各类温度变送器的工作原理

合集下载

温度变送器的原理及应用图

温度变送器的原理及应用图

温度变送器的原理及应用图1. 温度变送器的概述温度变送器是一种将温度信号转换为标准电信号输出的设备。

它能够将温度传感器所采集到的温度信号转换成标准信号(如4-20mA、0-10V等),并输出给控制系统进行监测、控制和数据采集等用途。

温度变送器广泛应用于工业自动化领域,如冶金、化工、电力等行业。

2. 温度变送器的工作原理温度变送器的核心部件是温度传感器和信号转换电路。

温度传感器主要有热电偶、热电阻和半导体温度传感器等。

当温度传感器被置于被测物体上时,温度变送器会通过传感器采集到温度值,并将该温度值转换为标准电信号输出。

温度传感器采集到的温度信号首先经过放大电路放大,然后再经过线性化电路进行电信号的线性化处理。

接着,信号转换电路将处理好的信号进行电流/电压转换,并将其输出给控制系统。

控制系统通过对接收到的信号进行处理,并根据需要进行控制操作。

3. 温度变送器的应用图示下图展示了一个典型的温度变送器的应用图,图中标注了各部件的名称和功能。

+--------------+| || 电源供应单元 +---->| | 给变送器供电+----+---------+|||+----+---------+| || 温度传感器 || |+----+---------+|||+----+---------+| || 信号转换电路 | ----> 输出标准信号给控制系统| |+----+---------+4. 温度变送器的优势和应用领域温度变送器具有以下优势: - 提供稳定、可靠的温度测量和控制。

- 支持远距离传输和远程监测。

- 具备防护性和防腐蚀性能,适合恶劣环境使用。

- 方便安装和维护。

温度变送器的应用领域包括但不限于: - 工业过程控制:如化工厂中的温度监测和控制。

- 环境监测:如空调系统中的温度监测和控制。

- 制造业:如烤箱温度的控制和监测。

总结:温度变送器是一种将温度信号转换为标准电信号输出的设备,它的工作原理是通过温度传感器采集温度信号,并经过放大电路和线性化电路进行处理,最后通过信号转换电路输出给控制系统。

pt100温度变送器原理

pt100温度变送器原理

PT100温度变送器是一种将温度信号转换为工业标准化输出信号(如4~20毫安)的温度装置。

它主要由传感器和信号转换器两部分组成,其中传感器部分为PT100热电阻,也称为热电阻温度变送器;信号转换部分则由采集模块、信号处理和转换单元组成。

PT100温度变送器的工作原理是利用金属导体材料电阻值随温度变化的特性,对温度和湿度相关的参数进行检测。

具体来说,当PT100热电阻受到环境温度变化时,其阻值会随之发生变化,这个变化的阻值经过测量电路转换成相应的电压信号,再经过放大、隔离、线性校正等处理后,输入V/I转换电路转换成标准4-20mA或0-10V信号输出。

输出的电信号与所测量的温度值成线性关系,从而实现对温度的测量和控制。

PT100温度变送器的测量精度较高,一般可达±0.2℃。

在一定的测温范围内,它也可以测量物体内部的温度分布。

但需要注意的是,对于运动体、小目标或热容量很小的对象,PT100温度变送器的测量误差可能会较大。

总体而言,PT100温度变送器具有集温度检测与信号处理为一体、标准接插件出线、体积小巧、线性化输出4~20毫安标准信号等优点,因此在工业过程温度参数的测量和控制中得到了广泛应用。

变送器工作原理

变送器工作原理

变送器工作原理变送器是一种用于传输和转换信号的重要设备,广泛应用于工业自动化领域。

它的主要作用是将一种形式的信号转换成另一种形式,从而实现不同设备之间的信号传递和匹配。

本文将介绍变送器的工作原理以及其在工业自动化中的应用。

一、变送器的基本原理1. 信号转换变送器主要通过信号转换来实现不同设备之间的通信。

它可以将一种形式的信号(如温度、压力、流量等)转换成标准的电信号(如电流、电压等),以便于在控制系统中进行处理和调节。

2. 信号调节变送器还可以对传感器采集到的信号进行调节,以适应控制系统的要求。

例如,当传感器采集到的信号范围过大或过小时,变送器可以通过增益和偏置的调节来使信号范围符合控制系统的要求。

3. 信号隔离变送器还具有信号隔离的功能,可以将输入信号和输出信号之间进行隔离,避免设备之间的干扰对信号传输和处理产生影响。

二、常见变送器类型及其工作原理1. 温度变送器温度变送器是应用最为广泛的一种变送器。

它通过温度传感器采集到的信号,经过放大和线性化处理后,转换成标准的电流或电压信号,以便于控制系统进行温度的检测、显示和控制。

温度变送器的工作原理主要包括两个方面:- 温度传感器信号采集:温度变送器通常使用热电偶或热敏电阻作为温度传感器,通过采集温度传感器所产生的微小电信号来获取温度值。

- 信号处理和转换:温度传感器采集到的微小电信号需要经过放大、线性化等处理,以提高信号的稳定性和可靠性,并转换成标准的电流或电压信号,以便于控制系统读取和处理。

2. 压力变送器压力变送器是一种将压力信号转换成标准电信号的设备。

它通过压力传感器采集到的压力信号,经过放大、线性化和调节等处理后,转换成标准的电流或电压信号,以便于控制系统进行压力的检测、显示和控制。

压力变送器的工作原理主要包括两个方面:- 压力传感器信号采集:压力变送器通常使用压电传感器或压阻传感器作为压力传感器,通过采集压力传感器所产生的微小电信号来获取压力值。

温度变送器作业指导书

温度变送器作业指导书

温度变送器作业指导书
一、目的:帮助和指导班组有效处理温度变送器故障,对存在的危险进行分析,并采取
相应的安全措施进行规避,以确保作业安全和质量。

二、适用范围:各装置中的温度变送器。

三、工作原理:
温度变送器是与各种热电偶或热电阻配合用,将温度信号或直流毫伏信号转换成0~10mA,4~20mA,或1~5V统一的直流信号输出。

其原理框图如下:
四、作业步骤:
五、常见故障及处理方法:
六、使用工具和劳保要求:
使用的工具:个人工具、万用表、824校验仪、干净抹布或塑料薄膜;
劳保要求:工作服着装,戴好安全帽、护目眼睛和劳保手套(或防酸碱手套)、呼吸器;。

一体化温度变送器的工作原理

一体化温度变送器的工作原理

一体化温度变送器的工作原理
一体化温度变送器工作原理如下:
1. 传感器:温度变送器内部集成了一个或多个温度传感器,常见的传感器包括热电偶和热敏电阻。

这些传感器能够感知所测量物体的温度变化。

2. 信号转换:温度变送器将传感器感知到的温度变化转换为相应的电信号。

对于热电偶来说,变送器通过测量热电偶两个不同金属之间的电势差,并将其转换为温度信号。

对于热敏电阻来说,变送器通过测量电阻值的变化来确定温度。

3. 放大和补偿:温度变送器采用放大器来增强电信号的幅度,并对信号进行补偿以消除温度传感器和变送器本身带来的误差。

这一步骤确保输出信号的精度和稳定性。

4. 输出信号:经过放大和补偿后,温度变送器将结果转换为标准的电信号输出。

常见的输出信号包括模拟信号(如4-20mA、0-10V)和数字信号(如RS485、HART协议等)。

5. 供电:温度变送器通常需要外部供电以驱动内部电路工作。

常见的供电方式包括直流电源(如24V DC)或交流电源(如220V AC)。

综上所述,一体化温度变送器通过传感器感知温度变化,经过信号转换、放大和补偿,最终将结果转换为电信号输出。

这样,用户可以方便地获取和监控被测物体的温度信息。

温度变送器的原理及应用实验

温度变送器的原理及应用实验

温度变送器的原理及应用实验1. 温度变送器的概述温度变送器是一种用于测量和转换温度信号的设备。

它可以将温度信号转换为标准的电流信号或电压信号,从而方便传输和处理。

温度变送器通常由温度传感器和信号转换器组成,具有广泛的应用领域,包括工业自动化、仪器仪表、环境监测等。

2. 温度变送器的工作原理温度变送器的工作原理基于热电效应、热敏效应或热电阻效应,具体取决于所采用的温度传感器的类型。

以下是几种常见的温度传感器及其工作原理:2.1 热电偶热电偶是利用两种不同金属导线的热电效应产生电压差来测量温度的传感器。

当两根不同金属导线的连接处温度发生变化时,由于两种金属的热电特性不同,会在连接处产生热电势。

通过测量这个热电势的大小,可以确定温度的变化情况。

2.2 热敏电阻热敏电阻是一种根据材料电阻随温度变化的特性来测量温度的传感器。

当温度发生变化时,热敏电阻的电阻值也会发生变化。

通过测量热敏电阻的电阻值,可以推断出温度的变化情况。

2.3 热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。

与热敏电阻类似,当温度发生变化时,热电阻的电阻值也会发生变化。

热电阻常用的材料有铜、铂等,其中铂电阻常常被用作温度变送器的传感器。

3. 温度变送器的应用实验为了更好地理解温度变送器的原理和应用,可以进行一些实验来验证其性能和功能。

下面是一些常见的应用实验:3.1 温度测量实验在这个实验中,我们可以使用温度变送器来测量不同介质的温度。

首先,选择一个合适的温度传感器(如热电偶或热敏电阻),将其与温度变送器连接。

然后,将传感器放置在要测量温度的介质中,并记录变送器输出的电流或电压信号。

通过比较变送器的输出信号和已知温度值,可以评估温度变送器的准确性和精度。

3.2 温度控制实验在这个实验中,我们可以利用温度变送器来控制一个加热或冷却设备,以使温度保持在预定的范围内。

首先,将温度传感器和温度变送器连接,并将变送器的输出信号与控制装置(如PLC或PID控制器)连接。

热电偶温度变送器的基本组成和工作原理

热电偶温度变送器的基本组成和工作原理

热电偶温度变送器的基本组成和工作原理热电偶温度变送器是一种常用的温度测量仪器,它可以将热电偶的温度信号转换成标准的电信号输出,以便于远距离传输和处理。

下面我们来了解一下热电偶温度变送器的基本组成和工作原理。

一、基本组成
热电偶温度变送器主要由以下几个部分组成:
1. 热电偶传感器:用于测量被测物体的温度,将温度信号转换成电信号输出。

2. 放大器:用于放大热电偶传感器输出的微弱电信号,以便于后续处理。

3. A/D转换器:将模拟信号转换成数字信号,以便于数字信号的传输和处理。

4. 微处理器:用于对数字信号进行处理和计算,以便于输出标准的电信号。

5. 输出电路:将处理后的电信号输出,以便于远距离传输和处理。

二、工作原理
热电偶温度变送器的工作原理基于热电效应,即当两种不同金属连接在一起时,它们之间会产生电势差,这个电势差与它们之间的温
度差有关。

因此,热电偶传感器的工作原理就是利用两种不同金属连接在一起时产生的电势差来测量被测物体的温度。

具体来说,热电偶传感器由两种不同金属连接在一起,形成一个热电偶电极。

当热电偶电极与被测物体接触时,由于被测物体的温度不同,热电偶电极之间会产生不同的电势差。

这个电势差被放大器放大后,经过A/D转换器转换成数字信号,再经过微处理器处理和计算,最终输出标准的电信号。

热电偶温度变送器是一种常用的温度测量仪器,它可以将热电偶的温度信号转换成标准的电信号输出,以便于远距离传输和处理。

它的基本组成包括热电偶传感器、放大器、A/D转换器、微处理器和输出电路。

它的工作原理基于热电效应,利用两种不同金属连接在一起时产生的电势差来测量被测物体的温度。

描述系统中压力变送器、流量变送器以及温度变送器的工作原理

描述系统中压力变送器、流量变送器以及温度变送器的工作原理

描述系统中压力变送器、流量变送器以及温度变送器的工作原

压力变送器的工作原理:
压力变送器通过感受被测介质的压力变化,并将其转换为与输入压力成正比的电信号输出。

一般采用毛细管原理或压力传感器原理。

毛细管原理是将被测介质的压力作用在细管的内外两侧,通过测量细管内外的液位差来计算压力值。

压力传感器原理是利用压电效应,将被测介质的压力转换为电荷信号输出。

流量变送器的工作原理:
流量变送器通过感受被测介质的流速变化,并将其转化为与流速成正比的电信号输出。

一般采用热式、机械式或电磁式原理。

热式流量变送器通过加热体和测量体之间的温度差来推导出流速。

机械式流量变送器通过叶轮、涡轮或旋翼等转子的转速来推算流速。

电磁式流量变送器利用被测介质通过导电管道时产生的电磁感应现象,通过测量感应电动势来计算流速。

温度变送器的工作原理:
温度变送器通过感受被测介质的温度变化,并将其转换为与温度成正比的电信号输出。

一般采用热电偶、热敏电阻或红外线测温原理。

热电偶原理是利用不同金属的热电势随温度的变化来测量温度。

热敏电阻原理是根据电阻随温度变化的特性来进行测量。

红外线测温原理是通过感应被测物体发出的红外线辐射来计算温度值。

温度变送器工作原理【附图】

温度变送器工作原理【附图】

温度变送器的工作原理是:通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度,一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差。

温度变送器一般由测温探头,即热电偶或热电阻传感器和两线制固体电子单元组成。

采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。

温度变送器广泛应用于工业、农业、商业等部门。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量-153℃以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计等。

扩展资料温度变送器的维护:1、通电情况下,严禁打开电子单元盖和端子盖,允许进行外观检查:检查变送器,配管配线的腐蚀、损坏程度以及其它机械结构件的检查。

2、禁止在现场打开端子盖和视窗,只许在控制室内用手持通讯器进行调整。

3、搁爆变送器的修理必须断电后在安全场所进行。

4、接线通过钢电线管,并且管路使密封接头密封,为防止爆炸气体或由爆炸引起的火焰转移,密封、隔绝管路。

作用:将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯协议方式输出的设备。

温度变送器是将温度变量转换为可传送的标准化输出信号的仪表,主要用于工业过程温度参数的测量和控制。

电流变送器是将被测主回路交流电流转换成恒流环标准信号,连续输送到接收装置。

温度电流变送器是把温度传感器的信号转变为电流信号,连接到二次仪表上,从而显示出对应的温度。

比如,图中该温度传感器的型号为PT100,那么温度电流变送器的作用就是把电阻信号转变为电流信号,输入仪表,显示温度。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理温度变送器是一种用于测量和转换温度信号的仪器,它将温度信号转换成标准信号输出,通常是4-20mA电流信号或0-10V电压信号。

温度变送器的工作原理主要包括传感器、信号调理、A/D转换、微处理器和输出等几个方面。

首先,传感器是温度变送器的核心部件,它可以将温度信号转换成电信号。

常见的传感器有热电偶、热敏电阻和半导体温度传感器等。

热电偶是利用两种不同材料的导电性能产生的温差电动势来测量温度的传感器,热敏电阻则是利用材料的电阻随温度变化而变化来测量温度的传感器,而半导体温度传感器则是利用半导体材料的电阻随温度变化而变化来测量温度的传感器。

其次,传感器输出的信号需要经过信号调理模块进行放大、滤波和线性化处理。

在这个过程中,信号调理模块可以将传感器输出的微弱信号放大成标准信号,同时对信号进行滤波处理,去除干扰信号,还可以进行线性化处理,使输出信号与温度成线性关系。

然后,经过信号调理模块处理后的信号需要经过A/D转换器转换成数字信号。

A/D转换器是将模拟信号转换成数字信号的装置,它可以将信号转换成微处理器可以处理的数字信号,从而进行后续的处理。

接着,微处理器对数字信号进行处理,包括对信号进行滤波、线性化校正、温度补偿等操作。

微处理器可以根据预设的算法对信号进行处理,从而得到准确的温度数值。

最后,经过微处理器处理后的信号通过输出模块输出,通常是4-20mA电流信号或0-10V电压信号。

这些信号可以直接送入控制系统或显示仪表,从而实现对温度的测量和控制。

总的来说,温度变送器的工作原理是通过传感器将温度信号转换成电信号,经过信号调理、A/D转换、微处理器处理和输出模块输出,最终实现对温度信号的测量和转换。

温度变送器在工业自动化控制系统中具有广泛的应用,可以满足各种工业场合对温度测量和控制的需求。

变送器工作原理

变送器工作原理

11C C C C K p H H +-=变送器工作原理
一、工作原理
它通过差动电容膜盒的中心感压膜片和其两边弧形电容极板形成电容量为CH 和CL 的两个电容,当有被测压力P 时,该压力P 将作用在膜盒的隔离膜片上,并通过腔内硅油的液压传递到中心感压膜片上使中心感压膜片产生位移,导致中心感压膜片与两边弧形电容极板的间距不再相等,从而使两个电容的电容量CH 和CL 不再相等。

被测压力与两电容量之间有如下关系:
其中:K 为常数;
P 为被测压力;
CH 为高压侧板与测量膜片间的电容;
CL 为低压侧板与测量膜片间的电容。

因此两极板电容量的变化量可反映被测压力的大小。

1.2技术指标:
1)环境温度: - 40℃~60℃
2)电源: 24V DC (最大耐压42V DC )
3)阻尼时间: 2S
4)输出: 4~20mA
5)防爆等级: IP67
6)测量介质: 气体、蒸汽、液体
7)测量范围: 差压 压力
0~100Pa~3MPa 0~1KPa~70MPa。

热电偶温度变送器的基本组成和工作原理

热电偶温度变送器的基本组成和工作原理

热电偶温度变送器的基本组成和工作原理
热电偶温度变送器是一种在温度测量中常见的传感器。

它是将热电偶
温度检测器的测量信号转换为标准信号输出,以便于记录、处理、控
制等操作的装置。

下面我们将会详细介绍热电偶温度变送器的基本组
成和工作原理。

一、基本组成
1. 外壳:是由金属材料制成,可以抵御振动和恶劣环境下的物理干扰。

2. 热电偶传感器:是转换和输出温度信号的灵敏元件。

3. 动态补偿器:可以解决温差带来的误差。

4. 放大电路:输入热电偶发出的微小信号,并将其转换为标准信号输出。

5. 标准化输出电路:可以将放大电路的信号转换成多种信号形式输出,如4~20mA电流信号,0-5V、0-10V电压信号等。

二、工作原理
热电偶温度变送器的工作原理是基于热电效应的。

热电偶传感器由两
种不同金属制成,或者是两种不同合金;这些材料又称为热电偶电极。

当两个电极相接时,当地温度的差异将造成两电极之间的电势差,这
就是热电效应。

一旦热电偶传感器检测到温度变化信号后,动态补偿器会消除温度差
带来的误差,然后将它们的信号传递给放大器。

放大器将每个信号放
大并转换为一个标准信号,例如4-20mA,后者可以被大多数控制室设备扫描和记录。

标准信号移动到输出电路中,使用户能够读取实时温度信息。

总之,热电偶温度变送器通过最小化热电偶结点处温度差来确保温度测量的精度和可靠性,从而为工业加热、液位、流量等自动化过程控制提供了重要的保障和支持。

变送器的工作原理

变送器的工作原理

变送器的工作原理变送器是一种用于将物理量(如温度、压力、流量、液位等)转换为可测量电信号的设备。

其工作原理基于物理量与电信号之间的相互作用。

对于温度变送器,它的工作原理是基于温度传感器的测量原理。

温度传感器一般采用热电阻或热电偶等元件,在受温度变化影响时会产生相应的电信号。

变送器中的温度传感器接触被测温度物体,其产生的电信号经过特定的电路处理和放大后输出。

常见的温度变送器输出信号为标准信号,如4-20mA电流信号或0-10V电压信号,以便与其他设备进行连接和测量。

对于压力变送器,它的工作原理是通过压力传感器来测量被测压力。

压力传感器一般采用歪板、变电容或应变片等原理,当受到压力作用时会引起传感器参数的变化,从而产生电信号。

变送器中的压力传感器将压力信号转换为电信号,并经过放大、滤波和线性转换等电路处理后输出。

同样,压力变送器的输出信号也常为标准信号,以便进行连接和测量。

流量变送器的工作原理与温度和压力变送器类似,主要通过传感器对流体流速或流量的测量来产生电信号。

常见的流量传感器包括涡街流量传感器、电磁流量传感器等。

这些传感器会根据流体的流速或流量引起物理量的变化,进而产生电信号。

流量变送器会对这些电信号进行处理和转换,输出与流体流速或流量对应的电信号。

液位变送器的工作原理主要是基于液位传感器的测量原理。

液位传感器可以采用浮子型传感器、压力型传感器或电容感应型传感器等。

当液位发生变化时,液位传感器会产生与液位相关的电信号。

液位变送器将这些电信号进行处理和转换,输出与液位对应的电信号。

总之,变送器的工作原理是通过特定的传感器将物理量转换为电信号,再经过相应的电路处理和转换,输出可测量的电信号,以实现对物理量的测量和监测。

温度变送器原理

温度变送器原理

温度变送器原理
1 温度变送器原理
温度变送器是一种仪表设备,用于测量温度并将数字化的温度测量数据放大输出到其他仪表中。

它与温度计的原理基本相同,都是根据温度变化的物理原理或物理机械原理进行温度测量的,但温度变送器的输出方式不同,一般是模拟量输出或数字量输出。

温度变送器的操作原理:温度变送器结构包括测量部分、放大调节部分、屏蔽电缆和输出接口。

测量部分有三种:膨胀式变送器、恒温式变送器和电阻式变送器,它们之间的原理基本相同,用温度变化刺激元件发生变化,将变化的信号放大输出至输出接口,形成一定精度的信号,来表示温度的大小。

膨胀式变送器的基本原理是:将一个精制的金属杆放入有温度检测元件的温度管中,温度变化时,变温管内壁的温度也随之变化,金属杆也将会由此受到温度变化刺激而发生延伸变化,进而转动连接的拉杆,拉动控制电位器,从而使输出电流起到调节温度大小的作用。

恒温式变送器的操作原理类似,它将温度变化引起的物理变化转换为电信号,然后将电信号放大后输出。

它有一个电阻环的结构,其中的一环或多环电阻为恒定的,另外一环电阻则会受温度的变化而变化,然后将变化的电阻值转换成发送给输出的电流脉冲信号。

电阻式变送器的操作原理与上面两种基本相同,是将物理变化转
化成电信号输出,但它是通过测量电阻随温度变化而发生变化来表示
温度的大小,例如,热电偶、热敏电阻及金属膨胀式温度元件等。

温度变送器是根据温度变化的物理原理或物理机械原理进行测量,把温度信号放大输出到其他仪表中,是当今许多工业自动化测控系统
的重要组成部分。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理
温度变送器是一种用来测量温度并将其转换成标准信号输出的仪器,它在工业自动化控制领域中起着至关重要的作用。

本文将介绍温度变送器的工作原理,以帮助读者更好地理解和应用这一设备。

温度变送器的工作原理主要基于热敏电阻和热电偶两种传感元件。

热敏电阻是一种电阻随温度变化而变化的元件,它的电阻值随温度的升高而降低,反之亦然。

而热电偶则是由两种不同金属材料焊接在一起形成的一种温度传感器,当两种金属材料的焊点处温度发生变化时,会产生电动势,从而实现温度的测量。

在温度变送器中,传感元件感知到的温度信号首先会经过放大电路进行放大,然后经过线性化处理电路将其转换成与温度成线性关系的标准信号输出,如4-
20mA电流信号或0-10V电压信号。

这样的标准信号可以方便地传输到控制室或PLC等设备中,实现对温度的准确监测和控制。

除了传感元件和信号处理电路外,温度变送器还包括了冷端补偿电路、线性补偿电路和标定电路等部分。

冷端补偿电路用于补偿热电偶中的冷端温度影响,线性补偿电路用于对传感元件输出信号进行线性化处理,而标定电路则用于对温度变送器进行校准,以确保输出信号的准确性和稳定性。

总的来说,温度变送器的工作原理可以概括为,传感元件感知温度信号,经过放大、线性化处理和补偿等环节后,将其转换成标准信号输出。

这一过程实现了温度的准确测量和可靠传输,为工业生产过程中的温度控制提供了重要的支持。

总之,温度变送器作为工业自动化控制领域中不可或缺的一部分,其工作原理的理解对于工程技术人员来说至关重要。

通过本文的介绍,相信读者对温度变送器的工作原理已有了更清晰的认识,希望能对大家的工作和学习有所帮助。

温度变送器的工作原理

温度变送器的工作原理

温度变送器的工作原理
温度变送器是一种常用的工业自动化仪表,用于测量和转换温度信号。

它的工作原理是基于热电偶、热电阻或半导体温度传感器的信号转换原理,通过将温度信号转换成标准信号输出,实现对温度的准确测量和控制。

首先,让我们来了解一下温度变送器的构成。

温度变送器通常由温度传感器、信号调理电路和输出电路组成。

温度传感器负责采集被测介质的温度信号,信号调理电路用于对传感器输出的信号进行放大、滤波和线性化处理,输出电路则将处理后的信号转换成标准信号输出,如4-20mA电流信号或0-10V电压信号。

其次,让我们来了解一下温度变送器的工作原理。

当温度传感器接触到被测介质时,根据热电偶、热电阻或半导体温度传感器的特性,产生相应的电压或电阻信号。

这个信号会经过信号调理电路进行放大、滤波和线性化处理,以保证输出的信号符合标准的输入输出关系。

最后,输出电路将处理后的信号转换成标准信号输出,供给给控制系统或显示仪表进行显示和控制。

在实际应用中,温度变送器通常与温度显示仪表、温度控制器
或PLC等设备配合使用,实现对温度的实时监测和控制。

它被广泛应用于化工、电力、冶金、石油、制药等领域,对生产过程中的温度进行监测和控制,保证生产过程的稳定性和安全性。

总的来说,温度变送器的工作原理是基于温度传感器的信号转换原理,通过信号调理和输出电路的处理,将温度信号转换成标准信号输出,实现对温度的准确测量和控制。

它在工业自动化控制中起着重要的作用,是保证生产过程稳定运行的重要仪表设备。

温度变送器工作原理

温度变送器工作原理

温度变送器工作原理温度变送器是一种常见的工业控制设备,用于将温度信号转换为标准的电流、电压或数字信号输出,以便于监测和控制系统对温度的实时反馈。

温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理。

热敏元件是温度变送器的核心部件,常见的热敏元件有热电偶、热敏电阻和热敏电容等。

这些热敏元件都具有随温度变化而改变电阻、电压或电容的特性,利用这些特性可以实现温度的测量和转换。

热电偶是由两种不同金属导线焊接在一起而成,当焊点处温度发生变化时,两种金属导线的热电势也会发生变化,从而产生微小的电压信号。

温度变送器通过放大和滤波这个微小的电压信号,将其转换为标准的电流或电压输出,以便于监测和控制系统的使用。

热敏电阻是一种随温度变化而改变电阻值的元件,常见的热敏电阻有铂金热敏电阻和镍铬热敏电阻等。

温度变送器通过将热敏电阻接入一个恒流源电路中,测量电阻值的变化,然后将其转换为标准的电流或电压输出。

热敏电容是一种随温度变化而改变电容值的元件,温度变送器通过测量电容值的变化,并将其转换为标准的电流或电压输出。

除了热敏元件外,温度变送器还包括信号转换电路和补偿电路。

信号转换电路用于放大、滤波和线性化热敏元件的信号,以便于得到稳定和准确的输出信号。

补偿电路用于对热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的准确对应关系。

在实际应用中,温度变送器通常还包括温度补偿和线性化补偿功能。

温度补偿是指根据环境温度对热敏元件的影响进行补偿,以确保输出信号与实际温度之间的准确对应关系。

线性化补偿是指根据热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的线性关系。

总的来说,温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理,通过测量、放大和转换热敏元件的信号,实现温度的测量和转换。

同时,通过温度补偿和线性化补偿,确保输出信号与实际温度之间的准确对应关系。

温度变送器在工业控制系统中起着至关重要的作用,广泛应用于化工、电力、冶金、石油、制药等领域。

温度变送器校验方法

温度变送器校验方法

温度变送器校验方法一、温度变送器的基本原理温度变送器是一种用于测量温度并将其转化为标准信号输出的设备。

其基本原理是利用温度敏感元件(如电阻、热电偶、热电阻等)与信号处理电路相结合,将温度变化转化为线性电流信号或数字信号输出。

这种输出信号可以被其他设备接收并进一步进行处理,以实现对温度的监控和控制。

二、为何需要校验温度变送器使用温度变送器进行温度测量是工业自动化和过程控制中常见的应用。

然而,温度变送器在使用过程中可能会受到各种因素的干扰,导致其测量结果不准确。

因此,为了确保温度测量的准确性和可靠性,需要对温度变送器进行校验。

三、温度变送器校验的方法校验温度变送器的方法有多种,下面将介绍几种常见的校验方法:1. 对照法校验对照法校验是指通过将温度变送器与已知准确温度的“对照仪器”进行比较来判断温度变送器的准确性。

一般情况下,对照仪器可以使用标准温度计或其他精确的温度测量设备。

校验时,将温度变送器与对照仪器同时暴露在同一温度环境下,记录两者的温度值并进行比对。

若温度变送器的测量结果与对照仪器的结果相差较大,则需要进行调整或修理。

2. 电流回路校验电流回路校验是一种主要适用于电流型温度变送器的校验方法。

具体操作步骤如下:1. 将已知准确温度的点与温度变送器连接,记录电流变送器输出的电流值。

2. 将温度变送器的触点连接到一个已知的电阻值,通过欧姆定律计算出预期的电流值。

3. 将计算出的预期电流值与温度变送器输出的电流值进行比较,在一定误差范围内即表示校验通过。

3. 计算机辅助校验随着计算机技术的不断发展,计算机辅助校验成为了一种可以提高校验效率和准确性的方法。

通过使用特定的软件和硬件设备,可以对温度变送器进行自动化校验,并将校验结果进行记录和分析。

这种方法大大提高了校验的可靠性和效率,适用于大规模的温度变送器校验。

四、校验结果的处理对于校验结果的处理,需根据校验方法和校验设备的要求进行相应的分析和判断。

一般情况下,校验结果可分为以下几种情况:1. 校验合格如果校验结果表明温度变送器的测量结果与标准值在可接受的范围内,即表示校验合格。

温度变送器的工作原理

温度变送器的工作原理

温度变送器的工作原理
温度变送器是一种用于测量、转换和传输温度信号的仪器。

它可以将温度信号转换为标准的电信号,以便在远距离传输或作为其他设备的输入。

温度变送器工作原理如下:
1. 温度感应器:温度变送器通常配备了温度感应器,常见的有热电阻和热电偶。

热电阻是利用金属电阻随温度的变化而变化,而热电偶则是通过两种不同金属之间的热电效应来测量温度。

2. 信号转换:温度感应器读取环境的温度,并将其转换为电信号。

这些信号可以是电压信号或电流信号。

在一些情况下,温度变送器还会进行一些增益或补偿操作,以确保输出信号的准确性。

3. 信号调理:温度变送器会对转换后的信号进行调理,以便进行传输或作为其他设备的输入。

这可能涉及到放大、滤波和线性化等操作,以确保信号的稳定性和可靠性。

4. 输出信号:最后,温度变送器会将调理后的信号输出给接收方。

这可以是一条传输线路、一个数据记录器或者其他需要温度输入的设备。

总的来说,温度变送器的工作原理是将温度感应器读取到的温度信号转换为标准的电信号,并经过调理后输出给其他设备使
用。

这样,温度变送器可以在工业控制、自动化系统等领域中起到重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用中应特别注意变送器模块所处的环境温度。
变送器模块大多数以一片专用变送器芯片 为主,外接少量元器件构成
上页 目 录 下页
36
广东石油化工学院自动化系
1)变送器芯片AD693
—控制仪表和计算机控制装置—
它可以直接接受传感器的直流低电平输入信号并转换成
4~20mA的直流输出电流。
上页 目 录 下页
37
24
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
线性化电路
上页 目 录 下页
25
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
线性化电路
应用Δ→Y变换和同相端输入运放电路的输出输入关系 式 ,可以求得
U b

1
R115

R120 R121 R120 R121 R122 R120 R122
11
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
d.直流/交流/直流变换器
作用:对仪表进行隔离式供电
上页 目 录 下页
12
广东石油化工学院自动化系
②量程单元
—控制仪表和计算机控制装置—
上页 目 录 下页
13
广东石油化工学院自动化系
②量程单元
—控制仪表和计算机控制装置—
输入回路:起限流和限压作用 零点调整电路:实现零点调整和零点迁移的作用 反馈回路:保证变送器的输出与输入之间具有良
好的线性关系,并使变送器输出具有较好的恒流性 能 ,及量程调整。
输入信号断路报警电路
上页 目 录 下页
14
广东石油化工学院自动化系
③变送器的静特性
—控制仪表和计算机控制装置—
I0
分压公式
Δ → Y变换
等效电源定理
叠加定理
分压公式
上页 目 录 下页
15
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
式中g R17 R16 R19
Ut

It Rt
gUS 1 gRt
Rt
上页 目 录 下页
33
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
2)热电阻导线电阻补偿电路
为了消除导线电阻的影响,热电阻采用三线制接法。
不考虑R23、R24支路的作用,可求得
UO

Rf R30
R31
—控制仪表和计算机控制装置—
上页 目 录 下页
23
广东石油化工学院自动化系
线性化电路原理
—控制仪表和计算机控制装置—
r1
U a U f
(1 R2 ) Ra R1 R0 Ra
r3
U a U f
(1
R2 // R) Ra // R R1 R0 Ra // R
上页 目 录 下页
广东石油化工学院自动化系
AD693
—控制仪表和计算机控制装置—
(1) 信号放大器
信号放大器是一个仪用放大器,由三个运放 和反馈电阻组成,其输入信号范围为0~100mV; 设计放大倍数为2倍,通过引脚14、15、16外接 适当阻值的电阻,可以调整放大器的放大倍数, 以使输出为0~60mV。
UT

Ei

R103

Rab RW 1
//
R103 R104

R105
U
z

Ei
Rab R103 R105
UZ
UF

RW 22 R114 R115 //(R116 R4 ) R106 // R107 R111 RW 2 R114 R115//(R116

R4
上页 目 录 下页
1
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
在与测温元件配合使用,温度变送器的输出 有两种形式:
(1) 输出与温度之间呈线性关系,但输出与变 送器的输入信号(Et或Rt)之间呈非线性关系
(2) 输出与温度之间呈非线性关系,而输出与 变送器的输入信号(Et或Rt)之间呈线性关系
② 在反馈回路中增加了由运算放大器A2等构成的 线性化电路。
上页 目 录 下页
20
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
1)热电偶冷端补偿电路
补偿原因:热电偶产生的热电势Et,与热电偶的冷端温度有关
补偿原理分析:
U T Et U z
Et

R100

R103
RCu1RCu 2 RCu1 RCu 2
//
R122 R119

1 R0
Ra
上页 目 录 下页
28
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
3)热电阻温度变送器
与各种热电阻配合使用,可以将温度信号变换为 成比例的4~20mADC电流信号和1~5VDC电压信号
上页 目 录 下页
29
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
的4~20mADC电流信号和1~5VDC电压信号。
上页 目 录 下页
18
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
热电偶温度变送器量程单元
上页 目 录 下页
19
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
线路上的两点修改
① 在输入回路增加了由铜补偿电阻RCu1、RCu2等 元件组成的热电偶冷端补偿电路。同时,在电路 安排上把零电位器W1和电阻R104移到了反馈回路的 支路上。
非线性补偿电路的热电偶温度变送器和热电阻温度变
送器以及直流毫伏变送器等多个品种,各品种的原理
和结构大致相仿。
现介绍其中三种:
❖直流毫伏变送器 ❖带非线性补偿电路的热电偶温度变送器 ❖热电阻温度变送器。
上页 目 录 下页
4
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
(1)直流毫伏变送器
——把直流毫伏信号Ei 转换成4~20mADC电流信号
R115 R115 R116
R4Io
R106 R107
Uz
1/
上页 目 录 下页
16
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
UT Ei U Z U F UT
UF

R4

Io
U z
I0


R4
Ei


R4
(

)U Z
讨论:
a.时,R4得(到为正 )直向U z流调毫零伏信变号送,器即的可调实零现信负号向。迁移;而当当
U f

R120 R121 R122

U a

Ra Ra Ro
U b
上页
1

U a U f

1
R121 R122

R115 R122
1
R121 R122 R120

1 R0
Ra
目 录 下页
26
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
上页 目 录 下页
5
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
直流毫伏变送器线路原理图
① ② ③ ④ 上⑤页 目 录 下页
6
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
直流毫伏变送器构成方框图
上页 目 录 下页
7
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
a.电压放大器
8
广东石油化工学院自动化系
①放大单元
—控制仪表和计算机控制装置—
放大单元包括放大器和直流/交流/ 直流变换器两部分
放大器: 电压放大器、功率放大器 和隔离输出电路
直流/交流/直流变换器:直流/交流变换器 和整流、滤波、稳压电路
上页 目 录 下页
9
广东石油化工学院自动化系
b.功率放大器
作用:放大和调制
两种形式的区别仅在于变送器中有否非线性 补偿电路
上页 目 录 下页
2
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
3.3.1.典型模拟式温度变送器
上页 目 录 下页
3
模拟式温度变送器实 广东石油化工学院自动化系
—控制仪表和计算机控制装置—

——— DDZ-ІІІ型温度变
送器
DDZ-ІІІ型温度变送器有带非线性补偿电路与不带
3.3.2.一体化温度变送器
所谓一体化温度变送器,是指将变送器模 块安装在测温元件接线盒或专用接线盒内的 一种温度变送器。
上页 目 录 下页
35
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
一体化温度变送器模块和测温元件形成一个 整体,可以直接安装在被测温度的工艺设备上, 输出为标准统一信号。这种变送器具有体积小、 重量轻、现场安装方便以及输出信号抗干扰能力 强,便于远距离传输等优点,对于测温元件采用 热电偶的变送器,不必采用昂贵的补偿导线,可 节省安装费用。
—控制仪表和计算机控制装置—
1)线性化电路
热电阻和被测温度之间也存在着非线 性关系
上页 目 录 下页
32
广东石油化工学院自动化系
—控制仪表和计算机控制装置—
UF

R17 R16 R17
U
s

R16 R16 R17
It (R19
Rt )
UT It Rt
UT UF
It

gUs 1 gRt
线路上的两点修改
相关文档
最新文档