矩阵的各种运算详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、矩阵的线性运算
定义1 设有两个矩阵和,矩阵与的和记作, 规定为
注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵.
设矩阵记
,
称为矩阵的负矩阵, 显然有
.
由此规定矩阵的减法为
.
定义2 数与矩阵A的乘积记作或, 规定为
数与矩阵的乘积运算称为数乘运算.
矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:
设都是同型矩阵,是常数,则
(1)
(2) ;
(3)
(4)
(5)
(6)
(7)
(8)
注:在数学中,把满足上述八条规律的运算称为线性运算.
二、矩阵的相乘
定义3设
矩阵与矩阵的乘积记作, 规定为
其中,(
记号常读作左乘或右乘.
注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算.
若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即
.
矩阵的乘法满足下列运算规律(假定运算都是可行的):
(1)
(2)
(3)
(4)
注: 矩阵的乘法一般不满足交换律, 即
例如, 设则
而
于是且
从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出
或
此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设
则
但
定义4如果两矩阵相乘, 有
则称矩阵A与矩阵B可交换.简称A与B可换.
注:对于单位矩阵, 容易证明
或简写成
可见单位矩阵在矩阵的乘法中的作用类似于数1.
更进一步我们有
命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。
命题2设均为n阶矩阵,则下列命题等价:
(1)
(2)
(3)
(4)
三、线性方程组的矩阵表示
设有线性方程组
若记
则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:
(2)
其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程.
如果是方程组(1)的解, 记列矩阵
则
,
这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式
成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为
将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.
四、矩阵的转置
定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或
). 即若
则
.
矩阵的转置满足以下运算规律(假设运算都是可行的):
(1)
(2)
(3)
(4)
五、方阵的幂
定义5设方阵, 规定
称为的次幂.
方阵的幂满足以下运算规律(假设运算都是可行的):
(1)
(2)
注: 一般地,为自然数
命题3 设均为n阶矩阵,则有为自然数,反之不成立。
六、方阵的行列式
定义7由阶方阵的元素所构成的行列式(各元素的位置不变),称为方阵的行列式,记作或
注: 方阵与行列式是两个不同的概念, 阶方阵是个数按一定方式排成的数表,而阶行列式则是这些数按一定的运算法则所确定的一个数值(实数或复数).
方阵的行列式满足以下运算规律(设为阶方阵, 为常数):
(1)
(2)
(3) 进一步
七、对称矩阵
定义8设为阶方阵, 如果即
则称为对称矩阵.
显然,对称矩阵的元素关于主对角线对称. 例如
,均为对称矩阵.
如果则称为反对称矩阵.
八、共轭矩阵
定义9 设为复(数)矩阵, 记
其中表示的共轭复数, 称为A的共轭矩阵.
共轭矩阵满足以下运算规律(设为复矩阵,为复数, 且运算都是可行的):
(1)
(2)
(3)
例题选讲:
矩阵的线性运算
例1 (讲义例1)已知, 求
例2(讲义例2) 已知且求
注:n阶数量矩阵=
例3(讲义例3)若求
例4设,。A是一个矩阵,B是矩阵,因此AB有意义,BA也有意义;但
。
例5设,B=。
(这种记法表示主对角线以外没有注明的元素均为零),则
(1);
(2);
(3)
例6(讲义例4) 某地区有四个工厂Ⅰ、Ⅱ、Ⅲ、Ⅳ,生产甲、乙、丙三种产品, 矩阵A 表示一年中各工厂生产各种产品的数量, 矩阵B表示各种产品的单位价格(元)及单位利润(元), 矩阵C表示各工厂的总收入及总利润.
其中, 是第个工厂生产第种产品的数量, 及分别
是第种产品的单位价格及单位利润, 及分别是第个工厂生产三种产品
的总收入及总利润. 则矩阵的元素之间有下列关系:
其中,即