实验报告(单纯形法的matlab程序)

合集下载

单纯形法matlab

单纯形法matlab

数学软件与实验数学与信息科学学院信息与计算科学单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c)B0=A(:,1:m);cb=c(:,1:m);xx=1:n;sgm=c-cb*B0^-1*A;h=-1;sta=ones(m,1);for i=m+1:nif sgm(i)>0h=1;endendwhile h>0[msg,mk]=max(sgm);for i=1:msta(i)=b(i)/A(i,mk);end[mst,mr]=min(sta);zy=A(mr,mk);for i=1:mif i==mrfor j=1:nA(i,j)=A(i,j)/zy;endb(i)=b(i)/zy;endendfor i=1:mif i~=mrfor j=1:nA(i,j)=A(i,j)-A(i,mk)*A(mr,j);endb(i)=b(i)-A(i,mk)*b(mr);endendB1=A(:,1:m);cb(mr)=c(mk);xx(mr)=mk;sgm=c-cb*B1*A;for i=m+1:nif sgm(i)>0h=1;endendendfm=c*xx;例题:编写下列求解如下线性规划问题的单纯形法函数min f'xs.t ax<=b(其中b>=0)函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解fval为最优值it为迭代次数无最优解op=0有最优解op=1编写程序如下:function [x,fval,it,op]=singl(f,a,b)[m,n]=size(a);c=[a eye(m) b;f' zeros(1,m+1)];fval=0;x=zeros(m+n,1);op=1;it=0;e=zeros(1,m);lie=find(f<0);l=length(lie);while(l>0)for j=1:ld=find(c(:,lie(j)));d_l=length(d);if d_l>0for i=1:mif c(i,lie(j))>0e(i)=c(i,end)/c(i,lie(j));elsee(i)=inf;endend[g,h]=min(e);for w=1:m+1if w==hc(w,:)=c(w,:)/c(h,lie(j));elsec(w,:)=c(w,:)-c(h,:)*c(w,lie(j))/c(h,lie(j));endendit=it+1;elseop=0;endendlie=find(c(end,:)<0);l=length(lie);endfor i=1:(m+n)ix=find(c(:,i));if(length(ix)==1)&(ix<=m)&(c(ix,i)==1) x(i)=c(ix,end)elsex(i)=0endendfval=-c(end,end);。

单纯形法、线性规划实践报告

单纯形法、线性规划实践报告
0.0055
exitflag =
1
output =
iterations: 3
funcCount: 16
stepsize: 1
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: []
cgiterations: []
一、线性规划——单纯形法程序设计
1.实验目的:
(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解.
2.问题陈述
本实验主要编写一般线性规划问题的计算程序:
Min
s.t.
x
引入松弛变量将其化为一般标准型线性规划问题:
函数f(x)= 在区间[-1,3]上的最小值,程序运算如下:
在matlab命令窗口输入如下:
fun='x^2-x+2';
[x,fval]=fminbnd(fun,-1,3)
运算结果如下:
x=0.5000
fval = 1.7500
两者运行结果完全一致,说明程序正确。
三、运用非线性规划建模的实例
1.问题描述:
10000
-0.1300
说明通过三次迭代找到最优解为-0.13.
用Matlab求解线性规划的命令linprog的计算结果:
f = [-0.15;-0.1;-0.08;-0.12];
A = [1-1-1-1
0-1-1 1];
b = [0;0];
Aeq=[1 1 1 1];
beq=[1];

单纯形法matlab代码

单纯形法matlab代码

单纯形法(Simplex Method)——优化问题的强有力工具一、引言优化问题在数学和工程领域扮演着重要的角色,而单纯形法则是一种常用的解决优化问题的方法。

它可以用于线性规划问题的求解,通过逐步迭代,不断优化目标函数的值。

本文将介绍单纯形法的原理和基本步骤,并使用MATLAB代码展示其在实际问题中的应用。

二、单纯形法原理单纯形法是一种基于几何直觉的算法,它通过多次迭代寻找可行解空间中的顶点,并在每次迭代中逐渐改进目标函数的值,直至找到最优解或确定问题无解。

该方法的基本思想是从初始可行解出发,通过交换基变量和非基变量,不断向较优的顶点移动,直至达到最优解。

三、单纯形法步骤单纯形法的求解过程可以分为以下几个步骤:3.1 构建初始单纯形表构建初始单纯形表包括将优化问题转化为标准型,并引入松弛变量将约束条件转化为等式,同时引入人工变量以确保可行解存在。

3.2 选择入基变量和出基变量在每一次迭代中,需要选择一个入基变量和一个出基变量。

入基变量是指由非基变量变为基变量的变量,而出基变量是指由基变量变为非基变量的变量。

3.3 计算回代数通过计算回代数,可以确定迭代的方向和距离。

回代数是指基变量要离开基础解所需要沿其可行方向运动的最大距离。

3.4 更新单纯形表通过更新单纯形表,可以得到下一次迭代的基变量和非基变量,并计算相应的解。

更新单纯形表的方法一般有高斯型和乘子分析型两种。

3.5 判断是否达到终止条件在每一次迭代后,需要判断是否满足终止条件。

终止条件可以是目标函数的值不再改变或约束条件不再发生变化等。

3.6 迭代直至达到最优解如果未达到终止条件,则继续进行下一次迭代,直至达到最优解或确定问题无解。

四、单纯形法在MATLAB中的应用在MATLAB中,可以使用线性规划工具箱(Linear Programming Toolbox)来实现单纯形法的运算。

以下是一个简单的例子,以详细介绍如何使用MATLAB代码解决线性规划问题。

程序设计实验报告(matlab)

程序设计实验报告(matlab)

程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。

实验内容:运用Matlab进行简单的程序设计。

实验方法:基于Matlab环境下的简单程序设计。

实验结果:成功掌握简单的程序设计和Matlab基本编程语法。

实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。

实验内容:在Matlab环境下进行多项式拟合和插值的计算。

实验方法:结合Matlab的插值工具箱,进行相关的计算。

实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。

实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。

实验内容:利用Matlab进行最小二乘法计算。

实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。

实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。

实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。

实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。

实验方法:基于Matlab的ODE工具箱,进行ODE求解。

实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。

总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。

通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。

这些知识和技能对我未来的学习和工作都将有着重要的帮助。

Matlab单纯形法

Matlab单纯形法

• 线性规划问题 • 解决这一问题我们用的是linprog函数,linprog 函数求的是最小值,线性规划是求最大,所以 要在目标函数前加一个负号. • x = linprog( c , A , b , Aeq , beq , lb , ub , x0 )是求 解线性规划问题的命令。 • c是目标函数的系数向量,A是不等式约束 AX<=b的系数矩阵,b是不等式约束AX<=b的常 数项,Aeq是等式约束AeqX=beq的系数矩阵, beq是等式约束AeqX=beq的常数项,lb是X的下 限,ub是X的上限,X是向量[x1,x2,...xn]即决策 变量。
Matlab单纯形法
• 运行matlab会显示三个窗口,分别是变量窗 口,命令窗口和历史窗口。 • 在命令窗口中出现命令提示符 “>>”,就 可以输入命令,按回车键完成运算。 • 命令窗口的说明: • 1.在命令中,空格不参与运算。 • 2.几条命令可以写在同一行,用逗号隔开。 • 3.在命令窗口中不能返回到前面的命令行 进行修改后在重新执行。
• 如果模型中不包含不等式约束条件,可用 []代替A和b表示缺省;如果没有等式约 束条件,可用[]代替Aeq和beq表示缺省; 如果某个xi无下界或上界,可以设定lb(i) =-inf或ub(i)=inf; 用[x , Fval]代替上述各命令行中左边的x, 则可得到在最优解x处的b中,用[1 2 3]表示行向量;[1;2;3] 表示列向量;[1 2 3;4 5 6;7 8 9]表示矩阵。 • 矩阵按行输入,元素之间用空格或“,” 隔开,行与行之间用“;”隔开。 • 特殊命令创建矩阵a=[m:q:n],m是起始值;n 是终止值;q是增量。如a=[1:2:13] • 特殊矩阵建立:eye创建一个单位矩阵,如 eye(4);ones创建一个元素全是1的矩阵,如 ones(1,4);zeros创建一个全是0的矩阵,如 zeros(1,4).

实验二:MATLAB编程单纯形法求解

实验二:MATLAB编程单纯形法求解

北京联合大学实验报告项目名称:运筹学专题实验报告学院:自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。

(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w,BwB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k kBy p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的是,为了提高运行速度。

单纯形法MATLAB程序

单纯形法MATLAB程序

单纯形法(Mat lab程序)%%单纯形法(Mat lab程序)a= input (' input the major matrix A '); b=input (' input the matrix b '); n=input C input the judgement ');%%为计数器(确定循环次数)萨0;while g<40%%确定非负alength=max(size(n));blength二max(size(b));m=0;for i=l:alength辻n(i)〉=0m二m+1;endend;if m==alengthx=b;breakend;%%找Ks二min(n);for i=l:alengthif n(i) ==sk二i;breakend;end;%%a[i,k]的非负性m=0;for i=l:blengthif a(i, k)<0m二m+1;end;end;if m==blengthdisp('x does not exit');judge二1;breakend;%%找L确定主元cc=100000;for i=l:blengthif a (i, k) >0if(b(i)/a(i, k))<cccc=b(i)/a(i, k);endend end; for i=l:blengthif a(i, k)~=0if (b(i)/a(i, k))==cc1二i;breakendend end; %%计算,a 标准化zu=a(l, k); aa=a; for i=l:1-1 for j=l:alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for i=l+l:blengthfor j=l :alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for j=l:alengthaa(l, j)=a(l, j)/zu; end;%%b 勺判别bb=b; bb(l)=b(l)/zu;for i=l: 1~1 bb(i)=b(i)~b⑴*a(i, k)/a(l, k);end;for i=l+l:blength bb(i)二b(i)-b(l)*a(i, k)/a(l, k);end;b二bb; %%确定判别数tt 二n;for j=l:alength11 (j) =n(j)-a(1, j)*n(k)/a(1, k) ; end; n=tt;a=aa;%%显示单纯形表sa sa二[b' aa;0 n];dispC单纯表示例’);disp(g+1);disp(sa);g二g+l;judge=2;end;if judge==2q二0; result=zeros (alength, 2); for j=l+q:alengthif n(j)=0 t=a(:, j) ; zu=find( t) ; resu lt( j, l)=j ; result (j, 2)=x(zu) ; q 二q+1 ;endif n(j)>0 result(j,l)=q+l; q=q+l;endend;dispC最优解’);disp (result);dispC循环次数');end。

实验二MATLAB程序设计含实验报告

实验二MATLAB程序设计含实验报告

实验二MATLAB 程序设计一、 实验目的1.掌握利用if 语句实现选择结构的方法。

2.掌握利用switch 语句实现多分支选择结构的方法。

3.掌握利用for 语句实现循环结构的方法。

4.掌握利用while 语句实现循环结构的方法。

5.掌握MATLAB 函数的编写及调试方法。

二、 实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。

M 文件的编写:启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。

点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正三、 实验内容1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。

并输入几组典型值加以检验。

(提示:提示输入使用input 函数)2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。

其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。

要求:(1)用switch 语句实现。

(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。

(提示:注意单元矩阵的用法)3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。

重复此过程,最终得到的结果为1。

如:2?13?10?5?16?8?4?2?16?3?10?5?16?8?4?2?1运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。

请为关键的Matlab 语句填写上相关注释,说明其含义或功能。

MATLAB数学实验报告

MATLAB数学实验报告

MATLAB数学实验报告姓名:李帆班级:机械(硕)21学号:2120104008第一次数学实验报告——线性规划问题一,实验问题1,某饲养场饲养动物出售,设每头动物每天至少需要700g蛋白质,30g矿物质,100mg 维生素。

现有五种饲料可供选择,各种饲料的每千克营养成分含量和单价如下表。

是确定既能满足动物生长的营养需要,游客是费用最省的选用饲料方案。

2,某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个;单位产品所需原料分别为3、1、5公斤;单位产品利润分别为2、3、5元。

工厂每天可利用的工时为12个,可供应的原料为15公斤。

为使总利润为最大,试确定日生产计划和最大利润。

二,问题分析1,1)该题属于采用线性规划的方式求出最优解的数学问题。

该题有以下特点,1.目标函数有线性,是求目标函数的最小值;2.约束条件为线性方程组;3.未知变量都有非负限制。

1,2)求解该类问题的方法有图解法,理论解法和软件解法。

图解法常用于解变量较少的线性规划问题。

理论解法要构建完整的理论体系。

目前用于解线性规划的理论解法有:单纯形法,椭球算法等。

在此,我们采用单纯形法的MATLAB软件解法来求解该问题。

1,3)此题中,要求既要满足动物生长的营养需要,又要使费用最省,则使每种饲料的选用量为变量,以总费用的最小值为所求量,同时每种饲料的使用量要符合营养成分的要求。

1,4)在此,首先确定建立线性规划模型。

设饲料i选用量为xi公斤,i=1,2,3,4,5.则有模型:Minz=0.2x1+0.7x2+0.4x3+0.3x4+0.8x5s.t. {3x1+2x2+6x4+18x5>=700;x1+0.5x2+0.2x3+2x4+0.5x5>=300.5x1+x2+0.2x3+2x4+0.8x5>=100Xj>=0,j=1,2,3,4,5解之得:x1=x2=x3=0X4=39.74359X5=25.14603Zmin=32.435902, 1)该问题与第一题分析步骤相似,故只在此写出其线性规划模型Z=2x+3y+5z2x+3y+z<=123x+y+5z<=15三,程序设计流程图第一题:c=[0.2,0.7,0.4,0.3,0.8]A=[3,2,1,6,18;1,0.5,0.2,2,0.5;0.5,1,0.2,2,0.8;1,0,0,0,0;0,1 ,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1]b=[700,30,100,0,0,0,0,0][x,fval]=linprog(c,-A,-b)c =0.2000 0.7000 0.4000 0.3000 0.8000A =3.0000 2.0000 1.0000 6.0000 18.00001.0000 0.5000 0.20002.0000 0.50000.5000 1.0000 0.2000 2.0000 0.80001.0000 0 0 0 00 1.0000 0 0 00 0 1.0000 0 00 0 0 1.0000 00 0 0 0 1.0000b =700 30 100 0 0 0 0 0Optimization terminated.x =0.0000-0.00000.000039.743625.6410fval =32.4359第二题c=[-2 -3 -5]A=[2 3 1;3 1 5]b=[12;15]lb=[0 0 0][x,Z,exitflag,output]=linprog(c,A,b,[],[],lb,[])将上述程序输入matlab。

matlab程序设计实验报告

matlab程序设计实验报告

matlab程序设计实验报告《MATLAB程序设计实验报告》摘要:本实验报告旨在介绍MATLAB程序设计的基本原理和实践操作,通过实验演示和分析,展示了MATLAB在工程领域的应用和重要性。

本报告详细介绍了MATLAB程序设计的基本语法和常用函数,以及如何利用MATLAB进行数据处理、图像处理、信号处理等工程应用。

通过本报告的学习,读者将能够掌握MATLAB程序设计的基本技能,为工程实践提供有力的支持。

1. 引言MATLAB是一种用于算法开发、数据可视化、数据分析和数值计算的高级技术计算语言和交互式环境。

它具有强大的数学计算功能和丰富的绘图工具,广泛应用于工程、科学和金融等领域。

本实验报告将介绍MATLAB程序设计的基本原理和实践操作,帮助读者快速掌握MATLAB的基本技能。

2. 实验目的本实验的主要目的是让读者了解MATLAB程序设计的基本语法和常用函数,掌握MATLAB在工程领域的应用和重要性。

通过实验演示和分析,展示MATLAB 在数据处理、图像处理、信号处理等方面的应用。

3. 实验内容(1)MATLAB程序设计的基本语法和常用函数(2)利用MATLAB进行数据处理的实验演示(3)利用MATLAB进行图像处理的实验演示(4)利用MATLAB进行信号处理的实验演示4. 实验步骤(1)学习MATLAB程序设计的基本语法和常用函数(2)编写MATLAB程序,实现数据处理、图像处理、信号处理等功能(3)进行实验演示和分析,展示MATLAB在工程领域的应用和重要性5. 实验结果与分析通过本实验的学习,读者将能够掌握MATLAB程序设计的基本技能,包括数据处理、图像处理、信号处理等方面的应用。

通过实验演示和分析,读者将了解MATLAB在工程领域的重要性,为工程实践提供有力的支持。

6. 结论MATLAB程序设计是一种强大的工程工具,具有广泛的应用前景。

通过本实验报告的学习,读者将能够掌握MATLAB程序设计的基本技能,为工程实践提供有力的支持。

实验报告(单纯形法的matlab程序)

实验报告(单纯形法的matlab程序)

实验报告(单纯形法的matlab程序)实验一:线性规划单纯形算法一、实验目的通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。

二、算法对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤:(1).解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i mB b i -=i 以b 记的第个分量(2).计算单纯形乘子w , B wB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i Rz c σ∈=-,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3).解k k By p =,得到1kk y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4).(4).确定下标r,使{}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量。

k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。

对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。

对于极大化问题,应令min{}k k j j z c z c -=-四、计算框图是否是否五、计算程序function [x,f]=zuiyouhua(A,b,c)初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量)令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解解方程k k By p =,得到1k k y B p -=。

matlab 单纯形法

matlab 单纯形法

matlab 单纯形法并解释如何使用MATLAB 中的单纯形法来求解线性规划问题。

【引言】在运筹学和数学规划领域,线性规划是一种重要的数学建模和优化方法。

它用于解决实际问题中关于资源分配、生产计划、物流安排等的决策问题。

单纯形法是一种经典的线性规划解法,它通过迭代优化目标函数的值来找到最优解。

MATLAB 提供了强大的高级优化工具箱,包括对线性规划问题的求解。

在本文中,我将逐步介绍如何使用MATLAB 中的单纯形法来求解线性规划问题。

【前提条件】在使用单纯形法求解线性规划问题之前,我们需要明确问题的数学模型。

线性规划问题可以形式化为如下的标准形式:最大化:C^T * X约束条件:AX <= B, X >= 0其中,X 是变量向量,C 是目标函数系数向量,A 是约束条件的系数矩阵,B 是约束条件的右端向量。

在MATLAB 中,我们可以通过定义这些向量和矩阵来表示线性规划问题。

接下来,我将演示如何使用MATLAB 的优化工具箱来完成线性规划求解任务。

【问题定义】以下是一个简单的线性规划问题的例子,我们将以此为例来展示MATLAB 中单纯形法的求解过程。

最大化:2x1 + 3x2约束条件:x1 + x2 <= 4x1 - x2 <= 2x1, x2 >= 0【MATLAB 实现】首先,在MATLAB 中创建变量和约束条件的向量和矩阵。

代码如下:MATLABC = [-2; -3]; 目标函数的系数向量A = [1, 1; 1, -1]; 约束条件的系数矩阵B = [4; 2]; 约束条件的右端向量接下来,我们使用`linprog` 函数来求解线性规划问题。

这个函数将返回最优解X 和最优解的目标函数值FVAL。

代码如下:MATLAB[X, FVAL, EXITFLAG] = linprog(-C, A, B);注意,我们在输入目标函数系数向量C 时,在前面添加了负号。

这是因为`linprog` 函数默认求解最小化问题,而我们是要求解最大化问题。

单纯形法的MATLAB代码

单纯形法的MATLAB代码

单纯形法的MATLAB代码% 求解标准型线性规划:max c*x; s.t. A*x=b;x>=0%A1是标准系数矩阵及最后一列是资源向量,C是目标函数的系数向量% N是(初始的)基变量的下标%M=10000 人工变量系数% 本函数中的A是单纯形表,包括:最后一行是初始的检验数,最后一列是资源向量b%c1是基变量系数%输出变量sol是最优解%输出变量val是最优值,k是迭代次数%flag1的值代表有无最优解,0无界解,1无可行解,2无穷多解,3唯一最优解function [sol,val,k,flag1]=ssimplex(A1,C,N)M=10000;[mA1,nA1]=size(A1);C1=[C,0];val=zeros(1,length(C));for i=1:length(N)c1(i)=C1(N(i));endfor i=1:nA1a(i)=C1(i)-c1*A1(:,i);%计算初始检验数endA=[A1;a]; %构造初始单纯形表[mA,nA]=size(A);k=0; % 迭代次数flag=1;while flagfor i=1:(nA-1)if A(mA,i)<=0flag=0;elseflag=1;break;endendif flag==0 % 已找到最优解val1=A(1:(mA-1),nA)';for i=1:length(N)if (val1(i)~=0&&abs(C(N(i)))==M)disp('无可行解');sol=inf;val=inf;flag3=0;flag1=1;break;elseflag3=1;endendif flag3if length(find(A(mA,1:(nA-1))==0))>length(N) disp('存在无穷多最优解');flag1=2;elsedisp('存在最优解');flag1=3;endsol=c1*val1';endelseif flag==1for j=1:(mA-1)if A(j,i)<=0flag2=1;elseflag2=0;break;endendif flag==1&&flag2==1disp('此线性规划问题存在无界解');sol=inf;val=inf;flag1=0;flag=0; %跳出while循环break;endmaxq=max(A(mA,1:(nA-1)));[m,nb]=find(A(mA,:)==maxq); %确定入基变量的纵坐标for s=1:(mA-1)if A(s,nb)>0temp(s)=A(s,nA)/A(s,nb);elsetemp(s)=10000;endendk=k+1;mino=min(temp);[n,mb]=find(temp==mino); %确定入基变量的横坐标if length(mb)>1mb=mb(1);endab=A(mb,nb);A2=A;for i=1:(mA-1)for j=1:nAif i==mbA(mb,j)=A2(mb,j)/ab;elseA(i,j)=A2(i,j)-A2(i,nb)*(A2(mb,j)/ab); endendendfor i=1:length(N)if i==mbN(i)=nb;endendfor i=1:length(N)c1(i)=C(N(i));endfor i=1:nAA(mA,i)=C1(i)-c1*A(1:(mA-1),i); endendendif sol~=inffor i=1:length(C)for j=1:length(N)if i==N(j) val(i)=val1(j); endendendend。

(完整word)Matlab实验报告

(完整word)Matlab实验报告

实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境.2.学习使用图形函数计算器命令funtool及其环境。

二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。

求下列函数的符号导数(1)y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x—4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。

从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(—x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x—1)/(x—2); 求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。

实验3 Matlab程序设计1实验报告

实验3 Matlab程序设计1实验报告

实验3 Matlab程序设计1实验报告
实验3 Matlab程序设计1自查报告。

在本次实验中,我学习了如何使用Matlab进行程序设计,并完
成了相应的实验任务。

在实验过程中,我遇到了一些困难,但通过
查阅资料和与同学讨论,最终顺利完成了实验。

首先,我学习了Matlab的基本语法和常用函数,包括变量的定义、数组的操作、条件语句和循环结构等。

在实验中,我成功地运
用了这些知识,编写了一些简单的程序来实现特定的功能。

其次,我学习了Matlab的绘图功能,包括如何绘制二维和三维
图形,以及如何对图形进行美化和标注。

通过实验,我掌握了
Matlab中绘图函数的使用方法,并成功地绘制了一些图形来展示实
验结果。

在实验过程中,我也遇到了一些问题。

例如,在编写程序时,
我经常会忘记Matlab的语法规则,导致程序出现错误。

此外,我在
绘图时也遇到了一些困难,比如不知道如何设置图形的颜色和线型。

但通过查阅Matlab的官方文档和向同学请教,我逐渐解决了这些问
题。

总的来说,本次实验让我对Matlab的程序设计和绘图功能有了更深入的了解,也提高了我的编程能力和解决问题的能力。

通过不断地练习和实践,我相信我会在Matlab编程方面取得更大的进步。

单纯形法的MATLAB实现

单纯形法的MATLAB实现

clearclcM=1000000;A=[3,2,-3,1,0;1,-2,1,0,1];%约束矩阵C=[-3,1,2,M,M,0];%价值矩阵B=[6,4]';%右端向量s=find(C<0);f=length(s);while(f)for k=1:length(s)x=find(A(:,s(k))>0);y=find(B(x)./A(x,s(1))==min(B(x)./A(x,s(1))));%选择的要有正元素if(length(x)+1==1)break;endendy=x(y);%找到的xj的行数aa=A(y,s(k));%找到的xjA(y,:)=A(y,:)./aa;B(y,:)=B(y,:)./aa;z=find(A(:,s(k)));%除去找到的行z(find(z==y))=[];for i=1:length(z);yz=-A(z(i),s(k));A(z(i),:)=A(z(i),:)+A(y,:)*yz;disp('*')B(z(i),:)=B(z(i),:)+B(y,:).*yz;enddisp('转换后')A=AB=BAB=[A,B];C=C+AB(y,:)*(-C(s(k)))s=find(C<0);vpa([A,B;C]);s=find(C<0);f=length(s);end-C(length(C))%最有解:max 2*x1+3*x2s.t. x1+2*x2<=84*x1<=164*x2<=12x1,x2>=0加入松驰变量,化为标准型,得到A=[1 2 1 0 0 8;4 0 0 1 0 16;0 4 0 0 1 12;2 3 0 0 0 0];N=[3 4 5];然后执行? [sol,val,kk]=ssimplex(A,N)就可以了。

注:基变量对应的基矩阵一定是单位阵。

(这一局限将在后面的升级是改善)% 求解标准型线性规划:max c*x;s.t. A*x=b;x>=0% 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b % N是初始的基变量的下标%输出变量sol是最优解%输出变量val是最优值,kk是迭代次数function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; %迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 % 已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 %? 问题有无界解disp('have infinite solution!');flag=0;break;endendif flag % 还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; %出基变量下标endend%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);endendendendend。

matlab程序设计实验报告

matlab程序设计实验报告

matlab程序设计实验报告Matlab程序设计实验报告引言:Matlab(Matrix Laboratory)是一种强大的高级编程语言和环境,广泛应用于科学计算、数据分析和工程设计等领域。

本实验报告旨在介绍我在Matlab程序设计实验中的学习和实践经验。

一、Matlab基础知识1.1 Matlab的安装与配置在实验开始前,我们首先需要安装Matlab并进行相应的配置。

Matlab的安装过程相对简单,只需按照官方指引进行操作即可。

配置方面,我们可以设置工作目录、界面风格、字体大小等,以提高工作效率。

1.2 Matlab的基本语法Matlab的语法类似于其他编程语言,但也有一些特殊之处。

例如,Matlab中的变量名不区分大小写,函数名则区分大小写。

此外,Matlab还具有丰富的数学函数库,可以方便地进行各种数值计算。

二、Matlab程序设计实践2.1 数值计算Matlab以其强大的数值计算能力而闻名,我们可以使用Matlab进行各种数学运算和数值计算。

例如,我们可以使用Matlab求解线性方程组、计算矩阵的特征值和特征向量等。

2.2 图像处理Matlab提供了丰富的图像处理函数,可以对图像进行各种操作和处理。

例如,我们可以使用Matlab读取图像文件、调整图像的亮度和对比度、进行图像滤波等。

此外,Matlab还支持图像的显示和保存,方便我们进行结果的展示和分析。

2.3 数据可视化Matlab提供了强大的数据可视化功能,可以将数据以图表的形式直观地展示出来。

我们可以使用Matlab绘制各种类型的图表,如折线图、散点图、柱状图等。

此外,Matlab还支持对图表的样式、标签、标题等进行自定义,以满足不同的需求。

三、实验心得与体会通过这次Matlab程序设计实验,我深刻体会到了Matlab在科学计算和工程设计中的重要性。

Matlab不仅提供了丰富的数学函数库和工具箱,还具备直观的图形界面和友好的交互环境,使得我们能够快速、高效地进行各种计算和分析。

Matlab数学实验报告

Matlab数学实验报告

实验一 Matlab基本操作1.实验课程名称数学实验2.实验项目名称Matlab基本操作3.实验目的和要求了解Matlab的基本知识,熟悉其上机环境,掌握利用Matlab进行基本运算的方法。

4.实验内容和原理内容:三角形的面积的海伦公式为:area=)s-sa--)()(s(csb其中: s=(a+b+c)/2原理:将一般数学问题转化成对应的计算机模型并进行处理的能力。

了解Matlab的基本功能,会进行简单的操作。

5.主要仪器设备计算机与Windows 2000/XP系统;Matlab等软件。

6.操作方法与实验步骤步骤:(1)在M文件编辑窗口输入以下程序,并以文件名”area_helen.m”保存:a= input(‘a=‘) ; b= input(‘b=‘) ; c= input(‘c=‘) ;s= (a+b+c)/2;area=sqrt (s* (s-a) * (s-b) * (s-c))(2)在命令窗口输入文件名“area_helen”,按回车键,即可运行上面的程序,输入三边长,立即可得三角形面积(3)第二题在命令窗口输入b=6;a=3;c=a*b,d=c-2*b(4) 按回车键,即可运行上面的程序7.实验结果与分析<1> a=3; b=4; c=5;时,aera=6 当a为3,b为4,c为5时,s=6,aera=6<2> c= 18,d=6,a为3,b为6时,c=18,d=6实验二 Matlab的数值计算1.实验课程名称数学实验2.实验项目名称Matlab的数值计算3.实验目的和要求了解一些简单的矩阵、向量、数组和多项式的构造和运算方法实例,懂得编写简单的数值计算的Matlab程序。

熟悉一些Matlab的简单程序,会用Matlab的工具箱,懂得Matlab的安装和简单的使用。

4.实验内容和原理内容:从函数表:)1(),5.0(),2( ,0x 1x 021x 1x f(x) 32-⎪⎩⎪⎨⎧≤≤<>+=f f f x x求设)1(),2( ,1211)(2-⎩⎨⎧≤>+=f f x xx x x f 求设 原理:利用矩阵、向量、数组、和多项式的构造和运算方法,用常用的几种函数进行一般的数值问题求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一:线性规划单纯形算法
一、实验目的
通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编
程的能力和技巧。

二、算法
对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始
基本可行解。

设初始基为B,然后执行如下步骤:
(1).解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值
1(1,2,...,)i m B b i -=i 以b 记的第个分量
(2).计算单纯形乘子w , B
wB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i R z c σ∈=-,R 为非基变量集合
若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一

(3).解k k By p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止
计算,问题不存在有限最优解,否则,进行步骤(4).
(4).确定下标r,使{}:0min ,0t r
rk tk tk b b tk y y t y y >=>且r B x 为离基变量。

k x 为进基变量,用k
p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。

对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。

对于极大化问题,应令
min{}k k j j z c z c -=-
四、计算框图
五、计算程序
function [x,f]=zuiyouhua(A,b,c)
size(A)=[m,n];
i=n+1:n+m;%基变量集合,后面m个松弛变量为初始基变量; N=1:n;%初始非基变量;
B=eye(m,m);
xb=b';
xn=zeros(m,1);
f1=0;
w=zeros(1,m);
z=-c;%初始判别数;
flag=1;
while(1)
[a,k]=max(z);%x(k)为进基变量;
if a<=0
flag=0;
break
else
y=inv(B)*A(:,k)
if y<=0
flag=0;
fprintf('不存在最优解')
break
end
t=find(y>0);
[a,r1]=min(b1(t)./y(t))
r=t(r1); %基变量中第r 个变量为退基变量;
i(:,r)=k
B(:,r)=A(:,k);%换基,即将原基中第r个变量换成第k个变量;
cb=c(:,i);%新的价值系数;
xb=inv(B)*b;
b0=xb;
x=zeros(1,n+m)
x(:,i)=xb'
f=cb*xb
z=cb*inv(B)*A-c;%可用z=cb*(B\A)-c,判别数.
end
end
六、数值实验及结果分析
求解线性规划问题:
⎪⎪⎩⎪⎪⎨⎧=≥≤-=+-=++--4
,3,2,1,012
216443033..3min 21421
3212
1i x x x x x x x x x t s x x i
在工作区输入:
A=[3,3,1,0;-4,-4,0,1;2,-1,0,0];
b=[30,16,12]';
c=[-3,1,0,0];
[x,f]=zuiyouhua(A,b,c)
x =
7.3333 2.6667 0 0 0 56.0000 0
f =
-19.3333
检验结果正确。

相关文档
最新文档