检验(goodness of 2.频数分布的拟合优度检验( 频数分布的拟合优度检验 test)。 fit test)。

[医学]卫统 卡方检验

[医学]卫统 卡方检验

3、确定P值,并做出结论
查卡方表,
2 0.05
3.84 ,
2
2
0.05
, 故P 0.05
按照 0.05水准,不拒绝 H0,两样本率的差别 无统计学意义,尚不能 认为两组工人的骨质增 生 总体发生率不等。
卡方检验的使用范围
两组及多组率的检验 两组及多组构成比分布的检验 独立性检验 拟合优度检验
45 25 35.5
综合以上思路,列联表期望频数的统一 计算公式为:
Tij
ri c j n
如果H0成立,A与T不应相差太大,x2值不应很大;
如果H0不成立,由H0为真的条件下所计算的理论频数 与样本的实际频数的差别会很大,大多数情况下的 检验统计量x2会较大或很大。 2 ( A T ) 2 理论上可以证明,若H0成立, T 服从x2分布。
表:两组工人的骨质增生发生率比较
组别 发生 井下工人 井上工人 18(14.2)a 9(12.8)c 骨质增生 未发生 22(25.8)b 27(23.2)d 40(a+b) 36(c+d) 45 25 合计 发生率
合计
27(a+c)
49(b+d)
76(n)
35.5
具体步骤
1. 建立假设
H 0 : 两组工人的骨质增生总 体发生率相等,即 1 2 H1 : 两组工人的骨质增生总 体发生率不等,即 1 2
χ2 分布(chi-square distribution)
0.5 0.4 0.3
f ( ) 2( / 2) 2
2
1
2

( / 21)
e
2 / 2

医学统计方法之卡方检验

医学统计方法之卡方检验

医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。

本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。

一、原理:卡方检验的原理是基于卡方分布的性质。

卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。

在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。

二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。

常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。

2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。

3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。

三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。

在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。

原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。

2.计算期望频数:根据原假设,计算出理论预期频数。

理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。

3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。

卡方值是观察频数与理论预期频数之间的差异的平方和。

4.确定自由度:根据检验问题的具体情况确定自由度。

在卡方检验中,自由度通常由分类变量的水平数目决定。

5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。

将计算得到的卡方值与临界值进行比较,确定其显著性水平。

p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。

6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。

卫生统计学使用卡方检验的原理

卫生统计学使用卡方检验的原理

卫生统计学使用卡方检验的原理卫生统计学使用卡方检验的原理:卡方检验是一种用于统计学数据分析的方法,用来判断观察到的数据与期望的数据是否存在显著性差异。

在卫生统计学中,卡方检验广泛用于比较不同组别的数据,例如比较不同年龄组别、性别组别或治疗组与对照组之间的差异。

卡方检验的原理基于卡方统计量,该统计量用于评估观测频数与期望频数之间的偏离程度。

观测频数是指我们实际观察到的数据,在卫生统计学中通常是从样本中收集到的数据。

期望频数是指在某种假设下,根据总体资料或其他相关数据计算出的理论值。

如果观测到的数据与期望的数据之间存在显著差异,则我们可以得出结论,拒绝原假设。

卡方检验的具体步骤如下:1. 建立假设:假设我们要比较的两个或多个组别在某个特定的变量上是独立的。

所谓独立性假设是指这个变量的分布在不同组别之间没有明显差异。

2. 计算期望频数:根据独立性假设,我们可以计算出每个组别中每个类别的期望频数。

计算期望频数的方法取决于具体的独立性假设,常见的方法包括计算比例或根据其他基准数据调整得出。

3. 计算卡方统计量:卡方统计量计算的是观测频数与期望频数之间的差异。

其计算公式为:卡方统计量=Σ(观测频数-期望频数)^2/期望频数。

4. 确定自由度:卡方检验的自由度是指用于计算卡方统计量的独立观测值的数量减去约束条件的数量。

对于独立性检验,自由度为(行数-1)×(列数-1)。

5. 查找卡方分布表:根据所得到的卡方统计量和自由度,查找卡方分布表,确定对应的临界值。

6. 比较卡方统计量与临界值:如果计算得到的卡方统计量大于临界值,则拒绝原假设,说明观测到的数据与期望的数据存在显著性差异。

反之,则无法拒绝原假设,即认为观测到的数据与期望的数据之间没有显著差异。

卫生统计学中常见的卡方检验包括:卡方拟合度检验、卡方独立性检验和卡方趋势性检验。

- 卡方拟合度检验:用于比较观测数据与理论分布之间的差异,常用于比较多个分类变量的分布是否服从某个理论分布。

卫生统计学9——卡方检验

卫生统计学9——卡方检验
在上例中, 64 21 的数据是基本的,
51 33
其余数据都是由以上四个数据计算出来的。
这四个数叫实际频数,简称实际数
(actual freqency, A)
12
理论频数(theoretical freqency,T)
对于洛赛克组的64人,按照合并愈合率Pc=68.05%治疗 的话,理论上: 64×68.05%=57.84人愈合,用T11表示,
?
(1)先假设H0成立,按特定分布的规律(概率函数)
计算理论频数,进而计算 2值。
(2)若 2值小,可认为现有资料服从某一分布;
若 2值大,尚不能认为现有资料服从某一分布。
自由度=K-参数个数-1 K:组段数 参数个数:正态分布和二项分布有2个参数,poisson分布有1个
30
例9-1 对数据作正态分布拟合优度检验。120名 男孩身高的测量值, 均数=139.48cm;标准差=7.30cm
为v 。
2 u12 u22 u2
ui
Xi
5
2 分布的拓展与应用
卡方检验基本思想
2 分布的概念
1875年,F. Helmet得出:来自正态总体的样
本方差的分布服从 2分布;
1900年K. Pearson又从检验分布的拟合优度
(goodness of fit)中也发现了这一相同的 2 分
统计量2值。
33
计算统计量:
计算T I 时的参数有2 个(均数和标准差)
2
(A T )2 6.27
T
推断结论:自由度=10-1-2=7,查Leabharlann 表8,得到2 0.50,7
6.35
P>0.50,可以认为该样本服从正态分布。

(医统)卡方检验

(医统)卡方检验

2
观测值的自由度(vi>2),Si为第i组观测值的标 准差 2 • 拒绝原假设的条件为: 2 ,
F检验
• 检验两组观测值的方差的齐性 • 原假设: 2 2
1 2
• 检验统计量:
2 2 2 S1 F 2 2 ~ F( 1 , 2 ) 1 S2
• 拒绝条件: F F /2 (1, 2 )或F F1 /2 (1, 2 )
2.拟合优度检验
• B.表征实验分布,即用卡方统计量检验实验分布 是否服从某一理论分布(正态、二项等) • 步骤:1.将总体X的取值范围分成k个互不重迭的 小区间 • 2.计算落入第i个小区间的样本值的观测频数 • 3. 根据所假设的理论分布, 算出总体X的值落入每 个小区间的概率p,于是np就是落入该区间的样本 值的理论频数 • 4.计算卡方统计量 • 5.与临界值进行比较,进行决策
χ2 检验 数据资料 总体 检验对象
离散型资料 总体分布是未知的
连续型资料假设检验
连续型资料 正态分布 对总体参数或几个总体 参数之差
不是对总体参数的检 验,而是对总体分布 的假设检验
三、χ2 检验的用途
适合性检验
是指对样本的理论数先通过一定的理
论分布推算出来,然后用实际观测值与理论
数相比较,从而得出实际观测值与理论数之
理论值(E)
696.75 232.25 929
O-E
+8.25 -8.25 0
由于差数之和正负相消,并不能反映实 际观测值与理论值相差的大小。
为了避免正、负相抵消的问题,可将实际 观测值与理论值的差数平方后再相加,也就是 计算:
∑(O-E)2
O--实际观察的频数 E--无效假设下的期望频数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卫生统计学之卡方检验一、教学大纲要求(一) 掌握内容 1. 2χ检验的用途。

2. 四格表的2χ检验。

(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。

3. 行⨯列表的2χ检验。

(二) 熟悉内容频数分布拟合优度的2χ检验。

(三) 了解内容 1.2χ分布的图形。

2.四格表的确切概率法。

二、教学内容精要(一)2χ检验的用途2χ检验(Chi-square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二)2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。

在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠)。

2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency )。

四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。

(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法:np )1(ππσ-=,π为总体率,或 (8-1)np p S p )1(-=, p 为样本率; (8-2) 2.总体率的可信区间当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布。

总体率的可信区间:(p p S u p S u p ⨯+⨯-2/2/,αα)。

(8-3) (四)2χ检验的基本计算 见表8-1。

表8-12χ检验的用途、假设的设立及基本计算公式资料形式用途0H 、1H 的设立与计算公式自由度四格表①独立资料两 样本率的比较②配对资料两 样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式))()()(()(22d b c a d c b a nbc ad ++++-=χ ②当n ≥40但1≤T<5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ ③配对设计cb c b +--=22)1(χ1R ⨯C 表①多个样本率、 构成比的比较②两个变量之 间关联性分析0H :多个总体率(构成比)相等(0H :两种属性间存在关联)1H :多个总体率(构成比)不全相等(0H :两种属性间存在关联))1(22-=∑CR n n A n χ (R-1)(C-1)频数分布表 频数分布的拟合优度检验0H :资料服从某已知的理论分布 1H :资料不服从某已知的理论分布∑-TT A 2)( 据频数表的组数而定(五)四格表的确切概率法当四格表有理论数小于1或n <40时,宜用四格表的确切概率法。

(六)2χ检验的应用条件及注意事项1.分析四格表资料时,应注意连续性校正的问题,当1<T <5,n >40时,用连续性校正2χ检验;T ≤1,或n ≤40时,用Fisher 精确概率法。

2.对于R ⨯C 表资料应注意以下两点:(1)理论频数不宜太小,一般要求:理论频数<5的格子数不应超过全部格子的1/5; (2)注意考察是否有有序变量存在。

对于单向有序R ⨯C 表资料,当指标分组变量是有序的时,宜用秩和检验;对于双向有序且属性不同的R ⨯C 表资料,若希望弄清两有序变量之间是否存在线性相关关系或存在线性变化趋势,应选用定性资料的相关分析或线性趋势检验;对于双向有序且属性相同的R ⨯C 表资料,为考察两种方法检测的一致性,应选用Kappa 检验。

三、典型试题分析(一)单项选择题1.下列哪项检验不适用2χ检验( )A . 两样本均数的比较B . 两样本率的比较C . 多个样本构成比的比较D . 拟合优度检验 答案:A[评析] 本题考点:2χ检验的主要用途。

2χ检验不能用于均数差别的比较。

2.分析四格表时,通常在什么情况下需用Fisher 精确概率法( )A .1<T <5,n>40B .T <5C .T 1≤或n 40≤D .T 1≤或n 100≤ 答案: C[评析] 本题考点:对于四格表,当T 1≤或n 40≤时,不宜用2χ检验,应用Fisher 精确概率法。

3.2χ值的取值范围为A .∞-<2χ<∞+B .+∞≤≤20χC .12≤χD .02≤≤∞-χ答案: B[评析]根据2χ分布的图形或2χ的基本公式可以判断2χ值一定是大于等于零且没有上界的,故应选B 。

(二)是非题 两样本率的比较可以采用2χ检验,也可以采用双侧u 检验。

答案:正确。

[评析]就两个样本率的比较而言,双侧u 检验与2χ检验是等价的。

(三)简答题1.四格表的2χ检验和u 检验有何联系与区别?答案:相同点:凡是能用u 检验进行的两个率比较检验的资料,都可用2χ检验,两者是等价的,即22χ=u ;相异点:(1)u 检验可进行单侧检验;(2)满足四格表u 检验的资料,计算两个率之差的可信区间,可从专业上判断两率之差有无实际意义;(3)2χ检验可用于2⨯2列联表资料有无关联的检验。

2.R ⨯C 表2χ检验的适用条件及当条件不满足时可以考虑的处理方法是什么? 答案:R ⨯C 表2χ检验的适用条件是理论频数不宜过小,否则有可能产生偏性。

当条件不满足时有三种处理方法:①增大样本例数使理论频数变大;②删去理论数太小的行或列;③将理论数太小的行或列与性质相近的邻行或邻列合并,使重新计算的理论频数变大。

但②、③法都可能会损失信息或损害样本的随机性,因此应慎用。

(四)计算题1.为研究静脉曲张是否与肥胖有关,观察122对同胞兄弟,每对同胞兄弟中有一个属肥胖,另一个属正常体重,记录得静脉曲张发生情况见表8-2,试分析之。

表8-2 122对同胞兄弟静脉曲张发生情况正常体重 肥胖合计 发生 未发生 发 生19 5 24 未发生 12 86 98 合 计31 91122[评析]这是一个配对设计的资料,因此用配对2χ检验公式计算。

H 0:肥胖者与正常体重者的静脉曲张发生情况无差别 H 1:肥胖者与正常体重者的静脉曲张发生情况不同 05.0=α cb c b +--=22)1(χ=()12.212511252=+--,1=ν2χ=2.11<21,05.0χ,P >0.05,尚不能认为静脉曲张与肥胖有关。

2.某卫生防疫站在中小学观察三种矫正近视眼措施的效果,近期疗效数据见表8-3。

试对这三种措施的疗效作出评价。

夏天无眼药水 51 84 135 37.78 新医疗法 6 26 32 18.75 眼保健操 5 13 18 27.78 合计 62 123 18533.51[评析]0H :三种措施有效率相等1H :三种措施有效率不相等或不全相等 05.0=α)1(22-=∑cr n n A n χ=185⨯⎪⎪⎭⎫ ⎝⎛-⨯+⨯+⨯+⨯+⨯+⨯1181231318625321232632626135123841356251222222=4.498,ν=(2-1)(3-1)=2查表得0.25>P >0.10,按0.05α=水准不拒绝0H ,尚不能认为三种措施有效率有差别。

3.某医院以400例自愿接受妇科门诊手术的未产妇为观察对象,将其分为4组,每组100例,分别给予不同的镇痛处理,观察的镇痛效果见表8-4,问4种镇痛方法的效果有无差异?表8-4 4种镇痛方法的效果比较 镇痛方法 例数 有效率(%)颈麻100 41 注药100 94 置栓100 89 对照100 27 [评析] 为了应用2χ检验,首先应计算出有效和无效的实际频数,列出计算表,见表8-5。

颈麻41 59 100 注药94 6 100 置栓89 11 100 对照27 73 100 合计251 149 400 0H :4种镇痛方法的效果相同 1H :4种镇痛方法的效果不全相同05.0=α)1(22-=∑c r n n A n χ=400⎪⎪⎭⎫ ⎝⎛-⨯++⨯+⨯⨯110014973...1001495910025141222=146.175, ν=(4-1)(2-1)=3查表得P <0.05,按0.05α=水准拒绝0H ,接受1H ,即4种镇痛方法的效果不全相同。

四、习 题(一) 单项选择题1. 关于样本率p 的分布正确的说法是: A . 服从正态分布 B . 服从2χ分布C . 当n 足够大,且p 和1-p 均不太小,p 的抽样分布逼近正态分布D . 服从t 分布 2. 以下说法正确的是: A . 两样本率比较可用u 检验 B . 两样本率比较可用t 检验C . 两样本率比较时,有2χ=uD . 两样本率比较时,有22χ=t3. 率的标准误的计算公式是: A .)1(p p - B .np p )1(- C.1-n p D.np p )1(- 4. 以下关于2χ检验的自由度的说法,正确的是: A .拟合优度检验时,2-=n ν(n 为观察频数的个数) B .对一个43⨯表进行检验时,11=ν C .对四格表检验时,ν=4D .若2,05.02,05.0ηνχχ>,则ην>5. 用两种方法检查某疾病患者120名,甲法检出率为60%,乙法检出率为50%,甲、乙法一致的检出率为35%,问两种方法何者为优?A .不能确定B .甲、乙法一样C .甲法优于乙法D .乙法优于甲法 6.已知男性的钩虫感染率高于女性。

今欲比较甲乙两乡居民的钩虫感染率,适当的方法是:A .分性别比较B .两个率比较的2χ检验C .不具可比性,不能比较D .对性别进行标准化后再做比较 7.以下说法正确的是A .两个样本率的比较可用u 检验也可用2χ检验B .两个样本均数的比较可用u 检验也可用2χ检验C .对于多个率或构成比的比较,u 检验可以替代2χ检验D .对于两个样本率的比较,2χ检验比u 检验可靠 (二) 名词解释1. 实际频数与理论频数 2. 2χ界值表 3. 拟合优度 4. 配对四格表5. 双向有序分类资料 6. 率的标准误7. 多个率的两两比较 8. Fisher 精确概率 9. McNemar 检验 10. Yates 校正 (三) 是非题四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。

(四) 计算题1.121名前列腺癌患者中,82名接受电切术治疗,术后有合并症者11人;39名接受开放手术治疗,术后有合并症1人。

相关文档
最新文档