钻柱和井身结构的设计及应用
第二章 2-钻柱
二、钻柱的工作状态及受力
(一)钻柱的工作状态
钻柱主要是在起下钻和正常钻进这两种条件下工作的。 起下钻时,钻柱处于受拉伸的直线稳定状态。 正常钻进时,上部钻柱受拉伸而下部钻柱受压缩。
小钻压且井眼直时,钻柱是直的; 压力达到钻柱的临界压力值,下 部钻柱将失去直线稳定状态而发生弯 曲并与井壁接触于某个点(称为“切 点”),这是钻柱的第一次弯曲 (Bulkling of the first oder); 增大钻压,则会出现钻柱的第二 次弯曲或更多次弯曲。
级
105(G) 723.95 105000 930.79 135000 792.90 115000
135(S) 930.70 135000 1137.64 165000 999.74 145000
(3)钻杆接头及丝扣 钻杆接头是钻杆的组成部分,分公接头和母接头 钻杆接头壁厚较大,接头外径大于管体外径,用强度更
3、弯曲力矩(Bending Moment) 其大小与钻柱的刚度、 弯曲变形部分的长度及最大挠度等因 素有关。 4、离心力(Centrifugal force) 5、外挤压力(Collapsing Pressure):中途测试和卡瓦悬持。 6、纵向振动(Axial Vibration):钻柱中性点附近产生交变的 轴向应力。纵向振动和钻头结构、所钻地层性质、泵量不均匀、钻 压及转速当等因素有关。
式中: Fw —钻进时(有钻压)钻柱任一
截面上的轴向拉力,kN;
w —钻压,kN。
图2-36 钻柱轴向力分布
中性点:钻柱上轴向力为零的点(N点)(亦称中和点, Neutral Point )。
垂直井眼中钻柱的中性点高度可按下式确定:
LN
W qc K
式中: LN —中性点距井底的高度,m。
钻柱设计
第二节钻柱与下部钻具组合设计一、钻柱设计与计算合理的钻柱设计是确保优质、快速、安全钻井的重要条件。
尤其是对深井钻井,钻柱在井下的工作条件十分复杂与恶劣,钻柱设计就显得更加重要。
钻柱设计包括钻柱尺寸选择和强度设计两方面内容。
在设计中,一般遵循以下两个原则:第一,满足强度(抗拉强度、抗击强度等)要求,保证钻柱安全工作;第二,尽量减轻整个钻柱的重力,以便在现有的抗负荷能力下钻更深的井。
(一)钻柱尺寸选择具体对一口井而言,钻柱尺寸的选择首先取决于钻头尺寸和钻机的提升能力。
同时,还要考虑每个地区的特点,如地质条件、井身结构、钻具供应及防斜措施等。
常用的钻头尺寸和钻柱尺寸配合列于表2-21供参考。
表2-21 钻头尺寸与钻柱尺寸配合从上表可以看出,一种尺寸的钻头可以使用两种尺寸的钻具,具体选择就要依据实际条件。
选择的基本原则是:1.钻杆由于受到扭矩和拉力最大,在供应可能的情况下,应尽量选用大尺寸方钻杆。
2.钻机提升能力允许的情况下,选择大尺寸钻杆是有利的。
因为大尺寸钻杆强度大,水眼大,钻井液流动阻力小,且由于环空较小,钻井液上返速度高,有利于携带岩屑。
入境的钻柱结构力求简单,以便于起下钻操作。
国内各油田目前大都用127mm(5 in)钻杆。
3.钻铤尺寸决定着井眼的有效直径,为了保证所钻井眼能使套管或套铣筒的顺利下入,钻铤中最下部一段(一般应不少一立柱)的外径应不小于允许最小外径,其允许最小钻铤外径为允许最小钻铤外径=2×套管接箍外径-钻头直径当钻铤柱中采用了稳定器,可以选用稍小外径的钻铤。
钻铤柱中选用的最大外径钻铤应以保证在可能发生的打捞作业中能够被套铣为前提。
在大于241.3mm的井眼中,应采用复合钻铤结构。
但相邻两段钻铤的外径一般以不超过25.4mm为宜。
4.钻铤尺寸一般选用与钻杆接头外径相等或相近的尺寸,有时根据防斜措施来选用钻铤的直径。
近些年来,在下部钻具组合中更多的使用大直径钻铤,因为使用大直径钻铤具有下列优点:1)用较少的钻铤满足所需钻压的要求,减少钻铤,也可减少起下钻时连接钻铤的时间;2)高了钻头附近钻柱的刚度,有利于改善钻头工况;3)铤和井壁的间隙较小,可减少连接部分的疲劳破坏;4)利于放斜。
钻井工程设计(石油、煤层气)
地质条件
7)孔隙、裂隙发育地层:孔隙或裂隙大小,是确定堵漏
方法及施工工艺的重要依据。 8)地层温度梯度:高温地层,泥浆应具有良好的抗温性
能。冻土层或寒冷地区,采用抗低温泥浆,或采取必要的
保温措施。 9)地质年代、地层埋藏深度也是判断复杂情况、进行钻 井液设计的重要依据。如泥页岩地层,年代古老且埋藏较 深可能已失去水敏特性;石膏地层,200米以浅的石膏含 结晶水的几率很高,200米已深的石膏多不含结晶水。
(8)成本及材料预算;
(9)技术经济指标及时效分析。
钻井工程设计的基本方法
2、钻井工程设计前的基础资料 (设计资料收集)
1.地质资料
地质资料是钻井工程设计的第一手资料,在收集
地质资料时主要收集设计井的地质分层、地层岩
性、可钻性、研磨性、故障提示、地层倾角、地 层压力、破裂压力等。
钻井工程设计的基础资料
常用参数:
密度
流变参数:漏斗粘度、表观粘度、塑性粘度、
动切力、静切力 滤失量、泥饼厚度 pH值 含砂量、固相含量
(1)密度的确定
钻井液密度是确保安全、快速钻进和保护油
气层的一个十分重要的参数。
利用密度的作用,调节钻井液孔内静液柱压
套管尺寸与井眼尺寸选择及配合
2.套管和井眼尺寸的选择和确定方法
确定井身结构尺寸一般由内向外依次进行,首先确定生产 套管尺寸,再确定下入生产套管的井眼尺寸,然后确定中 层套管尺寸等,依此类推,直到表层套管的井眼尺寸,最 后确定导管尺寸。 生产套管根据采油方面要求来定。勘探井则按照勘探方要 求来定。 套管与井眼之间有一定间隙,间隙过大则不经济,过小会 导致下套管困难及注水泥后水泥过早脱水形成水泥桥。间 隙 值 一 般 最 小 在 9.5~12.7mm(3/8~1/2in) 范 围 , 最 好 为 19mm(3/4in)。
钻井工程课程设计
表A-1 钻井工程课程设计任务书一、地质概况29:井别:探井井号:设计井深:3265m 目的层:当量密度为:g/cm3表A-2设计系数石工专业石工(卓越班)1201班学生姓名:木合来提.木哈西图A-1 地层压力和破裂压力一.井身结构设计1.由于该井位为探井,故中间套管下深按可能发生溢流条件确定必封点深度。
由图A-1得,钻遇最大地层压力当量密度ρpmax=1.23g/cm³,则设计地层破裂压力当量密度为:ρfD=1.23+0.024+3245/H1×0.023+0.026.试取H1=1500m,则ρfD=1.23+0.024+2.16×0.023+0.026=1.33 g/cm³,ρf1400=1.36 g/cm³> ρfD 且相近,所以确定中间套管下入深度初选点为H1=1500m。
验证中间套管下入深度初选点1500m是否有卡钻危险。
从图A-1知在井深1400m处地层压力梯度为1.12 g/cm³以及320m属正常地层压力,该井段内最小地层压力梯度当量密度为1.0 g/cm³。
ΔP N=0.00981×(1.10+0.024-1.0)×320=0.389<11MPa所以中间套管下入井深1500m无卡套管危险。
水泥返至井深500m。
2.油层套管下入J层13-30m,即H2=3265m。
校核油层套管下至井深3265m是否卡套管。
从图A-1知井深3265m处地层压力梯度为1.23 g/cm³,该井段内的最小地层压力梯度为1.12g/cm³,故该井段的最小地层压力的最大深度为2170m。
Δp a=0.00981×(1.23+0.024-1.12)×2170=2.85Mpa<20 Mpa所以油层套管下至井深3265m无卡套管危险。
水泥返至井深2265m。
3.表层套管下入深度。
第4节 井身结构与钻井工艺.ppt
• 一、井字的发明 • 二、井身结构 • 三、钻井工艺
一、井字的发明
古人傍水而居,河流两岸成为了人类的发源地。当人类需要摆脱江河湖 沼等天然水源的限制,向更广阔的生存空间发展时,水井就应运而生了。 甲骨文中的井字是由井的形状演变而来,井字表示井的主体及井壁的形
状,井字是一口井的俯视图。
• 探井试油气主要是了解地层的真实情况和生产
能力,为勘探的情况和生产能力做出评价。探
井试油气一般采用分层测试,从下到上,试完 一层封闭一层。如果试油气有生产价值,可保 持该油气井,进行临时弃井作业。
4、 完井
• 5.完井试油气
• 一般情况下,对于有自喷能力的油层,通过在井口更换3~4 个不同直径的油嘴进行测试,测试时油嘴直径的更换应该由 小到大。每一油嘴测试的时间为2~3天,直到油井的产量和 井底压力稳定为止。每个油嘴都要测得日产油量、日产气量 、日产水量、含砂量、井底压力。最后还要用一个小直径的 油嘴测试,以便进行深井取样。 • 待这些工作完了之后,还要将压力计下到油层部位关井,测 压力恢复及地层压力。关井时间一般需要3~5天,然后将压 力计取到地面上来,并从压力计中取出压力记录卡片。最后 ,将3~4个不同油嘴取得的各项资料和压力恢复资料,进行 整理分析,从而可以评价油井的产油能力,计算油层渗透率 以及其他油层参数等。
钻井工艺
钻 进 工 程
下表 层 套管 注水 泥 施工 二开施 工
一 开 钻 进
三开施 工
井身结 构
3、 固井 • 套管的种类
• 按使用目的不同分为:
• 表层套管固井起的是“泥浆通路 ,油气门户”的作用。
• 技术套管固井,它起的是“巩固
后方,安全探路”的作用。 • 油层套管起的是“严密封隔,油 气门户”的作用。
钻井课设
一、井身结构设计1.1、钻井液压力体系1.1.1、最大泥浆密度ρmax=ρpmax+Sh (1-1)式中:ρmax-某层套管钻进井段中所用最大泥浆密度,g/cm 3.ρpmax-该井段中所用地层孔隙压力梯度等效密度,g/cm 3Sb-抽吸压力允许值得当量密度,取0.036 g/cm 3。
发生井涌情况时:ρfnk=ρpmax+Sb+Sf+HniHp max .Sk (1-2) 式中:ρfnk-第n 层套管以下发生井涌时,在井内最大压力梯度作用下,上部地层不被压裂所应有的地层破裂压力梯度,g/cm 3Hni-第n 层套管下入深度初选点,mSk-压井时井内压力增高值的等效密度,取0.06g/cm 3Sf-地层压裂安全增值,取0.03g/cm 3。
1.1.2 校核各层套管下到初选点深度Hni 时是否会发生压差卡套ΔPm=9.81Hmm (ρpmax+Sb-ρpmin )×10-3 (1-3) 式中:ΔPm-第n 层套管钻进井段内实际的井内最大静止压差,MPaρpmin-该井段内最小地层孔隙压力梯度等效密度,g/cm 3.Hmm-该井段内最小地层孔隙压力梯度的最大深度,mΔPN-避免发生压差卡套的许用压差,取12MPa 。
1.2 井身结构的设计根据邻井数据,绘制地层压力与破裂压力剖面图,如下图所示:图1-1 地层压力与破裂压力剖面图(1)油层套管下入深度初选点H2的确定由于井深为2160m ,所以确定油层套管的下入深度为2155m 。
(2)表层套管下入深度初选点H1的确定试预取H1i=390m ,由邻井参数得:ρpmax=1.1g/cm 3、Hpmax=2160m 。
以及发生井涌时,由公式1-2并代入各值得:ρf1k=1.1+0.036+0.03+3902160×0.06=1.498g/cm 3根据邻井数据可知390m 以下的最小破裂压力梯度为ρfmin=1.5g/cm 3,因为ρf1k<ρfmin 且相近,所以确定表层套管下入深度初选点为H1=390m 。
井身结构优化设计方法
一、引言
一、引言
随着石油工业的不断发展,钻井工程作为石油开采的关键环节,其技术进步 对于提高石油开采效率、降低成本具有重要意义。车66区块作为我国重要的油田 区块,其井身结构的优化设计及配套技术的研发显得尤为重要。本次演示将围绕 车66区块井身结构优化设计及配套技术展开研究,旨在提高钻井效率、降低钻井 成本,并为类似区块的钻井工程提供借鉴。
文献综述
可靠性分析法可以通过对井身结构的可靠性评估,实现结构的优化设计,但 需要基于大量的样本数据进行统计分析,计算成本较高。智能优化算法如遗传算 法、粒子群算法等,可以对井身结构进行全局寻优,但算法的效率和精度仍有待 提高。
设计目标
设计目标
井身结构优化设计的目标主要包括提高结构强度、降低成本、提高施工效率 等。具体来说,可以通过优化设计方法,使井身结构更加合理,提高其抗冲击、 抗腐蚀等性能,延长油气井的使用寿命;同时,可以降低材料的消耗,减少施工 成本,提高施工效率,实现对油气资源的有效利用。
通过对车66区块井身结构进行优化设计及配套技术的研究和应用,可以提高 钻井效率、降低钻井成本、保障钻井安全,为该区块的石油开采提供有力支持。 这些研究成果也可以为类似区块的钻井工程提供借鉴和参考。未来,随着技术的 不断进步和应用领域的拓展,相信钻井工程将会取得更加显著的成果和发展。
谢谢观看
井身结构优化设计方法
01 引言
03 设计目标 05 参考内容
目录
02 文献综述 04 设计方法
引言
引言
井身结构是油气井的重要组成部分,其设计质量和安全性直接关系到油气井 的稳定性和可靠性。随着石油工业的发展,对井身结构的设计要求也越来越高, 优化设计方法在井身结构中的应用也越来越受到。本次演示将围绕“井身结构优 化设计方法”展开介绍,旨在为相关领域的研究和实践提供有益的参考。
第二节 钻柱
第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。
它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。
(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头,由无缝钢管制成。
1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。
b.对焊连接,对应钻杆为对焊钻杆。
1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。
钻柱分析
钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与功用(一)钻柱的组成钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(二)钻柱的功用(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深。
(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试 ( Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头(3)规范:壁厚:9 ~ 11mm外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:第一类 5.486~ 6.706米(18~22英尺);第二类 8.230~ 9.144米(27~30英尺);第三类 11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12•丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。
•钻杆接头特点:壁厚较大,外径较大,强度较高。
•钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列•内平式:主要用于外加厚钻杆。
特点是钻杆通体内径相同,钻井液流动阻力小;但外径较大,容易磨损。
贯眼式:主要用于内加厚钻杆。
其特点是钻杆有两个内径,钻井液流动阻力大于内平式,但其外径小于内平式。
正规式:主要用于内加厚钻杆及钻头、打捞工具。
其特点是接头内径<加厚处内径<管体内径,钻井液流动阻力大,但外径最小,强度较大。
三种类型接头均采用V型螺纹,但扣型、扣距、锥度及尺寸等都有很大的差别。
井身结构设计与固井
• 下深:由目的层位置及完井方式而定
精选ppt
7
第二章 井身结构设计与固井
一、套管的分类及作用
3、中间套管—Technical Casing • 表层和生产套管间因技术要求而下,
可以是一层、两层或更多层 • 主要用来封隔不同地层压力层系或易
漏、喷、塌、卡等复杂地层
4、尾管(衬管)—Liner
在已下入一层技术套管后采用,只对裸
1998年底大庆、吉林、中原、胜利、辽河等10多油田套损 井达14000多口,若按每口井较低成本150万元计,仅套损直 接损失210亿元,还不计油井损坏停产损失。
2005年,套损严重油田累计套损井数和占投产井数比例: 大庆:8976口,占16%以上; 吉林:2861口,占30%以上; 胜利:3000多口,占10%以上; 中原:占投产井数23.3%; 并且各油田套损井数有上升趋势。
漏失压力剖面
• 6 个设计系数:
抽吸压力系数Sb:0.024~0.048 g/cm3
激动压力系数Sg:0.024~0.048 g/cm3
压裂安全系数Sf:0.03~0.06 g/cm3
井涌允量 Sk:0.05~0.08 g/cm3
压差允值 △P: △PN = 15~18 MPa
△P A = 21精~选23ppt MPa
课程回顾
完井概念:
完井是使井眼与油气储集层(产层、生产层) 连通的工序,是衔接钻井工程和采油工程而
又相对独立的工程,包括从钻开油气层开始,
到下生产套管、注水泥固井、射孔、下生产
管柱、排液,直至投产的系统工程。
完井工程内容:
钻开储集层(生产层); 下套管、注水泥固井,射孔、生产管柱、完井测试、防砂排液; 确定完井井底结构,使井眼与产层连通; 安装井底和井口装置,投产措施等;
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
含硫超深井钻具选型及应用
含硫超深井钻具选型及应用摘要:含硫超深井的钻具选型是超深井钻井中极为重要的一环,直接关系着钻探任务能否顺利实施。
本文从含硫超深井钻具选型面临的主要技术难题出发,提出钻具材料及性能、钻具加工、钻具管理等三方面技术对策,详述了钻具机械性能;同时以川深1井实际钻具选型为例,在初选Φ149.2mm 110s钻杆的基础上,对钻杆强度进行校核,获得了更高的抗拉余量,为处理井下复杂情况提供了较大空间,取得了很好的应用效果,该型钻具的成功应用可为国内类似井钻具选型提供借鉴。
关键词:川西;海相;超深井;高效钻井;井壁稳定随着勘探开发深入,国内石油企业开始向深层和超深层油气资源进军,深井、超深井钻井技术成为打开深层油气资源关键技术。
要成功打开深层、超深层油气通道,钻具成为发展深井、超深井钻井技术的关键环节,直接关系着井眼安全和高效开发[1-6]。
1含硫超深井钻具选型面临的主要难题1.1 钻柱悬重过重随着井深的增加,以及井眼轨迹和钻井液性能影响,提升钻具的悬重以随之增加,超过一定井深后,钻具抗拉强度余量将不能满足安全钻井需要。
1.2 钻具服役环境恶劣S气体,同时钻井液中的溶解超深井钻具所处环境主要为高温高压,高含H2氧、地层水中的cl-等使得钻具服役的环境十分恶劣。
1.3 疲劳失效增加超深井钻井中,钻具除受轴向力、离心力、摩擦力、扭矩、各种振动等复杂载荷外,还受恶劣的外界腐蚀环境影响,导致钻具疲劳失效增加。
1.4 水力性能降低随着井深增加,钻柱水力压耗也随之大幅增加,从而降低了水力性能。
2主要技术对策2.1 钻具材料及性能2.1.1 化学成分表1 化学成分要求(wt%)注:SS钻杆适用于钻井液柱压力不低于地层压力的钻井,su钻杆适用于欠平衡钻井。
Cr对金属材料抗腐蚀性能有重要影响, Cr含量:0.9%-1.3%。
2.1.2 材料组织性能钻杆管体微观组织为调质工艺(一般要求采用淬火加高温回火处理工艺)后形成的回火索氏体组织。
第二章第四节 井身结构设计1
井底压力随作业不同而变化: (1)静止状态,井底压力=环形空间静液压力; (2)正常循环时,井底压力=环形空间静液压力+环形空间压力损失; (3)用旋转防喷器循环钻井液时,井底压力=环形空间静液压力+环形空间压力损
失+旋转防喷器的回压,
(4)循环出气涌时,井底压力=环形空间静液压力十环形空间压力损失+节流器压 力; (5)起钻时,井底压力=环空静液压力+抽吸压力; (6)下钻时,井底压力=环空静液压力+激动压力; (7)空井时,井底压力=环空静液压力; (8)关井时,井底压力=环空静液压力+井口回压+气侵附加压力
mE max
H p max Hn
SK
溢流关井
Pd Pa Pd pd Pa pa
Pd+Php=Pp Pa+Pha=Pp
Pp
php
pha
pp
钻遇井涌时压力分析
正常钻井时
m p Sw
钻至Hx遇到井涌关井,套管压力pa,设井涌系数 Sk
pa 0.00981 Sk H x pa Sk 0.00981 Hx
Δ PN(Δ Pa)
Gf Gp
当量泥浆密度
井身结构设计
1、正常作业时(起下钻、钻进): 起钻: 最大钻井液密度:某一层套管的钻进井段中所用的最大钻井液密 度应不小于和该井段中的最大地层压力梯度当量密度与最大抽吸 压力梯度当量密度之和。
max P max Sw
ρmax:某层套管的钻进井段中所使用的最大钻井液密度,g/cm3; ρpmax该井段的最大地层压力梯度, g/cm3; Sw:考虑到上提钻柱时抽吸作用使井底压力降低,为了平衡地层压力 所加的附加钻井液密度, g/cm3。Sw=0.024-0.048 g/cm3 .
深井和超深井钻井技术全套
深井和超深井钻井技术全套深井、超深井钻井技术问题主要包括:复杂深井井身结构及套管柱优化设计,深井高效破岩及钻井参数优选技术,深井用系列高效钻头,深井钻井装备以及其他配套技术在深井中的应用等问题。
一、复杂深井井身结构及套管柱优化设计1.井身结构设计传统的井身结构设计方法对生产井和探井没有区分,都是自下而上进行设计,这种设计可以使所设计的套管层次最少,每层套管下入的深度最浅,节省成本。
对于深井钻井,尤其是深探井钻井来说,一般对所钻地区的情况掌握不清,要切实保证钻达目的层、提高深井钻井的成功率,就必须有足够的套管层次储备,以便一旦钻遇未预料到的复杂层位时能够及时封隔,并继续钻进。
但目前的套管、钻头系列有限,只能有2~3层技术套管,只能封隔钻井过程中的2~3个复杂层位。
因而,希望每一层套管都能尽量发挥其作用,希望上部裸眼尽量长些,上部大尺寸套管尽量下得深一些,以便在下部地层钻进时有一定的套管层次储备和避免小井眼完井。
自上而下的设计方法能很好地体现上述想法,可以使设计的套管层次最少,每层套管下入的深度最深,从而有利于保证实现钻探目的,顺利钻达目的层位。
自上而下的设计方法的基本过程是:根据裸眼井段必须满足的约束条件,首先从地表开始向下确定表层套管的下入深度,然后向下逐层设计每一层技术套管的下入深度,直至目的层位裸眼井段必须满足的约束条件均为式中i一—计算点序号,在设计程序中每米取一个计算点;Pmmax ------ 裸眼井段的最大钻井液密度,g/crrP; Ppmax——裸眼井段钻遇的最大地层孔隙压力系数,g/cm3;Sb——抽吸压力系数,g/cm3;Pcmax一—裸眼井段的最大井壁稳定压力系数,g/cm3;Ppi——计算点处的地层孔隙压力系数,g∕cm3;Hi——计算点处的深度,m;△P——压差卡钻允值,MPa;Sg——激动压力系数,g/cm3;Sf——地层破裂压力安全增值系数,g/cm3;Pfi——计算点处的地层破裂压力系数,g∕cm3;Hmax ----- 裸眼井段的最大井深,m;Sk一一井涌允量系数,g/cm3。
常见钻具组合及定向井
一、满眼钻具组合又称刚性配合钻具或刚性满眼钻具,是一种安装在钻柱下部的刚度较大而且井径与钻柱外径之间间隙较小的防止井斜角和井眼曲率变大的一种钻具组合。
刚性满眼钻具一般是由几个外径与钻头直径相近的扶正器与一定长度外径较大的钻铤所组成。
它的防斜原理是在钻头以上的下部钻柱上安装一定数量的扶正器,以扶正合钻铤;提高下部钻柱的刚度,减少其弯曲程度,以消除钻头的严重倾斜,使其能减小和限制由于钻柱弯曲而产生的增斜力,同时扶正器能支撑在井壁上,抗衡地层自然造斜力,以达到控制井斜在最小范围内变化的目的。
为了发挥满眼钻具的防斜作用,在钻具上至少要有三个稳定点,除在靠近钻头处有一个扶正器外,其上面应再安放两个扶正器才能保持有三点接触井壁。
如果只有两点接触,钻柱就能循沿一条曲线,不能保证井眼的直线性。
如果有三点接触,就能保证井眼的直线性和限制钻头的横向移动。
具体如下:1.在垂直或接近垂直的井眼中钻具的防斜作用:当钻具在垂直或接近垂直的井眼中工作时,它的作用是保持井眼沿直线方向加深。
上扶正器能抵消由于上扶正器以上的钻柱弯曲所产生的横向力,使上扶正器以下的钻柱居中,同时也帮助下扶正器抵消地层横向力。
下扶正器的作用抵消地层横向力,限制钻头的横向移动,当地层造斜力不大时,满眼钻具能保持刚直居中状态,使钻头沿铅直方向钻进。
2. 增斜时钻具的防斜作用:当钻进时井斜较大的地层时,满眼钻具能有力地抵抗地层横向力,减小井斜的变化。
在地层横向力的作用下,下扶正器和钻头靠向井壁高的一侧,抵抗地层横向力,限制钻头横向移动。
同时地层横向力势必要扭弯下扶正器上的短钻铤,由于钻铤刚度大,能有力地抵抗此地层的横向力。
中扶正器也帮助中扶正器以下的钻柱抵抗地层横向力。
因此,限制了钻头的横向移动和侧斜。
在已斜井眼内,钻具还有一个纠斜作用,这是由于上扶正器以上的钻铤因自重的作用靠在井壁低侧,并以上扶正器为支点将力下传,作用于上扶正器下的一根钻铤上有一个弯矩,此弯矩使中扶正器靠井壁高的一侧,再以中扶正器为支点将力下传使钻头趋向于井壁低的一侧,产生一个纠斜力。
井身结构设计
5、井身结构设计方法及步骤 图解法:
依据两个压力剖面, 以保证钻进时井内最大压
力不压裂最薄弱的裸露地
层为原则,从全井最大地
层压力梯度开始,由下向
上确定套管的层次和各层 套管的下深,同时考虑地 质必封点。
28
5、井身结构设计方法及步骤 图解法:
① 各层套管(油层套管除外)下入深度初选点Dn的确定
② 校核各层套管下到初选点深度Dni时是否发生压差卡钻
③ 当中间套管下入深度浅于初选点(Dn<Dni)时,
则需要下尾管并要确定尾管下入深度Dn+1
④ 必封点的确定
29
5、井身结构设计方法及步骤
1、求中间套管下入深度初选点D21 最大钻井液密度ρmmax→由起钻时的压力平衡条件确定
依据:起钻时,井内压力要大于地层压力。
m Sb p
取临界状态
•三个剖面:
孔隙压力剖面(坍塌压力剖面) 破裂压力剖面(漏失压力剖面) 地层岩性剖面及其故障提示
19
4、井身结构设计中所需要的基础数据 2)工程类数据
•六个设计系数:
抽吸压力系数Sb:上提钻柱时,由于抽吸作用使井内液 体 压力降低的值,用当量密度表示, (0.024~0.048 g/cm3) 激动压力系数Sg:下放钻柱时,由于钻柱向下运动产生 的激动压力使井内液柱压力的增加值,用当量密度表示, (0.024~0.048g/cm3)
从地区大量的抽吸和激动压力数据统计而来: --由该地区所有井每趟起下钻所产生的抽吸和激动压力,折 合成当量密度,然后进行统计分析来确定取值范围; 建立抽吸和激动压力计算模型。 20
4、井身结构设计中所需要的基础数据
压裂安全系数Sf:为避免上部套管鞋处裸露地层被压 裂的地层破裂压力安全增值,用当量密度表示;
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
简述钻柱的主要功用
钻柱的主要功用1. 引导和支撑钻井作业钻柱是一种用于引导和支撑钻井作业的工具。
在油气勘探和开发过程中,通过钻井作业将钻头沿着井孔逐渐向地下深入,以获取地质信息、采集样品或开采油气资源。
钻柱作为连接钻头和地面设备的重要组成部分,具有以下几个主要功用:a. 传递扭矩和推力钻柱能够传递地面设备所提供的旋转扭矩和推力到钻头,实现对地层的切削和进给。
在旋转时,通过旋转传动装置将旋转动力传递给钻柱,使其带动钻头进行切削;而在进给时,则通过推进装置将推力传递给钻柱,使其向下推进。
b. 支撑井壁钻柱与井壁之间形成一定的间隙,并通过润滑剂来减小与井壁的摩擦。
这种设计可以使得钻柱在旋转和进给过程中能够顺利地穿过井壁,并支撑起井壁,防止井壁塌陷。
c. 传递泥浆和工具钻柱内部通道可以传递泥浆和各种工具。
泥浆是钻井过程中的重要介质,它通过钻柱的内部通道进入钻头,冲刷并带走切削产物,同时冷却和润滑钻头。
钻柱还可以传递各种工具,如测井仪器、录井仪器等,用于获取地质信息或进行其他相关操作。
d. 承受地层压力在钻井作业过程中,地层会对钻柱施加一定的压力。
这些压力包括地层自身的重力、地层岩石的应力以及地层流体的压力等。
钻柱需要具备足够的强度和刚度来承受这些压力,并保证作业的安全进行。
2. 分类和结构根据用途和结构特点的不同,钻柱可以分为不同类型:a. 钢丝绳钻柱钢丝绳钻柱由多股金属丝绳编织而成,其特点是轻便、柔软。
它主要用于浅层钻井作业,如水井钻探、地质勘探等。
由于其柔软性,钢丝绳钻柱在深井作业中的承载能力较低。
b. 钻杆钻柱钻杆钻柱由多节钻杆连接而成,其特点是刚性好、承载能力大。
它主要用于深井油气勘探和开发作业。
在实际应用中,通常会根据作业需求选择合适的材料和连接方式,以提高钻柱的强度和耐腐蚀性能。
c. 钢管钻柱钢管钻柱由多段无缝或焊接的钢管组成,其特点是刚性好、承载能力大、耐腐蚀性能好。
它主要用于特殊环境下的油气勘探和开发作业,如海洋油气勘探、高温高压井等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐荣强
中海石油基地集团监督监理技术公司
2006年12月5日
主要内容 钻柱设计及强度校核 海洋常用钻具组合 井身结构设计及强度校核 海洋常用井身结构
2
2
钻柱组成
钻杆:普通钻杆和加 重钻杆; 钻铤、稳定器、随钻 震击器、减震器、扩 眼器等; 马达、 MWD、LWD 等。
3
12
12
打捞技术的操作极限与计算
震击 求被卡钻杆柱的扭转和拉伸组合下的最大扭矩:
13
13
钻杆的双轴载荷
在深井、超深井应考虑钻杆要承受双轴载荷一一拉伸载荷和挤压 力的作用。 钻杆的抗挤强度与套管一样应进行修正,利用双轴应力椭圆圈可 求出在拉伸载荷作用下钻杆的抗挤强度与无拉伸载荷时抗挤强度 (名义抗挤强度)的比值。
超拉余量法 安全系数法
考虑卡瓦挤毁钻杆的设计系数法
7
7
钻杆柱的设计与计算
抗挤强度:钻杆测试或被迫用钻杆完井,当钻杆内被掏空,而管外 是钻井液柱,或钻杆内有密度较低的地层流体,管内外的压差必然 对钻杆造成一个外挤力。为防止钻杆管体被挤扁,钻杆柱受最大挤 压力处的挤压力应小于该处钻杆的最小抗挤压力,确定允许外挤压 力应除以适当的安全系数:
22
22
井身结构设计的主要原则
能有效的保护油气层,使不同压力梯 度的油气层不受钻井液损害。 能避免漏、喷、卡等复杂情况发生, 为全井顺利钻进创造条件,缩短钻井 周期。 钻下部高压地层时所用的较高密度钻 井液产生的液柱压力,不致压漏上一 层套管鞋处薄弱的裸漏地层。 下套管过程中,井内钻井液液柱压力 与地层压力之差,不致产生卡套管事 故。 满足采油气工艺和增产措施的要求。
14
14
井斜的限制
疲劳损坏——狗腿严重度的限制
纯疲劳损坏一一这种损坏事先没有 任何明显的原因; 伤痕疲劳损坏一一伴随着机械伤痕 而产生的损坏; 腐蚀疲劳损坏——由腐蚀引起初始 伤痕的损坏。
计算方法
15
15
防斜钻直井的工艺技术
掌握和了解作业海区的地质情况 制定合理的井斜控制计划 严格执行技术措施,打直上部浅井段: 待平潮开钻;海底底盘安装必须按标准要求,保证安装质量。 尽量采用大尺寸钻铤和增加钻铤长度,采用大钟摆钻具控制 ; 控制钻压,在钻26英寸井眼时钻压控制在钻铤重量的30~40%,在钻171/2 英寸井眼时钻压可控制在钻铤重量的40~50%; 加强测斜,及时掌握井斜变化,以便调整防斜措施; 坚持短途起下钻,保持井眼规则,防止井塌和缩径,清除卡钻隐患,保证防 斜钻具组合的顺利工作。 带纠斜钻具,如:Power-Vertical。 采用不同的下部钻具组合: 能有效地控制井斜全角变化率及井斜角,从而保证井身质量。 钻头工作的稳定性高,能施加较大的钻压,有利于提高钻速。 组合应尽量简化,有利于顺利起下钻和降低防斜费用。 在易斜海区使用PDC钻头。
外挤压力:载API常规套管柱设计中按照最危险情况考虑,即认 为套管内没有液柱压力的全掏空状态。 内压力
24
24
井身结构的要求
保证井眼系统压力平衡,不出现喷漏同在一裸眼中,即钻下部高压地层时用 的较高密度的钻井液产生的液柱压力,不会压漏上部裸露的地层。 井内钻井液液柱压力和地层压力之间的压差不宜过大,以免发生压差卡钻。 为保证安全钻进,必须用套管封住复杂地层井段,如易漏、易垮塌、易缩径 和易卡钻等井段。 探井,特别是地层压力还没有被掌握的井,应设计一层套管作为备用,以保 证井眼能够钻到设计的深度。 对钻探多套压力系统的井,应采用多层套管程序,以保护油气层不受钻井液 污染和损害。 对高压油气井,套管应下至高压油气层顶部;对占潜山油气井,套管应下至 风化壳层顶部。 如果海底调查资料证实有浅层气,原则上应要求地质部门更改井位,避开浅 层气,否则应具备井眼控制能力才钻开,设计的套管坐于浅气层的顶部,安 装好井口控制系统之后才钻开。
3
钻杆柱的设计与计算
设计参数: 预计钻柱下入的总深度; 井眼尺寸; 预计的钻井液密度; 要求的抗拉安全系数或超拉极限。 要求的抗挤安全系数。 钻铤的长度、外径、内径和单位重量。 要求的钻杆规格和检验等级。
4
4
钻柱设计与计算
钻铤的位置
鲁宾斯基 “中性点”理论,即以钻柱不受拉力和不受压力的中性 点为界将钻柱分为上下两段,上段钻柱在钻井液中的重量等于 大钩载荷,下段钻柱在钻井液中的重量等于钻压。设计确定钻 铤长度时应保证中性点始终处于钻铤柱上。
10
10
临界转速的限制
引起钻柱振动的临界转速是造成钻杆弯曲、过度磨损、迅 速损坏和疲劳失效的原因。 临界转速随钻柱和钻铤的长度、规格以及井眼尺寸不同而 变化。 现场试验证明:在临界状态下维持一个恒定的转速转动需 要过大的动力,指重表会有显示。这种情况再加上地面观 察到的振动(跳钻)现象便能提醒钻井人员:钻柱转速处 于临界范围之内。
25
25
套管尺寸与井眼尺寸选择
1. 设计中考虑的因素
生产套管尺寸应满足采油方面要求。根据生产层的产能、油管大小、增产措施及 井下作业等要求来确定。 对于探井,要考虑原设计井深是否要加深,地质上的变化会使原来的预告难于准 确,是否要求井眼尺寸上留有余量以便增下中间套管,以及对岩心尺寸要求等。 要考虑到工艺水平,如井眼情况、曲率大小、井斜角以及地质复杂情况带来的问 题。并应考虑管材、钻头库存规格等的限制。
通常采用改变转速和钻压的方法来消除振动(跳钻)现象。
11
11
打捞技术的操作极限与计算
遇卡
在正常情况下提起被卡的钻杆柱时不应超过由API钻杆的分类系统所导 出的极限载荷 ; 在提起遇卡的钻杆时,应考虑由于钻杆悬挂在钻井液中的自重引起的伸 长量,并用适当的公式计算钻杆自由状态和遇卡时的伸长量。 在拉力作用下被卡钻杆柱的伸长量和自由长度之间的关系为:
钻铤长度的确定
5
5
钻杆柱的设计与计算
抗拉强度:按静态拉伸载荷进行的钻柱抗拉强度设计的目的是要 求最上部的钻杆有足够的强度来承受全部钻柱(包括钻杆、钻铤 、稳定器、钻头等)在钻井液中的重量。该载荷可按下面的公式 计算(钻头、稳定器的重量计入钻铤重量)。
6
6
钻杆柱的设计与计算
抗拉强度设计应同时用三种方法进行抗 拉强度计算:
26
套管尺寸与井眼尺寸选择
81/2
27
27
隔水导管
套管柱种类
常用尺寸为30"、24"和20",入泥深度一般为30~100米。 其作用是隔离海水,建立循环通道、抵抗海流冲击、安装井口头并支撑防喷器组和井口头 以下导管承受表层以下各层套管柱的重量。
23
套管柱设计的原则
根据套管柱在井内所受的外载,正确选择套管的钢级 和壁厚,使之既要有足够的强度,以保证下入井内的 套管不断、不裂、不变形,又要符合节约钢材、降低 成本的目的。 轴向拉力
① 套管本身自重产生的轴向拉力 ② 井眼弯曲产生的附加拉力 ③ 套管内的水泥浆使套管柱产生的附件拉力 ④ 其它附加拉力。
2. 套管和井眼尺寸的选择和确定方法
确定井身结构尺寸一般由内向外依次进行,首先确定生产套管尺寸,再确定下入 生产套管的井眼尺寸,然后确定中层套管尺寸等,依此类推,直到表层套管的井 眼尺寸,最后确定导管尺寸。 生产套管根据采油方面要求来定。勘探井则按照勘探方要求来定。 套管与井眼之间有一定间隙,间隙过大则不经济,过小会导致下套管困难及注水 泥后水泥过早脱水形成水泥桥。间隙值一般最小在9.5‾12.7mm(3/8‾1/2in)范围 26 ,最好为19mm(3/4in)。
20
20
主要内容
钻柱设计 海洋常用钻具组合 井身结构设计 海洋常用井身结构
21
21
井身结构设计
定义
套管层次、套管下入深度以及井眼尺寸(钻头 尺寸)与套管尺寸的配合。
目的
保证安全、优质、快速和经济的钻至目的层。
内容
① 下入套管层数; ② 各层套管的下入深度; ③ 选择合适的套管尺寸与钻头尺寸组合。
一开钻进
二开钻进
三开钻进
四开钻进
12-1/4" 12-1/4"CONE-BIT+X/O+8"DC1+12-1/4"STB+8"F/V+8"DC2+12-1/4"STB +8"DC3+8"(F/J+JAR)+X/O+5"HWDP14 8-1/2" 8-1/2"PDC-BIT+6-3/4"PDM(1°/螺旋翼扶正器209mm)+8-1/2"STB+6-1/2"F/V +6-1/2"DC5+6-1/2"(F/J+JAR)+5"HWDP14
16
16
主要内容
钻柱设计 海洋常用钻具组合 井身结构设计 海洋常用井身结构
17
17
常 用 5” 钻 杆 性 能
18
18
常用探井钻具组合
钻#34; 17-1/2"
26"CONE-BIT(RING)+36"HOLE-OPENNER +9”DC3+X/O+8"(F/J+JAR)+X/O+5"HWDP 26"CONE-BIT(RING) +F/V+9"DC2+X/O+26"STB+X/O+8"DC4+8"(F/J+JAR) +X/O+5"HWDP14 17-1/2"PDC-BIT+X/O+9-5/8"PDM(0.75°/螺旋翼扶正器438mm)+9"S.DC1+171/2"STB+8"F/V(RING)+8"DC4+8"(F/J+JAR)+X/O 12-1/4"PDC-BIT+9-5/8"PDM(0.75°/螺旋翼扶正器305mm)+9"S.DC1+X/O +12-1/4"STB+8"F/V(RING)+8"DC5+8"(F/J+JAR) +X/O+5"HWDP14