九年级数学认识一元二次方程PPT优秀课件
合集下载
2021年北师大版九年级数学上册《认识一元二次方程》优质课课件(共13张PPT)
认识一元二次方程
问题1
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的次数是1的整式 方程叫一元一次方程(linear equation with one unknown)
问题2 大明休闲中心有一个长为10m,宽为6m的游泳池,
现想将游泳池的面积改造成35m2,若长宽同时减少 相同的长度,问减少多少米?
解 去括号,得 3x2-3x=2x-4-4
移项,合并同类项,得方程的一般形式:
3x2-5x+8=0 它的二次项系数是3,一次项系数是-5,常数项是8
1、填空:
方程
一般式
x2-4x-3=0 x2-4x-3=0
0.5x2= 5
0.5x2-√5 =0
2 y-4y2=0 -4y2 +√2y =0
(2x)2=(x+1)2 3x2-2x-1=0
你能结合方程①给方 程②起一个名字吗?
一元二次方程
一元二次方程的定义 方程X2-16x+25=0的两边都是整式,只含有一个未知数,并且
未知数的最高次数是2次,我们把这样的方程叫做一元二次方程。 ①方程两边都是整式
一元二次方程要素
②只含有一个未知数
③未知数的最高次数是2次
试一试
1、判断下列方程中,哪些是一元二次方程?
bx+c=0
ax2+c=0 ax2+bx=0
ax2=0
只要满足a≠0,a,b,c可以为任意实数
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项
问题1
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的次数是1的整式 方程叫一元一次方程(linear equation with one unknown)
问题2 大明休闲中心有一个长为10m,宽为6m的游泳池,
现想将游泳池的面积改造成35m2,若长宽同时减少 相同的长度,问减少多少米?
解 去括号,得 3x2-3x=2x-4-4
移项,合并同类项,得方程的一般形式:
3x2-5x+8=0 它的二次项系数是3,一次项系数是-5,常数项是8
1、填空:
方程
一般式
x2-4x-3=0 x2-4x-3=0
0.5x2= 5
0.5x2-√5 =0
2 y-4y2=0 -4y2 +√2y =0
(2x)2=(x+1)2 3x2-2x-1=0
你能结合方程①给方 程②起一个名字吗?
一元二次方程
一元二次方程的定义 方程X2-16x+25=0的两边都是整式,只含有一个未知数,并且
未知数的最高次数是2次,我们把这样的方程叫做一元二次方程。 ①方程两边都是整式
一元二次方程要素
②只含有一个未知数
③未知数的最高次数是2次
试一试
1、判断下列方程中,哪些是一元二次方程?
bx+c=0
ax2+c=0 ax2+bx=0
ax2=0
只要满足a≠0,a,b,c可以为任意实数
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项
《一元二次方程》PPT优秀课件
③
①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤
审
审题,弄 清已知量 与未知量 之间的关 系
设 设未知数
找
找出等量 关系
列
根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0.
注意:系数包含 前面的符号
其中二次项系数为3,一次项系数为-8,常数项为-10.
获取新知
知识点二:一元二次方程的根 使方程左右两边相等的未知数的值就是这个一元二次 方程的解,一元二次方程的解也叫做一元二次方程的根.
例题讲解
例2 下面哪些数是方程x2-x-2=0的根? -3,-2,-1,0,1,2,3
第二十一章 一元二次方程
一元二次方程
-.
知识回顾
1.下列式子哪些是方程?
2+6=8 2x+3
没有未知数 代数式
5x+6=22 x+3y=8
一元一次方程 二元一次方程
x-5<18
不等式
北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件
(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程
华师大版九年级数学上册《一元二次方程》课件(14张PPT)
谢谢观赏
You made my day!
我们,还在路上……
20.根据问题,列出关于x的方程:在圣诞节到来之际,九(3)班所 有的同学准备送贺卡相互祝贺,所有同学送完后共送了1 640张, 求九(3)班有多少同学? 解:设九(3)班有x名同学,根据题意,得x(x-1)=1640
21.k为何值时,关于x的方程(k+3)(k-1)x2+(k-1)x+5=0. (1)是一元一次方程? 解:∵(k+3)(k-1)=0且k-1≠0,∴k=-3.即当k=-3时, 原方程是一元一次方程 (2)是一元二次方程? 解:∵(k+3)(k-1)≠0,∴k≠-3且k≠1.即当k≠-3且k≠1时, 原方程是一元二次方程
22.1 一元二次方程
1.只含有一个未知数,并且未知数的最高次数是__2__的整式 方程,叫做一元二次方程.
2.判断一个方程是否是一元二次方程,必须满足下列条件:(1) 是___整__式___方程;(2)只含有一个未知数;(3)未知数的最高次数 是__2__;(4)二次项系数不能为__0__.
3.关于 x 的一元二次方程的一般形式是 ax2+bx+c=0(a,b, c 是已知数,a≠0),其中___a_是二次项系数,__b__是一次项系 数;__c__是常数项.注意:“a≠0”是一元二次方程一般形式 的一个重要组成部分.
A.x(3x-4)=0
B.5x2=x(1-2x)源自C.(2x+1)(1-x)=0 D.x(1-x)=x
知识点3:一元二次方程的根
7.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值
是(A )
A.-3
B.3
C.0
D.0或3
8.(1)(2014·哈尔滨)若x=-1是关于x的一元二次方程x2+3x+
You made my day!
我们,还在路上……
20.根据问题,列出关于x的方程:在圣诞节到来之际,九(3)班所 有的同学准备送贺卡相互祝贺,所有同学送完后共送了1 640张, 求九(3)班有多少同学? 解:设九(3)班有x名同学,根据题意,得x(x-1)=1640
21.k为何值时,关于x的方程(k+3)(k-1)x2+(k-1)x+5=0. (1)是一元一次方程? 解:∵(k+3)(k-1)=0且k-1≠0,∴k=-3.即当k=-3时, 原方程是一元一次方程 (2)是一元二次方程? 解:∵(k+3)(k-1)≠0,∴k≠-3且k≠1.即当k≠-3且k≠1时, 原方程是一元二次方程
22.1 一元二次方程
1.只含有一个未知数,并且未知数的最高次数是__2__的整式 方程,叫做一元二次方程.
2.判断一个方程是否是一元二次方程,必须满足下列条件:(1) 是___整__式___方程;(2)只含有一个未知数;(3)未知数的最高次数 是__2__;(4)二次项系数不能为__0__.
3.关于 x 的一元二次方程的一般形式是 ax2+bx+c=0(a,b, c 是已知数,a≠0),其中___a_是二次项系数,__b__是一次项系 数;__c__是常数项.注意:“a≠0”是一元二次方程一般形式 的一个重要组成部分.
A.x(3x-4)=0
B.5x2=x(1-2x)源自C.(2x+1)(1-x)=0 D.x(1-x)=x
知识点3:一元二次方程的根
7.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值
是(A )
A.-3
B.3
C.0
D.0或3
8.(1)(2014·哈尔滨)若x=-1是关于x的一元二次方程x2+3x+
初三数学中考专题复习 一元二次方程 课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程
一元二次方程课件ppt
• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
一元二次方程 初中九年级数学教学课件PPT 人教版
否
注意:有些方程化
(5) 1 1 x2 1 5
简前含有二次项,
否
但是化简后二次项
(6)ax2 bx c (0 a,b,c为常数) 系数为0,这样的
否
方程不是一元二次
知识
问题Βιβλιοθήκη 课堂回顾探究
小结
探究二:利用一元二次方程的概念解决简
单的问题
活 动1
一元二次方程的概念和一元二次方程的根 的概念的应用
练习1:在下列方程中,一元二次方程A的
一元二次方程的一般a形x2 式bx: c (0 a 0)
其中ax2是二次项,a是二次 项系数; bx是一次项,b是一次项系数; c是常数项。
知识 回顾
问题 探究
课堂 小结
探究一:一元二次方程的概念
和一般形活式 动4
一元二次方程的一般形ax2式b:x c (0 a 0)
问题: (1)一元二次方程的一般形式有什么特点? 等号的左、右分别是什么?
【解(题x+过1)程(】4x-1)
解:(1)原方程整理得:3x2+2x-3=0,所以是一元二次方程
二次项系数是3,一次项系数是2,常数项是-3。
(2)原方程整理得:9x+10=0,因此它不是 一元二次方程。 【思路点拨】将方程化成一般形式,再根据其一 般形式确定它的二次项系数、一次项系数和常数 项。
【思路点拨】先将原方程化为一般形式, 再根据一元二次方程的二次项系数不能为0, 求出m的范围。
个数是( )
①3x2+7=0
②
ax2+bx+c=0
3x2 5 0
x
③(x-2)(x+5)=x2-1 ④
A.1个 B.2个 C.3个 D.4个
一元二次方程ppt课件
定义
一元二次方程是一个整式方程, 其一般形式为ax^2 + bx + c = 0 ,其中a、b、c是常数,且a≠0。
解释
一元二次方程只含有一个未知数, 并且未知数的最高次数是2。
举例
如2x^2 + 3x - 4 = 0,3x^2 - 5x + 2 = 0等。
一元二次方程的一般形式
形式
ax^2 + bx + c = 0,其中a、b 、c是常数,且a≠0。
判断下列哪个方程有两个不相 等的实数根,并说明理由: x^2 + 2x + 1 = 0
综合练习题
对于任何一个一元二次方程,如 何判断它的根的情况?
根据一元二次方程的特点,如何 利用配方法求解其根?
对于一个一元二次方程,如果它 的根的判别式小于0,那么这个
方程有什么特点?
CHAPTER 07
总结与回顾
• 如果Δ>0,方程有两个不同的实数解;
根的判别式的性质
• 如果Δ=0,方程有两个相同的实 数解;
• 如果Δ<0,方程没有实数解。
根的判别式的应用
通过根的判别式,我们可以快速判断一元二次方程的实数解的情况,不 需要求解方程。
在数学、物理、工程等领域中,根的判别式被广泛应用于解决涉及二次 方程的问题。
加强对一元二次方程的应用,结合实际 生活和相关学科,拓展应用领域。
进一步学习其他数学知识和方法,为后 培养自主学习和终身学习的意识,不断
续学习和工作打下坚实的基础。
学习和进步。
THANKS FOR WATCHING
感谢您的观看
公式法
通过配方法或公式法求解。
求根公式法
当Δ=b^2-4ac≥0时,方程有 实数解。此时,x=(b±√Δ)/(2a)。
一元二次方程是一个整式方程, 其一般形式为ax^2 + bx + c = 0 ,其中a、b、c是常数,且a≠0。
解释
一元二次方程只含有一个未知数, 并且未知数的最高次数是2。
举例
如2x^2 + 3x - 4 = 0,3x^2 - 5x + 2 = 0等。
一元二次方程的一般形式
形式
ax^2 + bx + c = 0,其中a、b 、c是常数,且a≠0。
判断下列哪个方程有两个不相 等的实数根,并说明理由: x^2 + 2x + 1 = 0
综合练习题
对于任何一个一元二次方程,如 何判断它的根的情况?
根据一元二次方程的特点,如何 利用配方法求解其根?
对于一个一元二次方程,如果它 的根的判别式小于0,那么这个
方程有什么特点?
CHAPTER 07
总结与回顾
• 如果Δ>0,方程有两个不同的实数解;
根的判别式的性质
• 如果Δ=0,方程有两个相同的实 数解;
• 如果Δ<0,方程没有实数解。
根的判别式的应用
通过根的判别式,我们可以快速判断一元二次方程的实数解的情况,不 需要求解方程。
在数学、物理、工程等领域中,根的判别式被广泛应用于解决涉及二次 方程的问题。
加强对一元二次方程的应用,结合实际 生活和相关学科,拓展应用领域。
进一步学习其他数学知识和方法,为后 培养自主学习和终身学习的意识,不断
续学习和工作打下坚实的基础。
学习和进步。
THANKS FOR WATCHING
感谢您的观看
公式法
通过配方法或公式法求解。
求根公式法
当Δ=b^2-4ac≥0时,方程有 实数解。此时,x=(b±√Δ)/(2a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程的左边等于0, 则找出值最接近于0且小于0的数,这个 数就是方程精确到十分位的取值。
X的大致范围 是1.1< x <1.2, 因此的整数部分是1,十分位是1
练习:
有一个两位数,个位数字与十位数字之和等于6,而且这两个数字 的积等于这个两位数的 1/3,求这个两位数.
设:这个两位数的十位数字是x,则个位数字是(6-x) x(6-x)= 1/3(10x+6-x)
通过上表,你能确定方程2x2 –13x+11=-4的一个解吗?
方程2x2 –13x+11=-7的一个解呢?
Байду номын сангаас
一个长为10m的梯子斜靠在墙上, 梯子的顶端到地面的垂直距离为 8m,如果梯子的顶端下滑1m,那 么梯子的底端向右滑动多少米?
1.滑动前,梯子的底端距离墙 6 m 2.滑动过程中,梯子的长度有没有变? 3.滑动后梯子的顶端距离地面 7 m
二分法
用估算的方法求 一元二次方程的 解或近似解
5cm
5-2x (8-2x)(5-2x)= 18
8-2x
x 如何求x呢?
8cm
第一步:化为一般形式
2x2 –13x+11=0
第二步:根据实际情况确定x大体的取值范围。
X可能小于0吗? 不可能小于0,没有实际意义
X可能大于4吗? X可能大于2.5吗?
化成一般形式为: x2 -3x+2=0
根据题意得x的范围是:0 < x ≤ 6
x
x2 -3x+2
12 3 456
0 0 2 6 12 20
x =1 或 x=2 当x =1 时这个两位数是15
当x =2时这个两位数是24
练习:
解设苗圃的宽为x,则长为(x+2)根据题意得:
x(x+2)=120 化为一般形式:x2 +2x-120=0
解:要完成规定动作最多的时间是h=5时
即: 5=10+2.5t-5t2 化为一般形式2t2 -t-2= 0
列表: t 2t2_t-2
0
123
-2 -1 4 13
所以,1<t<2
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
2.1 .2认识一元二次方程
1一元二次方程的定义
经过变形后,只含有一个未知数,并且未知数的次数 是二次,这样的整式方程叫一元二次方程
2一元二次方程的一般形式:
ax2+bx+c=0 (a≠0 ,a,b,c 为常数 )
3方程ax2+bx+c=0的条件:
(1)当a≠0时,是一元二次方程。
(2)当a=0并且b≠0 时 ,是一元一次方程。
4.设梯子底端向右滑动 x m
5.滑动后梯子底端距离墙 6x m
6.根据勾股定理,可得方程:
6x272102
8m 1m
数学化
7m
6m
xm
(6+x)²+7 ²=10²
一:化简: x²+12x-15 =0 二:x的大致范围 是1 < x <2 ,整数部分是1 三:保留整数部分不变,从0.1取到0.9找十分位
x
1 2 3 4 5 6 7 8 9 10 11
x2 +2x-120 -117 -112 - -96 - -72 -57 -40 - 0 23
105
85
21
当 X=10时, x2 +2x-120=0
所以
X=10
答:苗圃的宽为10m,则长为12m
一名跳水运动员进行10米跳台跳水训练,在正常的情况 下,运动员必须在距水面5米以前完成规定的翻腾动作,并 且调整好入水姿势,否则就容易出现失误,假设运动员起 跳后的运动时间t(s)为和运动员距水面的高度h(m)满足 关系: h=10+2.5t-5t2 , 那么他最多有多长的时间完成规 定的动作?
x的范围是 0 ≤ x ≤2.5
第三步:在x范围内取整数值,分别代入方程,如果有一
个数能够使方程的左边等于0,则这个 数就是方程的一
个解.
0 ≤ x ≤2.5
x
0 0.5 1 1.5 2 2.5
2x2-13x+11 11
5 0 -4
-7
-9
当x=1时,2x2 –13x+11=0 ,
所以方程的解为x=1
x
x2 +12x-15
1.1 1.2 1.3 1.4 1.5 1.6 1.7
-0.59 0.84 2.29 3.76 5.25 6.76 8.29
x
x2 +12x-15
1.1 1.2 1.3 1.4 1.5 1.6 1.7
-0.59 0.84 2.29 3.76 5.25 6.76 8.29
第四步:若在x的范围内取值,没有一个数能够使方
1.下列x的值是方程3x2-8x-3=0的解的是( )
A、-1 B、0 C、3 D、5
2.已知一长方形的长比宽多2米,面积为8米2.
若设此长方形的长为x米,根据题意,可列
方程是
.它的解是( )
A、-2 B、0 C、1 D、4
有一根外带有塑料皮长为100m的电线,不知什 么原因中间有一处不通,现给你一只万用表 (能测量是否通)进行检查,你怎样快速地找 到这一断裂处?
X的大致范围 是1.1< x <1.2, 因此的整数部分是1,十分位是1
练习:
有一个两位数,个位数字与十位数字之和等于6,而且这两个数字 的积等于这个两位数的 1/3,求这个两位数.
设:这个两位数的十位数字是x,则个位数字是(6-x) x(6-x)= 1/3(10x+6-x)
通过上表,你能确定方程2x2 –13x+11=-4的一个解吗?
方程2x2 –13x+11=-7的一个解呢?
Байду номын сангаас
一个长为10m的梯子斜靠在墙上, 梯子的顶端到地面的垂直距离为 8m,如果梯子的顶端下滑1m,那 么梯子的底端向右滑动多少米?
1.滑动前,梯子的底端距离墙 6 m 2.滑动过程中,梯子的长度有没有变? 3.滑动后梯子的顶端距离地面 7 m
二分法
用估算的方法求 一元二次方程的 解或近似解
5cm
5-2x (8-2x)(5-2x)= 18
8-2x
x 如何求x呢?
8cm
第一步:化为一般形式
2x2 –13x+11=0
第二步:根据实际情况确定x大体的取值范围。
X可能小于0吗? 不可能小于0,没有实际意义
X可能大于4吗? X可能大于2.5吗?
化成一般形式为: x2 -3x+2=0
根据题意得x的范围是:0 < x ≤ 6
x
x2 -3x+2
12 3 456
0 0 2 6 12 20
x =1 或 x=2 当x =1 时这个两位数是15
当x =2时这个两位数是24
练习:
解设苗圃的宽为x,则长为(x+2)根据题意得:
x(x+2)=120 化为一般形式:x2 +2x-120=0
解:要完成规定动作最多的时间是h=5时
即: 5=10+2.5t-5t2 化为一般形式2t2 -t-2= 0
列表: t 2t2_t-2
0
123
-2 -1 4 13
所以,1<t<2
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
2.1 .2认识一元二次方程
1一元二次方程的定义
经过变形后,只含有一个未知数,并且未知数的次数 是二次,这样的整式方程叫一元二次方程
2一元二次方程的一般形式:
ax2+bx+c=0 (a≠0 ,a,b,c 为常数 )
3方程ax2+bx+c=0的条件:
(1)当a≠0时,是一元二次方程。
(2)当a=0并且b≠0 时 ,是一元一次方程。
4.设梯子底端向右滑动 x m
5.滑动后梯子底端距离墙 6x m
6.根据勾股定理,可得方程:
6x272102
8m 1m
数学化
7m
6m
xm
(6+x)²+7 ²=10²
一:化简: x²+12x-15 =0 二:x的大致范围 是1 < x <2 ,整数部分是1 三:保留整数部分不变,从0.1取到0.9找十分位
x
1 2 3 4 5 6 7 8 9 10 11
x2 +2x-120 -117 -112 - -96 - -72 -57 -40 - 0 23
105
85
21
当 X=10时, x2 +2x-120=0
所以
X=10
答:苗圃的宽为10m,则长为12m
一名跳水运动员进行10米跳台跳水训练,在正常的情况 下,运动员必须在距水面5米以前完成规定的翻腾动作,并 且调整好入水姿势,否则就容易出现失误,假设运动员起 跳后的运动时间t(s)为和运动员距水面的高度h(m)满足 关系: h=10+2.5t-5t2 , 那么他最多有多长的时间完成规 定的动作?
x的范围是 0 ≤ x ≤2.5
第三步:在x范围内取整数值,分别代入方程,如果有一
个数能够使方程的左边等于0,则这个 数就是方程的一
个解.
0 ≤ x ≤2.5
x
0 0.5 1 1.5 2 2.5
2x2-13x+11 11
5 0 -4
-7
-9
当x=1时,2x2 –13x+11=0 ,
所以方程的解为x=1
x
x2 +12x-15
1.1 1.2 1.3 1.4 1.5 1.6 1.7
-0.59 0.84 2.29 3.76 5.25 6.76 8.29
x
x2 +12x-15
1.1 1.2 1.3 1.4 1.5 1.6 1.7
-0.59 0.84 2.29 3.76 5.25 6.76 8.29
第四步:若在x的范围内取值,没有一个数能够使方
1.下列x的值是方程3x2-8x-3=0的解的是( )
A、-1 B、0 C、3 D、5
2.已知一长方形的长比宽多2米,面积为8米2.
若设此长方形的长为x米,根据题意,可列
方程是
.它的解是( )
A、-2 B、0 C、1 D、4
有一根外带有塑料皮长为100m的电线,不知什 么原因中间有一处不通,现给你一只万用表 (能测量是否通)进行检查,你怎样快速地找 到这一断裂处?