北师大版高二理科数学选修21期末试卷及答案

合集下载

最新高二数学题库 北师大版高中数学选修21期末考试试题及答案(理科)

最新高二数学题库 北师大版高中数学选修21期末考试试题及答案(理科)

高二期末考试数学试题晁群彦一.选择题(每小题5分,满分60分)1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 则2ABF ∆是正三角形,则椭圆的离心率是( )A2 B 12C D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积 最大值一定是( )A 2a B ab C D 8.已知向量k -+-==2),2,0,1(),0,1,1(与且互相垂直,则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B与1D E所成角的余弦值为( )A B C D 10.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 ( )A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,给出下列表达式:OCOB y OA x OM 31++=其中x ,y 是实数,若点M 与A 、B 、C 四点共面,则x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,则AB等于___15.若命题P :“∀x >0,0222<--x ax ”是真命题 ,则实数a 的取值范围是___.16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___.C三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。

北师大版高二理科数学选修试卷有答案

北师大版高二理科数学选修试卷有答案

涡阳一中高二年级理科数学选修2-1 模块学分认定试卷命题人:涡阳一中田备良(测试时间: 120 分钟满分 150 分)注意事项: 答题前,考生务势必自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效 .本卷考试结束后,上交答题纸..........一、选择题(每题5 分,共 12 小题,满分 60 分)1. 已知命题p : xR ,使 tan x 1,此中正确的选项是( )(A)p : x R ,使 tan x 1 (B)p : x R ,使 tan x1(C)p : xR ,使 tan x1(D)p : xR ,使 tan x 12. 抛物线 y 24ax(a 0) 的焦点坐标是()(A )( a , 0) ( B ) ( - a , 0)( C )( 0, a ) ( D )( 0, - a )3. 设 aR ,则 a 1 是1()1 的a(A )充足但不用要条件 ( B )必需但不充足条件(C )充要条件( D )既不充足也不用要条件4. 已知△ ABC 的三个极点为 A ( 3, 3, 2), B ( 4,- 3, 7), C ( 0, 5, 1),则 BC 边上的中线长为()(A )2(B )3(C )4(D )55. 有以下命题:①假如向量 a, b 与任何向量不可以组成空间向量的一组基底,那么 a, b 的关系是不共线;② O, A, B, C 为空间四点,且向量 OA,OB, OC 不组成空间的一个基底,则点 O, A, B, C 必定共面;③已知向量 a,b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。

此中正确的命题是()(A )①②( B )①③ ( C )②③ (D )①②③6. 如图:在平行六面体ABCD A 1 B 1C 1 D 1 中, M 为 A 1C 1 与 B 1D 1 的交点。

最新高二数学题库 北师大版高二数学选修21试题及答案

最新高二数学题库 北师大版高二数学选修21试题及答案

高二数学选修2-1质量检测试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至6页。

考试结束后. 只将第Ⅱ卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是 A.24y x =- B.24x y =C.24y x =-或24x y = D. 24y x =或24x y =- 2. 以下四组向量中,互相平行的有( )组.(1) (1,2,1)a =,(1,2,3)b =-; (2) (8,4,6)a =-,(4,2,3)b =-; (3)(0,1,1)a =-,(0,3,3)b =-; (4)(3,2,0)a =-,(4,3,3)b =- A. 一 B. 二 C. 三 D. 四3. 若平面α的法向量为1(3,2,1)n =,平面β的法向量为2(2,0,1)n =-,则平面α与β夹角的余弦是B. C. D. 4.“5,12k k Z αππ=+∈”是“1sin 22α=”的A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件 5. “直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要6.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B 与1D E 所成角的余弦值为A B C D7. 已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A.221916x y -= B.221169x y -= C.2212536x y -= D. 2212536y x -= 8. 已知直线l 过点P(1,0,-1),平行于向量(2,1,1)a =,平面α过直线l 与点M(1,2,3),则平面α的法向量不可能是A. (1,-4,2)B.11(,1,)42-C. 11(,1,)42-- D. (0,-1,1)9. 命题“若a b <,则a c b c +<+”的逆否命题是A. 若a c b c +<+,则a b >B. 若a c b c +>+,则a b >C. 若a c b c +≥+,则a b ≥D. 若a c b c +<+,则a b ≥10 . 已知椭圆221102x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8.11.以下有四种说法,其中正确说法的个数为: (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个12。

北师大版高二数学选修21试卷及答案

北师大版高二数学选修21试卷及答案

北师大版高二数学选修21试卷及答案姓名:张平安一 选择题(本题共12个小题,每小题只有一个正确答案,每小题5分,共60分)1.x>2是24x >的 ( )A. 充分不必要条件B. 必要不充分条件C. 既充分又必要条件D. 既不充分又不必要条件2.命题“在ABC 中,若21sin =A ,则A=30º”的否命题是 ( )A.在ABC 中,若21sin =A ,则A≠30ºB. 在ABC 中,若1sin 2A ≠,则A=30ºC.在ABC 中,若1sin 2A ≠,则A≠30ºD .以上均不正确3.已知命题P :若a b ≥,则c>d ,命题Q :若e f ≤,则a b <。

若P 为真且Q的否命题为真,则“c d ≤”是“e f ≤的”( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件4、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =,b D A =11,c A A =1,则下列向量中与M B 1相等的向量是A 、c b a ++-2121B 、c b a ++2121 C 、 c b a +-2121 D 、 c b a +--2121 5、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为 A 、平面 B 、直线 C 、圆D 、线段6、已知a =(1,2,3),b =(3,0,-1),c =⎪⎭⎫⎝⎛--53,1,51给出下列等式:①∣c b a ++∣=∣c b a --∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是 A 、1个 B 、2个 C 、3个 D 、4个7.已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB过点1F ,则△2ABF 的周长为( ) (A )10 (B )20 (C )241(D ) 4148.椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )89.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )810.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )(A )3(B )11(C )22(D )1011.过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q+等于( )(A )2a (B )12a (C )4a (D )4a12. 假如椭圆193622=+yx 的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x 二.填空题(本大题共4个小题,每小题4分,共16分) 13、“末位数字是0或5的整数能被5整除”的 否定形式是 否命题是14.与椭圆22143x y +=具有相同的离心率且过点(2,3方程 。

北师大版高二理科数学选修试卷有答案

北师大版高二理科数学选修试卷有答案

北师大版高二理科数学选修试卷有答案SANY GROUP system office room 【SANYUA16H-涡阳一中高二年级理科数学选修2-1模块学分认定试卷命题人:涡阳一中 田备良(测试时间:120分钟 满分150分)注意事项:答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效..........本卷考试结束后,上交答题纸.一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ()(A) tan 1p x R x ⌝∃∈≠:,使 (B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是( )(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )3. 设a R ∈,则1a >是11a < 的( )(A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 ( )(A )2 (B )3 (C )4 (D )5 5.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线;②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。

其中正确的命题是 ( )(A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题

高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题

单元综合测试五(期末综合测试)时间:120分钟 分值:150分一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =1i -1的模为( )A.12B.22 C.2 D .2 【答案】B【解析】 本题考查复数的运算和复数的模. ∵z =1i -1=-12-12i ,∴|z |=(-12)2+(-12)2=22.故选B. 2.已知复数z =2-i ,则z ·z -的值为( ) A .5 B. 5 C .3 D. 3 【答案】A【解析】 ∵z =2-i ,∴z =2+i ,∴z ·z =(2+i)(2-i)=4-(-1)=5.3.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b ∈R )”,其反设正确的是( ) A .a 、b 至少有一个不为0 B .a 、b 至少有一个为0 C .a 、b 全不为0 D .a 、b 中只有一个为0 【答案】A【解析】 对“全为0”的否定是“不全为0”,故选A.4.在平面直角坐标系内,方程x a +yb =1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的方程为( )A.x a +y b +z c =1B.x ab +y bc +zac =1 C.xy ab +yz bc +zxca =1 D .ax +by +zc =1 【答案】A【解析】 由类比推理可知,方程为x a +y b +zc=1.5.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S <8B .S <9C .S <10D .S <11 【答案】B【解析】 本题考查了程序框图的循环结构.依据循环要求有i =1,S =0;i =2,S =2×2+1=5;i =3,S =2×3+2=8;i =4,S =2×4+1=9,此时结束循环,故应为S <9.6.对a ,b ∈R +,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( )A .大前提B .小前提C .结论D .无错误 【答案】B【解析】 小前提错误,应满足x >0.7.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .3D .7 【答案】C【解析】 本题考查程序框图中的循环结构.i =1,s =1→s =1+(1-1)=1,i =2→s =1+(2-1)=2,i =3→s =2+(3-1)=4,i =4→输出s .8.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( )A .0.49B .0.42C .0.7D .0.91 【答案】B【解析】 两人都击中概率P 1=0.49,都击不中的概率P 2=0.09,∴恰有一人击中的概率P =1-0.49-0.09=0.42.9.将正奇数按如图所示规律排列,则第31行从左向右的第3个数为( )1 3 5 7 17 15 13 11 9 19 21 23 25 27 29 31A .1 915B .1 917C .1 919D .1 921 【答案】B【解析】 如题图,第1行1个奇数,第2行3个奇数,第3行5个奇数,归纳可得第31行有61个奇数,且奇数行按由大到小的顺序排列,偶数行按由小到大的顺序排列.又因为前31行共有1+3+…+61=961个奇数,则第31行第1个数是第961个奇数即是1 921,则第3个数为1 917.10.已知x >0,y >0,2x +1y =1,若x +2y >m 2-2m 恒成立,则实数m 的取值X 围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 【答案】C【解析】 x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+4=8,当且仅当4y x =xy ,即x =4,y =2时取等号.∴m 2-2m <8,即m 2-2m -8<0,解得-2<m <4. 二、填空题(本大题共5小题,每小题5分,共25分)11.i 是虚数单位,i +2i 2+3i 3+…+8i 8=________(用a +b i 的形式表示,a ,b ∈R ).【答案】4-4i【解析】 i +2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8=i -2-3i +4+5i -6-7i +8=4-4i.12.阅读如图所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =______.【答案】4【解析】 本题考查程序框图的循环结构. i =1,A =2,B =1; i =2,A =4,B =2; i =3,A =8,B =6; i =4,A =16,B =18; 此时A <B ,则输出i =4.13.已知f (x )是定义在R 上的函数,且f (x )=1+f (x -2)1-f (x -2),若f (1)=2+3,则f (2 009)=________.【答案】2+ 3【解析】 ∵f (x )=1+f (x -2)1-f (x -2),∴f (x -2)=1+f (x -4)1-f (x -4).代入得f (x )=1+1+f (x -4)1-f (x -4)1-1+f (x -4)1-f (x -4)=2-2f (x -4)=-1f (x -4).∴f (x )=f (x -8),即f (x )的周期为8. ∴f (2 009)=f (251×8+1)=f (1)=2+ 3.14.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为________.【答案】59【解析】 设数1,3,6,10,15,21,…各项为a 1,a 2,a 3,…, 则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,即数列{a n +1-a n }构成首项为2,公差为1的等差数列. 利用累加法得a 28=a 1+(2+3+…+28), a 30=a 1+(2+3+…+28+29+30), ∴a 30-a 28=29+30=59.15.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比AE EB =ACBC ,把这个结论类比到空间:在三棱锥A —BCD 中,如图,面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.【答案】AE EB =S △ACDS △BCD三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分)16.实数m 为何值时,复数z =m 2(1m +5+i)+(8m +15)i +m -6m +5.(1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限?【解析】 z =m 2+m -6m +5+(m 2+8m +15)i ,(1)z 为实数⇔m 2+8m +15=0且m +5≠0, 解得m =-3.(2)z 为虚数⇔m 2+8m +15≠0且m +5≠0, 解得m ≠-3且m ≠-5. (3)z 为纯虚数⇔⎩⎪⎨⎪⎧m 2+m -6m +5=0m 2+8m +15≠0,解得m =2.(4)z 对应的点在第二象限⇔⎩⎪⎨⎪⎧m 2+m -6m +5<0m 2+8m +15>0,解得m <-5或-3<m <2.17.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论.【解析】 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得f (-1)+f (2)=33, f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.18.已知f(x)=-x3-x+1(x∈R).(1)求证:y=f(x)是定义域上的减函数;(2)求证满足f(x)=0的实数根x至多只有一个.【证明】(1)∵f′(x)=-3x2-1=-(3x2+1)<0(x∈R),∴y=f(x)是定义域上的减函数.(2)假设f(x)=0的实数根x至少有两个,不妨设x1≠x2,且x1,x2∈R,f(x1)=f(x2)=0.∵y=f(x)在R上单调递减,∴当x1<x2时,f(x1)>f(x2),当x1>x2时,f(x1)<f(x2),这与f(x1)=f(x2)=0矛盾,故假设不成立,所以f(x)=0至多只有一个实数根.19.如图是某工厂加工笔记本电脑屏幕的流程图:根据此流程图可回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致废品的产生,二次加工产品的来源是什么?(3)该流程图的终点是什么?【解析】 (1)一件屏幕成品经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序;也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.20.已知数学、英语的成绩分别有1,2,3,4,5五个档次,某班共有60人,在每个档次的人数如下表:(1)求m =4,n =3(2)求在m ≥3的条件下,n =3的概率;(3)若m =2与n =4是相互独立的,求a ,b 的值. 【解析】 本题为条件概率和相互独立事件的概率. (1)m =4,n =3时,共7人,故概率为P =760.(2)m ≥3时,总人数为35.当m ≥3,n =3时,总人数为8,故概率为P =835.(3)若m =2与n =4是相互独立的, 则P (m =2)·P (n =4)=P (m =2,n =4). ∴1+b +6+0+a 60×3+0+1+b +060=b 60.故总人数为60,知a +b =13. ∴13×(4+b )=b .∴a =11,b =2.21.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2P (χ2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.828(注:此公式也可以写成χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ))【解析】 (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结构共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)2 60×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.。

北师大版高中数学选修2-1考试题及答案(理科).doc

北师大版高中数学选修2-1考试题及答案(理科).doc

选修(2-1)学刘理论班级: 姓名: 座号: 成绩:一、选择题(15×4=60分)1、(x+1)(x+2)>0是(x+1)(2x +2)>0的( )条件A 必要不充分B 充要C 充分不必要D 既不充分也不必要2、已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )条件A 必要不充分B 充分不必要C 充要D 既不充分也不必要 3、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC 与的夹角为( ) A 030 B 045 C 060 D 0904、O 、A 、B 、C 为空间四个点,又、、为空间的一个基底,则( ) A O 、A 、B 、C 四点共线 B O 、A 、B 、C 四点共面C O 、A 、B 、C 四点中任三点不共线D O 、A 、B 、C 四点不共面 5、给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂其中为假命题的是 ( ) A ① B ② C ③ D ④6、已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的 正三角形(如图1所示),则三棱锥B ′—ABC 的体积为( )A 41B21C 63D 437、若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A 3 B23C38 D 328、已知()()3cos ,3sin ,12cos ,2sin ,1P ααββ==和Q ,则PQ 的取值范围是( ) A []1,5 B ()1,5 C []0,5 D []0,259、 已知椭圆13610022=+y x 上一点P 到它的右准线的距离为10, 则点P 到它的左焦点的距离是( )A 8B 10C 12D 1410、与双曲线116922=-y x 有共同的渐近线,且经过点()32,3-的双曲线的一个焦点到 一条渐近线的距离是( )A 1B 2C 4D 811、若抛物线28y x =上一点P 到准线和抛物线的对称轴的距离分别为10和6,则此点P 的横坐标为( )A 10B 9C 8D 非上述答案12、已知坐标满足方程F (x ,y )=0的点都在曲线C 上,那么( ) A 曲线C 上的点的坐标都适合方程F (x ,y )=0; B 凡坐标不适合F (x ,y )=0的点都不在C 上; C 不在C 上的点的坐标不必适合F (x ,y )=0;D 不在C 上的点的坐标有些适合F (x ,y )=0,有些不适合F (x ,y )=0。

北师大版本高中高二数学选修21试卷试题包括答案

北师大版本高中高二数学选修21试卷试题包括答案

高二数学选修 2-1 质量检测试题〔卷〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

第一卷1 至 2页。

第二卷 3 至 6 页。

考试结束后 . 只将第二卷和答题卡一并交回。

第一卷〔选择题共 60 分〕考前须知:1.答第一卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本 大题共 12 小题,每题 5 分,共 60 分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1. 顶点在原点,且过点 ( 4, 4) 的抛物线的标准方程是A. y 2 4xB. x 24yC. y 24x 或 x 2 4 yD.y 24x 或 x 2 4 y2. 以下四组向量中,互相平行的有〔〕组 .(1) a (1,2,1) , b (1, 2,3) ; (2) a (8, 4, 6) , b(4,2, 3) ;〔 3〕 a (0,1, 1) , b(0, 3,3) ;〔 4〕 a( 3,2,0) , b (4, 3,3)A. 一B. 二C. 三D. 四3. 假设平面 的法向量为 n 1(3,2,1) ,平面的法向量为 n 2(2,0, 1) ,那么平面 与 夹角的余弦是70 B.70 A.C.14104.“k5 Z 〞是“ , k1270 7014D. -10sin 21 〞的2A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件5.“ 直线 l 与平面 内无数条直线都垂直〞 是“直线 l 与平面 垂直〞的〔〕条件A .充要B.充分非必要C .必要非充分 D.既非充分又非必要6.在正方体 ABCDA 1 BC 1 1D 1 中, E 是棱 A 1B 1 的中点,那么A 1B 与 D 1 E 所成角的余弦值为A .5 B .10C .5D .101010557. 两定点 F 1 (5,0) , F 2 (5,0) ,曲线上的点 P 到 F 1 、 F 2 的距离之差的绝对值是 6,那么该曲线的方程为x 2 y 2 x 2 y 2 x 2 y 2y 2x2A.1 B.1 C.1D.25191616925 36368. 直线 l 过点 P(1,0,- 1),平行于向量 a(2,1,1) ,平面过直线 l 与点M(1,2,3) ,那么平面 的法向量 不可能 是A. (1,- 4,2)B. ( 1, 1, 1)C. ( 1,1,1 )4 2 429. 命题“假设 a b ,那么 a c b c 〞的逆否命题是 A. 假设 a c b c ,那么 a b B. 假设 aC. 假设 a c b c ,那么 a bD. 假设aD. (0,- 1,1)c b c ,那么 a bc b c ,那么 a bx 2 y 2 1 ,假设其长轴在 y 轴上 .焦距为 4 ,那么 m 等于10 . 椭圆m 2 10 mA. 4 .B. 5 .C. 7 .D . 8.11.以下有四种说法,其中正确说法的个数为: 〔 1〕“ m 是实数〞是“ m 是有理数〞的充分不必要条件;(2) “ ab 〞是“ a 2b 2 〞的充要条件;(3) “ x 3 〞是“ x 22x 3 0 〞的必要不充分条件; 〔 4〕“ A B B 〞是“ A 〞的必要不充分条件 .A. 0 个B. 1 个C. 2 个D. 3 个x 2 y 2 1〔 a0 , b 0 〕的左、右焦点分别是 F 1, F 2 ,过 F 1 作12。

数学北师大版高中选修2-1高二下数学期末试卷

数学北师大版高中选修2-1高二下数学期末试卷

高二数学期末试卷一、选择题(本大题共有12小题, 每小题5分, 共60分. 在每小题所给出的四个选项中,只有一项是符合题意的,请把正确选项前的字母代号填在题后的括号内)1.物体的运动方程是S =10t -t 2(S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s 2.算法此算法的功能是 ( )A .a ,b ,c 中最大值B .a ,b ,c 中最小值C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.从一群游戏的孩子中抽出k 人,每人扎一条红带,然后让他们返回继续游戏,一会后,再从中任取m 人,发现其中有n 人扎有红带,估计这群孩子的人数为 ( ) A .k m B .k n C .m kn D .n km4.甲、乙、丙、丁四名射击选手在选拔赛 中所得的平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选 是 ( )A .甲B . 乙C .丙D . 丁 5.若命题p : x ∈A ∪B , 则非p 是 ( ) A .x ∉A 且x ∉B B .x ∉A 或x ∉B C .x ∉A ∩B D .x ∈A ∩B 6.在下列命题中,(1)2,0x R x ∀∈≥. (2)x R ∃∈,使得x 2+x +1<0. (3)若tan α= tan β,则α=β.(4)若ac =b 2则a 、b 、c 成等比数列。

其中真命题有 ( ) A .0个 B .1个 C .2个 D .3个7.若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥38. (文科做) 甲、乙两人下棋,两人下成和棋的概率是21,乙获胜的概率是31则65是 ( )A .乙胜的概率B .乙不输的概率C .甲胜的概率D .甲不输的概率8.(理科做)若向量、的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则·等于 ( ) A .1- B .5- C .5 D .79.(文科做) 设一组数据的方差s 2,将这组数据的每个数据乘以10,所得到一组新数据的方差是( )9.(理科做)下列积分正确的一个是( )A .22ππ-⎰sin x dx =2 B .271⎰=12C .ln 2⎰e x (1+ e x ) dx =163D .21⎰12xe x dxe10.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为 ( )A .2B . 3C .263D .23311.在平面直角坐标系中,点(x ,y ) 中的x 、y ∈{0,1,2,3,4,5,6}且x ≠y ,则点(x ,y )落在半圆(x -3)2+y 2=9(y ≥0)内(不包括边界) 的概率是 ( )A .1142B .1342C .37D .154912.函数y =x cos x -sin x 在下面哪个区间上是增函数 ( )A .(2π, 23π)B .(π, 2π)C .( 23π,25π) D .( 2π, 3π)二、填空题(本大题共有6小题,每题5分,共30分. 把结果直接填在题中的横线上)13.若施肥量x 与水稻产量y 的线性回归方程为ˆy=5x +250,当施肥量为80kg 时,预计的水 稻产量为 . 14.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序 框图,其中判断框内应填入的条件是 . 15有两个人在一座15层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则这两个 人在不同层离开的概率是 .16.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形 APQB 的面积为 .17.点P 是椭圆19y 16x 22=+上一点, F 1、F 2是其焦点, 若 ∠F 1P F 2=90°, △F 1P F 2面积为 .18. (文科做) 函数f (x )= x -e x在点P 的切线平行于x 轴,则点P 的坐标为 . 18. (理科做) 由曲线y=24x 、直线x =1、x =6和x 轴围成的封闭图形的面积为 . 三、解答题(本大题共有6小题,满分50分. 解答需写出文字说明、推理过程或演算步骤) 19.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画了样本的频率分布直方图(如下图).根椐上述信息回答下列问题:(1)月收入在[3000, 3500 )的居民有多少人? (2) 试估计该地居民的平均月收入(元); (3) 为了分析居民的收入与年龄、学历、职 业等方面的关系,要从这20000人中再用分层抽样方法抽出300人作进一步调查,则在[2500, 3000 )(元)月收入段应抽出多少人.20.今有一批球票,按票价分别为10元票5张,20元票3张,50票2张,从这批票中抽出2 张. 问:(1)抽得2张均为20元的票价的概率 (2)抽得2张不同票价的概率.(3)抽得票价之和等于70元的概率.21.(文科做)已知命题p : f (x )=31x- , 且,命题q : 集合{}2|(2)10,A x x a x x R =+++=∈,B={x | x >0}, 且A B =∅,求实数a 的取值范围,使p 、q 中有且只有一个为真命题。

北师大版高中数学选修2-1—上学期期末考试试卷(理科).docx

北师大版高中数学选修2-1—上学期期末考试试卷(理科).docx

2011—2012学年度上学期期末考试高二数学试卷(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟,注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效。

2.答题前,考生务必将自己的“姓名”、“班级”、和“考号”写在答题卷上。

3.考试结束,只交答题卷。

第Ⅰ卷(选择题共50分)一、选择题(每小题5分,共10个小题,本题满分50分)1.命题P :x R ∀∈,函数2()2cos 23f x x x =+≤,则( )A .P是假命题:2:,()2cos 23P x R f x x x ⌝∃∈=≤B .P是假命题:2:,()2cos 23P x R f x x x ⌝∃∈=>C .P是真命题:2:,()2cos 23P x R f x x x ⌝∃∈=+≤D .P是真命题:2:,()2cos 23P x R f x x x ⌝∃∈=+>2.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为( ) A .9 B .12 C . 8 D .133.如图的程序框图,如果输入三个实数a,b,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A .c>xB .x>cC . c>bD .b>c4.矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 的概率等于( )A .14B .13C .12D .235.某产品的广告费用与销售额的统计数据如下表:根据上表可得回归方程y=bx+a 中的b为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元 C . 67.7万元 D .72.0万元6.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A B C D7.在直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1,AB的中点,给出如下三个结论:①C 1M ⊥平面ABB 1A 1;②A 1B ⊥AM ;③平面AMC 1∥平面CNB 1;其中正确结论的个数是( )A .0B .1C . 2D .38.空间四边形ABCD 中,AB 、BC 、CD 的中点分别是P 、Q 、R ,且PQ=2,QR=,PR=3,那么异面直线AC 与BD 所成的角是( )A . 900B . 600C . 450D .3009.在甲、乙等6个同学参加的一次演讲比赛活动中,每个同学的节目集中安排在一起。

北师大版中数学选修2-1期末考试试题及答案(理科)

北师大版中数学选修2-1期末考试试题及答案(理科)

高二期末考试数学试题晁群彦一.选择题〔每题 5 分,总分值6 0 分〕1.设l , m, n均为直线,其中m, n在平面a内, 那么“l〞是“l m且l n〞〕的〔A .充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件2.对于两个命题:①x R,1sin x1,② x R,sin 2 x cos2 x1,以下判断正确的选项是〔〕。

A. ①假② 真B. ①真② 假C.① ② 都假D. ① ②都真3.与椭圆x2y2 1 共焦点且过点 Q(2,1) 的双曲线方程是〔〕4A. x2y21B.x 2y 21C.x 2y 21D.x 2y 21242334. F1, F2是椭圆的两个焦点,过 F 且与椭圆长轴垂直的弦交椭圆与 A , B 两点,1那么 ABF2是正三角形,那么椭圆的离心率是〔〕2B 1C3D1A23325.过抛物线y28x 的焦点作倾斜角为450直线 l ,直线 l 与抛物线相交与 A , B 两点,那么弦 AB 的长是〔〕A 8B16C32D646.在同一坐标系中,方程 a 2 x2b2 x21与ax by 20( a b0) 的曲线大致是〔〕A .B .C.D.7.椭圆x2y 2 1 ( a b >0)的两个焦点 F1,F2,点P在椭圆上,那么PF1F2的面积最a 2b 2大值一定是〔〕A a2B abC a a2b2D b a2b28.向量a(1,1,0), b (1,0, 2), 且 ka b与 2ab互相垂直 ,那么实数 k 的值是 () 137A . 1B .5C.5D.59 . 在正方体ABCD A BC D1 中,E 是棱A1B1的中点,那么A B D E所成角的余弦值为1 1 1 1与1〔〕510510A .10B.10C.5D.510.假设椭圆 mx2ny 21(m0, n0)与直线 y 1 x交于 A, B 两点 ,过原点与线段AB 中点2n的连线的斜率为2 ,那么m的值是()A2B2C3D.229211 . 过抛物线x2 4 y 的焦点F作直线交抛物线于 P1 x1 , y1 , P2 x2 , y2两点,假设y1y26 ,那么 P1P2的值为〔〕A. 5B. 6C. 8D. 1012.以 x 2y 2=1 的焦点为顶点,顶点为焦点的椭圆方程为〔〕412x 2y21x2y 21x2y 21 D.A.12B.16C.4161216二.填空题〔每题4分〕新课标第一网13.已知 A 、 B 、 C 三点不共线,对平面 ABC外一点 O ,给出下列表达式:OM xOA yOB 1OC 3其中 x, y 是实数,假设点 M 与 A 、 B、 C 四点共面,那么 x+y=___14.斜率为 1 的直线经过抛物线y2= 4x 的焦点,且与抛物线相交于A,B 两点,那么AB等于___15.假设命题P:“ x> 0,ax22x 2〞是真命题,那么实数 a 的取值范围是 ___.16.AOB 90,C为空间中一点,且AOC BOC60 ,那么直线OC与平面AOB所成角的正弦值为___.三.解答题〔解容许写出必要的文字说明、证明过程和演算步骤。

北师大版高二数学选修2-1期末考试卷及答案

北师大版高二数学选修2-1期末考试卷及答案

(选修2-1)李娜(共150分,时间120分钟)一、选择题(每小题5 分,共12小题,满分60分)1.对抛物线,下列描述正确的是()A 开口向上,焦点为B 开口向上,焦点为C 开口向右,焦点为D 开口向右,焦点为2.已知A和B是两个命题,如果A是B的充分条件,那么是的()A 充分条件B 必要条件C 充要条件D 既不充分也不必要条件3.椭圆的一个焦点是,那么实数的值为()A B C D4.在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若, ,,则下列向量中与相等的向量是()A B C D5.空间直角坐标系中,O为坐标原点,已知两点A(3,1,0),B(-1,3,0),若点C满足=α+β,其中α,βR,α+β=1,则点C的轨迹为()A 平面B 直线C 圆D 线段6.给出下列等式:命题甲:成等比数列,命题乙:成等差数列,则甲是乙的()A 充分非必要条件B 必要非充分条件C 充要条件D 既非充分又非必要条件7.已知=(1,2,3), =(3,0,-1),=给出下列等式:①∣∣=∣∣② = ③=④ =其中正确的个数是()A 1个B 2个C 3个D 4个8.设,则方程不能表示的曲线为()A 椭圆B 双曲线C 抛物线D 圆9.已知条件p:<2,条件q:-5x-6<0,则p是q的()A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件10.椭圆与双曲线有公共焦点,则椭圆的离心率是A B C D11.下列说法中错误的个数为()①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③是的充要条件;④与是等价的;⑤“”是“”成立的充分条件.A 2B 3C 4D 512.已知,,,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A B C D二、填空题(每小题6分,共5小题,满分30分)13.已知,(两两互相垂直),那么= 。

(完整版)北师大版高二理科数学选修2-1测试题及答案,推荐文档

(完整版)北师大版高二理科数学选修2-1测试题及答案,推荐文档

选修 2-1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷 1 至 2 页。

第Ⅱ卷 3 至 6 页。

考试结束后. 只将第Ⅱ卷和答题卡一并交回。

第Ⅰ卷(选择题 共 60 分)注意事项:1. 答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共 10 小题,每小题 6 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题“若 A = B ,则cos A = cos B ”的否命题是A. 若 A = B ,则 cos A ≠ cos B C. 若cos A ≠ cos B ,则 A ≠ BB. 若cos A = cos B ,则 A = B D. 若 A ≠ B ,则cos A ≠ cos B 2. “直线 l 与平面 平行”是“直线 l 与平面 内无数条直线都平行”的A. 充要条件 B .充分非必要条件 C .必要非充分条件 D .既非充分又非必要条件 3. 已知命题 p : 2 3 ,q : 2 3 ,对由 p 、q 构成的“p 或 q ”、 “p 且 q ”、“ p ”形式的命题,给出以下判断:①“p 或 q ”为真命题; ②“p 或 q ”为假命题; ③“p 且 q ”为真命题; ④“p 且 q ”为假命题; ⑤“ p ”为真命题; ⑥“ p ”为假命题. 其中正确的判断是 A .①④⑥ B. ①③⑥ C. ②④⑥ D .②③⑤ 4.“=5”是“ cos 2 - sin 2 = 1”的62A. 充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件5. 若方程x 2 y 2k 3 1 表示双曲线,则实数 k 的取值范围是k 1 A. k 1 C. k36. 抛物线 y 2 x 2 的焦点坐标是B. 1 k 3 D. k1 或 k 3A. 01 8B. 01 4C. 1 , 08D. 1 , 0457. 以下给出了三个判断,其中正确 判断的个数为.(1) 向量 (2) 向量 a = (3, -2,1) 与向量 b= (-3, 2, -1) 平行 = (3, -6, 4) 与向量 = (0, -2, 3) 垂直a b1 (3)向量 a = (1,-2, 0) 与向量 b = (2 , -1, 0) 平行A. 0B. 1C. 2D. 38. 以下有四种说法,其中正确说法的个数为:()“ b 2 ac ”是“ b 为a 、c 的等比中项”的充分不必要条件;() “ a > b ”是“ a 2 > b 2 ”的充要条件;()“ A = B ”是“ tan A = tan B ”的充分不必要条件; () “ a + b 是偶数”是“ a 、b 都是偶数”的必要不充分条件. A. 0 个 B. 1 个 C. 2 个 D. 3 个9. 抛物线 y1x 2 , (a 0) 的准线方程是 aA. y a 4B. y 4aC. y a 4D. y4a10. 抛物线 y 2 = 12x 上与焦点的距离等于 7 的点的横坐标是A. 6B. 5C. 4D.3二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。

北师大版高二数学选修-试题及标准答案

北师大版高二数学选修-试题及标准答案

北师大版高二数学选修-试题及答案————————————————————————————————作者:————————————————————————————————日期:(选修2-1)孙 敏一、选择题(本大题共12小题,每小题6分,共72分) 1、a 3>8是a >2的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件2、全称命题“所有被5整除的整数都是奇数”的否定是( ) A .所有被5整除的整数都不是奇数; B .所有奇数都不能被5整除C .存在一个被5整除的整数不是奇数;D .存在一个奇数,不能被5整除3、抛物线281x y -=的准线方程是( )A . 321=xB . 2=yC . 321=y D . 2-=y4、有下列命题:①20ax bx c ++=是一元二次方程(0a ≠);②空集是任何集合的真子集;③若a ∈R ,则20a ≥;④若,a b ∈R 且0ab >,则0a >且0b >.其中真命题的个数有( )A .1B . 2C . 3D . 45、椭圆1162522=+y x 的离心率为( ) A .35 B . 34 C .45 D . 9256、以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=7、已知a =(2,-3,1),b =(4,-6,x ),若a ⊥b ,则x 等于( )A .-26B .-10C .2D .10 8、如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则BD BC AB 2121++等于( )A .ADB .GAC .AGD .MG9、已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( ) A .OM OA OB OC =++u u u u r u u u r u u u r u u u r B . 2OM OA OB OC =--u u u u r u u u r u u u r u u u rC .1123OM OA OB OC =++u u u u r u u u r u u u r u u u rD .111333OM OA OB OC =++u u u u r u u u r u u u r u u u r10、设3=a ,6=b , 若a •b =9,则,<>a b 等于( )A .90°B .60°C .120°D .45°11、已知向量a =(1,1,-2),b =12,1,x ⎛⎫ ⎪⎝⎭,若a ·b ≥0,则实数x 的取值范围为( )A .2(0,)3 B .2(0,]3C .(,0)-∞∪2[,)3+∞D .(,0]-∞∪2[,)3+∞12、设R x x ∈21,,常数0>a ,定义运算“﹡”:22122121)()(x x x x x x --+=*,若0≥x ,则动点),(a x x P *的轨迹是( )A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分 二、填空题(本大题共5小题,每小题5分,共25分)13、命题“若2430x x -+=,则x =1或x =3”的逆否命题为 .14、给出下列四个命题:①x ∃∈R ,是方程3x -5=0的根;②,||0x x ∀∈>R ;③2,1x x ∃∈=R ;④2,330x x x ∀∈-+=R 都不是方程的根.其中假命题...的序号有 . 15、若方程11222=-+-k y k x 表示的图形是双曲线,则k 的取值范围为 .16、抛物线24y x =的准线方程是 .17、由向量(102)=,,a ,(121)=-,,b 确定的平面的一个法向量是()x y =,,2n ,则x = ,y = .三、解答题(本大题共5小题,共53分.解答应写出文字说明、演算步骤或推证过程)18、(本小题满分8分)双曲线的离心率等于2,且与椭圆221259x y +=有相同的焦点,求此双曲线方程.19、(本小题满分10分)已知命题:P “若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(2)判断命题P 的否命题的真假, 并证明你的结论.20、(本小题满分11分)已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a21、(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明:AD ⊥D 1F ; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1.22、(本小题满分12分)设椭圆12222=b y a x +(a >b >0)的左焦点为F 1(-2,0),左准线 L 1 :ca x 2-=与x 轴交于点N (-3,0),过点N 且倾斜角为300的直线L 交椭圆于A 、B 两点。

数学北师大版高中选修2-1高二下数学期末试卷

数学北师大版高中选修2-1高二下数学期末试卷

高二数学期末试卷一、选择题(本大题共有12小题, 每小题5分, 共60分. 在每小题所给出的四个选项中,只有一项是符合题意的,请把正确选项前的字母代号填在题后的括号内)1.物体的运动方程是S =10t -t 2 (S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s 2.算法 此算法的功能是 ( )A .a ,b ,c 中最大值B .a ,b ,c 中最小值C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.从一群游戏的孩子中抽出k 人,每人扎一条红带,然后让他们返回继续游戏,一会后,再从中任取m 人,发现其中有n 人扎有红带,估计这群孩子的人数为 ( ) A .k m B .k n C .m kn D .n km4.甲、乙、丙、丁四名射击选手在选拔赛 中所得的平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选 是 ( )A .甲B . 乙C .丙D . 丁5.若命题p : x ∈A ∪B , 则非p 是 ( ) A .x ∉A 且x ∉B B .x ∉A 或x ∉B C .x ∉A ∩B D .x ∈A ∩B 6.在下列命题中,(1)2,0x R x ∀∈≥. (2)x R ∃∈,使得x 2+x +1<0. (3)若tan α= tan β,则α=β.(4)若ac =b 2则a 、b 、c 成等比数列。

其中真命题有 ( ) A .0个 B .1个 C .2个 D .3个 7.若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥38. (文科做) 甲、乙两人下棋,两人下成和棋的概率是21,乙获胜的概率是31则65是 ( )A .乙胜的概率B .乙不输的概率C .甲胜的概率D .甲不输的概率8.(理科做)若向量a 、b 的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则a ·b 等于 ( ) A .1- B .5- C .5 D .7 9.(文科做) 设一组数据的方差s 2,将这组数据的每个数据乘以10,所得到一组新数据的方差是 ( ) A .0.1s 2 B .100s 2 C .10s 2 D .s 29.(理科做)下列积分正确的一个是 ( )A .22ππ-⎰sin x dx =2 B .271⎰=12C .ln 20⎰e x (1+ e x ) dx =163D .21⎰12xe x dxe10.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为 ( )A .2B . 3C .263D .23311.在平面直角坐标系中,点(x ,y ) 中的x 、y ∈{0,1,2,3,4,5,6}且x ≠y ,则点(x ,y )落在半圆(x -3)2+y 2=9(y ≥0)内(不包括边界) 的概率是 ( )A .1142B .1342C .37D .154912.函数y =x cos x -sin x 在下面哪个区间上是增函数 ( )A .(2π, 23π)B .(π, 2π)C .( 23π,25π) D .( 2π, 3π)二、填空题(本大题共有6小题,每题5分,共30分. 把结果直接填在题中的横线上)13.若施肥量x 与水稻产量y 的线性回归方程为ˆy=5x +250,当施肥量为80kg 时,预计的水 稻产量为 . 14.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序 框图,其中判断框内应填入的条件是 .15有两个人在一座15层大楼的底层进入电梯,设他们中的每 一个人自第二层开始在每一层离开是等可能的,则这两个 人在不同层离开的概率是 .16.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形 APQB 的面积为 .17.点P 是椭圆19y 16x 22=+上一点, F 1、F 2是其焦点, 若 ∠F 1P F 2=90°, △F 1P F 2面积为 .18. (文科做) 函数f (x )= x -e x 在点P 的切线平行于x 轴,则点P 的坐标为 . 18. (理科做) 由曲线y=24x 、直线x =1、x =6和x 轴围成的封闭图形的面积为 .三、解答题(本大题共有6小题,满分50分. 解答需写出文字说明、推理过程或演算步骤) 19.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画了样本的频率分布直方图(如下图).根椐上述信息回答下列问题:(1)月收入在[3000, 3500 )的居民有多少人? (2) 试估计该地居民的平均月收入(元); (3) 为了分析居民的收入与年龄、学历、职 业等方面的关系,要从这20000人中再用分层抽样方法抽出300人作进一步调查,则在[2500, 3000 )(元)月收入段应抽出多少人.20.今有一批球票,按票价分别为10元票5张,20元票3张,50票2张,从这批票中抽出2张. 问:(1)抽得2张均为20元的票价的概率 (2)抽得2张不同票价的概率.(3)抽得票价之和等于70元的概率.21.(文科做)已知命题p : f (x )=31x- , 且,命题q : 集合{}2|(2)10,A x x a x x R =+++=∈,B={x | x >0}, 且A B =∅,求实数a 的取值范围,使p 、q 中有且只有一个为真命题。

(完整版)北师大版高中数学选修2-1期末考试试题及答案(理科),推荐文档

(完整版)北师大版高中数学选修2-1期末考试试题及答案(理科),推荐文档
则 D0,0,0 A2,0,0 B2,2,0 C0,2,0 P0,0,2 E0,1,1 F0,0,1
G1,2,0
AP 2,0,2 EF 0,1,0 FG 1,2,1 ………………3 分
………14
设平面 GEF 的法向量 n (x, y, z) ,由法向量的定义得:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙 n n
9.在正方体 ABCD A1B1C1D1 中, E 是棱 A1B1 的中点,则 A1B 与 D1E 所成角的余弦值为(

5
10
5
10
A. 10 B. 10 C. 5 D. 5
10.若椭圆 mx2 ny 2 1(m 0, n 0)与直线y 1 x 交于 A,B 两点,过原点与线段 AB 中点
n
2
的连线的斜率为 2 ,则 m 的值是(
)
A. 2 2 B. 2 C. 3 D . 2
9
2
2
11.过抛物线 x 2 4 y 的焦点 F 作直线交抛物线于 P1 x1, y1 , P2 x2 , y2 两点,若
y1 y2 6 ,则 P1P2 的值为 ( )
A.5
B.6
DQ 1 (DP DB)

2

………………………………13 分
故在线段 PB 上存在一点 Q,使 PC⊥平面 ADQ,且点 Q 为线段 PB 的中点。……15分
解法二:(1)∵EF∥CD∥AB,EG∥PB,根据面面平行的判定定理
∴平面 EFG∥平面 PAB,又 PA 面 PAB,∴AP∥平面 EFG ……………………4 分
(2)∵平面 PDC⊥平面 ABCD,AD⊥DC
∴AD⊥平面 PCD,而 BC∥AD,∴BC⊥面 EFD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级理科数学选修2-1期末测试卷一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 3. 设a R ∈,则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) (A )2 (B )3 (C )4 (D )55.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线;②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面; ③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。

其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

若=,=,c AA =1则下列向量中与BM 相等的向量是( )(A ) ++-2121 (B )++2121 (C )+--2121 (D )+-21217. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0)(C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0) 8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB = ( ) (A )6 (B )8 (C )9 (D )109. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( )(A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) 10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点 坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2-11. 在长方体ABCD-A 1B 1C 1D 1中,如果AB=BC=1,AA 1=2,那么A 到直线A 1C 的距离为 ( )(A (B ) (C (D )12.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B )(C )13(D 二、填空题(每小题4分,共4小题,满分16分)13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。

14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

当水面升高1米后,水面宽度是________米。

15. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___________。

16.①一个命题的逆命题为真,它的否命题也一定为真;②在ABC ∆中,“︒=∠60B ”是“C B A ∠∠∠,,三个角成等差数列”的充要条件.③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④“am 2<bm 2”是“a <b ”的充分必要条件.以上说法中,判断错误的有___________.三、解答题(共6小题,满分74分)17.(本题满分12分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.18.(本题满分12分)已知椭圆C 的两焦点分别为()()12,0,0F F -22、22,长轴长为6,⑴求椭圆C 的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。

.19.(本题满分12分)如图,已知三棱锥O ABC -的侧棱OA OB OC ,,两两垂直, 且1OA =,2OB OC ==,E 是OC 的中点。

(1)求异面直线BE 与AC 所成角的余弦值; (2)求直线BE 和平面ABC 的所成角的正弦值。

20.(本题满分12分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点。

(1)求证:命题“如果直线l 过点T (3,0),那么OB OA ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

21.(本题满分14分)PA如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,BD=22. (1)求证:BD ⊥平面PAC ;(2)求二面角P —CD —B 余弦值的大小; (3)求点C 到平面PBD 的距离.22. (本题满分12分)如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by a x 的左、右两个焦点,A 、B 为两个顶点,已知椭圆C 上的点)23,1(到F 1、F 2两点的距离之和为4.(1)求椭圆C 的方程和焦点坐标;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P 、Q 两点,求△F 1PQ 的面积.高二年级理科数学选修2-1期末测试卷参考答案一、选择题:二、填空题: 13、 2 14、24 15、 082=-+y x 16、③④ 三、解答题:17、解:若方程210x mx ++=有两个不等的负根,则21240m x x m ⎧∆=->⎨+=-<⎩, …………2分所以2m >,即:2p m >. ………………………………………………………3分 若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<, …………5分即13m <<, 所以:13p m <<. …………………………………………………6分 因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假.所以,p q 一真一假,即“p 真q 假”或“p 假q 真”. ……………………………8分 所以213m m m >⎧⎨≤≥⎩或或213m m ≤⎧⎨<<⎩ …………………………………………………10分所以3m ≥或12m <≤.故实数m 的取值范围为(1,2][3,)+∞U . …………………………………………12分 18、解:⑴由()()12F F 、,长轴长为6得:3ca ==所以1b =∴椭圆方程为22191x y += …………………………………………………5分⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191x y +=①,∵直线AB 的方程为2y x =+②……………………………7分把②代入①得化简并整理得21036270x x ++=∴12121827,510x x x x +=-= ……………………………10分又AB ……………………………12分19、解:(1)以O 为原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系.则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E ……………………………3分(2,0,0)(0,1,0)(2,1,0),(0,2,1)EB AC =-=-=-u u u r u u u rCOS<,EB AC u u u r u u u r >2,555==-⋅ ……………………………5分 所以异面直线BE 与AC 所成角的余弦为52……………………………6分 (2)设平面ABC 的法向量为1(,,),n x y z =u u r则 11:20;n AB n AB x z ⊥⋅=-=u u r u u u r u u r u u u r知11:20.n AC n AC y z ⊥⋅=-=u u r u u u r u u r u u u r 知取1(1,1,2)n =u u r, ………8分则303065012,cos 1=+->=<n EB ,…………………10分 故BE 和平面ABC 的所成角的正弦值为3030…………12分 20、证明:(1)解法一:设过点T(3,0)的直线l 交抛物线2y =2x 于点A(x 1,y 1)、B(x 2,y 2).当直线l 的钭率下存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于A(3,6)、B(3,-6),∴3=⋅。

……………………………3分 当直线l 的钭率存在时,设直线l 的方程为y =k (x -3),其中k≠0.⎩⎨⎧-==)3(22x k y x y 得ky 2-2y -6k =0,则y 1y 2=-6. 又∵x 1=21y 12, x 2=21y 22, ∴OB OA ⋅=x 1x 2+y 1y 2=21221)(41y y y y +=3. ……………………………7分综上所述, 命题“......”是真命题. ……………………………8分 解法二:设直线l 的方程为my =x -3与2y =2x 联立得到y 2-2my-6=0 ⋅=x 1x 2+y 1y 2=(my 1+3) (my 2+3)+ y 1y 2=(m 2+1) y 1y 2+3m(y 1+y 2)+9=(m 2+1)× (-6)+3m ×2m+9=3 ………8分(2)逆命题是:“设直线l 交抛物线y 2=2x 于A 、B 两点,如果3=⋅OB OA ,那么该直线过点T(3,0).”…………………………………………………10分该命题是假命题. 例如:取抛物线上的点A(2,2),B(21,1),此时3=⋅OB OA =3, 直线AB 的方程为y =32(x +1),而T(3,0)不在直线AB 上. ………………………………12分 点评:由抛物线y 2=2x 上的点A(x 1,y 1)、B(x 2,y 2)满足3=⋅,可得y 1y 2=-6。

相关文档
最新文档