矢量分析与场论课后答案..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量分析与场论
习题1
1.写出下列曲线的矢量方程,并说明它们是何种曲线。
()1x a t y b t cos ,sin ==
()
2x t y t z t 3sin ,4sin ,3cos ===
解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。
()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面
2223x z +=之交线,为一椭圆。
4.求曲线3
2
3
2,,t z t y t x =
==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 32
3
2+
+= 则其切向矢量为k t tj i dt
dr
222++= 模为24221441||t t t dt
dr
+=++= 于是切向单位矢量为2
22122||/t k
t tj i dt dr dt dr +++=
6.求曲线x a t y a t z a t 2
sin ,sin 2,cos ,===在t π
4
=
处的一个切向矢量。
解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++
切向矢量为r
a ti a tj a tk t
τd sin22cos2sin d ==+- 在t π
4
=
处,t r ai a
k t
π
τ4
d 2d 2
=
=
=- 7.求曲线t t z t y t x 62,34,12
2
-=-=+= 在对应于2=t 的点M 处的切线方程和法平面方程。
解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r
-+-++=
在2=t 的点M 处,切向矢量k j i k t j ti dt
dr t t 244])64(42[22
++=-++==
==τ
于是切线方程为
1
4
2525,244545+=
-=-+=-=-z y x z y x 即 于是法平面方程为0)4()5(2)5(2=++-+-z y x ,即 01622=-++z y x
8.求曲线r ti t j t k 2
3
=++上的这样的点,使该点的切线平行于平面x y z 24++=。 解:曲线切向矢量为dr
i tj t k dt
τ223=
=++, ⑴ 平面的法矢量为n i j k 2=++,由题知
()
()i tj t k n i k t t j τ221432230=+⋅++⋅+++== 得t 1
1,3
=--
。将此依次代入⑴式,得k j i k j i t t 27
19131|
,|3
11-+-=-+-=-
=-=ττ
故所求点为()11
11,11,,,3927⎛⎫---- ⎪⎝⎭
习题2
1.说出下列数量场所在的空间区域,并求出其等值面。
()1u Ax By Cz D
1
;=
+++
()2u arc
=
解:()1场所在的空间区域是除Ax By Cz D 0+++=外的空间。 等值面为
01
11
1=-+++=+++C D Cz By Ax C D Cz By Ax 或为任意常数)(01≠C ,这是与平
面Ax By Cz D 0+++=平行的空间。
()2场所在的空间区域是除原点以外的z x y 222≤+的点所组成的空间部分。
等值面为)0(,sin )(2
2
2
2
2
2
≠++=y x c y x z ,
当c sin 0≠时,是顶点在坐标原点的一族圆锥面(除顶点外); 当c sin 0=时,是除原点外的xOy 平面。
2.求数量场x y u z
22+=经过点()M 1,1,2的等值面方程。
解:经过点()M 1,1,2等值面方程为
x y u z 2222
1112
++===,
即z x y 2
2
=+,是除去原点的旋转抛物面。
3.已知数量场u xy =,求场中与直线x y 240+-=相切的等值线方程。 解:设切点为()
x y 00,,等值面方程为xy c x y 00==,因相切,则斜率为 2
1
00-=-
=x y k ,即002y x = 点()
x y 00,在所给直线上,有
x y 00240+-=
解之得y x 001,2== 故2=xy
4.求矢量2
2
2
A xy i x yj zy k =++的矢量线方程。 解 矢量线满足的微分方程为
A dr 0⨯=, 或
dx dy dz
xy x y zy 222
== 有.,
z
dz x dx ydy xdx ==