相似三角形应用举例.资料重点
相似三角形的应用例析

相似三角形的应用例析相似三角形是平面几何中的重要的内容之一,其应用十分广泛.举例说明如下.1、测量底部不能到达的建筑物的高例1 如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).2、测量池塘宽例2如图,有一池塘要测量两端AB的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长至D,使AC并延长至D,使15CD CA=,连接BC并延长至E,使15CE CB=,连接ED,如果量出25mDE=,那池塘宽多少A BCE D3、利用影长测量建筑物的高度例3高4m的旗杆在水平地面上的影子长6m,此时测得附近一个建筑物的影子长24m,求该建筑物的高度.4、测量电线杆的高例4如图,一人拿着一支刻有厘米刻度的小尺,站在距电线杆约30m的地方,把手臂向前伸直,小尺竖直,看到尺上约12个刻度恰好遮住电线杆,已知手臂长约60cm,求电线杆的高.5、测量台阶例5 汪老师要装修自己带阁楼的新居(右图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1. 75m.他量得客厅高 AB= 2. 8m,楼梯洞口宽AF=2m.阁楼阳台宽EF = 3m.请你帮助汪老师解决下列问题:(1)要使墙角F到楼梯的竖直距离FG为,楼梯底端C到墙角D的距离CD是多少米(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶小于 20c m,每个台阶宽要大于20c m,问汪老师应该将楼梯建儿个台阶为什么参考答案例1:【分析】根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD//AB,可证得:△ABE∽△CDE,∴BD DE DE AB CD += ①同理:BDGD HG HG AB FG ++= ② 又CD =FG =1.7m ,由①、②可得:BD GD HG HG BD DE DE ++=+ 即BDBD +=+10533,解之得:BD =7.5m , 将BD =7.5代入①得:AB=5.95m≈6m.答:路灯杆AB 的高度约为6m .【点评】 本题通过多次平行线,利用相似三角形解决.把实际问题转化为相似问题,建立数学模型,做到学以致用.例2:【分析】这个问题的实质是△ECD∽△BCA,利用两个三角形相似求池塘宽DE AB CD AC AB DE ===155,.解: CD CA CE CB ==1515,∴==CD CA CE CB 15 又∵∠ECD=∠BCA ∴△ECD∽△BCA∴==DE AB CD AC 15∴==⨯=AB DE m 5525125().【点评】 通过测量池塘宽,能够综合运用三角形相似的判定条件和性质解决问题,发展数学应用意识,加深对相似三角形的理解和认识.例3:【分析】 画出上述示意图,即可发现:△ABC ∽△A ′B ′C ′ 所以B A AB //=C B BC //, 于是得,BC =B A AB//×B /C /=16(m ). 即该建筑物的高度是16m .例4:【分析】 本题所叙述的内容可以画出如图那样的几何图形,即DF=60cm=,GF=12cm=,CE=30m ,求BC .由于△ADF∽△AEC,AC AF EC DF =,又△AGF∽△ABC,∴ BC GF AC AF =,∴ BC GF EC DF =,从而可以求出BC 的长.解: ∵AE⊥EC,DF∥EC,∴∠ADF=∠AEC,∠DAF=∠EAC,∴△ADF∽△AEC.∴AC AF EC DF =.又GF⊥EC,BC⊥EC,∴GF∥BC,∠AFG=∠ACB,∠AGF=∠ABC,∴△AGF∽△ABC,∴BC GF AC AF =,∴BC GF EC DF =.又∵ DF=60cm=,GF=12cm=,EC=30m ,∴ BC=6m.即电线杆的高为6m .【点评】 “测量电线杆的高”问题本身就是利用数学问题去处理实际问题,还有许多实际问题都可以用数学问题来解决,运用相似三角形相似的相关知识解决在生活中的一些实际问题;必须要正确地理解知识的内涵,比如手臂向前伸直与地面平行,刻度平行于电线杆,由此构造“相似三角形对应成比例的线段”.在应用过程中,要时时围绕三角形相似这一宗旨.例5:【分析】 (1)根据题意有AF∥BC,∴∠ACB=∠GAF,又∠ABC=∠AFG=90º, ∴△ABC∽△GFA.∴FGAB AF BC =得BC=(m),CD=2+=(m). (2)设楼梯应建n 个台阶,则>,<,解得14<n <16,∴楼梯应建15个台阶.。
【精选】相似三角形的应用举例PPT实用资料

• 2、在△ABC中,在△ABC中,
A
DE∥BC,若AD:DB=1:3,DE=2,
则BC的长为( )
D
E
B
C
例3 据史料记载,古希腊 数学家、天文学家泰勒曾 利用相似三角形的原理, 在金字塔影子的顶部立一 根木杆,借助太阳光线构 成两个相似三角形,来测 量金字塔的高度。 如图,如果木杆EF长2m, 它的影子FD长为3m测得 OA为201m,求金字塔的 高度BO。
解得FH=8.
当他与左边较低的树的距离小 于8m时,就不能看到右边较高 的树的顶端点C。
练习 在某一时刻,测得一根高为 的竹竿的影长为3m,同时测得一栋高楼的影长 为90m,这栋高楼的高度是多少?
D
A
F
E
C
B
感谢观看
(1、3)根相据似下三列角条形件的能面否积 判比定等△于AB相C似与比△的A′B平′C方′相似?为什么?
设观察者眼晴的位置(视点) 对 解这:两∵∠棵B树=∠的C一=9条0°水,平直路ι
就设不观能 察看者到眼右晴边的较位高置的(树视的点顶)
,为F,为∠CFKF和∠,AFH分∠别C是 FK和∠AFH分别是
利,用相似三角形的原理, 数∴F学H家:、FK天=A文H学:家C泰K,勒曾
较低的树的距离小于多少时, ∵(A3B)⊥两ι,边C对D应⊥成ι,比例且夹角相等 。
∴(△2)PQ三R边∽对△应PS成T比。例.
解PQ::∵P∠SB==Q∠RC:=S9T0,°,
就不能看到右边较高的树的顶 成 AB两:个E相C=似BD三:角D形C,,来测
PQ×90=(PQ+45) ×60,
解得PQ=90.
Q
Rb
因此河宽大约为90m。
相似三角形的应用

相似三角形的应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。
相似三角形之间存在一种特殊的比例关系,通过这种比例关系,我们可以运用相似三角形解决各种实际问题。
本文将重点介绍相似三角形的应用领域及其在数学和几何中的具体运用。
一、相似三角形在实际问题中的应用1. 测量高度和距离:相似三角形的应用在测量高度和距离方面非常常见。
例如,在无法直接测量建筑物或树木的高度时,可以通过相似三角形的比例关系,利用已知的高度和距离来计算未知的高度。
类似地,当无法直接测量两个物体之间的距离时,可以利用相似三角形的比例关系来推算出距离。
2. 图像的放大和缩小:在艺术和设计领域中,相似三角形的应用非常重要。
当我们需要将一幅图像进行放大或缩小时,可以利用相似三角形的性质来确定新图像与原图像的比例关系,从而实现图像的变形。
3. 建筑设计与规划:在建筑设计与规划中,相似三角形的应用也非常普遍。
通过相似三角形可以计算出建筑物的高度、宽度、长度等尺寸信息,从而帮助设计师进行准确的规划和设计。
二、相似三角形在数学中的应用1. 比例和比值的计算:相似三角形的比例关系可以用来计算不同长度之间的比例和比值。
通过相似三角形的性质,我们可以建立起各种数学关系式,进行比例和比值的计算,从而解决许多实际和抽象的问题。
2. 三角函数的定义和性质:在三角函数的定义和性质中,相似三角形也扮演着重要角色。
例如,在定义正弦、余弦和正切函数时,就需要利用相似三角形的性质来推导出它们的数学表示式。
相似三角形的运用使得三角函数的计算和应用更加简便和灵活。
3. 几何图形的相似性判定:相似三角形的性质在判定几何图形的相似性方面起着至关重要的作用。
根据相似三角形的比例关系,我们可以通过对角、边长比较等方法来判断两个图形是否相似,并进一步推导出它们之间的其他性质。
总结:相似三角形在实际问题、数学和几何中都有着广泛的应用。
通过运用相似三角形的比例关系,我们可以解决测量、计算和设计等问题,在数学和几何中推导出各种定理和性质。
相似三角形的应用举例

相似三角形的应用举例相似三角形是指在形状相似的两个三角形中,对应的角度相等,而对应的边长成比例关系。
这一性质使得相似三角形在实际生活中有着广泛的应用。
本文将举例介绍相似三角形在地理测量、影视制作和建筑设计等领域的具体应用。
一、地理测量中的相似三角形应用地理测量中常常使用相似三角形原理来测量高处物体的高度以及难以直接测量的距离。
以测量一座建筑物的高度为例,通过在平面上选择两个不同位置,测量出与地平线夹角相同的两个点,再利用三角形相似原理计算出建筑物的高度。
这样的测量方法可以避免测量过程中的误差和测量的困难,提高测量的准确性和效率。
二、影视制作中的相似三角形应用在影视制作中,相似三角形的应用尤为重要。
例如,在电影中要制作一个逼真的远景特写,如果直接拍摄远处的景象,可能会因为远离拍摄现场而导致细节无法清晰展现。
为了解决这个问题,可以利用相似三角形的原理,在近距离拍摄一个类似的模型或者画面,然后通过电脑生成与实景相似的远景效果。
这种利用相似三角形的方法可以在节约成本的同时,制作出逼真的远景特写效果。
三、建筑设计中的相似三角形应用相似三角形在建筑设计中有着广泛的应用,特别是在设计高层建筑时更是如此。
以设计一座摩天大楼为例,建筑师需要保证高楼的结构坚固稳定,同时也要满足美学上的要求。
在设计过程中,利用相似三角形的原理可以根据大楼的比例尺度,在小模型上进行实际尺寸的计算和预测。
这种预测方法不仅可以方便地展示设计方案,还可以在施工前发现和修正设计中的不足之处,提高整体设计质量。
通过上述几个具体例子,我们可以看到相似三角形在地理测量、影视制作和建筑设计中的重要应用。
相似三角形原理的运用,使得我们能够更加准确地进行测量、制作出逼真的特效和设计出稳固美观的建筑物。
这一应用不仅提高了工作效率,还为我们提供了更多实际问题的解决方案。
因此,相似三角形的学习与应用在我们的生活中具有重要的意义。
(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
27.2.3相似三角形应用举例

A
B
D
E
C
知识要点
测距的方法
测量不能到达两点间的距离,常构造 相似三角形求解。
练习3
1.如图,一条河的两岸有一段是平行的,在
河的南岸边每隔5米有一棵树,在北岸边每
隔50米有一根电线杆.小丽站在离南岸边15
米的点处看北岸,发现北岸相邻的两根电线
杆恰好被南岸的两棵树遮住,并且在这两棵
树之间还有三棵树,则河宽为
利用三角形相似可以解决一些不能 直接测量的物体的长度的问题
老师寄语
▪ “我乐观,因为我们还是有希望的,只 要有希望,就有明天!
▪ 我坚持,因为我们还是可进步的,只 要有进步,就有未来!”
▪ 请记住这句话,同学们“无可救药的 乐观,死去活来的坚持!
A
C
B
D
E
挑战自我
1、如图,△ABC是一块锐角三角形余料,
边BC=120毫米,高AD=80毫米,要把它加
工成正方形零件,使正方形的一边在BC上,
其余两个顶点分别在AB、AC上,这个正方
形零件的边长是多少?
解:设正方形PQMN是符合要求的△ABC
的高AD与PN相交于点E。设正方形PQMN 的边长为x毫米。
= 134
练习1
1、在同一时刻物体的高度与它的影长
成正比例,在某一时刻,有人测得一高
为1.8米的竹竿的影长为3米,某一高楼
的影长为60米,那么高楼的高度是多少
米?解:设高楼的高度为X米,则
1 .8 x 3 60
x 6 0 1 .8 3
x 36
答:楼高36米.
2.小华为了测量所住楼房的高度,他请来 同学帮忙,测量了同一时刻他自己的影长 和楼房的影长分别是0.5米和15米.已知小 华的身高为1.6米,那么他所住楼房的高度 为 米.
相似三角形应用举例

相似三角形应用举例在我们的日常生活和学习中,相似三角形的应用无处不在。
相似三角形是指对应角相等,对应边成比例的两个三角形。
通过利用相似三角形的性质,我们可以解决许多实际问题,下面就让我们一起来看看一些具体的例子。
一、测量物体的高度假设我们想要测量一棵大树的高度,但又无法直接测量。
这时候,相似三角形就派上用场了。
我们可以在同一时刻,在大树旁边立一根已知长度的杆子,然后分别测量杆子的影子长度和大树的影子长度。
因为在同一时刻,太阳光线的角度是相同的,所以杆子和它的影子以及大树和它的影子分别构成了两个相似三角形。
假设杆子的高度为h1,杆子影子的长度为 s1,大树影子的长度为 s2,大树的高度为 h2。
根据相似三角形的性质,我们可以得到:h1 / s1 = h2 / s2通过已知的 h1、s1 和 s2,就可以计算出大树的高度 h2。
例如,杆子高度为2 米,影子长度为15 米,大树影子长度为9 米。
那么:2 / 15 = h2 / 915h2 = 2 × 915h2 = 18h2 = 12 米所以,这棵大树的高度约为 12 米。
二、计算河的宽度当我们面对一条河流,想要知道它的宽度,但又无法直接跨越测量时,相似三角形同样能帮助我们解决问题。
我们可以在河的一侧选择一个点A,然后在河的对岸选择一个点B,使得 A、B 两点与河岸基本在同一直线上。
接着,在河的这一侧,沿着河岸选定一个点 C,使得 AC 垂直于河岸,并测量出 AC 的长度。
然后,我们再沿着 AC 的方向向前走一段距离,到达点 D,使得点 D、A、B 三点在同一直线上,并且测量出 CD 的长度。
由于三角形 ABC 和三角形 ADC 有一个共同的角∠A,并且∠ACB=∠ACD = 90°,所以这两个三角形相似。
假设河宽为AB =x,AC =a,CD =b。
根据相似三角形的性质,我们有:AC / AB = CD / AC即 a / x = b / a通过已知的 a 和 b,就可以计算出河的宽度 x。
(完整版)相似三角形知识点及典型例题,推荐文档

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC, (2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即(AB)2+(AC)2=(BC)2。
典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC ,∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CEEF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。
相似三角形中考考点归纳与典型例题

相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
相似三角形的应用及性质

相似三角形的应用及性质【知识点讲解】一、利用相似三角形测高1、测量原理:相似三角形对应边成比例2、测量旗杆(或路灯杆)的高度的三种方法:(1)利用阳光下的影子;(2)利用标杆;(3)利用镜子的反射。
二、相似三角形的性质1、相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比。
2、相似三角形的周长比等于相似比,面积比等于相似比的平方。
三、图形的位似1、如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形【例题讲解】例1、为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D。
此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB。
1、小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如上图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A 、10米B 、12米C 、15米D 、22.5米2、小明再打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度 h 。
3、小明同学用自制的三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一条直线上,已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,则树高AB= m 。
例2、小亮走在大街上,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为1.5米,左边的影子长为3米,自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,求路灯的高。
图2 图31、小亮在晚上由路灯A走向路灯B,当他走到P点时,发现身后的影子的顶部刚好接触到路灯A的底部,当他再向前走12m到达Q点时,发现身前的影子刚好接触路灯B的底部,已知小亮身高为1.6m,两个路灯的高度都是9.6m,且AP=QB=x m。
相似三角形应用举例

(3题图) (4题图) 期末复习——相似三角形应用举例一、知识回顾是高度为3.如下图阳光从教室的窗户射入室内,窗框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户高AB 为的黄丽同学BC 的影长BA 为1.1m ,与此同时,测得教学楼DE 的影长DF 为12.1m ,则教学楼DE 的高度为 .(精确到0.1m)5.如下图,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB =10m ,BC =20cm ,PC ⊥AC ,且PC =24cm ,则点光源S 到平面镜的距离即SA 的长度为______cm .二、典型例题例一:如下图,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处能够看到杆顶C 与树顶A 在同一条直线上,假如测得BD =20m ,FD =4m ,EF =1.8m ,求树AB 的高度。
例二、如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED 。
例三:一位同学想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.8m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,(5题图)有一局部影子在墙上,如下图,他先测得留在墙上的影高为1.2m ,又测得地面局部的影长为5m ,请算一下这棵树的高是多少?三、 巩固练习1、在阳光下,身高1.68m 的小强在地面上的影长为2m ,在同一时刻,测得学校的旗杆在地面上的影长为18m .则旗杆的高度为 (精确到0.1m).2、如图,在河两岸分别有A 、B 两村,现测得A 、B 、D 在一条直线上,A 、C 、E 在一条直线上,BC//DE ,DE=90米,BC=70米,BD=20米。
则A 、B 两村间的距离为 。
3、为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下列图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB )的高度约为_____ ___米(精确到0.1米)。
《相似三角形应用举例》 知识清单

《相似三角形应用举例》知识清单一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。
相似三角形对应边的比值称为相似比。
二、相似三角形的判定1、两角分别相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
三、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。
2、相似三角形的对应高、对应中线、对应角平分线的比等于相似比。
3、相似三角形的周长比等于相似比,面积比等于相似比的平方。
四、相似三角形的应用举例(一)测量高度1、测量旗杆高度例如,在旗杆旁边立一根已知长度的标杆,测量出标杆的影长和旗杆的影长。
由于在同一时刻,太阳光线是平行的,所以标杆和旗杆与地面形成的夹角相等,那么标杆和旗杆与其各自影长所构成的两个直角三角形相似。
设旗杆高度为 h,标杆长度为 a,标杆影长为 b,旗杆影长为 c,则有:a/b = h/c,通过这个比例关系可以求出旗杆的高度 h。
2、测量建筑物高度在距离建筑物一定距离的地方,放置一个已知高度的物体(如测量杆),然后分别测量出物体的影长和建筑物的影长,利用相似三角形的性质计算出建筑物的高度。
(二)测量距离1、测量河流宽度可以在河对岸选定一个目标点,然后在河的这一边选定两个点,使这两个点和对岸的目标点构成一个三角形。
再在这一边另选一个点,测量出这个点到刚才选定的两个点的距离以及这个点与对岸目标点所形成的夹角。
通过这些数据,可以利用相似三角形计算出河流的宽度。
2、测量不能直接到达的两点之间的距离比如,要测量 A、B 两点之间的距离,但 A、B 两点之间有障碍物不能直接测量。
可以在 A、B 两点之外找一个能同时看到 A、B 两点的点 C,测量出 AC、BC 的长度以及∠ACB 的度数。
根据三角形的余弦定理,可以求出 AB 的长度。
(三)在航海中的应用1、确定船只的位置通过观测两个已知位置的灯塔与船只所形成的角度,结合灯塔之间的距离以及相似三角形的知识,可以确定船只的位置。
相似三角形知识点归纳

相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。
记作△ABC∽△DEF。
2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。
-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。
-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。
3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。
根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。
-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。
-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。
4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。
-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。
-计算面积比例:相似三角形的面积比等于边长比的平方。
所以,通过已知相似三角形的边长比,可以计算出面积比。
5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。
-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。
总结起来,相似三角形是几何学中一个重要的概念。
通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。
相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。
(详细版)相似三角形的性质和应用

(详细版)相似三角形的性质和应用
1. 相似三角形的性质
相似三角形是指具有相同形状但尺寸不同的三角形。
相似三角形的性质如下:
- 对应角相等性质:如果两个三角形的对应角相等,则它们是相似三角形。
- 对应边成比例性质:相似三角形的对应边的长度成比例。
2. 相似三角形的应用
相似三角形的性质在实际生活和数学问题中有广泛的应用,以下是一些常见的应用场景:
- 测量高度:通过相似三角形的性质,我们可以利用测量出的一个三角形的高度来计算另一个相似三角形的高度。
这在实际中可以用于测量高楼、山峰等的高度。
- 图形设计:相似三角形的性质可以用于图形设计中的缩放问题。
通过改变三角形的大小来实现图形的缩放效果。
- 工程测量:在土木工程中,相似三角形的性质可以用于测量地形的坡度、直角三角形的边长等。
3. 实例分析
为了更好地理解相似三角形的性质和应用,以下是一个实际问题的分析:
假设有一根高大的电线杆,测得其高度为30米。
为了确定杆子的阴影长度,我们利用测量出的相似三角形来推算。
测量阴影的长度为10米,而测量器与杆子的距离为4米。
根据相似三角形的性质,可以建立如下比例关系:(30高度/4距离) = (阴影长度/10距离)。
通过解这个比例关系,我们可以计算出杆子的阴影长度为75米。
以上是相似三角形的性质和应用的一些简要介绍,通过理解和运用相似三角形的性质,我们可以解决许多实际问题,提高数学和几何的应用能力。
(Word count: 229 words)。
相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
初中数学知识归纳相似三角形的判定定理与实例

初中数学知识归纳相似三角形的判定定理与实例初中数学知识归纳:相似三角形的判定定理与实例相似三角形是初中数学中重要的概念之一,它涉及到判定与应用两个方面。
本文将对相似三角形的判定定理进行归纳总结,并通过实例加深理解。
一、相似三角形的判定定理1. 三边比例法:如果两个三角形的各边对应边的比相等,即a/b = c/d = e/f,则这两个三角形相似。
例如,如图1所示的三角形ABC和DEF,已知AB/DE = BC/EF = AC/DF = 2/3,就可以判定它们为相似三角形。
[示意图1]2. 三角形内角对应定理:如果两个三角形对应的内角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F,则这两个三角形相似。
例如,如图2所示的三角形ABC和DEF,已知∠A = ∠D = 60°,∠B = ∠E = 70°,∠C = ∠F = 50°,就可以判定它们为相似三角形。
[示意图2]3. AA相似判定法:如果两个三角形的两个对应角相等,则这两个三角形相似。
例如,如图3所示的三角形ABC和DEF,已知∠A = ∠D,∠C =∠F,就可以判定它们为相似三角形。
[示意图3]4. SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形相似。
例如,如图4所示的三角形ABC和DEF,已知AB/DE = BC/EF = AC/DF = 2/3,就可以判定它们为相似三角形。
[示意图4]二、相似三角形的实例与应用1. 高度定理:在一个直角三角形中,高与斜边的关系是恒定的。
根据这个定理,我们可以利用相似三角形来求解一些直角三角形的问题。
例如,如图5所示的直角三角形ABC中,已知AB = 3 cm, BC = 4 cm,求AC的长度。
[示意图5]解法:由于三角形ABC是直角三角形,根据高度定理可知,∆ABC与∆ACD相似。
由此可以得到以下等式:AB/AC = BC/AD。
将已知数据代入可得3/AC = 4/AD,整理得AC = 3/4 * AD。
《相似三角形应用举例》 知识清单

《相似三角形应用举例》知识清单一、相似三角形的定义和性质相似三角形是指对应角相等,对应边成比例的三角形。
相似三角形具有以下重要性质:1、对应角相等:如果两个三角形相似,那么它们的对应角大小相等。
2、对应边成比例:相似三角形的对应边的长度之比是一个固定的比例值。
3、周长之比等于相似比:两个相似三角形的周长之比等于它们的相似比。
4、面积之比等于相似比的平方:相似三角形的面积之比等于相似比的平方。
二、相似三角形的判定方法1、两角分别相等的两个三角形相似。
如果两个三角形的两个角分别对应相等,那么这两个三角形相似。
例如,在三角形 ABC 和三角形 A'B'C' 中,如果∠A =∠A',∠B =∠B',那么三角形 ABC 相似于三角形 A'B'C'。
2、两边成比例且夹角相等的两个三角形相似。
当两个三角形的两组对应边的长度之比相等,并且它们的夹角也相等时,这两个三角形相似。
比如,在三角形 ABC 和三角形 A'B'C' 中,如果 AB/A'B' = AC/A'C',且∠A =∠A',则这两个三角形相似。
3、三边成比例的两个三角形相似。
若两个三角形的三条边的长度之比都相等,那么这两个三角形相似。
三、相似三角形的应用场景1、测量高度在实际生活中,我们经常需要测量一些物体的高度,比如大树、高楼等。
这时可以利用相似三角形的原理来解决。
例如,要测量一棵大树的高度。
我们可以在同一时刻,测量出一根直立的杆子的高度以及它的影子长度,同时测量出大树的影子长度。
由于太阳光线的角度是相同的,所以杆子和它的影子以及大树和它的影子分别构成了相似三角形。
根据相似三角形对应边成比例的性质,就可以计算出大树的高度。
假设杆子的高度为 h1,影子长度为 l1,大树的影子长度为 l2,大树的高度为 h2,则有:h1 / l1 = h2 / l2,通过这个比例式就可以求出大树的高度 h2 = h1 × l2 / l1 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
Ta
知识巩固
2.如图,测得 BD=120 m,DC=60 m,EC=50 m,
求河宽 AB.
解:由已知可得 △ABD∽△ECD,
因此有
AB =
EC ,
BD CD
∴
AB 120
=
50 60
,
∴ AB=100(m).
A
所以河宽大约为 100 m.
60
B 120 D C50
E
例题解析
例3 如图,左、右并排的两棵大树的高分别是 AB =8 m和 CD=12 m,两树底部的距离 BD=5 m,一个人估 计自己的眼睛距地面 1.6 m.她沿着正对这两棵树的一条 水平直路 l 从左向右前进,当她与左边较低的树的距离 小于多少时,就不能看到右边较高的树的顶点 C 了?
E
A
┏ 0.8m
5m D 10m
C
?
┏
B
如图,已知零件的外径为a,要求它的 厚度x,需先求出内孔的直径AB,现用一个 交叉卡钳(两条尺长AC和BD相等)去量,若 OA:OC=OB:OD=n,且量得CD=b,求厚度x。
(分析:如图,要想求厚度
O
x,根据条件可知,首先得
求出内孔直径AB。而在图
中可构造出相似形,通过相
∠BAO=∠EDF.
又 ∠AOB=∠DFE=90°,
∴ △ABO∽△DEF.
∴
BO OA =
.
EF FD
∴ BO = OA EF = 201 2 =134(m).
FD
3
因此金字塔的高度为 134 m.
例题解析
例2 如图,为了估算河的宽度,我们可以在河对岸 选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S 共线且直线 PS 与河垂直,接着在过点 S 且与 PS 垂直的 直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R.已测得 QS = 45 m,ST = 90 m,QR = 60 m,请根据这些数据,计算河宽 PQ.
刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的
影长为60米,那么高楼的高度是多少米?
解:设高楼的高度为X米,则
1.8 x 3 60
A 1.8 C 3B
D
x 601.8 3
x 36
答:楼高36米.
F
E
60
例题解析
同学们有过测量物体高度的体验吗?你有什么方法 测量金字塔的高度?
例题解析
由此可知,如果观察者继续前进,当她与左边的树
距离小于 8 m 时,由于这棵树的遮挡,她看不到右边树
的顶端 C.
求楼高CD?
1.2
1.6
12.4
王青身高1.55m,估
计眼睛距地1.50m, LM=30cm,MS=2m,
N
问楼多高?
王青身高1.55m,估
T
计眼睛距地1.50m,
LM=30cm,MS=2m,
问楼多高?
K
1.50 1 2
L 0.3 M
2
S
给我一个支点我可以撬起整个地球!
---阿基米德
1.如图,铁道口的栏杆短臂长1m,长臂长16m,当
短臂端点下降0.5m时,长臂端点升高 8 m。
B
16m
C 0.5m ┛ 1mO
A (第1题)
?
┏
D
2. 小明在打网球时,使球恰好能打过网,而且落 在离网5米的位置上,求球拍击球的高度h.(设网 球是直线运动)
例1 据传说,古希腊数学家、天文学家泰勒斯曾 利用相似三角形的原理,在金字塔影子的顶部立一根木 杆,借助太阳光线构成两个相似三角形,来测量金字塔 的高度.
如图,木杆 EF 长 2 m, 它的影长 FD 为 3 m,测得 OA 为 201 m,求金字塔的高 度 BO.
怎样测出 OA 的长?
例题解析
解:太阳光是平行光线,因此
九年级 下册
27.2 相似三角形的应用举例
复旧引新
问题: (1)怎样判断两个三角形相似? (2)相似三角形的性质有哪些? (3)怎样作一个三角形与已知三角形相似?
练习 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m,同时测得一栋高楼的影长 为90m,这栋高楼的高度是多少?
D
A
F
E
C
B
1、在同一时刻物体的高度与它的影长成正比例,在某一时
P
Q Rb
S
Ta
例题解析
解:∵ ∠PQR=∠PST=90°,∠P=∠P,
∴ △PQR∽△PST.
∴
PQ PS
=
QR ST
,
即
PQ = QR , PQ = 60 ,
PQ QS ST PQ 45 90
PQ×90=(PQ+45)×60.
解得 PQ=90(m). 因此,河宽大约为 90 m.
P
Q Rb
似形的性质,从而求出AB
的长度。)
解:∵ OA:OC=OB:OD=n
且∠AOB=∠COD
O
∴△AOB∽△COD
∵ OA:OC=AB:CD=n
又∵CD=b
∵AB=CD ·n = nb
又∵x = ( a - AB )÷2 = ( a - nb )÷2
A
K
C
E
180
180
B
123 877
127
H
D
GF
1000
归纳小结
请你总结一下利用相似三角形知识解决实际问题 (测高与测距)的过程,你认为要注意哪些问题?
课后作业
教科书习题 27.2 第 9,10 题.
例题解析
解:如图,假设观察者从左向右走到点 E 时,她的
眼睛的位置点 E 与两棵树的顶端 A,C 恰在一条直线上.
∵ AB⊥l, CD⊥l,
∴ AB∥CD.
∴ △AEH∽△CEK.
∴
EH EK
=
AH CK
,
பைடு நூலகம்
即 EH = 8 1.6 = 6.4 . EH 5 12 1.6 10.4
解得 EH=8(m).