机械原理课程设计大作业

合集下载

机械原理大作业——牛头刨床

机械原理大作业——牛头刨床

机械原理大作业——牛头刨床大作业,一,平面连杆机构的运动分析题号: 6班级 : 姓名 : 学号 : 同组者 :成绩 :完成时间 :目录题目、原始数据及要求 ..................................................................... .......................1 一平面连杆机构运动分析方程 ..................................................................... . (1)1.1速度计算公式 ..................................................................... .. (2)1.2加速度计算公式 ..................................................................... ..............2 二程序 ..................................................................... (3)2.1计算程序框图 ..................................................................... (3)2.2计算源程序 ..................................................................... .........................4 三 3.1 (一组数据 Lab =200mm)计算结果 (9)3.2运动线图 ..................................................................... . (10)3.3 体会 ..................................................................... .................................... 12 四 4.1(第二组数据 Lab =150mm)计算结果 . (12)4.2 运动线图 ..................................................................... .. (13)4.3 体会 ..................................................................... .................................... 15 五 5.1(第三组数据 Lab =220mm)计算结果 . (16)5.2 运动线图 ..................................................................... (17)5.3 体会 ..................................................................... ...................................... 21 六参考资料 ..................................................................... (21)题目、原始数据及要求:图所示为一牛头刨床(?级机构)。

机械原理大作业一连杆机构参考例子

机械原理大作业一连杆机构参考例子

机械原理大作业课程名称:机械原理设计题目:机械原理大作业院系:汽车工程学院车辆工程班级:1101201姓名:。

学号:。

指导教师:游斌弟大作业1 连杆机构运动分析1、运动分析题目如图所示机构,已知机构各构件的尺寸为280mm AB =,350mm BC =,320mm CD =,160mm AD =,175mm BE = 220mm EF =,25mm G x =,80mm G y =,构件1的角速度为110rad/s ω=,试求构件2上点F 的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。

图 12、对机构进行结构分析该机构由I 级杆组RR (原动件1)、II 级杆组RRR (杆2、杆3)和II 级杆组RPR (滑块4及杆5)组成。

I 级杆组RR ,如图2所示;II 级杆组RRR ,如图3所示;II 级杆组RPR ,如图4所示。

图2 图 2图4 3、建立坐标系建立以点A为原点的固定平面直角坐标系4、各基本杆组运动分析的数学模型(1)同一构件上点的运动分析:如图5所示的构件AB,,已知杆AB 的角速度=10/rad s ω,AB 杆长i l =280mm,可求得B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。

=cos =280cos B i x l ϕϕ; =sin =280sin B i y l ϕϕ;图 3==-sin =-BxB i B dx v l y dt ωϕω; ==cos =;B yB i B dyv l x dt ωϕω222B 2==-cos =-BxB i d x a l x dt ωϕω;2222==-sin =-ByB i Bd y a l y dtωϕω。

图 4(2)RRRII 级杆组的运动分析如图6所示是由三个回转副和两个构件组成的II 级组。

已知两杆的杆长2l 、3l 和两个外运动副B 、D 的位置(B x 、B y 、D x 、D y )、速度( xB yB xD yD v v v v 、、、 ) 图6和加速度(xB yB xD yD a a a a 、、、)。

(完整word版)哈工大机械原理大作业3齿轮传动设计

(完整word版)哈工大机械原理大作业3齿轮传动设计
圆锤齿轮15和16选择为标准齿轮 22, 41,齿顶高系数 =1,径向间隙系数 =0.2,分度圆压力角 =20°(等于啮合角 )。
4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算
4.1滑移齿轮5和齿轮6
序号
项目
代号
计算公式及计算结果
1
齿数
齿轮5
17
齿轮6
39
2
模数
2
3
压力角
20°
4
齿顶高系数
1
5
令 =4
则可得定轴齿轮传动部分的传动比为 = =6.4667
滑移齿轮传动的传动比 = =2.308
= =2.857
定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为
3、齿轮齿数的确定
根据滑移齿轮变速传动系统中对齿轮齿数的要求,选择齿轮5、6为标准齿轮,7、8、9和10为角度变位齿轮。设 17, = 39满足传动比,由于是标准齿轮,可得中心距a=76mm ,h*a=1, =17,因此不会发生根切,开始设计下面的角度变位。
顶隙系数
0.25
6
标准中心距
= ( )/2=56
7
实际中心距
56
8
啮合角
9
变位系数
齿轮5
0
齿轮6
0
10
齿顶高
齿轮5
2mm
齿轮6
2mm
11
齿根高
齿轮5
2.5mm
齿轮6
2.5mm
12
分度圆直径
齿轮5
34mm
齿轮6
78mm
13
齿顶圆直径
齿轮5
38mm
齿轮6
82mm
14
齿根圆直径

机械原理大作业2-1120810417-凸轮

机械原理大作业2-1120810417-凸轮

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s 650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=s ω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。

1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为: }{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。

哈工大机械原理大作业

哈工大机械原理大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业一课程名称:机械原理设计题目:连杆机构运动分析院系:机电学院班级: 1208105分析者:殷琪学号:指导教师:丁刚设计时间:哈尔滨工业大学设计说明书1 、题目如图所示机构,一只机构各构件的尺寸为AB=100mm,BC=4.28AB,CE=4.86AB,BE=8.4AB,CD=2.14AB,AD=4.55AB,AF=7AB,DF=3.32AB,∠BCE=139?。

构件1的角速度为ω1=10rad/s,试求构件2上点E的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。

2、机构结构分析该机构由6个构件组成,4和5之间通过移动副连接,其他各构件之间通过转动副连接,主动件为杆1,杆2、3、4、5为从动件,2和3组成Ⅱ级RRR基本杆组,4和5组成Ⅱ级RPR 基本杆组。

如图建立坐标系3、各基本杆组的运动分析数学模型1) 位置分析2) 速度和加速度分析 将上式对时间t 求导,可得速度方程:将上式对时间t 求导,可得加速度方程:RRR Ⅱ级杆组的运动分析如下图所示 当已知RRR 杆组中两杆长L BC 、L CD 和两外副B 、D 的位置和运动时,求内副C的位置、两杆的角位置、角运动以及E 点的运动。

1) 位置方程由移项消去j ϕ后可求得i ϕ:式中,可求得j ϕ:E 点坐标方程:其中2) 速度方程两杆角速度方程为式中,点E 速度方程为3) 加速度方程两杆角加速度为式中,点E 加速度方程为RPR Ⅱ级杆组的运动分析(1) 位移方程(2)速度方程其中(3)加速度方程4、 计算编程利用MATLAB 软件进行编程,程序如下:% 点B 和AB 杆运动状态分析>>r=pi/180;w 1=10;e 1=0;l 1=100;Xa=0;Ya=0;Vax=0;Vay=0;aax=0;aay=0;f1=0:1: 360;% B 点位置Xb=Xa+l1*cos(r*f1);Yb=Ya+l1*sin(r*f1);% B点速度Vbx=Vax-w1*l1*sin(r*f1);Vby=Vay+w1*l1*cos(r*f1);% B点加速度abx=aax-l1*w1.^2.*cos(r*f1);aby=aay-l1*w1.^2.*sin(r*f1);% RRR2级杆组运动分析% 输入D点参数l2=428;l3=214;Xd=455;Yd=0;Vdx=0;Vdy=0;adx=0;ady=0;% 计算E点、2杆、3杆运动参数lbe=840;lce=486;a0=2*l2*(Xd-Xb);b0=2*l2*(Yd-Yb);c0=l2^2+(Xb-Xd).^2+(Yb-Yd).^2-l3^2;f2=2*atan((b0+sqrt(a0.^2+b0.^2-c0.^2))./(a0+c0)); % C点位置Xc=Xb+l2*cos(f2);Yc=Yb+l2*sin(f2);% 2杆、3杆运动参数计算dX=Xc-Xd;dY=Yc-Yd;for n=1:length(dX)if dX(n)>0&dY(n)>=0f3(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f3(n)=pi/2;elseif dX(n)<0&dY(n)>=0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f3(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f3(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f3(n)=2*pi+atan(dY(n)/dX(n));endendC2=l2*cos(f2);C3=l3*cos(f3);S2=l2*sin(f2);S3=l3*sin(f3);G1=C2.*S3-C3.*S2;w2=(C3.*(Vdx-Vbx)+S3.*(Vdy-Vby))./G1;w3=(C2.*(Vdx-Vbx)+S2.*(Vdy-Vby))./G1;G2=adx-abx+(w2.^2).*C2-(w3.^2).*C3;G3=ady-aby+(w2.^2).*S2-(w3.^2).*S3;e2=(G2.*C3+G3.*S3)./G1;% E点位置w=acos((l2^2+lbe^2-lce^2)/(2*l2*lbe));Xe=Xb+lbe*cos(f2-w);Ye=Yb+lbe*sin(f2-w);Vex=Vbx-lbe*w2.*sin(f2-w);Vey=Vby+lbe*w2.*cos(f2-w);aex=abx-lbe*(e2.*sin(f2-w)+w2.^2.*cos(f2-w));aey=aby+lbe*(e2.*cos(f2-w)-w2.^2.*sin(f2-w));% 计算杆5运动参数Xf=646.2912088;Yf=-268.9008617;l5=sqrt((Xe-Xf).^2+(Ye-Yf).^2);dX=Xe-Xf;dY=Ye-Yf;for n=1:length(dX)if dX(n)>0&dY(n)>=0f5(n)=atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)>0f5(n)=pi/2;elseif dX(n)<0&dY(n)>=0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)<0&dY(n)<0f5(n)=pi+atan(dY(n)/dX(n));elseif dX(n)==0&dY(n)<0f5(n)=1.5*pi;elseif dX(n)>0&dY(n)<0f5(n)=2*pi+atan(dY(n)/dX(n));endendw5=(-Vex.*sin(f5)+Vey.*cos(f5))./l5;a5=(-aex.*sin(f5)+aey.*cos(f5))./l5;% 画出各参数曲线figure(1);plot(Xe,Ye,'k');xlabel('Xe/\mm');ylabel('Ye/mm');grid on;title('E点位置');figure(2);plot(f1,f5,'k');xlabel('f/\circ');ylabel('f5/\circ');grid on;title('5杆角位移');figure(3);plot(f1,w5,'k');xlabel('f/\circ');ylabel('w5/rad/s');grid on;title('5杆角速度');figure(4);plot(f1,a5,'k');xlabel('f/\circ');ylabel('a5/rad/s2');gridon;title('5杆角加速度');Warning: Unable to interpret TeX string "Xe/\mm"5、计算结果图一:E点的运动轨迹图二:5杆角位移图三:5杆角速度图四:5杆角加速度6、计算结果分析由E点位置图像可看出,构件4做周期往复运动,由图二、三、四可看出,构件5的角位移、角速度、角加速度均成周期性变化。

机械原理课程大作业

机械原理课程大作业

机械原理课程大作业基于MATLAB平面连杆机构运动学和动力学分析指导老师:王玉丹目录作业一:平面连杆机构运动学分析第2页作业二:平面连杆机构动力学分析第15页作业一L(AE)=70mm,L(AB)=40mm,L(EF)=60mm,L(DE)=35mm,L(CD)=75m m,L(BC)=50mm,原动件以等角速度W1=10rad/s回转。

试以图解法求在θ1=50°时C点的速度和加速度.对机构进行运动分析,写出C点的位置、速度及加速度方程。

解题过程:令AB=r1, BC=r2, CD=r3, DE=r4,AE=r6,EF=r8, AF=r7,角EAF=θ1。

分析:对机构进行位置分析由封闭形ABCDEA可得:r1+r2=r6+r3+r4 (1)由封闭图形AEFA可得:r7=r6+r8 (2)将(1)(2)两式整理可得:r2-r3-r4=-r1+r6-r8+r7=r6【一】(1)位置方程:【二】速度方程:【三】加速度方程:【四】根据位置方程式编制如下函数:【五】进行数据输入,运行程序进行运算。

根据上面分析的θ1 的极限位置取θ1 的范围为40°-55°并均分成15个元素:输出的P、矩阵的第二列到第四列分别是θ2 、θ3 、4θ4 的值,第一列是AF杆的长度r1’。

【六】第二步根据速度方程式编写如下函数:根据第一步得到的数据进行数据输入,运行程序计算各速度值。

程序如下:程序运行得到q矩阵,第一行到第三行分别是a2、a3、a4 的值,第四行是杆AF上滑块运动的速度,即F点的速度。

【七】第三步编写加速度计算函数:【八】根据第一步和第二步输入数据,运行程序得到各加速度的值:【1】计算C点在θ1 =55°,w1 =10rad/s时的速度,加速度:总结数据绘出各构件的位置、速度和加速度的表格如下:【2】输出图像1)角位置程序及输出的图像:2)F点速度程序及输出的图像:3)角加速度程序及输出的图像:4)F点的加速度程序及输出图像:作业二在图示的正弦机构中,已知:L(AB)=100mm,h1=120mm,h2=80mm, W1=10rad/s(常数),滑块2和构件3的重量分别为,G2 =40 N 和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。

哈工大机械原理大作业3

哈工大机械原理大作业3

Harbin Institute of Technology机械原理大作业三课程名称:设计题目:院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学大作业3 齿轮传动设计 1、设计题目1.1机构运动简图1.2机械传动系统原始参数2、传动比的分配计算由已知条件,电动机转速n=1450r/min ,输出转速n 1=27 r/min ,n 2=31 r/min ,n 3=37 r/min ,带传动最大传动比max p i =2.5,滑移齿轮传动最大传动比=4,定轴齿轮传动最大 传动比=4。

可求得:传动系统的总传动比为:11n ni == 1450/27=53.70322n ni == 1450/31=46.774 33n ni == 1450/37=39.189 传动系统的总传动比分别由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传的传送比为其最大传送比5.2max =p i ,滑移齿轮的传动比为321,,v v v i i i ,定轴齿轮传动的传动比为f i ,则总传动比由于1i > 2i > 3i ,故取1max 4v v i i ==则定轴齿轮传动部分的传动比为1max max5.37f p v i i i i ==滑移齿轮传动的传动比22max3.49v f p i i i i ==33m a x2.92v f p i i i i ==定轴齿轮传动由3对齿轮传动组成, 每对齿轮的传动比为:1.754d i ==≤3、齿轮齿数的确定滑移齿轮齿数3=v i 65622.9521z z == 2=v i 8766 3.4719z z ==1=v i 10967 3.9417z z ==齿轮7,齿轮8:719z = 866z =781()852a m z z =+=齿轮9,齿轮10:917z =1067z =此时已知条件为'a =85mm ,910211()842()ni i a m z z X X ==+=-∑mm ''arccos(cos )21.78a aαα==总变位系数:'910()0.552tan z z x inv inv ααα∑+=-=根据x ∑值和1093.94 3.0z uz ==>,按选择变位系数线图左部斜线⑤分配变位系数,得90.45x =齿轮5,齿轮6:5=21z662z =此时已知'a =85mm ,561()832a m z z =+= ''arccos(cos )23.42a a αα==100.10x =总变位系数:'65() 1.082tan z z x inv inv ααα∑+=-=根据x ∑值和652.953z u z ==>,按选择变位系数线图左部斜线④分配变位系数,得 50.5x =60.58x =定轴圆柱齿轮齿数=d i 1214111326 1.5317z z z z ===齿轮11,齿轮12:角度变位正传动。

机械原理课程设计大作业

机械原理课程设计大作业

机械原理课程设计大作业菠萝削皮机专业:机械设计制造及其自动化摘要本设计产品提供一种手摇立式菠萝削皮机,主要包括托盘、刀架、顶针架、V 型刀片、手柄或小型发动机、以及机械系统,包括传动系统、装夹系统、切削系统。

其中传动系统由直齿圆锥齿轮(14)与进给螺纹套管(13)固连,通过摇动手柄(18)和变速齿轮机构(17)将动力经直齿圆锥齿轮(15)与进给螺纹管道(13)组成的传递机构将动力传给的刀具夹紧法兰盘(12)从而带动刀具旋转;装夹系统由上顶钉及对顶螺母(3),下顶钉(5)组成;切削系统由刀架和V型刀具(6、7)以及刀片(16)组成。

该削皮机使用方便,安全可靠,切削菠萝和皮根效率高。

目录一、题目复述二、设计方案及结构图三、机械系统四、主要结构件参数五、设计总结和补充六、参考书目一、题目复述菠萝是人们普遍喜爱的一种热带水果。

菠萝虽好吃,但皮难削。

由于菠萝的皮为花苞片状的硬皮,并呈现螺旋状的排列,而且每个花苞片上面都有一个较深的“果眼”或“黑芯”。

通常,人们手工削菠萝皮的做法:一种是用锋利的水果刀先削去菠萝上的全部花苞片硬皮,然后再逐个挖去菠萝上残留的全部“果眼”;另一种是利用特制的U 型刀沿着菠萝花苞片和“果眼”排列的螺旋方向挖出一条深“沟”,连皮带“眼”一块去掉,需逐条螺旋线方向挖“沟”才能完成。

所以手工削皮不仅费时费力,不安全,不卫生,而且对菠萝果肉的浪费也较大。

虽目前市面上有一些水果削皮机的产品,但都不适合于菠萝水果削皮的需要。

因此,为了满足家庭、酒店、水果店或果贩使用,现需设计一种手动式或电动菠萝削皮装置。

图8.1菠萝表面的花苞片及“果眼”的分布形状如图1所示。

菠萝通常呈现未对称性的左右螺旋线排列,左右螺旋线的螺旋线的螺旋升角均约为40,每条螺旋线上的果眼数为7-12个,每个菠萝的螺旋线数为8条,而菠萝的高度与其直径之比为1.5左右,其高度一般在170mm——280mm范围之内。

我们根据市场商场见菠萝的大小以及其表面特性将其归类:二、设计方案及结构图我们经讨论及实验以后采用“V”型刀具剔除果眼及外表皮,对于未长果眼的部分则采取普通刀片(双向)切削方法去除。

机械原理大作业--齿轮机构分析与设计

机械原理大作业--齿轮机构分析与设计

齿轮机构分析与设计设计一如图所示的二级减速器,设计要求如下: 1. 齿轮1、2的传动比i 12= 2.4 ,模数m = 2 mm 2. 齿轮3、4的传动比i 34=2 ,模数m = 2.5 mm 3. 安装中心距为68mm 4. 各轮1,20*==a h o α5. 重合度15.1≥ε,齿顶厚m S a 25.0≥;设计内容如下:1.确定各轮齿数,传动比应保证误差在5%以内;解:由m 1(z 1+ z 2)/2=68, z 2/ z 1=2.4得z 1=20,z 2=48, i 12=2.4满足要求,同理,由m 2(z 3+ z 4)/2=68, z 4/ z 3=2得z 3=18,z 4=36,i 34=2,满足要求2.分析可能有几种传动方案,说明哪一种方案比较合理并说明理由;解:z 1+ z 2=68>2 z min ,z 3+ z 4=54>2 z min 且a 12= m 1(z 1+ z 2)/2=68 a ’12 , a 34= m 2(z 3+ z 4)/2=67.5< a ’34 ,齿轮3,4必须使用正传动,故可选的传动方式有以下两种:(1)、1,2标准齿轮传动,3,4齿轮正传动。

(2)、1,2高度变为齿轮传动,3,4齿轮正传动。

第一种传动方式更合理。

因为标准传动设计计算简单,重合度较大,不会发生过渡曲线干涉,齿顶厚较大。

而零传动的重合度会有降低,且小齿轮齿顶容易变尖。

3.分析确定你认为比较合理的传动方案的基本参数和全部尺寸;(1)1,2齿轮标准齿轮传动的基本参数: z 1=20,z 2=48,m 1=2, α=20º, h a *=1, c *=0.25。

全部尺寸:d 1=m 1z 1=40, d 2=m 2z 2=96; h a1= h a2=h a *m 1=2; h f1= h f2= (h a *+c *)m 1=2.5;h 1=h 2=4.5;d a1=(z 1+2 h a *)m 1=44,d a2=(z 2+2 h a *)m 1=100;d f1=(z 1-2 h a *)m 1=36,d f2=(z 2-2 h a *)m 1=92; d b1= d 1=37.59, d b2= d 2=90.21; p 1=p 2=πm 1=6.28; s 1=s 2=p/2=3.14;e 1=e 2=p/2=3.14;a 12= m 1(z 1+ z 2)/2=68; c 1=c 2= c *m 1=0.5;tanαa1=b122Rb1a1R R -=0.609 ,tan αa2=b222Rb2a2R R -=0.504,重合度])tan - tan ()tan - tan ([π21a22a11ααααεαZ Z +=由上数据可以得出εα=1.849>1(2)3,4齿轮标准齿轮传动的基本参数: z 3=18,z 4=36,m 2=2.5,α=20º, h a *=1, c *=0.25,a ’COS α’=a COS α得 α’=21.127º,再由inv α’=2(x 3+ x 4)tan α/(z 3+ z 4)+inv α 得x 3+x 4=0.205,即x 3= x 4=0.1025, a ’=68>a=67.5 , y=(a ’-a)/2.5=0.2,△y =0.005全部尺寸: h a3= h a4=(h a *+x)m 2=2.756,h f3= h f3= (h a *+c *-x)m 2=2.869;d a3=(z 3+2 h a *+2x)m 2=50.5125, d a4=(z 4+2h a *+2x)m 2=95.5125;d f3=(z 3-2h a *-2c *+2x)m 2=34.2625,d f4=(z 4-2h a *-2c *+2x)m 2=84.2625,4.校核重合度和齿顶厚,并校核是否满足不根切的条件;齿顶厚s a3=(1/2πm 2+2xm 2)r 3’/r 3-2r 3’(inv α’-inv α)=4.352s a4=(1/2πm 2+2xm 2)r 4’/r 4-2r 4’(inv α’-inv α)=4.374tan αa3=b322Rb3a3R R -=0.533 ,tan αa4=b422Rb4a4R R -=0.512重合度])'tan - tan ()'tan - tan ([π21a44a33ααααεαZ Z +=由上数据可以得出εα=1.143>1, 避免根切的最小变位系数x min =ZZZminmin-<0 故不发生根切。

哈工大机械原理大作业——齿轮——1号

哈工大机械原理大作业——齿轮——1号

Harbin Institute of Technology机械原理大作业3课程名称:机械原理设计题目:齿轮传动设计哈尔滨工业大学一、设计题目:如下图一个机械传动系统,运动运动由电动机1输入,经过机械传动系变速后由圆锥齿轮16输出三种不同转速。

选择一组传动系统的原始参数,据此设计该传动系统。

序号电机转速〔r/min〕输出轴转速〔r/min〕带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数圆柱齿轮圆锥齿轮一对齿轮最大传动比模数一对齿轮最大传动比模数7 1450 17 23 30 ≤2.8 ≤4.5 2 ≤4.5 3 ≤4 3二、传动比的分配计算:电动机转速n=1450r/min,输出转速n1=17r/min,n2=23 r/min,n3=30 r/min,带传动的最大传动比=2.8,滑移齿轮传动的最大传动比=4.5,圆柱齿轮传动的最大传动比=4.5,圆锥齿轮最大传动比=4。

根据传动系统的原始参数可知,传动系统的总传动比为:i1=1450/30=48.333i2=1450/23=63.043i3=1450/17=85.294传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三局部实现。

设带传动的传动比为ipmax =2.8,滑移齿轮的传动比为iv1,iv2和iv3,令iv3=ivmax=4.5,那么定轴的传动比为if =85.294/(4.5*2.8)=6.769,从而iv1=48.333/〔6.769*2.8〕=2.550,iv2=3.326。

定轴齿轮每对的传动比为id==1.89。

三、滑移齿轮变速传动中每对齿轮的几何尺寸及重合度:经过计算、比拟,确定出三对滑移齿轮的齿数,其分别为:z5=17,z6=44,z 7=14,z8=47,z9=11,z10=50。

变位系数确实定:x5=x6=0; x7≥ha*(17-14)/17=0.176,取x7=0.18,x8=-0.18;x9≥ha*(17-11)/17=0.353,取x9=0.36;x10=-0.36。

机械原理大作业

机械原理大作业

机械原理大作业三课程名称:机械原理设计题目:齿轮传动设计院系:班级:设计者:学号:指导教师:设计时间:1、设计题目1.1机构运动简图1.2机械传动系统原始参数序号 电机转速(r/min )输出轴转速(r/min )带传动最大传动比滑移齿轮传动定轴齿轮传动最大传动比模数 圆柱齿轮圆锥齿轮 一对齿轮最大传动比模数一对齿轮最大传动比 模数 574512 17 232332、传动比的分配计算电动机转速min /745r n =,输出转速m i n /1201r n =,min /1702r n =,min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。

根据传动系统的原始参数可知,传动系统的总传动比为:传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为滑移齿轮传动的传动比为设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数:35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=*a h ,径向间隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:24,1314121311====z z z z 。

它们的齿顶高系数1=*a h ,径向间隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 46'=。

机 械 原 理 大 作 业 - 机械原理大作业

机 械 原 理 大 作 业 - 机械原理大作业

机械原理大作业 - 机械原理大作业
机械原理是研究物体运动、力学、力的作用及其变化规律的科学。

在本次大作业中,我们将介绍机械原理的基本概念、公式和应用。

一、机械原理的基本概念
1. 运动学:研究物体运动的速度、加速度、轨迹等运动规律;
2. 动力学:研究物体的受力与它产生的运动规律;
3. 热力学:研究物体的热现象及其规律;
4. 物理学:研究物理学的基本概念和公式。

二、机械原理的公式
1. 牛顿第一定律:物体静止或匀速直线运动,当且仅当它所受的合外力为零时,物体才保持静止或匀速直线运动;
2. 牛顿第二定律:物体所受的合外力等于其质量乘以加速度;
3. 牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反、作用在同一直线上。

三、机械原理的应用
1. 机械振动:当物体受到外力作用时,它会出现振动;
2. 飞行器动力学:研究飞行器受到的空气力、重力力和推力等作用力的大小、方向和作用点,以及其导致的运动规律;
3. 摩擦力学:研究物体之间的摩擦力大小、方向和作用点。

以上是机械原理的基本概念、公式和应用,希望这些内容可以帮助大家更好地理解机械原理。

哈工大机械原理课程设计齿轮传动设计大作业20无错版

哈工大机械原理课程设计齿轮传动设计大作业20无错版

机械原理课程设计大作业——齿轮传动系统20课程名称:机械原理课程设计设计题目:齿轮传动系统分析院系:机电工程学院班级: 15设计者:学号: 115 指导教师:设计时间: 2017年6月1、设计题目 1.1运动简图2、传动比的分配计算电动机转速min /970r n=,输出转速min /3001r n =,n /3502mi r n =,min /4003r n =,带传动的最大传动比5.2m ax =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4max =d i 。

根据传动系统的原始参数可知,传动系统的总传动比为: 333.3230970011===n n i 714.2735970022===n n i 250.2440970033===n n i传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传动的传动比为5.2m ax =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比f v p i i i i 1m ax 1= f v p i i i i 2m ax 2= f v p i i i i 3max 3= 令 4max 3==v v i i 则可得定轴齿轮传动部分的传动比为 425.24*5.2250.24max max 3===v p f i i i i滑移齿轮传动的传动比为333.5425.2*5.2333.32max 11===fp v i i i i571.4425.2*5.2714.27max 22===fp v i i i i设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 4343.1425.2max 33=≤===d f di i i3、齿轮齿数的确定根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数:42,8,41,9,40,101098765======z z z z z z ;它们的齿顶高系数1=*a h ,径向间隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 50'=。

机械原理大作业3 凸轮结构设计

机械原理大作业3 凸轮结构设计

机械原理大作业(二)作业名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1.设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。

表一:凸轮机构原始参数2.凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a= -2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63.运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度elseif t(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));% 求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4.确定凸轮基圆半径和偏距在凸轮机构的ds/dφ-s线图里再作斜直线D t d t与升程的[d s/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线的右下方为选择凸轮轴心的许用区。

机械原理大作业-齿轮

机械原理大作业-齿轮

机械原理大作业-齿轮三、齿轮传动设计一、设计题目如图所示一个机械传动系统,运动由电动机1输入,经过机械传动系统变速后由圆锥齿轮16输出三种不同的转速。

根据表中的传动系统原始参数设计该传动系统。

1.机构运动简图1.电动机 2,4.皮带轮 3.皮带 5,6,7,8,9,10,11,12,13,14.圆柱齿轮15,16.圆锥齿轮2.机械传动系统原始参数二、传动比的分配计算电动机的转速1450/min n r ,输出转速1n =50r/min ,2n =45r/min ,3n =40r/min,带传动的最大传动比max2.5p i ,滑移齿轮的传动的最大传动比max4v i ,定轴齿轮传动的最大传动比max4d i 。

根据系统的原始参数,系统的总传动比为1i =1n n=1450/50=29.00 2i =2n n =1450/45=32.222 3i =3n n=1450/40=36.25 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。

设带传动的传动比为max2.5p i ,滑移齿轮的传动比为1v i 、2v i 和3v i ,定轴齿轮传动的传动比为f i 则总传动比为 1max 1p v f i i i i 2max 2p v f i i i i 3max 3p v f i i i i令3max4v v i i则可得定轴齿轮传动部分的传动比为f i =maxmax 3*v p i i i =4*5.225.36=3.625 滑移齿轮传动的传动比为1v i =fp i i i *max 1=9.2*5.229=42v i =fp i i i *max 2=9.2*5.222.32=4.444定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为d i =3f i =3625.3=1.536三、齿轮齿数的确定根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10、为角度变位齿轮,其齿数:52,19,41,17,50,231098765======z z z z z z 它们的齿顶高系数1ah ,顶隙系数0.25c ,分度圆压力角=20,实际中心距取mm a 73=。

机械原理课程设计作业

机械原理课程设计作业
说明书编写:根据详细设计和图纸绘制,编写出说明书,包括零件的尺寸、材料、加工工艺 等。
检查和修改:对图纸和说明书进行检查和修改,确保无误后提交。
练习答辩:熟悉PPT内容, 确保答辩流畅
准备答辩PPT:包括设计背景、 设计思路、设计过程、设计结 果等
参加答辩:按照答辩流程进 行,回答评委问题
完成设计总结报告:总结设计 过程中的经验和教训,提出改
机械原理课程设计作 业任务
课程设计步骤
课程设计要求
课程设计中可能遇到 的问题及解决方法
课程设计的收获与展望
课程设计目的
理解机械原理的基本概念和原理 掌握机械设计的基本方法和技巧 提高分析和解决问题的能力 培养创新思维和实践能力
提高动手能力:通过实际操作,提高学生的动手能力和实践能力 掌握理论知识:通过实际操作,加深学生对理论知识的理解和掌握 培养创新思维:通过实际操作,培养学生的创新思维和创新能力 提高团队合作能力:通过实际操作,培养学生的团队合作能力和沟通能力
创新性:要求学生在课程设计中展现出独特的创新思维和解决问题的能力。 实用性:要求学生在课程设计中注重实际应用,解决实际问题。 可行性:要求学生在课程设计中考虑方案的可行性,确保方案能够顺利实施。 团队合作:要求学生在课程设计中注重团队合作,共同完成设计任务。
课程设计中可能遇 到的问题及解决方 法
缺乏用户反 馈:未提供 用户反馈渠 道,无法及 时了解用户 问题及需求
问题:时间安排不合理,进度管理混乱 解决方法:制定详细的时间计划,明确每个阶段的任务和目标 问题:团队成员之间缺乏沟通,进度不一致
解决方法:定期召开团队会议,及时沟通进度和问题,确保团队成员之间的进度一致
课程设计的收获与 展望
确定机械装置的功能和用途 选择合适的材料和工具 设计机械装置的草图和结构 制作机械装置的模型和原型 测试机械装置的性能和稳定性 改进和完善机械装置的设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理课程设计大作业
菠萝削皮机
专业:机械设计制造及其自动化
摘要
本设计产品提供一种手摇立式菠萝削皮机,主要包括托盘、刀架、顶针架、V 型刀片、手柄或小型发动机、以及机械系统,包括传动系统、装夹系统、切削系统。

其中传动系统由直齿圆锥齿轮(14)与进给螺纹套管(13)固连,通过摇动手柄(18)和变速齿轮机构(17)将动力经直齿圆锥齿轮(15)与进给螺纹管道(13)组成的传递机构将动力传给的刀具夹紧法兰盘(12)从而带动刀具旋转;装夹系统由上顶钉及对顶螺母(3),下顶钉(5)组成;切削系统由刀架和V型刀具(6、7)以及刀片(16)组成。

该削皮机使用方便,安全可靠,切削菠萝和皮根效率高。

目录
一、题目复述
二、设计方案及结构图
三、机械系统
四、主要结构件参数
五、设计总结和补充
六、参考书目
一、题目复述
菠萝是人们普遍喜爱的一种热带水果。

菠萝虽好吃,但皮难削。

由于菠萝的皮为花苞片状的硬皮,并呈现螺旋状的排列,而且每个花苞片上面都有一个较深的“果眼”或“黑芯”。

通常,人们手工削菠萝皮的做法:一种是用锋利的水果刀先削去菠萝上的全部花苞片硬皮,然后再逐个挖去菠萝上残留的全部“果眼”;另一种是利用特制的U 型刀沿着菠萝花苞片和“果眼”排列的螺旋方向挖出一条深“沟”,连皮带“眼”一块去掉,需逐条螺旋线方向挖“沟”才能完成。

所以手工削皮不仅费时费力,不安全,不卫生,而且对菠萝果肉的浪费也较大。

虽目前市面上有一些水果削皮机的产品,但都不适合于菠萝水果削皮的需要。

因此,为了满足家庭、酒店、水果店或果贩使用,现需设计一种手动式或电动菠萝削皮装置。

图8.1
菠萝表面的花苞片及“果眼”的分布形状如图1所示。

菠萝通常呈现未对称性的左右螺旋线排列,左右螺旋线的螺旋线的螺旋升角均约为40,每条螺旋线上的果眼数为7-12个,每个菠萝的螺旋线数为8条,而菠萝的高度与其直径之比为1.5左右,其高度一般在170mm
——280mm范围之内。

我们根据市场商场见菠萝的大小以及其表面特性将其归类:
二、设计方案及结构图
我们经讨论及实验以后采用“V”型刀具剔除果眼及外表皮,对于未长果眼的部分则采取普通刀片(双向)切削方法去除。

削菠萝的手动机械,它由上顶钉及对顶螺母(3),下顶钉(5)构成菠萝的夹持机构:直齿圆锥齿轮(14)与进给螺纹套管(13)固连,通过摇动手柄(18)和变速齿轮机构(17)将动力经直齿圆锥齿轮(15)与进给螺纹管道(13)组成的传递机构将动力传给的刀具夹紧法兰盘(12)从而带动刀具旋转,实现刀具的旋转运动与直线进给运动,进而完成对菠萝的去皮与“挖黒芯”的工作。

机械部分及其功能特点:
1、外壳:机械的外壳。

2、基座:支撑机械稳定。

3、上顶针及对顶螺母:上顶钉用来固定菠萝,对顶螺母用来固定
上顶钉,两螺母对顶拧紧后使旋合螺纹始受收到附加的压力和摩擦力作用,当菠萝再被切削有轴向跳动时,该摩擦力仍然存在其特点,结构简单,放松效果好。

4、下顶盖:用来拖住菠萝,与上下顶钉共同固定菠萝。

5、下顶针:用来固定菠萝,与上顶钉共同固定菠萝
6、V型刀具1:V型刀具为固定刀具,随着动力传到刀具法兰(12)带动V型刀“挖果眼”,V型刀具两面均为刀刃,可正反切削。

7、V型道具2: V型刀具2为沿刀杆可上下移动刀具,用来确定菠萝两层“果眼”之间的距离进而确定转速当刀具1定位于第一层“果眼”时,松开蝴蝶夹紧卡子(8),沿开口槽1(9)移动V型刀具2使其对准第二层“果眼”,读出开口槽1(9)上的档次,进而调整摇动手柄,选取合适转速,切削菠萝。

8、蝴蝶夹紧卡子:用于配合V型刀具2选取正确位置。

9、开口槽1:V型刀具2沿开口槽1上下移动,上面的刻度用来选择转速。

10、夹紧滑动梯形槽:当下顶盖上放上待切削菠萝时,转动夹紧T 型销(11)使刀具夹紧法兰盘体(12)上的刀架沿夹紧滑动梯形槽向中心夹紧,实施对菠萝的夹紧。

11、夹紧T型销: 转动夹紧T型销,使刀具夹紧法兰盘体(12)向内夹紧实现定位。

12、刀具夹紧法兰盘体:刀具夹紧法兰盘体上由三把可移动的刀杆,上面有两把“V”槽刀,V型刀具1(6)和V型刀具2(7)还有一把与菠萝表面平行的刀片,其V型刀具1(6)与刀片(16),在同一水平面上。

其外型类似于车床上的法兰盘体。

13、进给螺纹套管:上面选用传动螺纹,用于传递功,实现回转运动与直线运动换。

传动螺纹的牙型由梯形,矩形等。

在这里我们选用矩形螺纹传递其中大径D=14MM,螺距P=2mm,中径D2=11.835mm 进给螺纹套管与刀具夹紧法兰盘体(12)底部齿合传递动力给刀架。

14、直齿圆锥齿轮1:直齿圆锥齿轮1:与进给螺纹套管固连
15、直齿圆锥齿轮2:直齿圆锥齿轮2与直齿圆锥齿轮1啮合传递动力。

16、刀片:用来切削菠萝表面的毛刺和菠萝表面的皮。

17、齿轮变速机构:对于不同大小的菠萝提供三种变速,有一个三联滑移齿轮合同轴上的三个齿轮构成。

18、摇动手柄:用来提供动力,可向外壳(1)内伸入拉出,控制某个齿轮和三联滑移齿轮。

三、机械系统
1. 传动与切削系统
2. 装夹菠萝及对刀方案
将菠萝放在两顶针中间,根据菠萝的大小再开口槽上选择不同的槽口用下顶针卡死。

后旋动上顶针及对顶螺帽使上下顶针插入菠萝,同下顶针一起将菠萝固定,同开口槽与对顶螺母起到钉死的作用。

由于被加工后的菠萝切去两端后近似看成一圆柱体,此时通过旋转,道具加紧法兰盘体使V型刀具1对准最上面一层的果眼,再松开蝴蝶加紧卡子沿开口槽一上下移动V型刀具Z,使其对准另一行果眼,此时根据蝴蝶卡子在开口槽1上所示位置,调整转速。

最后在完成以上步骤的前提下上紧夹夹紧T型稍使刀具向中心移动。

其中V型刀具1、2及片刀向中心深入12mm左右后再次调整夹紧装置。

之后先缓慢转动手柄,后逐渐加速进行切削。

若转完一圈后任然有未挖净的果眼果皮,松开夹紧T型销,转动进给螺纹套管或菠萝使刀具对准未挖净的果眼,再夹紧T型稍,转动手柄,反向切削,一次进行直到切削完全为止,估计削完一菠萝在两分钟左右。

四、主要结构件参数
1、外壳:建议采用金属材料,有很高的稳定度,按所切削最大菠萝计算其高度应为400mm ,长300mm ,宽300mm。

2、对顶螺母及直齿圆锥齿轮进给螺纹套管均采用标准件,直齿圆柱齿轮,压力角20度齿顶高等效ha*=1.0顶隙系数c*=0.2,进给螺纹套管D=14mm、P=2mm、D2=12.7mm、d1=11.8mm、L=300mm。

3、齿轮变速机构:一般使用这摇动的速度为30rad/min。

4、V型刀具与刀片均采用淬火薄钢片,V型刀具长30mm,张角40度,接触的面均须开刃,片刀长均15mm宽5mm倾斜角为30°五、设计总结和补充
通过一个月的调查,我们设计出了菠萝切削机,在设计过程中我考察了许多种市场上的一经有了机型,并在网上查找了一些资料看一些意见。

其中菠萝无论大小都只有8条螺旋线和题目所给有些不同,最后我们按照8条螺旋线计算和设计。

在考虑到菠萝上“果眼”的几何分布及皮厚后,我们提出了自己的想法,通过组内讨论和同学的建议我们最终敲定了外形及切削形式和主要传动方式。

最后我们分工开始具体细节的设计,其中程博同学设计了切削和装夹部分,戴承勇同学设计了刀具及走到方案,并在刀具设计及市场调查方面做出了贡献,何强同学完成了传动件及外形设计。

在设计过程中我们团结一致共同
努力,终于完成了作品。

在实物观察中,我们注意到菠萝的皮厚对刀具刚度的影响,经过多次试验,对于皮较厚,较硬,“果眼”较深的菠萝用该机构切削较费力,但由于市场上卖的菠萝皮厚均为2.5mm,所以我们以2.5mm 为标准进行设计。

螺纹管道由于在标准件库中未找到,所以螺纹是按标准取的,而套管内尺寸则按我们的设计要求自己设计的。

六参考书目
《机械原理》高等教育出版社。

《机械设计》高等教育出版社。

相关文档
最新文档